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INTRODUCTION

Multiple decision problems are decision theory problems in which
the action space has a finite number of elements. Two different types
of multiple decision problems are considered, herein. These two types
of problems are subset selection problems and robustness of Bayes.
rules problems.

Subset selection problems arise because the classical tests of
homogeneity are often inadequate in practical situations where the
experimenter has to make decisions regarding k (> 2) populations,
treatments, or processes. The inadequacy is centered in the fact that
only two decisions, accept or reject, are available fo the experimenter.
'The experimenter is faced with the problem of what further action is
appropriate, if the hypothesis is rejected. This inadeduacy may be
alleviated by formulating the problems as multiple decision problems
aimed at selection or ranking of the k populations. Among the first
researchers to formulate the problems in this way were Mosteller (1948),
Paulson (1949), and Bahadur (1950). |

In the twenty-five years since these early papers, ranking and
selection problems have been an active area of statistical research.
Gupta (1956, 1965) proposed what has come to be called the subset

selection formulation of the problem. In this formulation, the



experimenter obtains a subset of the & populations which contains
the population of interest with a fixed rinimum probability o?er the
whole parameter space. Studies of optimality properties and compari-
sons between selection rules have been made by Seal (1957), Lehmann
(1961), Studdeﬁ (1967), Deely and Cupta (1968), Deverman (1969), and
Schaafsma (1969). The purpose of the first two chapters of this
thesis is to study minimaxity and admissibility properties of
subset selection rules.

In Chapter I, minimaxity of subset se]ection rules with respect
to the expected subset size and expected number of non-best populations
selected is considered. The problem is formulated in a decision
theoretic setting in Section 1.1. Section 1.2 contains the formal
definition of selection rules. In Section 1.3, the miniméx value of
a selection problem for a wide class of distributions is obtained.
Location and scale parameter problems are considered in Section 1.4.
"For these problems, it is shown that two rules proposed by Gupta
(1965) are minimax, if the distributions have monotone Tikelihood
ratio. Necessary conditions for minimaxity are derived in Sectidn
1.5. A class of rules proposed by Seal (1955) is studied in Section
1.6. Conditions are provided under which rules in this class are
not minimax.

In Chapter II, risk is measured in terms of the maximum probability
of including any non-best population in the selected subset. This
risk is defined in.Section 2.1. Translation invariant, scale invariant

and just rules are defined and characterized in Section 2.2. In



Section 2.3, a minimaxity resu]t 1S proven which, when app11ed in
1ocat1on or scale parameter prob]ems, shows that two rules proposed
by Gupta (1965) are minimax and admissible in the set of non-randomized,
just, and invariant rules. The beﬁavior of a class of rules proposed
by Seal (1955) with respect to this risk is examined in Section 2;4.
Section 2.5 addresses a specific problem, first éonsidered by Seal
(1955), involving normal populations when the parameters are in a
slippage configuration.‘

Robustness questions can arise in almost any kind of statistical
inference. They concern the behavior of a statistical procedure if
the underlying assumptions are violated. 1In many decision problems,
the exact parametric form of the distribution of the Qbservations
is specified. The question arises, what if this specification is
incorrect. The € -contaminated model is common in studies of this
problem. Huber (1967, 1972) and Andrews et al. (1972) are examples
of studies of this nature and the latter two provide extensive
bibliographies of the field. In the ¢ -contaminated model, the
form of the distribution is specified only with probability 1-¢,
the probability being € that the distribution is something totally
different and unspecified. Considering the uncertainty inherent in
the € -contaminated model, it seems unreasonable that the experimenter
~ could then ﬁpecify an exact prior on the € -contaminations. But if
restriction can be made to some sub-class of all prior distributions,
this partial prior information should be used. Blum and Rosenblatt
(1967) proposed the r-minimax criterion for the selection of decision

rules in the presence of partial prior information. The r-minimax



criterion has been studied in a variety of,prob]ems by Jackson et al.

(1970), Randles and Hollander (1971), Solomon (1972a, 1972b),

DeRouen and Mitchell (1974); and Gupta and Huang (1975, 1977).
Chapter III of this thesis considers the T-minimaxity of Bayes

multiple decision rules. The main result, found in Section 3.3,

is that, in a finite parameter space multiple decision problem,

the usual Bayes rule, ignoring any contamination, is robust in

that, for small ¢, it is r-minimax when the sub-class of priors is

a class of priors on the family of € -contaminations. In this sense,

the Bayes rule is robust against inaccurately specified distributions.

-Section 3.2 includes some F—minjmaxity results which are used in

Section 3.3. Bounds on the amount of contamination which can be

present with the Bayes rule remaining r-minimax are found in

Section 3.4. Section 3.5 relates this work to the special case of

hypothesis testing studied by Huber (1965).



CHAPTER 1
MINIMAXITY OF SUBSET SELECTION RULES WITH
RESPECT TO THE EXPECTED SUBSET SIZE

In this chapter, minimaxity of subset selection rules with
respect to the expected subset size and expected number of non-best
populations selected is considered. The problem is formulated in a
decision-theoretic setting in Section 1.1. 1In Section 1.2, selection
rules are formally defined. Theorems 1.3.1 and 1.3.4 of Section 1.3
provide the minimax value of a selection problem for a wide class of
distributions. Location and scale parameter problems are considered
in Section 1.4. Theorems 1.4.2 and 1.4.4 assert thdt if the distribu-
""tions have monotone like]ihood ratio, then two rules proposed by Gupta
are minimax. Section 1.5 considers necessary conditioné for minimaxity.
In Section 1.6, a class of selection rules proposed by Seal is studied.
Theorem 1.6.1 exhibits an undesirable feature of rules in this class
and Theorem 1.6.3 provides conditions under which rules in this class

are not minimax.

1.1 Multiple Decision Theory Formulation

A subset-selection problem may be formulated as a multiple decision
theory problem. The specific choice of the action space sets the

subset-selection problem apart from other multiple decision problems.



~ The sample space, Z, is a subset of k-dimensional Euclidean
space,B?k, where k 3_2.v Often the sample space will be a
k-dimensional product, viz., X = AgAx...xA, where A is a measurable
subset of the real line.

The parameter space, @, is a subset of k-dimensional Euclidean
space. Often ® will be a k-dimensional product. A distihguishing
feature of subset-selection problems is that there is some correspon-
dence between the ith coordinate x, of the observaticn vector x and
the ith coordinate 0, of the parameter vector 6. Often the coordinates
of the observation are stochastically independent and the distribution
of X5 depends only on 6 In general, the observation X; comes from
a population (process, treatment, etc.) s which has the parameter
0; associated with it.

The action space G consists of the 2k~1 non-empty subsets of
{1,2,...,k}. An action a is the selection of some subset of the k
populations. 1 € a means that s is included in the selected subset.

Based upon the paramefer, one of the populations will be classi-
fied as best. Usually this will be the population associated with
the largest or smallest coordinate of the parameter. If more than
one population could be classified as best according to the above
criterion; then one of these is arbitrarily tagged as the best. fhis
is done only to insure the continuity of certain important functions
of the paramefer. The resulting partition of @ will be denoted by

{61: i=1,2,...,k} where

(1.1.1) e; = {p €6 is the best population;.



The selection of any subset which contains the best population is
ca]fed a correct selection, denoted by CS. Let P* by any pre-assigned
fixed number such that 1/k < P* < 1. It has been traditional in the
Titerature to consider only selection rules R which satisfy the P*-
condition, viz., |
(1.1.2) inf PB(CSIR) E_P*.

6 -
Only rules which satisfy the P*-condition will be considered in this
thesis.

Having ensured a high probability of correct selection through the
P*-condition,one would prefer a rule which selects small subsets, that
is,a rule which rejects non-best populations effectively. To reflect
this, the loss in a subset selection problem might be measured in

several ways. The criteria used in this thesis are the following:

i) Selection of any given4non~best population
(1.1.3) i1) Number of populations selected (S)

i11) Number of non-best populations selected (S').

To complete the decision-theoretic formulation of a subset
selection problem, the o-fields which accompany the sets 2, ¢ and C
must be specified. Since G is finite, the discrete o-field is used.
For all applications in this thesis, if X or @ is cduntab]e, the
discrete o-field is used; if X or @ is uncountable, the Borel o-field

is used.



1.27 Definition of Selection Rules

Definition 1.2.1. A measurable function, 6: X x G~ [0,1], is a

selection rule if for each x € 2

(1.2.1) yoa(x,a) = 1.

§(x,a) is the conditional probability of selecting subset a having

observed x.

Definition 1.2.2. The k functions defined by

(1.2.2) G(x) = T slx,a)  i=1,2,....k
{a: i€ a}

are the individual selection probabilities. qﬁ(&) is the conditional

probability of including population s in the selected subset having
observed X. _

A selection rule is not, in general, completely determined by its
individual selection probabilities (see Nagel (1970), Example 1.2.1,
for an illustration of this fact). But the risk of any rule, for
losses de%ined in terms of the quantities (1.1.3), can be computed
in terms of the individual selection probabilities. For this reasog,
any two rules which have the same individual selection probabilities
.shall be considered quiva]ent and henceforth the following definition

of a selection ru]e will be used.

Definition 1.2.3. A selection rule, R, is a measurable function from

X into H%k, R: X~ (qq(g),qz(g),...,qk(g)) where 0 - ?i(x) <

i=1,2,....k, x €2



- Definition 1.2.4. A selection rule is called hon-randomized if all the
qi'S take on only the vaiues 0 or 1. | |

Clearly a non-randomized selection rule is completely specified by
the k sets, Ai = {x € A qﬁ(§) = 1}. Ai is the set of observations
for which population iF 1s inc]uded in the selected subset. The Ails
may not be disjoint but, since all the selection rules considered herein
always select a non-empty subset, it is true that .b] Ai = 2.

i=

1.3. Minimax Value for Losses S and S

In this section, the minimax value for a subset selection problem
_is computed when loss is measured either in terms of the.size of the
selected subset, S, or the number of non-best populations se]ectéd, S*.
It will be shown that for a wide varijety of problems, £he minimax
value is kP* when S is used and (k-1)P* when S’ ig used.

Both S and S' are random variables which take on positive integer
values. Let Ea(SIR) dethe the expected value of S when the selection
rule R is used—and 6 is the true parameter value. Ee(S’[R) is defined

similarly.

Definition 1.3.1. A selection rule, R*, is minimax with respect to S if

(1.3.1) sup EG(S[R*) = inf sup Ee(SIR)
& - R e -

where the inf is over all selection rules which satisfy the P*-condition
(1.1.2). The value on the right hand side of (1.3.1) is called the

minimax value with respect to S of the selection problem. Minimaxity

with respect to S' is defined by replacing S with S' in (1.3.1).
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Schaafsma (1969) considered minimaxity in multiple decision
problems in a very general setting. But he did not restrict attentibn
to rules which satisfy the P*-condition. In this unrestricted problem
he found that a minimax rule (with respect to S or S') never selects a
subset consisting of more than one population. This will certainly
not be the case in the restricted minimax problems considered herein.

The following subset of the parameter space will be of interest in

finding the minimax values. Let
(1.3.2) G = {8 Ce:r ¢ ¢ 6;'for all i = 1,2,...,k}

where ©; was defined in (1.1.1) and Eq_denotes the closure of @; in the

usual topology on IRk.

Theorem 1.3.1. Suppose &g is non—empty. Suppose there exists 0 € o

such that Pe(se]ect nifR) is upper semicontinuous at fg for all R and

all i = 1,2,...,k. Then the minimax value with respect to S is kP*.
Proof. It is clear that

: Pg(se]ect nilR).

ey

(1.3.3) E,(SIR) =
- i

The "no data rule" defined by qﬁ({) = P* has Pe(select niI@) = px*
for all s and'all i. So E@(Slq) = kP* fop a11—§ and the minimax value
cén be no greater than kP*j

On the other‘hand, Tet R denote any rule which satisfies the P*-
condition. Let {6..: j = 1,2,...} be a sequence in ©; which converges

-.J]
to 9g- (QO € 6; guarantees the existence of such a sequence). Since
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951

the upper semicontinuity and the P*-condition we have

€ &;, selection of ﬂi’is a correct selection at jS. Hence by

v

P (select s |R) Tim P, (select “ilR)

“0 g G
= Tim P, (CSIR)
NESEND
> P*,

This is true for all i = 1,...,k so using it in (1.3.3) yields

5 (SIR) > kpx.

(1.3.4) sup Ee(SIR) > E
@ -—

(1.3.4) is true for any rule R so the minimax value can be no less than

kP*. ||

The hypothesis that €y is non—empfy is satisfied in almost any
problem as the following two examples demonstrate. The upper semicon-
. tinuity hypothesis appears more formidable but Theorem 1.3.3 will show
that, in a wide variety of problems, the funcfions in question are,

in fact, continuous on @.

Example 1.3.1. Suppose X = (X]’XZ"“’Xk) has a multinomial distribu-

tion with cell probabilities p = (p],pz,...,pk). Suppose one wishes

to select the cell associated with the largest or smallest cell proba-

k
bility. In this problem @ = {(p],pz,...,pk): p; > 0 vi and ) p; = 11
_ 54
@, consists of the single point (%3 %3...,%). If in this problem ¢

were restricted so as to exclude a neighborhood of (%3 %3...,%), say

the experimenter knew that the largest p; was at least 2/3, then 9
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would be empty and Theorem 7.3.1 would not be applicable.

Example 1.3.2. Suppose @ .= IxIx...xI (k times) where I is an

interval on the real 1ine. This is often the situation when the

k populations are independent. Further suppose that best is defined
in terms of the population associated with the Targest or smallest
parameter value. Then @O = {(6,6,.;.,6): g €1} is the set of
parameter points which have all coordinates equai.

It should be noted that in both Examples 1.3.1 and 1.3.2, the
determination of €q did not depend on which population was tagged as
best in the cases where two or more of the parameter values could
be tagged as best. This is one indication that the tagging of the
population in these cases is truly inconsequential in most problems.

The following theorem may be useful in determining the minimax

value in problems that have an empty g

Theorem 1.3.2. Suppose there exists a 8, such that 9, € Gy'for m

different values of i, 2 §;m < k. Further suppose Pe(se1ect nilR) 1s
upper semicontinuous at ) for all R and all i = 1,2,...,k. Then the

minimax value with respect to S is at least m P*.

Proof. As in Theorem 1.3.1, consider sequences in ©; which converge
to 9, for each 1 for wnich 8, € é;ﬁ This yields that for each of

these subscripts, i, P, (select ﬂi|R) > P*.  Since there are m such

6

-0

subscripts, using (1.3.3) yields Eq (S|R) > mP*. This being true for
=0

all rules, R, implies the minimax value is at least mP*. ||
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Theorem 1.3.3 (see Chung (1970), problem 10, page 100) will
provide conditions under which the continuity assumptions of

Theorems 1.3.1 and 1.3.2 are satisfied.

Theorem 1.3.3. Suppose {fe(g):-g € @} are densities with respect to
a measure yu which satisfy
(i) as o - 8> f@(l) - fe (x) a.e.

or (ii) as & - bgs T

Then for any bounded measurable function v(x), Eew(g) is continuous

at QO.
- Proof. (f_ -f )+ <f, and {f, du =1 < = s0 by the dominated conver-
8 & T 9 %9 '
gence theorem
] + : +,
Vim [(fg -f)7du = flim (f, -f,)du= 0
69 =0 - 60 -0 -
- 20 - =0
(Fy -F )7 = (F, ~F.)" - (f, -F,)
8p 0 60 8 %y 8
) (f8 -fe) is integrable and in fact
%0 ¢
- +
f(feo—fe) dy = f(fe -fg) du
9% 2 20 2
So
Vim fIf, -f |du = Vim [(f, -F)du + 1im [(f. -F.) dy
94 B 8, 8 8~ 6
08, -0 - 8, -0 - 8>85 -0 -

Thus if y(x) <M<~ a.e. y,
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i .

Tim [E, w(x)-E v(x)] = Vi |fuf, dy - Jwfgdul
0+0, -0 - S0y =0 -

< Tim fM-]fG —fgldp = 0,

0-84 -0

i.e., Eow(g) is continuous at g,.

Corollary 1.3.1. Suppose that for each 6 € @ the random vector X has

density fe(g) with respect to a measure u and suppose that for each
fg € © condition (i) or (ii) of Theorem 1.3.3 holds. Then for any

selection rule, R, and al11 i = 1,2,...,k, Pe(select "1|R) is a continu-

ous function on g.

Proof. Let wi(g), i=1,2,...,k, denote the individual selection

probabilities for R. For any i = 1,2,...,k, P.(select nifR) = Ev

: 6
Since 0 i,wj(ﬁ) < 1, Theorem 1.3.3 applies. |]

Example 1.3.3. Suppose 6 is a location barameter and X has density

f (x) = f(x-8) with respect t@ Lebesgue measure, u, on Rk. Suppose
f(x) is continuous a.e. u. Let A be the set of discontinuities of f.
Then for a fixed 90 € sz, the set of X for which f(§—g).is not contin-
uous at 84 is {x: x =y + 94, y €A} = A+ 65 and u(A +64) = u(A) = 0.
So (i) of Theorem 1.3.3 is satisifed for every 99 € HRk and

Pe(se]ect ”iiR) is a continuous function of 6 on R for any R.

Example 1.3.4. Suppose 8 is a scale parameter and X has density

f9(§) = f(x]/el,...,xk/ek)/el-ez-.;.-ek with respect to Lebesgue

measure, u, on E?k. Suppose f(x) is continuous a.e. u. Let A be the

set of discontinuities of f. Then for a fixed 8y € (0,0)%...x(0,=),



the set of x for which fg(x) is not continuous at 9 is

—_—

Pad

P
i

Y855 1= 1, 0k, y €AY = A-8qy and u(A) = 0 implies
u(A-QO) = 0. So (i) of Theorem 1.3.3 is satisfied for every 9, and

P (select ﬂilR) is a continuous function of 6 for any R.

Example 1.3.5. Suppose X has a multinomial distribution as in

Example 1.3.1. The sample space is X = {(x],xz,...,xk):

X; € {0,1,...,k}, in ="N}. The density with respect to counting

measure on Z is given by

fE(E) = ;;TQ%TQET p:]~p22...pik. For every x €z
this is a polynomial 1in p and so is continuous in p. So again,
condition (i) of Theorem 1.3.3 is satisfied. |

We will end this section by stating theorems analogous to

Theorems 1.3.1 and 1.3.2 which give the minimax value when the loss

is in terms of S', the number of non-best populations selected.

Theorem 1.3.4. Suppose @d is non empty. Suppose there exists

8y € @ such that Pe(select "ilR) is upper semicontinuous at 99
for all R and all i = 1,2,...,k. Then the minimax value with respec

to S' is (k-1)p*.

. Proof. Letvw(]),n(z)gl..,n(k_]) denote the k-1 non-best populations
at 85. Then for any R,
k-1

(1.3.4) Eéo(s';R) = 151 PQO(se]ect m(5yIR).

15

t
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Let @(i) be the subset of @ where (1) is best. By considering a

sequence 0. € @(i) converging to 04> we get P6 (select n [R > P*
2 8, z

=J
i=1,2,...,k-1. So

sup E,(S'|R) » E, (S'[R) > (k-1)P*
6 - -0
for any R. But qi(g) P* is a rule for which sup E (S']q) =

(k-1)p%. || "

o

Theorem 1.3.5. Suppose there exists a 8y such that v, € ©; form
different values of i, 2 <m < k. Further suppose Pe(select T, [R
=1,

is upper éemicontinuous at 9 for all R and all i 2,...,k.. Then

the minimax value with respect to S' is at least {m-1)P*.

Proof. The proof is the same as that of Theorem 1.3.2 except it uses
1.3.4. Since for one of the m subscfipts, 80 € @; > i.e., s is best,
the bound P* is obtained for only m-1 of. the summands in 1.3.4. Hence

(S"|R) > (m-1)P* for any R. ||

E-’o

1.4. Minimaxity of Two Classical Rules

In this section, the results of Section 1.3 are used to show that,
in location and scale parameter problems, two rules which have been
proposed and studied by Gupta (1965) are minimax with respect to both
S, the size of the selected subset,and S', the number of non-best

populations selected
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1.4.1. The Location and Scé1e Parameter Problems

Throughout this section it is assumed that X],ngh..,Xk are
independent random variables. The c.d.f. of X; is Fe.(xi) which

;
has density fe.(x.) with respect to p, Lebesgue measure on the real

;
line. If Fei(;i) = F(xi-ej) then 8 is called a location parameter.

If ng(xi) = F(Xi/ei)’g is called a scale parameter. VHere it is to'

be assumed that the distribution F(-) is known and is the same for all
populations. Only the parameter values 8, are unknown. In a Jocation
parameter problem, the parameter space is @ = H?k. In a scale parameter
problem, & = (0,«)x(0,=)x...x(0,») (k times). In both cases the best
population will be the one associated with the largest parameter value.
With the appropriate modifications,results analogous to those which
follow could be obtained if the population associated with the smallest
parameter value 1is considered best. In both location and scale
problems g,, defined in (1.3.2), is given by ¢ = {(6],62,...,8k) €

G 0y = 0, =...= Ok}.

The following two selection rules have been proposed and studied

by Gupta (1965).

Definition 1.4.1. For a location parameter problem define the selection

rule R] by

Ry select m, iff x; > max Xx.-d i=1,2,...,k
, : 1<j<k

where d is chosen to be the smallest positive constant such that the

P*-condition (1.1.2) is satisfied.
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Definition 1.4.2. For a scale parameter problem define the selection

rule R2 by

RZ: select s iff X; > € max

i=1,2,...,k
T<j<k ’

%5
where 0 < ¢ < 1 is the largest constant such that the P*-condition
(1.1.2) is satisfied.

The properties of the rules R] and RZ’ proven by Gupta (1965),

which will be of use herein are summarized in the following.

Theorem 1.4.1. Let R denote R] in a location parameter problem or R

2
in a scale parameter problem.

I

a) inf P (CSIR)
@ -

inf P(CS|R) = p*
®

it

and PS(CS{R) P* for all ¢ ¢ €y
b)  E,(SIR) = kP* for all g € @

c) If the density fe(x) has monotone likelihood ratio (MLR) then

sup Ee(S]R) = sup Ee(SIR) = kp*,
@ - ®O

Theorem 1.4.2. a) Suppose 6 is a location parameter, i.e., the

density of X is f61(xi) = f(xi—ei). Suppose fe(x) has MLR and f
is continuous a.e. u. Then R] is minimax with respect to S.

b) Suppose 8 1s a scale parameter, i.e., the density of Xi is
f6i(xi) = f(xi/ei)/ei. Suppose fe(x) has MLR and f is continuous

a.e. p. Then R2 is minimax with respect to S.

Remark 1.4.1. This generalizes a result of Gupta and Studden {1966).

They proved that R] (or RZ) is minimax among all permutation invariant
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ruies. Theorem 1.4.2 asserts minimaxity among all rules.

Proof. Let R dencte R, in a location parameter problem or R, in a
scale parameter problem. Lét “k be Lebesque measure on Kik. Then
f(x) = _g] f(xi) is continuous a.e. uk. By Example 1.3.3 or Example
1.3.4, %ge continuity assumption of Theorem 1.3.1 is satisfied. So

the minimax value with respect to S is kP*. By Theorem 1.4.1c,

sup EG(S[R) = kP* so R is minimax. ||
@ - .

Theorem 1.4.3. Let R denote R] in a location parameter problem or

R, in a scale parameter problem. Suppose sup EO(SIR) = sup Ee(SIR)
e - oy -
0

_and the minimax value with respect to S' is (k-1)P*. Then R is

minimax with respect to S'.
Proof. Let v, € @ and 6 € @ By Theorem 1.4.1b,

E (S|R) = E (S|R) = E (S[R).
QO#_! ) sgg 9( [R) sgp Q( [R)

So
0 S_EQO(SIR) - EQ(S{R)

= EQO(S'[R) + PQO(CS{R) - Ey(S'[R) - Py (CSIR)

Hi

E, (S"[R) - E (S'[R) + (P

6y (CS[R) - Py(CS|R))

%0

| A

B (S'IR) = Eg(S'[R)

the last inequality being the result of Theorem 1.4.1a. So using

Theory 1.4.1a and b yields
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sup EG(S']R) = E (S*]R)

Hi

£y (SIR) = Py (CS[R)

it

kP* - P* = (k-1)P*,

Hence R is minimax with respect to S'. |]

Theorem 1.4.4. a) Suppose 6 is a location parameter, i.e., the

density of Xi is fe-(xi) = f(xi—ei). Suppose fe(x) has MLR and f
i
is continuous a.e. u. Then R] is minimax with respect to S'.

b) Suppose 8 is a scale parameter, i.e., the density of Xi is

fe]_(xi) = f(x;/65)/0;.
a.e. pu. Then R2 is minimax with respect to S'.

Suppose fe(x) has MLR and f is continuous

Proof. Let R denote R] in a location parameter problem or R2 in
a scale parameter problem. As in Theorem 1.4.2, Theorem 1.3.4 is
applicable so the minimax value is (k-1)P*. By Theorem 1.4.1c,

sup Ee (S|R) = sup Ee(S[R). So by Theorem 1.4.3, R is minimax with
® - @O - -

respect to S'. ||

Example 1.4.1. Using Example 1, page 330 of Lehmann (1959), location

parameter densities which satisfy the hypotheses of Theorem 1.4.2 and
Theorem 1.4.4 and hence for which R] is minimax include normal,
exponential, rectangular, logistic and Laplace (double exponential).
Furthermore, all of the order statistics from the above distributions
have MLR. Leong (1976) proposed using R] to select the Laplace popu-

lation with the largest mean where Xi is the median of n observations



from T Since the distribution of Xi has MLR with 8i as a location

parameter, the rule proposed by Leong is minimax.

Example 1.4.2. Using Example 2, page 331 of Lehmann (1959), scale

parameter densities which satisfy the hypotheses of Theorem 1.4.2

and Theorem 1.4.4 and hence for which R2 is minimax include normal,

exponential, Laplace and Cauchy.

1.5. Necessary Conditionsfor Minimaxity

In Section 1.3, the behavior of a selection rule on the set &y

(see (1.3.2)) was important in determining the minimax value of a
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selection problem. Analysis similar to that in Section 1.3 will yield

necessary conditions on the behavior of a selection rule on € which

must be satisfied by any minimax selection rule. These conditions are

principally of use in proving that certain rules, in violating these
conditions, are not minimax. Theorem 1.5.1 provides the necessary
conditions for minimaxity with respect to S and Theorem 1.5.2 the

analogous conditions for S'.

Theorem 1.5.1. Let R be a minimax selection rule with respect to S.

Suppose Pe(select nle) is upper semicontinuous at each fg € € for .

all i =1,2,...,k. Then for all 8y € 8y»

a) P_ (select n;|R) = P* = inf P_(CS|R) for all i = 1,2,...,k
90 1. ® 9

b) Py (CS|R) = P* = inf P_(CS|R)
=0 o) -

H

c) (S[R) = kP* = sup £ (S[R).

E
&9 ®
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Remark 1.5.1. Condition a) of Theorem 1.5.1 implies condition b) and

the first equality in c) as well as a) and the first equality of b) in
Theorem 1.5.2. If one wishes to verify these conditions for a given
rule, to check if it might be minimax with respect to S or S', only

1.5.1a need be verified.
Proof. Fix €g € @y As in the proof of Theorem 1.3.1, it follows that
(1.5.1) P6 (select ni[R) > P* for all i = 1,2,...,k.

-0
By considering the "no data rule", wi(g) z P*, it can be seen that
the minimax value is no greater than kP*. So, since R is minimax and
(1.5.1) is true,

(1.5.2) kP* > sup E_(S|R) > E_ (S|R)
- T e ° ~ %

k ' _
= ) P_ (select m.|R) > kp*,
i=1 % !

So all the inequalities are equalities and c) is frue. In view of
(1.5.1) and (1.5.2), a) is true. b) follows from a) since Pe (CSIR) =
=0
P, (select w.|R) where 6 € @,. ||
0o i - i
Nagel (1970, Chapters 1 and 2) found that a condition related to
1.5.1b, viz.,
inf Pe(CSIR) = inf Pe(CSIR),
@ - @0 -
was an important property of just selection rules. Conditions 1.5.1

'a) and b) have Tong been recognized (c.f. Gupta and Studden (1966)) as

:
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intuitively appealing properties of selection rules. This is especially'
true for those problems in which 28 consists bf those parametef points
.for which one of the k popuﬁations has arbitrarity been tagged as best,
e.g., a location or scale parameter problem in which best is defined in
terms of the largest or smallest parameter value. Theorem 1.5.1
verifies that, in terms of minimaxity considerations, the intuition

is justified.

Theorem 1.5.2. Let R be a minimax selection rule with respect to S'.

Suppose Pe(select "i’R) is upper semicontinuous at each g8, € @y for

all i = 1,2,...,k. Then for all 90 € 8>

a) P, (select n[R) = P* = inf P,(CS[R) for all i = 1,2,....k, i # J,

% L 6 0

where 90 € @j

b) Eg (S'[R) = (k-1)P* = sup E_(S'[R). '
% o 0

Remark 1.5.2: For those problems in which the random variables
X1s X55...,X, are exchangeable for all 68 € g; and the rule R is
invariant under permutations (symmetric), the following is true for

any 6 € @0:
Pg(select n]IR) = Pg(select nZIR) =,..= Pg(se]ect nk}R).

In such a problem, then, 1.5.2a 1implies 1.5.1a, b and c. So for
many problems, the necessary conditions derived in Theorem 1.5.1
for minimaxity with respect to S and those derived in Theorem 1.5.2

for minimaxity with respect to S' are essentially the same.
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\Eﬁggj, Fix g5 € ©4. Let T1) T(2) T (1) denote the k-1 non-best

populations at 8q- ks in the proof of Theorem 1.3.4, it follows that

(1.5.3) P90(5619ct ﬂ(i)lR) > Px, 9= 1,2,...,k-1.

By considering the rule, y.(

1 x) = P*, (1.5.3) and the minimaxity of R,

the inequality

it

(1.5.4) (k-1)P* = sup EQ(S'lw) > sup Ee(S'[R) > Eg (S*|R)
o ° o ° 89

k-1
= iZ] PQO(select ﬂ(i)lR) > (k-1)p*

is obtained. a) and b) follow as in Theorem 1.5.1. ||

Now the conditions of Theorems 1.5.1 and 1.5.2 can be used to
show that some selection rules which have been proposed are not
minimax. Also,a method of constructing rules which do.satisfy the
conditions of Theorems 1.5.1 and 1.5.2, and thus might be minimax, will

be outlined.

Example 1.5.1. Consider the multinomial selection problem introduced

in Example 1.3.1. The goal is to select the cell with the largest

cell probability. Here @q is the single point (%3 %,...,%}.

Examp}e
1.3.5 shows that the continuity assumptions of Theorems 1.5.1 and
1.5.2 will be satisfied for any selection rule. Gupta and Nagel
(1967) proposed using rule R] of Section 1.4, viz., select T iff

X3 2 max x.~-d for this problem. Gupta and Nagel found that for

1<j<k
some values of k and P*, the inf Po(CSIRy) did not occur at the point
e <
(%3 %3...,%). So condition 1.5.1b is violated and Ry can not be
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minimax with respect to S for these values of k and P*. Since

Remark 1.5.2 1is applicable in this problem, R, is not minimax with

1

- respect to S' either.

Example 1.5.2. Consider the binomial selection problem in which

TysTpseeesm are independent binomial populations with success
probabilities PysPos---sPy and Xi is ihe number of successes in n
observations from T Gupta and Sobel (1960) proposed uéing the rule |
R] to select a subset including the population associated with the
largest P;- In this problem @O = {(p],pz,...,pk)lp] =Py F...=p =P
0 < p < 1}. Itwas realized by the above authors that EG(SIR}) was
not constant on €, as required by 1.5.1c, if Rl were to ;e minimax.
Indeed, Ee(SlR]) ~kas 8 = (pyPs...,p) > (1,1,...,1) and EQ(S'[R]) -
k-1 1in th; same 1imit. Gupta and Sobel (1960) proposed an ;rcsin
transformation of the data but those resu1ts are of an asymptotic

(n » =) nature and for any finite n, the behavior of Ee(S[R]) and

ES(S’IR]) will be the same as above.

Example 1.5.3. Consider again the binomial selection problem intro-

duced in Example 1.5.2. Gupta and Nagel (1971) proposed a conditional
rule for this problem which satisfies 1.5.1a and hence all the other
first equa]ifies in Theorems 1.5.1b and ¢ and 1.5.2a and b and so

ﬁay be minimax with respect to S and S'. The rule proposed by Gupta

and Nagel is defined in terms of the individual selection probabilities

by
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| 1 Xi > cT

[N = =
(1.5.5) wi(x],xz,...,xk) o1 X; = Cp
0 Xi < cT

where T =
i

D

Xy and oy and Cp are constants chosen to satisfy
1

(1.5.6) E (v, (X)[T) = PoXs > cr|T) + o P

(X

o i

for all ¢ € 8y The important point is that T is a sufficient

statistic for 8 € @ So the distribution of X given T does not

0

depend on 8 on @ This is what makes the determination of the

0
constants cr and P> independent of 6, possible. 1.5.1a is

satisfied since, for 8 € @O’

(1.5.7) Po{select nilw) = Egv (X) = EE (wi(X)]T)

t

EP* = P*,

This technique of conditioning on a statistic which is sufficient

for ¢ € @O seems to be very useful for constructing selection rules
which satisfy the conditions of Theorem 1.5.1 and 1.5.2. Nagel (1970,
Sections 2.4 and 2.5) proposed rules similar to (1.5.5) which satisfy
the conditions of Theorems 1.5.1 and 1.5.2 for selection problems

involving Poisson and negative binomial populations.

EXample 1.5.4. The following general problem has been considered

by Gupta and Panchapakesan (1972). Suppose nl,nz;...,wk are
independent populations with absolutely continuous distributions
Fe(xi) where ¢ € I an interval on the real line. The family
{Fe: 6 € I} is assumed to be étochastica?]y increasing fn 6. If
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‘e[]] 5_6[2] 53"f~8[k] denote the ordered parameters, a c1ass.of
procedures, investigated by Gupta and Panchapakesan (1972), for selec-
ting a subset containing the population associated with e[k] are

defined as follows:

(1.5.8) Rh: select 7, iff h(x.) > max x.
i i’ J
1<j<k
where h is a real valued function satisfying certain regularity
conditions. As in Example (1.3.2) 8y = {{(6,6,...,8): 6 €1}. For

any 8, € N and any 1 = 1,2,...,k,
(1.5.9) P (select R ) = [F*T(h(x))dF, (x).
i'"h 8 8

-0 0 0
éy Theorems 1.5.1 and 1.5.2, if the procedure Rh is to be minimax
with respect to S or S', the expression in (1.5.9) must be constant
on @- But Gupta and Panchapakesan (1972) have shown that in many
cases of interest (1.5.9) is an increasing function of éo. They

have proved the following.

Theorem 1.5.3. For the procedure Rh defined by (1.5.8), the expression

(1.5.9) is non-decreasing in 8y provided that

(1.5.10)  fo(x) 55 Fo(n(x)) = h' (x)F (h(x)) 2= F (x) 2 0

for all o €1 and all x,
where h'(x) = (d/dx)h(x) and fo is the density of F . Further,
(1.5.9) is strictly increasing in 89 if strict inequality holds in
(].5.10) on a set of positive Lebesque measure.
Gupta and Studden (1970) have established the strict monotonicity

of (1.5.9) for the non-central X2 and non-central F distributions when
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the procedure Rh is RZ of Secfioan.Q. This is important in the
prob1ém of selection in terms of Mahalanobis distance for multivariate
normal distributions. |

Gupta and Panchapakesan (1969) have established the strict
monotonicity of (1.5.9) in the problem of selection in terms of the
largest (or smallest) multiple correlation coefficient when the
rule Rh is R2 (or an analogous rule). Both the cenditional and
unconditional cases are coﬁsidered as well as two different statistics,
the sample multiple correlation coefficient, RZ, and a transform

thereof, R’f2 = RZ/(l—RZ).

In all cases the strict monotonicity of
(1.5.9) is established.

So in all of the above problems, thé proposed rules are not
minimax with respect to S or S'. This was previously reborted in
some cases. But the interesting pofnt here is that one need not
necessarily examine Ee(S]R) to determine that a rule is not minimax
with respect to S or ;‘. Often in investigating the ieast favorable
configuration, i.e., that 8, for which
(1.5.11) Py (CS|R) = inf Pe(CS[R),

20 e -
one can reduce the problem to investigating the igf Pe(CS[R). This,
for example,.is the case with just rules as defineg by Nagel (1970).
ff'one finds that Pe(CSIR) is not constant on 8, and some mild
continuity assumpti;ns (e.g., (i) or (ii) of Theorem 1.3.3) are

satisfied, then the rule, R, is not minimax with respect to S or S'.

Thus, the only analysis required, to show that a proposed rule is



not minimax, may be the analysis used to find the least favorable

configuration.

1.6. Minimaxity Considerations for Seal's Class

Seal (1955) proposed a class of selection rules for the location
parameter pr051em. In this section, a lower bound is obtained for
the sup EQ(SIR) and the sup EG(S'!R) for rules in this class. This
1owercgound can then be uggd %o prove that, in certain cases, the

rules in this class are not minimax.

Definition 1.6.1. Let ¥ denote the class of selection rules which

have the following form:

k-1
select n, iff x, 3‘j§} a;xpgq - d
where x < X <...%< Xp_77 are the ordered observations excluding
[1] < *[2] [k-1] ord
Xj» a5 are non-negative constants with J ay = 1, and d is the
, PE

smallest positive constant for which the P*-condition is satisfied.
The rule R], introduced in Section 1.4, is in the class ¥.

R] corresponds to setting ak_]‘= 1 and aj =0, J=1,2,...,k-2.

Comparisons between E (S|R;) and E,(S|R) for certain other rules,

R €%, have_previOUST; been made b; Seal (1957) and Deely and Gupta

(1968). Those authors éonsidered specific parameter-configurations

(e.qg., s]fppage_cbnfigurations) and specific alternatives to Ry-

The results which follow differ from the previous work in that the

sup over all parameter configurations and all rules in ¥ are

considered. Nevertheless, the fo1lowing results tend to confirm the



work of the previous éuthors in'indicating thatsalthough a certain
rule may have smaller expected size than RT for some parameter
points, over much of the parameter space R] has the smaller expected
size. |

Throughout this section it will be assumed that @ = Ekk. The
vollowing notation will be used. e[}] 5_8[2] 5,..§_e[k] will denote
the ordered coordinates of the parameter point o = (61,62,...,6k) SO
that the best popu]ation‘is the one associated with G[k]‘ Sometimes,
a sequence of parameter points <6, will be considered in which case
the ordered coordinates of 8, = (enl’enZ"“’onk) will be denoted by
en[]] < en[2] <...< Bn[k]'

The following theorem will be used primarily to obtain a lower
bound on the expected subset size. But, as stated, it élso points
out an intuitively undesirable proberty of all rules in the class
%, except R], namely, it is possible to find a parameter point such
that e[k] - e[k-]] is arbitrarily large but the probability of
including the population associated with G[k-]] is arbitrarily near

one.

Theorem 1.6.1. Suppose the observation X = (X],XZ,...,Xy) satisfies

either (i) or (ii):
(1) X has density f(gFQ) with respect to Lebesgue measure on Hik
(ii) the populations are independent with the c.d.f. of Xi given by
F(x;-05).
Let R be a rule in Sf‘\{R]} defined by constants {aj,d: j=1,2,..,k-1}.

Let r = min{i: a; > 0}. Then there exists a sequence of parameter
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‘poipts <§n> and a subset K {1,2;...,k} of size k-r-1, such that

for all i €K, Time8 r 4 -6 . =« and 1im P, (select n.[R) = 1.
110 n[;\] : r.” N Qn 1

Proof: Note that since R is not Rys r < k-2 so the set K will be
k-1
on-empty. Let S. = {X: x;, > ). a.Xp.q- i
n mply et S, {x ><1‘~_J_:1 35X d} be the selection
region for ms using R. Define a sequence of subsets of X as follows:

An = {x: Znixk >n, n ->—Xj >~-d J=r+l,r+2,...,k-1,

J=1,2,...,r}

where c, = (—n—ak_]Zn)/ar. |
First it will be shown that An c:Sj J = r+l,r+2,...,k-1 for all
large n. Since a_7 > 0 and a, > 0, h < -n/a, < -d for all large n.

Fix such an nand j € {r+l,r+2,...,k-1}. Let x €A . Then X[k-1] =

st{X{k_ZJsX[k_BJa!.fsX[r+]]} = {Xk_]3Xk_29---,xr+1}\{Xj} and

{X[]],X[z],...,X[r]} = {X]’XZ’.-.’XT}. |
Using these facts and the definition of An, the following relationships

are obvious:
(1.6.1) A 1X[k-1] T AX[r] S 31780 Fatey = o

k-2

(].6.2) m=§+] amx[m] g}max(x[r+]],x[r+2],---,X[k_z]) < n.

So using (1.6.1), {1.6.2) and the fact that a-

"
(=)
»
3
n
———t
-
~
1
swrd
N

it follows that

, k-1 k=1
(1.6.3) mZ] A X[n] d= mzr 34X [m] " d

<=-n+n-d=-d.



_But xj > -d by the definition of An S0

k-1

X a -d, i.e. S..
j > m;_l mX[m] s 1.8 X € j

This was true for any x € An o) An c:Sj.

Define a sequence of parameter points 0, = (enl’enZ""’enk) by

(1.6.4) 6 r+1,r+2,...,k=-1

il
TR
>
“
[
it

nJ

C,Ms J = 1,2,...,r

Let K= {r+1,r+2,...,k-1}. For any j €K

. s 3
Tim Gn[k] -8, = Tim (

-0 J Nn-»

™
=]
1
|
2
!
8

Since An c Sj, J €K, forany j €K

Pgn(select nj|R)

H
]
—~
w
—

|v
-

—
p=]
o~

In case (1)

Po (A) = [ ... [ flx-g,)dx .. .dx

n n
=n An
2n n n “n n
= £ ‘5 ‘é _i _if(§-gn)dx]...dxrdxr+]...dxk_]dxk
non n
2 2 2 n n
= [ [ ... —i e nif(§)dx]...dxrdxr+]...dxk_]dxk.
L L L
2 2 2

32



33

In the last expression, the fntegrand no longer depends on n and
the Timits of integration go to » and -« as appropriate. So, for
J €K, |
(1.6.5) 1> 1im Py (select wj]R) > 1im Py (An) = ]

N> <n o =N
and the limit is one in case (i).

In case (ii)

k-1 ' r
Pgn(An) = [F(Z”"enk)’F(”"enk)]jer]EF(""enj)"F('d'enj)JXJE]F(Cn'enj)
k~1 r
= [F(n/2)-F(-n/2)] =& [F(n/2)-F(-d-n/2)] 1 F(n).
J=r+l j=1

In the last expression, all the factors go to one as n approaches .

So, for j €K, (1.6.5) holds and the 1imit is one in case ii). ||

Theorem 1.6.2. Let R be a rule in jf\\{R]} defined by constants

{aj,d: J=1,...,k-1}. Let r = min{i: a; > 0}. Suppose (i) or (ii)
of Theorem 1.6.1 holds. Then

a) sup Ee(S{R) > k-r
@ -

b) sup Ee(S‘[R) > k-r-1
@ -

Proof. Using all the notation defined in the proof of Theorem 1.6:1

‘we have
sup Ee(SIR) > 1lim Eq (SIR)
e - N =N
(1.6.6) K
> lim  § P, (select = [R)

N+ M=r+l =n



[#5]
B

Theorem 1.6.71 proved that the first k-r-1 terms approached cne in
the Timit. For every X € An, Xk is the largest coordinate so

A, < S, for all n. Thus PQ (select nk[R) = Pgn(sklR)»i-Pg (An[R) = ]

n n

in the limit. Hence the bound k-r for a).

For b), it éan be seen from (1.6.4) that T is the best popula-
tion for all 8- Thus we use the same reasoning as above, except not
including PQn(se]ect nk]R) in the sum (1.6.6) to obtain the bound
k-r-1 for part b). ||

Now we are in a position to show that for any rule R in the
class &, except R], there are values of P* for which R is not

minimax.

Theorem 1.6.3. Let R be a rule in if\\{R]} defined by constants

{aj,d: J=T1,...,k-1}. letr = min{i:'ai > 0}. Suppose (i) or
(i1) of Theorem 1.6.1 holds. Then
a) if P* < (k-r)/k, R is not minimax with respect to S

b) if P* < (k-r-1)/(k-1), R is not minimax with respect to S'.

Proof. For part a, the "no data rule", ¢i(§) = P*, has

sup E8(5|¢) = kP* < k-r < sup Eé(SIR), the last inequality following
® - ® Y

from Theorem 1.6.2a.

Part b) follows analogously. |]

Corollary 1.6.1. Suppose (i) or (ii) of Theorem 1.6.1 holds. Then

a) if P* < 2/k no rule in the class ¥, with the possible exception

of R], is minimax with respect to S.
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“b) if P* < 1/(k-1), no rule in the class &, with the possible

exception of R]s is minimax with respect to S'.

Proof. Any rule, excluding R], in%has r < k-2. So, the smallest
upper bound given in Theorem 1.6.3a is 2/k. Hence part a) is true.

Part b) follows analogously. ||
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CHAPTER II
MINIMAXITY AND A MESSfBILITY OF SELECTION
RULES IN TERMS OF THE PROBABILITY OF INCLUDING
NON-BEST POPULATIONS IN THE SELECTED SUBSET

In this chapter, risk i§ measured in terms of the maximum
probability of including any non-best population in the selected
subset. This risk is defined in Section 2.1. In Section 2.2,
translation invariant, scale inQariant and just rules are defined
and some characterizations of them are given. Theorem 2.3.1 is a
minimaxity result which, when applied in the location qnd scale
parameter problems, shows that the rules R} and R2 are minimax and
admissible in the class of non-randomized, just and invariant rules.
Section 2.4 examines the behavior of the class % of selection rules
(Definition 1.6.1) with respect to this risk. Section 2.5 addresses
a specific problem, first considered by Seal (}955), regarding the
probabilities of accepting and rejecting best and non-best populations

when the parameters are in a slippage configuration.

2.1. Risk Measured by Probabilities of Including Non-best Populations

In Chapter 1, risk was measured by the expected size of the
selected subset. In attempting to keep this quantity‘small, it is

conceivable that, at a particular parameter point, the probability of
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including a particular non-best population could be fe?ative?y

large while the sum of all such probabilities could be relatively
small when compared to k-1. In this chapter, risk is measured in
terms of the probability of including each non-best pdpu]ation in the
selected subset and rules are examined which attempt to keep all such
probabilities small. Specifically, in this chapter we define the risk
of a selection rule ¢ by

(2.1.1) M(6,¢) = max P.(select m.|¢)
§ lizgfe.} 2 !

where ®; is the subset of the parameter space where s is the best
population. Since at each parameter point exactly one population
- is best, the maximum is over k-1 quantities and is simply the

max imum ofvthe probabilities of selecting each of the non-best

populations.

.2.2. Just and Invariant Procedures and an Ordering of Distributions

In this section,certain classes of selection rules which will
be of importance in later sections are defined. An ordering
| property of distribution functions is also introduced. These concepts
are clarified somewhat by means of some characterization lemmas and
are illustrated by means of some location and scale parameter

examples.

Definition 2.2.1. A selection rule is just if for every i = 1,2,...,k,

qﬁ(x]’XZ""’xk) is a non-decreasing function of x; and a non-

increasing function of X5 J#i.



The concept of justness is appealing if the bast population is
the one associated with the largest parameter value and the incfease
of a parameter value causes the distribution of the observation to
be stochastica11y larger. In such a case, justness means that the
probability of selecting a given population does not decrease if
the observation becomes more favorable with respect to that popula-
tion. Location and scale parameters are comnon examples of this
monotonic behavior. The importance of just rules was recognized
by Studden (1967, Lemma 3.1 (iv)) and was defined and investigated

in more generality by Nagel (1970). See also Gupta and Nagel (1971).

Definition 2.2.2. A selection rule is called transiation invariant

if for every x € IRk, for every ¢ € R and for every i = 1,2,..,K,

qg(x]+c;x2+c,...,xk+c)'= qﬁ(x]’XZ""’xk)'

Definition 2.2.3. A selection rule is called scale invariant if for

.évery X € IRk, for every ¢ € (0,») and for every i = 1,2,...,k,
qﬁ(cx],cxz,...,cxk) = qq(x],xz,...,xk).

Restriction to translation invariant and scale invariant rules
is appealing in location and scale parameter problems, respectively,
The rationale behind this restriction is similar to that in hypotheses
testing, namely, that if the parameter vector is translated, the
population which is best remains unchanged.

Lemmas 2.2.1 and 2.2.2 provide useful characterization of
selection rules which are both just and translation or scale

invariant.
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Lemma 2.2.1. A selection rule, ¢lx) = (q?(g), qz(X),...,qk(f))5
is just and translation invariant if and only if the following two

- conditions hold:

(i) for every i = 1,2,...,k, @ is a function only of the set of
differences {Xj'xi; J=1,2,...,k, J# i1,

(i1) if x and y satisfy X=Xy < Y57Yy for every j # 1, then

¢ (x) > @ (y).
Proof. ¢ is translation invariant if and only if (i) holds because
the differences are a maximal invariant for the translation group
(see Lehmann (1959) p. 216). Suppose @ is just and translation

invariant. Let x and y be as in (ii). Then using first invariance

and then justness yields
(P]()-() = QP-i(X]'Xi'{'yia X2-x1+‘y‘i""’.xk-xi+‘yj)
= QP-i(X]’X-i"’.Y.ia X2—xi+‘yi"°'"y‘i"ﬁ"’xk-x'i-*.y]‘)
2 @ (yps¥psee ¥y ) = wly)
so (ii) is true.
Now suppose (ii) is true. Fix X € sz, €>0and i#j.
Then Xj + € - X z_xj-xi and all other differences are equal so by
(i), qﬁ(x1’X2""’xk) 3—qﬁ(x1’XZ""’Xj+E""’Xk)’ i.e., ¢ is

non-increasing in x., j # i. Also, xj'(xi+€) j_xj—xi for every j # i

J
so by (ii) qﬁ(xl’XZ""’xi+€"'"Xk) 3—qﬁ(x]’XZ""’xi""’xk)’ i.e.,

@; is non-decreasing in ;. Hence o is just. ||

Lemma 2.2.2. Suppose Xj > 0, Y5 > 0, 1=1,2,...,k. A selection

rule o{x) = (¢ (x), @ (x)s..ooq(x)) s just and scale invariant if
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~and only if the following two conditions hold:

(i) for every i = 1,2,...,k, qﬁ'is a function only of the set of
quotients {Xj/xi: J=1,2,...,k, J# i}
(i1) 1if x and y satisfy Xj/xi f_yj/yi for every j # i, then

@ (x) > ¢ (y).
Proof. Replace the differences in Lemma 2.2.1 with the quotients. ||

~The following ordering property of distributions was introduced
by Lehmann (1952) and further investigated by Lehmann (1955). The

usefulness of this concept will become apparent, forthwith.

Definition 2.2.4. A subset A < R¥ is monotone if x €A and y

satisfies y, < x4, 1 = 1,2,...,k, implies y € A.

Definition 2.2.5. A family of probability distributions on

IRk,{Fe:Q €pC H(k},is said to have the stochastic increasing

property (SIP) if ¢ € @, 8' € @, and 6, < 83 for every i = 1,2,...,k,
implies )

]

Pg(A) £ dF, 3.£ dFy = Pgr(A)

for all monotone sets A.

Lehmann (1952) suggested the following method of proving that a
family has the SIP. For ¢ and 6' as in Definition Z2.2.5, prove the
existence of random variables Z]’ZZ""’Zr and functions fi and 9;

such that X; = £.(Z1,Zy,0 05200 Vs = G:(Z1520500052,), X,

; 2 Y5 for

every i = 1,2,...,k, and the c.d.f.'s of (X],XZ,...,Xk) and

(Y]’Yz"“’Yk) are F9 and Fgqr respectively.

-
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In Lemmas 2.2.1 and 2.2.2 it was seen that if consideration is
restricted to translation invariant or scale invariant procedures,
the distribution of differences or quotients of the observations
would be of interest. The following two Temmas show that these

random vectors have the SIP in Jocation and scale problems.

Lemma 2.2.3. Suppose § € HQk is a location parameter in the
distribution of X = (X],...,Xk). Then the distribution of

X* = (X]-Xi,...,xi_]‘xi,x-

X 1+]—x1,...,xk—xi) depends on 6 only through

the parameter ¢* = (e]—e .,ei_]-ei,ei+]—ei,...,ek-ei) and the

o
family of distributions of X* has the SIP in terms of 6*.

Proof. Let F(x-6) be the cdf of X. Let Y = (Y .Y, ) be a random

10

vector with c.d.f. F(y). Let G be the c.d.f. of (Y=Y nYs g-Yss

Y Y -Y.) and Ge the c.d.f. of X*. Then (Y,+e],...,Yk+ek)

417V Yy

has the same distribution as X so,for any constants CysCpse--5C 1>

G (C],...,Ck_]) = PQ(X]—Xi E_Cl,...,Xk-Xi i'ckf])

1]

P(Y-l+e-]‘Y_i"8_i _<_ C] 9% e 0 ,Yk'*'ek‘Yi'@_i i Ck_'])

= G(C"l’(e""e_i)g v e ,Ck_‘l-(ek—ei))¢
So the distribution of X* depends on ¢ only through 6* and in fact .

6* is a location parameter for X*. It is easily seen (see Lehmann

(1955)) that any location parameter family has the SIP. ||

Lemma 2.2.4. Suppose o ¢ (O,oo)k is a scale parameter in the

distribution of X = (Xy,...,X ), X; > 0 for all i. Then the distribu-

tion of X* = (X]/Xi""’X1~1/X1’Xi+1/xi""’Xk/xi) depends on § on
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through the parameter o (e]/ei,...,ei_]/ei,ei+]/ei,...,ek/ei)
and the family of distributions of X* has the SIP in terms of g*.

Proof. The proof is the same as that of Lemma 2.2.3 with differences

replaced by quotients and "Tocation" by "scale". [

2.3. Minimaxity and Admissibility of Two Classical Rules

In this section it will be shown that the rules R] and R2 are
minimax and admissible with respect to M for the location and scale
parameter problems, respectively, if consideration is restricted to
those rules which are non-randomized, just and translation
(respectively, scale) invariant. The discussion will be in terms of
the location parameter problem with the understanding that the same
discussion is true in the scale parameter problem if differences
are replaced by quotients as in Section 2.2.

In Section 1.2, it is explained that a non-randomized selection
rule is completely determined by k sets Al,..'.,Ak where Ai is the
set of observations for which population s is included in the
selected subset. By Lemma 2.2.1, a non-randomized rule is just and
transiation invariant if and only if x € Ay or x € A? (A denotes the
comp]ementbof A) can be determined from only the differences ’
{xj~x1: J# 1} and Ai is monotone in these differences. In determining
a rule which is minimax with respect to M, the quantity to be
minimized 1is

sup M(8,¢) = sup max P.(select =.|c)
o o (info.} ° !
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it

max sup Pe(se1ect ﬂilw)

I<i<k ®§

max sup Pe(A.).
1<i<k ¢ -
This can be minimized by minimizing each of the terms sup Pe(Ai)

C -
8y
k

separately with the only restriction being U Ai = X so that at
i=1
least one population is always selected. Finally, the P*-condition

(1.1.2) for a non-randomized rule is equivalent to

(2.3.1) inf Pe(Ai) > px i=1,2,...,k.

@.i -

Thus the following lemma has been proven.

Lemma 2.3.1. Let A,,...,A be sets which satisfy (i) - (iv). Then

1°° k
the non-randomized selection rule defined by A],...,Ak is minimax
with respect to M in the class of selection rules which satisfy

the P*-condition and are non-randomized, just and trans]ation

invariant.

(1) inf P_(A:) > P*
@.i -

(ii1) Ai is a function only of the differences {Xj"xi: j=1,....k, j#i}
and is monotone in these differences.
(iv) sup Pe(A.) = inf sup P_(A)
c 21 G o °
®1- ®1-
where G = {A c2: A satisfies (ii) and (iii) for the sub-

script i}.
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It should be pointed out thatGﬁ is the set of all just, translation

invariant selection regions for s which satisfy the P*-condition.
The form of a region, S, which, subject to (ii) and (iii),

satisfies (iv) is given by Theorem 2.3.1 which is an extension of

Lehmann's (1952) Theorem 4.1, page 545,

Theorem 2.3.1. Let the joint distribution of (Y .»Y, ) be

12 k)
FY(y],...,yk) where the parameter space is the finite or infinite

open rectangle Yi <y < v; and the sample space is the finite

i
or infinite open rectangle Yi <Y < &i, independent of the Y.
Suppose PZ(S) is a continuous function of y for any monotone set

S. Suppose the family {FY} has the SIP, that the marginal distribu-
tion of Yi depends only o; Y; and that Yi converges in probability

to y. as v; 7 oyge let y* = (YT,...,yﬁ) be a fixed parameter point

and define

(2.3.2) r = {y: Y5 f_y?, i=1,...,k}.
Let § be the collection of all monotone sets which satisfy

(2.3.3) inf P (S) > P*,
r ¥ 7

Then a region S* € 8§ which satisfies

(2.3.4) sup P_(S*) = inf sup P_(S)
c I s ¢ !
T T
is given by
(2.3.5) S* = {y: Yy a5, 1= T,00..k),
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where the constants a; are determined by

(2.3.6) PI*(S*) = p*
and
(2.3.7) PYT(Y1 i.a]) = PY§(Y2 5_a2) =,,.= Pvﬁ(vk 5-ak).

Furthermore, if for every i, the distribution of Yi given y? has the
entire interval (Zi,ii) as its support, the region S* is the essentially

unique element of § which is minimax, i.e., satisfies (2.3.4).

Proof. For any set of constants yj > y.and any i = 1,2,...,k

j

(2.3.8) 1.1'm. PI(Y] SYpseesY 2y = PY-;(Yi < ¥;)
RIS
J#i

because
; i_Y-)*P(Yi 5-y1’Yj > yj for at least
one j # 1)

> P(Y, <y.) - P(Y. > y.)
- T =71 j;i J J

and every term P(Yj > yj) converges to zero in the Timit of (2.3.8)
because of the convergence in probability. The 5;1nequality is
immediate.

For any S € 8, the SIP implies that 1im P (S) exists and the
Yj—dj

J# N
1imit will be denoted by Bi(slyi)' The SIP and continuity of PX(S) also
imply  that

(2.3.9) sup P (S) = max 31(5|Y$)-

Y s
c 4 1<i<k
I" — —
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Since for the region S* given by (2.3.5), (2.3.7) and (2.3.8) imply
that B](S*ly?) = BZ(S*IYE) =,.,.= Bk(S*Iyﬁ), if the theorem were false,
an S € 8 could be found which simultaneously decreases all k quantities.
But this can not happen. For let S € 8. Llety €S n s*C. (Such a N

exists unless S is essentially the same as S* because of (2.3.3) and

(2.3.6).) For some i = 1,2,...,k, Y; > ay since y € g€

i

(2.3.10)  P(S* nS%) <P( U (Y, <a., Y, > y.})
g 7T

< P(Y. <a., Y. >y.)
J';i e
< ) P(Y. > y.).
A
As v. + v, >y, ,
S Y5 7 all the terms PYj(YJ > yJ) >0
81(S|Y$) = Tim P(SIY]a--OQY?s-'-5Yk)
K
j#i

Tim P(S*)+  Tim P(S n S*¢)- Tim P(S* n s©)

(2.3.11)

28 RIS, RIS
J#i J#1 J#1

= 6. (S*[¥)+  Tim P(S 0 $*°) - Tim P(S* nS°).
NS YiT
J#i J#i

From (2.3.10) the last limit is zero, so Bi(SlYﬁ) 3_81(S*|y§) and
the first part of the theorem is proven.

Furthermore,

-
—
w
D
w
%
(@]
o
fv
-
Panm
-
po—
| A
<
—
w
<
ot
IA
<
—eed
A
-
P,
A
<
P
S
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As Y57 ¥y J # 1, by (2.3.8) the right hand side converges to

(2.3.12) Poalfy < yy) = PV, <)

y? LI 7o

So if the support of the distv “ution of Yi given y? is the entire
interval (yi,yi), (2.3.12) is creater than zero and by (2.3.11),
Bi(Sly?) > si(s*iy§). Hence by (2.3.9)

(2.3.13) sup PY(S) > sup Py(S*)

r¢ r¢ -

and S* is the essentially unidue element of § which is minimax. | |

The form of the region S* in Theorem 2.3.] becomes particularly
simple if the joint distribution of (Y]""’Yk) is symmetrfc (i.e.,
the random variables are exchangeable) given Y*. Then (2.3.7) implies
ay =...= a = a, where a is detefmined by (2.3.6) and the ﬁinimax

region is

(2.3.14) S* = {y: max y; < al.

T 1<i<k -

Finally, to apply Theorem 2.3.1 to the selection problem, the

following lemma will be used.

Lemma 2.3.2. Suppose the random variables X = (X],...,Xk) are

exchangeable. Then the k-1 random variables x]-xi,...,xi_]-xi,

Xi+]'xi""’xk'xi are exchangeable.

Proof. Let Cys...5C,_q be any fixed constants. Let

A = {5: X1=X3 S CyoeevaXy 1=X; SO X TR S s XX < Cpt-
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Any permutation, o, of the k-1 differences corresponds to a permuta-

tion, ¢', of X]""’Xk which leaves Xi fixed. So

P(X]—Xi 5_c],...,Xk—Xi i‘ck“]) = P(X €A)
(2.3.]5) = P((X -1 3 sxis.--gx ~] ) € A)
o' (1) o' (k)
= P(X 4 =X < CpauiaX -X. <c ). ]
O](]) 1 1 G_](k) i — k-1

Theorem 2.3.2. Let X = (X{,...,X,) have a density f(x-8), & € R,

with respect to Lebesgue measure u on HQk. Suppose f is continuous
a.e. u, the support of f is sz, and f is symmetric (i.e., the
random variables are exchangeable if By =...= ek). Suppose the best
population is the one associated with the largest parameter. Then
R] is minimax with respect to M in the class of non—randdmized, Just
and translation invariant rules which satisfy the P*-condition.
Furthermore R] is the unique minimax rule in this class so R] is

admissible in this class.

Proof. Let
A, = {x: X5 > max X.~d} i=1,...,k.
! 1<j<k
The sets Ay,....A; define the selection rule Ry (i) - (iii) of

Lemma 2.3.1 are obviously satisfied and (iv) must be verified.
Fix i = 1,2,...,k. To apply Theorem 2.3.1, let Y] = X]—Xi,...,
Yk"] =Xk"xi (Omitting Xi-Xi) and Y] = 8]—6]-,...,Yk_] = Bk—e_i

(omitting 61~61). Here the sample space and parameter space are IRk~].

By Theorem 1.3.3 and Example 1.3.3, PS(A) is a continuous function of



¢ for any measurable A, thus for any set monotone in Y, Py(S)
is a continuous function of y. Lemma 2.2.3 establishes the SIP

Cof (F (y): y € RN

}. Since & is a location parameter, the
marginal distribution of Yj depends oh]y on Y5 and in fact Y5 is
a location parameter in this distribution so the convergence in
probability assumption of Theorem 2.3.1 is true.

Let y* = (0,...,0) so that the set I in Theorem 2.3.71 is

equivalent to

-é?::{gz 8. < 6. j=]9---’k9 j#i}'

Because of the continuity of PG(A) and PI(S) in terms of ¢ and vy,
the fact that T is Eﬂ'rather t;an @; is unimportant since the sup's
and inf's are all the same taken over a set or its c]osufe. (2.3.3)
simply ensures the P* condition on @;.

Because f is symmetric, by Lemma 2.3.2, the distribution of Y
given y* is also symmetric so the remark following Theorem 2.3.1 is

relevant and an A; satisfying (iv) of Lemma 2.3.1 is the S* of

Theorem 2.3.1 given by

S'k

it

{y: yjid, j=1,2,...,k-1}

{x: X57%; <d, J# i} = A,.

k, the support of the distribution

Since the support of f is R
of Yj given Y§ is R. So the uniqueness follows. Any unique

minimax rule is admissible. ||



As previously mentioned, an analogous result is true in the
scale parameter problem for the rule RZ' For completeness this is

- stated as

Theorem 2.3.3. Let X = (X;,...

f(x]/el,...,xk/ek)/e]-ez'..'ek, 6 € (O,w)k, with respect to Lebesque

’Xk) have a density

measure p on IRk. Suppose f is continﬁous a.e. u, the support of f
is (O,w)k, and f is symmetric (i.e., the random vafiab]es are
exchangeab]e if 8y =...= ek). Suppose the best population is the one
associated with the largest parameter. Then R2 is minimax with
respect to M in the class of non-randomized, just and scale invariant
rules which satisfy the P*-condition. Furthermore, R2 is the unique
mfnimax rule in the class so R2 is admissible in this class. |

If the best population is the one associated with the smallest

parameter, similar results may be obtained. The rule R3:

select ms if x; < min x; +d
1<3<k

is admissible in the location parameter problem. The rule R4:

select #. if x, < ¢c-min x.
. i 1= . J
: 1<j<k

is admissible in the scale parameter problem.

It is interesting to compare the results obtained in this
chapter, for risk measured in terms of the maximum probability of
accepting any non-best population, with those obtained in Chapter 1,
for risk measured in terms of expected subset size. In the expected

subset size problems, the least favorable parameter configuration
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was ﬁhat in which all = parameters were equal. - For the risk considered
in this chapter the least favorable configuration is in the limit as
- two parameters remain fixed and equal and all of the remaining converge
to -= (or zero in the scale case). So both rules R] and R2 seem to do
well at these two very different parameter configurations. One could
hope that this indicates that these rules are good throughout the
parameter space.

The restriction to non-randomized rules made in this section can
not, in general, be dropped. In fact, using the notation as in the

proof of Theorem 2.3.2, it is true that

sup M(o,R]) =P (Y, <a)

e iole
> PI*(Y] _<_ a, ,Yk_] f_ a)
(2.3.16)
= P*
= sup M(e,¢*)
)
where ¢* = P* is the "no data rule". So R] is not minimax if

randomized rules are allowed.

2.4. Seal's Class and the Probability of Accepting any Non-best

Population.

‘In the previous section, the rule R] was shown to be minimax
and admissible with respect to M. In this section, the behavior of
the other rules in the class ¥ (Definition 1.6.1) is briefly

investigated.



Theorem 1.6.1 showed that for any rule R in &, excluding R],
and in a wide variety of Tocation parameter problems, there exists
~a sequence of parameter points <6,> such that 0, E By 1 for any n

9 \ Y -

but P (select ﬁk‘]IR) >lasn->wo  So

-1l

(2.4.1) sup M{8,R) > lim Py (select “k—TIR) =]
® nseo  <n

which is the worst possib]¢ upper bound.

In Theorem 1.6.3, it was necessary to'place conditions on P*
and k in order to assert that the rules in ¥were not minimax with
respect to S or S'. But that is not necessary for M. For,using
the notation as in the proof of Theorem 2.3.2, it is true that for

any R in %, excluding R],

sup M(asRy) = P (Y, < a)
= 1 1 =

(2.4.2) e
< 1 = sup M(Q,R).
®

The fact is that the risk M is aimed exactly at controlling
this type of behavior. As explained in Section 2.1, this risk
attempts to keep the probability of accepting any non-best popula-
tion small. When considering expected subset size, it
may not be tqo serious if the probability of selecting one non-best .
population is large if all of the other such probabilities are
small. In this case, the sum remains small. But, for M, this

situation causes the risk to be large.
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2.5.  An "Optimal” Rule for the Slippage Configuration in the Normal

Means Problem.

Seal (1955) proposed the following problem involving the minimi-
zation of the probability of accepting a non-best population.
Suppose Tyse.sm are independent normal populations with common
known varijances 02. And suppose the uhknown mean vector was in the
slippage configuration, i.e., 6 = (6,...,08,6+6,0,...,68). The
problem as proposed by Seal was to find that rule in the class &
(Definition 1.6.1) which
i) maximizes the probability of retaining in the selected group
the population with the unequal mean if this mean is larger
than the common mean of the other k-1 populations; and ‘
i1) maximizes the probability of not retaining the population
with the unequal mean if this mean is smaller than the common
mean of the other k-1 popu1ations.
Seal showed "approximately" (Sea]'s'term) that the above goal

was achieved by the rule RS:

(2.5.1) select o if X 3-E%T 3;1 X3 - d.

In this section, this result is proven explicitly and the result

is extended to a wider class of rules than

Lemma 2.5.]; Among all rules which satisfy

(2.5.2) Pgo(select “ilR) = P*, for all g, = (60,...,60),
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éS maximizes Pe(seiect Wi]R) for 9 = (8,...,8,6+6,0,...,0), 8 € R,

§ > 0, where the unequal mean is the ith.

Proof. Fix 8 = (8,...,6,6+5,0,...,8). Let 8* = (o*,...,6%) where
6% = 6+s5/k. By the Heyman-Pearson Lemmna (page 83 of Lehmann (1959)),
the individual selection probability @; which maximizes

P (select Wi) = E_ . (X)

6 g "1~

subject to

P* = P . (select ) = EQ* s (X)

i$ given by

fg(_’f)
1 1f F-{;(-g}' ‘g C
(2.5.3) «,(x) =
0
K - gglxgmep)?
where fe(x) = I — e . Some algebra yields
- - i=1 vr2~1? o

1A x> o - ko tme 8
2T AT TS T2

P*. (2.5.4) is the

i

where ¢ is chosen to satisfy Pe*(select wi)

rule Ry and Ry satisfies (2.5.2) so Ry is the maximizing rule. |

Note that in the proof of Lemma 2.5.1, if any other 6* were

used, a rule which did not satisfy (2.5.2) would be obtained in
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(2.5.3). Also note that the equality in (2.5.2) can not be weakened
to a >. The inequality in the Neyman-Pearson Lemma gives <.
. Obviously the rule @ = 1 satisfies Pe (select ”i) =1 > p*¥ while

-0

Pe(se1ect wi) = 1 is maximized.

Lemma 2.5.2. Among all ru]esvwhich satisfy

(2.5.5) Pgo(select ni) > P*, for all 8g = (eo,...,eo),

R5 minimizes Pe(select “i) for 6 = (6,...,0,6+6,8,...,08), 6 € R,

8§ < 0, where the unequal mean is the ith.

Proof. Using the Neyman-Pearson Lemma as in Lemma 2.5.1,

is obtained in place of (2.5.3) since we are now minimizing rather
than maximizing. But, since § < 0, the inequaliity gets reversed and
in the end (2.5.4) is obtained as before. R5 satisfies (2.5.5) so
R5 is the minimizing rule. Also, this time the inequality in the
Neyman-Pearson Lemma is in the right direction so the inequality in

(2.5.5) is permissible. ||

Theorem 2.5.1. Among all rules which satisfy the P*-condition, R5'

minimizes PB(select "i) for ¢ = (6,...,6,0+5,6,...,68), 8 € R, § < 0,

where the unequal mean is the ith.
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‘Proof.  This is imuediate from Lemma 2.5.2 since any rule satisfying

the P*-condition satisfies (2.5.5). ||

Theorem 2.5.2. let g = (0,...,8,6%6,0,...,08) where the unequal mean

1O

is the ith. Among all Just and translation invariant rules which

satisfy

(2.5.6) inf PG(CS) = P*
@.l -

R5 minimizes Pe(se]ect ni) if §<0 and maximizes Pe(select ”i) if

s > 0. ) )

Proof. Let ¢ be any just, translation invariant rule which satisfies
(2.5.6). By Lemma 2.2.1, qﬁ(g) is a function of only {Xj-*i’ J=l. .00k,
J# 1} and is non-increasing in these differences. -Since g is a loca-
tion parameter, by Lemma 2.2.3, the distribution of the differences
depends only upon and has the SIP in terms of the parameter

g*‘= (8]—61,...,9k49i). Lehmann (1955) has shown that this implies
Ee@i(g) is non-increasing in terms of the differences ej-ei, J# 1.

Let

Tyoouks 5 # i)

-
n
—
1@
[«2]
.l
[en)
A
o
S
]
i
f
&)

Fix o4 = (60,...,80). Then for any 8 €, 0,-8; < 83704 = 0, for all

Js so

i

Pgb(select wilqﬂ EQOqH(X)

= Pe(se]ect ni!qﬂ.
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Hence

P, (select wilw) inf Pe(se]ect ”i'@)

6
-0 @_l -

| A

i

inf P(CS|q) = Px,
.
But the continuity (in o) of Pe(select niicd implies

Py (select n.]g) > inf P_(select n,|¢) = P*.
! T e 2 1

=0 i

So every just, translation invariant rule which satisfies (2.5.6)
satisfies (2.5.2) and (2.5.5). Thus the result follows from

Lemmas 2.5.1 and 2.5.2. |

Seal's result is a special case of Theorem 2.5.2 since every
rule in ¥ is just and translation invariant and satisfies (2.5.6)
for all i = 1,2,...,k. |
| As stated, the class of rules considered in Theorem 2.5.2
includes non-symmetric rules. But as in Remark 1.5.2, if a rule R

is symmetric, then for any 6, = (8.,...,6.),
-0 0 0

Hi]
i.o

Pgo(se]ect m[R) =... (select m [R).

%

So if inf Pe(CSlR) = P*, where R is a just, translation invariant,
@ -
symmetric rule, then

it

inf P_(CS|R) = inf P_(select =_[R)
8 8 J
@j = ®j -

Pgo(select nj[R)

= p*

for a]] Jj. So the following is proven.



Corollary 2.5.1. Let ¢ = (85;..;6,6+6,8,...,8) where the unequal
mean is the ith. Among all just, translation invariant, and
 symmetric rules which satisfy |

inf PG(CS) = p*,

e 2
(note equality), R. minimizes Pe(select "1) if & < 0 and maximizes

b
Pe(se1ect "i) if 6 > 0.

The results of this section put a very favorable light on the
rule R5 if the parameter is in a slippage configuration. But it
should be remembered that in Theorem 1.6.2, R5 is a worst possible

case in that r = 1 so
sup EG(SIRS) > k-1
© - .

[
and sgp EQ(S |R5) > k-2.

Also, in Section 2.4 it was seen that

sup M(g,R.) = 1
e

for M defined by (2.1.1), again the worst possible situation. So
if the experimenter has no prior knowledge of true parameter configur-
ation, R5 should perhaps be avoided, considering its very poor

behavior for some parameter values.
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CHAPTER II1
ROBUSTNESS OF BAYES RULES IN MULTIPLE DECISION PROBLEMS

3.1 Introduction

The basic formulation of a decision problem usually includes
the specification of the parametric form of the distribution of the
observations. If a Bayesian formulation is employed, a probability
éistribution on the parameter spdce, the prior, is then specified.
But, although the experimenter may have an idea about the form of the
distribution of the observations, exact spécificatibn of the
paremetric form may be difficult or impossible. The €~c6ntam1nated
model is common in studies of this problem (see, e.g., Andrews et al.
(1972)). In this model the form of the distribution is specified
only with probability 1-€, the pfobabi]ity being € that the distribu-
tion is something totally different and unspecified. For example,
Huber (1965) found robust hypothesis tests in the &contaminated
model .

Considering the uncertainty inherent in an € -contaminated
model, it seems unreasonable that the experimenter could then
specify an exact prior distribution on these ¢-contaminated

-distributions. On the other hand, it may be the case that the
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experimentér can restrict the prior to be in some sub-class of all
prior distributions and it would seem desirable to use this partial
prior informaticn in ﬁhe decision problem. Robbins (1964) has
suggested that attention should be given to this case when the prior
is restricted to be in a sub-class of all priors. Blum and Rosenblatt
(1967) proposed the T-minimax criterion for selection of decision rules
in the presence of this partial prior information. The r-minimax
criterion requires the use of a decision rule which minimizes the
maximum of the Bayes risk over the sub-class. The F-minimax criterion
has been studied in a variety of problems by Jackson et al. (1970),
Randles and Hollander (1971), Solomon (1972a, 1972b), De Rouen and
fitchell (1974), and Gupta and Huang (1975, 1977). Bayesian criticism
of the r-minimax criterion has been offered by Watson (1974). None

of these authors, however, dealt with the €~contaminated model.

The main result of this chapter, found in Section 3.3, is that,
iq a finite parameter space multiple decision (i.e., finite action
space) problem, the usual Bayes rule, ignoring ahy contamination, is
robust in that, for small €, it is I-minimax when the sub-class of
priors is a class of priors on the family of €-contaminations. In
fhis sense, the Bayes rule is robust against inaccurately specified
distributions of the observation (and, hence, inaccurately specified '
priors). Section 3.2 includes some basic results on F-minimaxity
which are used in Section 3.3. Section 3.4 gives bounds on 6*,.the
amount of contamination which can be present with the Bayes rule

remaining I-minimax. Section 3.5 relates this work to the special

case of hypothesis testing studied by Huber (1965).
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3.2 Formulation and T-minimaxity

The elemants of a decision problem will be denoted in the fol?awing
“manner. zc R s the sample space of the random vector X.

d={F: F €3 is a set of distributions on X. G = {3: a ¢ G} is the
action space. L(F,a): & x G » [0,=) is the loss function. A decision
rule s{a|x), is for each x € X, a probability measure on G. The set of
all decision rules is &. R(F,8) will denote the risk of a decision
rule § at the point F. A probability measﬁre y on & is called a prior
and the Bayes risk of a decision rule & with respect to a prior vy is
denoted by B(y,8). I = {y: y € T} will denote a set of priors on 3.
The o-fields associated with the various. sets will usually not be of
importance with the exception that the o-field associated with & must
contain all of the single points {F} so that priors which put all

their mass on a finite number of distributions are valid.

The following definition is due to Blum and Rosenblatt (1967).

Definition 3.2.1. A decision rule &* is called a I'-minimax decision

rule if

sup B{y,38%) = inf sup B(v,8).
e -
B i

If T consists of one prior, a I'-minimax decision rule is Bayes
wfth respect to that priof. [f T consists of all priors ong, a
F-minimax decision rule is minimax in the usual sense. The concept
of I-minimaxity is useful in those cases when the prior distribution
can be only partially specified in that it is known a priori that the

prior is in the set I but no more specific information is available.
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The following definition of a "least favorable" prior is useful
in the I'-minimax situation. This is not the same definition as used -

. by Jackson et al. (1970).

Definition 3.2.2. A prior y* ¢7T is called least favorable if, for

some T-minimax rule &%,

B(Y*,(S*) = sup B(Yad*)'
- T

Many authors have found T-minimax rules by finding Bayes rules
versus "least favorable" priors. Randles and Hollander (1971) and
Gupta and Huang (1975, 1977) used the following result although it
was never stated in this generality. Because of their different
definition of "least favorable", Jackson et al. (1970) and De Rouen
and Mitchell (1974) were required to verify a stronger condition,
namely, equality in (3.2.1). The similarity between this result and
a standard result on minimaxity (Theorem 1, page 90, Ferguson (1967))

is interesting.

Theorem 3.2.1. If a decision rule 8* is Bayes with rcspect to a

prior y* € I and, for all y €1,
(3-2-]) : B(Yaa*) =< B(Y*:(S*)
then 6* is I'-minimax and y* is least favorable.

Proof. The following inequalities show that §* is I'-minimax.

Then (3.2.1) shows v* is least favorable.



sup B(y,o%) = B(y*,s*)
r

~inf B(y*,3)
5-

I A

inf sup B(vy,$)
& T _

I A

sup B(y,6*). ||
r

Corollary 3.2.1 is of interest for two reasons. It deals with
the specific type of structure which will be used in Section 3.3.
But, also, it elucidates a method of finding I-minimax rules which
has been used by Gupta and Huang (1975, 1977) but whose relationship

with Bayes rules and least favorable priors had not been explained.

Corollary 3.2.1. let 3= d, Ud U...U 5 where the unions are

0 1 k
disjoint. Suppose '
(3.2.2) L(Fy,a) = 0 for all Fy € 3, and all a € G.
Let no,n],...,nk'be non-negative constants with 0 L M © 1.

Suppose there exist F? € 31, i=0,1,...,k, such that the Bayes rule

"~ &* for the prior y*({Fﬁ}) =ms 1= 0,1,...,k, has the property that

(3.2.3) R(Fi,é*) 5_R(F?,6*) for all F. € S i=1,2,...,k.
Let

. k A
(3.2.4) r= {y: Y(JO) > myo y(3‘i) <mgs 1= 1,2,...,k,]_zoy(l}i)=]}

Then &* is r-minimax and y* is least favorable.
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Remark 3.2.1. sb has been called the "indifference zone" in some

problems. If the true distribution lies inl}o, any action results
~in zero less by (3.2.2). 2% = ¢ is allowed in which case i and the
inequalities in (3.2.4) are replaced by equalities. Also, the choice

of I € 4y is inconsequential. Any such Fo will suffice.

Proof. (3.2.2) implies R(Fy,6%) = 0 for all Fy ¢ 55. So, for any

y €T,

B(Ysé*) :

Hi
1l D1

f R(F,,6%)dy(F,)
%

i=1

[ A
" g e

% *
L . R'(Fi,d )
= B(y*,6%).

Theorem 3.2.1 yields the result. [

3.3 Robustness of Bayes Rules

In this section, problems which have finite action spaces
(i.e., multiple decision problems) and finite parameter spaces
are considered. The case when the parameter space and the action
space both have two elements (i.e., hypothesis testing) was considered
by Huber (1965). This work is inspired by problem (iii) in Huber.
(1965). Conditions are given under which the Bayes fu]e §* is robust
in that it is r-minimax when each of the original distributions
is reb]aced by a family of €-contaminated versions of itself and

'thesorigina? prior is replaced by a class of priors on these
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g¢-contaminations. So the Bayes rQ]e is robust in that it retains
an opiimality property, T-minimaxity, even if the prior distribution
-and parameter space were not originally specified exactly correctly.
The method of proof is to constrﬁct a least favorable prior
against which ¢* is Bayes. The proof is constructive so that, for
@ given problem, a least favorable prior can be exhibited and
bounds for €*, the amount of contamination allowable, can be computed.
Let F],...,Fk be k un%que cumulative distribution functions
(c.d.f.) onxz. They all have densities with respect to a measure u
which is also absolutely continuous with respect to Fl +...04 Fk
(e.g., u = Fq oot Fk)' The densities will be denoted by
f](x),...,fk(x). Let G= {a],...,ar} be the finite action space.
For brevity the loss will be denoted by L(Fi’aj) = L(i,aj). Let
m = (n],...,ﬂk) denote a prior on the parameter space {F],...,Fk}
where ne > 0, In. = 1 and the prior probability of Fy is m,.
In this problem, the Bayes risk for any decision rule § is

given by

)

k
; G(ajIX)jZ]ﬂi L(i,aj)fi(x)dp(x).

(3.3.1) B(H,G) = f
2 3=1

(3.3.1) is minimized and, hence, the Bayes rule is given by

1 if Jw.b(i,a,)f (x) < min Jr.L{i,a )f.(x)
7 i mtj ; i m’i
(3.3.2) s*(a;|x) = {ax) o =
0 >
where Z ai(x) = 1 for all x. By an appropriate choice of the ai(x),

1
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S8* can obviously be chosen to be a non-randomized decision rule, i.e.,

6(ajlx) € {0,1} for all aj € gand all x ¢x . It shall be assumed

that &* is non-randomized. Se now &* can be considered a function

from 2 into G and the simplified notation, §%(x) = a; if d(aj{x) =]

shall be used, henceforth. Let

(3.3.3) D = {x: XwiL(i,é*(x))fi(x) < min Jrab(i,a)f.(x)}
1 GN{8*(x)} 1

be the set of observations where the Bayes decision is unique.
The €-contaminated neighborhoods of the distributions Fi are

defined as follows. Let 0 < ¢ < 1.
316 = {G(x): G(x) = (1-O)F.{(x)*+c H(x), H any c.d.f. on z}.
It can easiiy be shown that

316 = {G(x): G{x) = (I-C")F.{x) + ¢'H(x), H any c.d.f. on 2,

0 <e' < ¢}

So S,, consists of all distributions which are less than or equal

i€
to € contaminations of Fj. Since the Fi's are all distinct, for
all sufficiently small positive €'s, the 3i€‘s are all disjoint.

Let EO be a positive constant such that 60 < 500 where
(3.3.4) €qg = suple > 0: all 3;c are disjoint}.

Finally a class of priors on these ¢-contaminations is defined by

m

i=1,2,...,k}.

= [y (3. .
re = {y: v( 16) 55
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Now it is assumed that the loss for this new_set'of distributions is

given by

L(Fi,aj) = L(1,aj) for all F} € 3¢ and all a; €@

where L(i,aj) is the loss in the original problem. That is the loss
is the same for any € -ccntaminated version of Fi as for Fi itself.

The robustness result can now be stated.

Theorem 3.3.1. Let §* be the Bayes rule defined by (3.3.2). Let

(3.3.5) Ai = {x: L(i,6%(x)) = sup L(i,6%(x))} nD, i =1,2,...,k,
pa

where D is defined in (3.3.3). Suppose there exist disjoint sets
B, C:Ai such that ”(Bi) >0, i=1,...,k. Then there exists

€ > 0 such that &* is Fe*-minimax. Furthérmore, a least favorable
prior, which puts mass ™ on

(3.3.6) Gi(x)'= (1-6*)Fi(x) + e Hi(x)

where Hi is a linear combination of the Fj's with support Bi’ exists.

Remark 3.3.1. Since: G is finite, L(i,8*%(x)) takes on only a finite

number of values as a function of x. So the sup in (3.3.5) is

attained for some x.

Proof. k distributions of the form (3.3.6) will be constructed such
that, if they are used as the F?'s in Corollary 3.2.1, 8* is Bayes
~against y* and (3.2.3) is satisfied for all F; € Fjene Then

Corollary 3.2.1 will yield the result.
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First, k densities, h],hzgt..,hpﬁ which have -as their supports
N
B]""’Bk’ respectively, anda k positive constants, GV €s.nen s are
defined. '

If wiL(i,é*(x)) = 0onA;, set ¢ = 1 and let

(3.3.7) hi(x) = (f](x) +..F fk(x))/(F] oot Fk)(Bj)
on Bi and zero elsewhere. This is obviously a density.
If niL(i,é*(x)) >0 on A, let
(5.5.8) () = c—prs] )
3.3.8) h.(x) = —— min w.f (x)[L(F,a)-L{F,6%(x))]
1 E_iTI_iL(],(S (XDG\{G*(X)} J=] J 3 ‘

on‘Bi and zero elsewhere. Since Bi <D and niL(i,s*(x)) > 0 on Bi,‘
the integral of the right hand side over the set Bi wi thout. the
(]'Ei)/ei term is a finite positive constant. Since'(1~ei)/ei varies
between 0 and = as Ei varies between 1 and O, éi_can be ﬁhosen (and
will be positive) so that hi(x) is a density (i.e., integrates to one).

Now let

(3.3.9) e = min {€.}
i
O<i<k

with EO defined in (3.3.4). The claim is that the k distributions,

G, with densities gi(x) = (1—6*)f1(x) + e*hi(x), can be used as

the 1éast favorable set. They certainly satisfy the restrictions on
Hi stated after (3.3.6).

~ To see that &* is Bayes with respect to y*, it must be verified

that for each x, the inequality in (3.3.2), viz.,
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o k
wiL(i,6*(x))gi(x) < min ) n}L(1 a)g (x)
1 | GNL6%(x)} i=1

o~}

(3.3.10)
' 1

. holds. For x £ U Bis 9 (x) = (1-€)f (x) for all i so in (3.3.10)

the (1-€*) canceTs from both sides and the inequality reduces to that

of (3.3.2). Thus the same decision, s*(x), is Bayes. For x € B

(3:3.01) JriL(5,6(0)g;(x) = (1-€9) (1,65 (x))F, () +
i i | '

exn L(m, 6%(x))h (x).

If nmL(m,d*(x)) =0 on Am’ (3.3.11) equals

(-6 L (1,6 () (0) < (=€) (min yy fritiaalfi(x)

< min ZniL(i,a)gi(x).
G\ {8*%{x)} 1

The first inequality is true because &* is Bayes in the original

f.(x) 5_gi(x) for all

problem and the second is true because (1-€*) 5

x €Zx. If nmL(m,a*(x)) >0onA., (3.3.11) equals

1-€
(x) + e(— min Znifi(x)[L(i,a) -

(1-€%) T L(d, 6% (x)) F.
(-8t 0,820 e\ (x)} T

L{i,6%(x))]

< (1- E*)Z L(i,6%(x))F (x) + (1-¢*)  min Zv f (x)[L(i,a) -
1 GN\{&*(x)} 1

L(i,8*%(x))]

= (1-€%)  min s (x)L(i,a)
G\ {&*(x)} 1 '

< i m.Q. L{i,a).

= G\ 16*(x)) 1Z gl
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The first inequality is true since, by (3.3.9), €* < ¢. Thus
§* is Bayes with respect to y*.
Finally, inequality (3.2.3) must be verified. Let -F; € 3

ex

So Fi = (1-€*)F, + €',

ROF3>6%) = JL(T,8%(x))dF ! (x)

f

(1—6*)[L(1,6*(x))dFj(x) + e fL(1,6%(x))dH" (x)

tA

(1—6*)]L(1,6*(x))dFi(x) + € sup L(i,8%(x))
A

= R(G;,6%).

The last equality is true because Hi puts all its mass on Bi CZAi,

the set where L(i,6%(x)) = sup L{i,86*(x)). So (3.2.3) is verified. ||
z .

As 1is obvious from the proof of Theorem 3.3.1, all that was
important about the Hi's was that i) H, had had its supbort in Ai
and ii) the mass was put on Ai in such a way that &* was Bayes
with respect to y*. Thus, there are many least favorable priors.
This particular one was chosen to illustrate that the least favorable
distributions need not be particularly pathological nor have
particularly "heavy tails". But, rather, the least favorable distri-
butions may be simply linear combinations of the other disfribution§
in the original problem. The explicit construction of Theorem 3.3.1
will be used in Section 3.4 to obtain bounds for €*, i.e., bounds on
the amount of contamination which can be present with §* still

remaining Fe*-minimax.
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3.4 Bounds for €*

In Section 3.3, it was found that the Bayes rule &* is
' Teq-Mminimax for some €* > 0. In this section bounds are obtained
for €%, Equation (3.3.9) showed that €* could be chosen to equal

min {€.}. The bounds obtained in this section are bounds on 60
O<i<k

and bounds on min {€.}. The bounds are all sharp in that they
T<i<k

are attained for certain problems.

First, we discuss bounds for 60, or more precisely, for

600 = sup{€ > O: 3i€ are all disjoint}.

Lemma 3.4.1: Let F, and F, be two distinct c.d.f.'s on 2. Let

A = sup|Fy(x)-F (x)|. If €, < A/(1+A), then 5 N3, 1is empty.
21 2 0 : _ 160 | 2&0

Proof. Fix € satisfying 0 < € <A - eo(1+A). Let x5 € z be such
that |F](x0)~F2(x0)| > A-€ > 0, say F1(x0)~F2(xo) > A-€. Then

(]—EO)F](XO)“[(]'EO)FZ(XO) + GO] > (1 - Téﬁ)[F](XO)'FZ(XO)] - € |
> (1) (A-€) - €&,

5 T%K-(eo(1+A)) - ¢, = 0.

So, for any 61 € 3]; and G2 €3
: 0

G](xo) = (]'QO)FI(XO) + EOH](XO)
(]'Eo)F](Xo)
(1-EO)F2(XO)

260

Iv

v
<+

€0
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GZ(XO)
So no G can be in both & and ¥ for such a G wou]d have to
160 ,Zgo
satisfy G(x,) > G(xo). [
Theorem 3.4.1: Let A' = min  sup|F.(x)-F,(x)|. Then
l<ijck 2 1Y
i#J

' ' 1
A'/(THAY) < €49 < 5

F](x) +-% Fz(x) is in both 3 and 3 So

O et

Proof. G(x) =

1

i .
2

1
00 2 7
Fix i # J. Since A'/(1+A') is an increasing function of A',

if 60 < A'/(1+A') then
€y < A'/(T4A") < A/(T+A)

(x)|. By Lemma 3.4.1, 3, n %j

J 760

where A = sup[Fi(x)—F
A
€0 2 A7+ ]

The following two examples show that the bounds of Theorem 3.4.1

are attained in some problems.

Example 3.4.1: Suppose k = 2. x = R. Suppose the support of
, F]'c:(—w,a] and the support of F, c (a,»). Since F](a) = 1 and
Fo(a) = 0, sup|F{(x)-F,(x)] = 1. By Theorem 3.4.1, since

2 P 1 2
A'/(14A') = 1/2, € = 3. Thus in this example both the lower and
upper bounds are attained. A more interesting example of attainment
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of the Tower bound, when it is not 1/2, is in Example 3.4.2.

Example 3.4.2: let k = 2. 2= R. Suppose F, and Fo satisfy i)

Fi{x) > F,(x) for all x € Zand ii) there exists Xg such that

2
F](x0)~F2(xO) = A > 0 and F](x)~F2(x) is non-decreasing on (‘m,xO]
and non-increasing on [xo,m). This will be true, for example if
F(*) has a symmetric, unimodal density with respect to Lebesgue
measure and F](x) = F(x-e]), Fz(x) = F(x-az) for some 6, > 8. In

this case, x 8,-61)/2. For this problem, suplF](x)—Fz(x)l = A,

0 = (8 b
It will be shown that if €, = A/(1+A) then & n a # ¢. Thus
0 160 260

the Tower bound of Theorem 3.4.1 will be attained. Let

(F1(0-F(x))/A x < xq
H(x) = { :

X >~XO

By ii) H is non-negative and increases from 0 to 1 on (—w,xo],
i.e. His a c.d.f. The claim is that G(x) = (1—60)F2(x) * € H(x)
is in 3‘60 n 3260' G € 5260-13 obvious. Since EO/A = l-go,

G(x) = (]-EO)F](X) on (-w,xo]. And on (xo,m),

i

G(x) (]—EO)FZ(X) * €
(1-€g)F1 (x) + (1-€0) (F,(x)-F1 () + ¢,
_(1'60) X)‘+ EO[]“(]—EO)(F](x)-FZ(X))/EO]

Fel
1
(]-EO)F](X) + 60[]'(F](X)'F2(x))/A]

it

1

The function
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is, because of ii), increasing from O to 1 on (xo,w), ice., H'(x)

is a c.d.f. So, since G(x) = (]"ED)F](X) + €H' (x), G € &

0 160'

Now bounds for min {Ei} will be considered. The following
1<i<k ‘

notation will be used. Let
C; = m, sup L(i,6%(x)).

Z
We shall assume that c; > 0, 1= 1,.,.,k.A So (3.3.8), rather than
(3.3.7), of Theorem 3.3.1 is being considered. It will be recalled
that (3.3.7) was the trivial case and the corresponding €; was one.

For any measurable set B, let

y .
(3.4.1) I(B) = [  min om () [L(F,a)-L(3, 6%(x)) Jdu(x).
B G\ {6*(x)} =197 o

Recall that on the sets Ai of (3.3.5), this integrand is positive.
It will also be assumed that the Fi are continuous so that for any
Ass it is possible to choose B C:Ai such that I(B) = c, where c is
any number 0 < ¢ < I(A;).

We shall say that the sets Bi’ i=1,...,k, "satisfy the
inclusion conditions" if the Bi.are all disjoint, ”(Bi) > 0, and
Bi C:Ai’ i=1,...,k. These were the conditions required of the

B; in Theorem 3.3.1. Setting the integral of (3.3.8) equal to

one and solving for Ei yields

(3.4.2) 6;.(81.) = I(B;)/(c; + I(B;)).

So Ei is a strictly increasing function of I(Bi)'
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.Finally, the interest is not in bounds on min {Ei}’ per se.
1<i<k :

This can always be made small by choosing one of the Bi‘s small.
 We want to choose the Bi's so.as to make this quantity as large as
possible, since, large values of € correspond to wide classes of
priors with respect to which &* is I-minimax. Thus the quantity
for which bounds are desired is

€' = sup min {E'(Bi)}
B l<i<k !

where 8= {(B],...,Bk): B. satisfy the inclusion conditions}.

Theorem 3.4.2.

(3.4.3) €' < I(u A.)/(Z c. + I{yuAL)).
i

1
—
-

~
-
-
=
=
-—to
)
o
wn
Y}
purs
——de
wn
i

<
o+
b
IV

If there exist Bi’ i= inclusion conditions

and also satisfy

i
(@]
—t

T
- C
™
pury
pa—g
~
Baay)
(@]
(]

H
—
-

-
el
-

(3.4.4) | I(BS)

then this bound is attained.

Proof. The values in (3.4.4) are the solution of the k equations
'I(B;)/c. = 1(8,)/c, iz 1,k

(3.4.5) JI1(B.) = 1(U A,).
1 1

Substituting (3.4.4) into (3.4.2) yields



(3.4:6)  .¢(8;) = T{UA,)/(

; o+ I(UAD) =1,k

1 1 1

-So for such a choice of ?j’ %'does not depend on j and the

min {€} is the value given in (3.4.3) proving the second assertion.

1<j<k .
Now let Bi,...,Bé satisfy the inclusion conditions. Since the B%'s are
disjoint and satisfy U B% c UA,

1 1

So by (3.4.5), at least one Bj satisfies

I(B:

e

j I(g-) Ai)/g €

By (3.4.6), this implies

€;(8}) < I(LiJ Ai)/(g c. + 1(UA,))

and min {€.(B!)} is less than or equal to the same value. Since
1<j<k

s...»B, were arbitrary, (3.4.3) follows. ||

B k

1

A Tower bound for €' is more complicated to write down. It
involves how the Ai overlap in a particular problem. But one can
be obtained which is computable and is attained in some problems.

The following notation is used. Let

= = . = = ¢ i = .
€= {E=0Cy N..NC: Cy= A or €= AT = 1,00,k

and w(E) > 0}\{A§ A..0 AE}.
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There are at most 2k~1 sets in" & the sets in € are all disjoint and

€ s nbn—empty since U E = (LJAi)\\N where u(N) = 0. For
Eel i
"E € &, let

fE) = {igsoesi t E AL, § = 1,0.0,m),

o(E) has between one and k elements for every E.

Theorem 3.4.2. Llet

A3 = (I(E)/ Cm) J=1,...5k
{E: jedE)} méegE)
Then
(3.4.7) | € > (min AL)/(1 + min Al).
T<j<k Y T<j<k Y

Proof. Let €= {El""’En}' Partition each Ei into the number of
elements in q(Ei) disjoint measurable subsets, {Eij: J € q{Ei)},

satisfying

Iﬂiﬂ =cjl(ﬁ)/mE&EJ e
DA

Now let B. = U Ei' J=1,...,k.
lirjedE)r

The Bj satisfy the inclusion conditions since j € q(Ei) implies
E.. C:E,i C:Aj and all the Eij are disjoint. Because of the

1)
disjointness,

I(B;) = 1(E,.)
3 {1:je§p(51.)} "



= 7 (e, MED T o).
{hjéﬁEﬂ} J ! me&Eﬁ m

-Using (3.4.2) yields

So

=
—t o
Jun 3
e
o
——
o
<
—

il

min AE/(]+A{)
sk O ggek U

min Al!/(1 + min A!).
1<k 1<jzk

Since this choice of (81""’Bk) <8, (3.4.7) follows. ||

Example 3.4.3: An example in which the upper bound of Theorem 3.4.2

is attained is the following. Let k = 3. Let Fy,F,, and F3 be
normal distributions with means -1, 0, 1.respective}y and common
variance 1. Let this be a classification problem with

'Gv= {a],az,a3} where a; corresponds to classifying the observation
as coming from Fi' Suppose the prior is M= g = .3, T, = 4.
Assume 0-1 loss so L{i,a;) = 0 if i = jand 1 if i # j. Then the

J
Bayes rule is of the form

3y X <Xy
(3.4.8) §*(x) = ay X] S X < X

ag Xy < X
where for this prior and loss, Xy = -.80 and Xo = .80.

A] = {x: §*(x) = a, or a3} = [—.80,§), A2 = {x:.af(x) = ap or a3}

= (-=,-.80) U (.80,) and Ay = {x: §*(x) = aj or a,} = (-=,.80).
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]

It can be computed, using normal tables, that I{-=,~.80) = .0889 =

I(.80,=) and 1(-.80,.80) = .0732 so I(LJAi) = .2510. Thus the
i

upper bound of (3.4.3) is €' < .2510/1.2510 = .205. An obvious

FA

way to define the Bi’s is B] = (0,c), B, = (~,-c) U (c,»), and
B3 = (~c,0) where ¢ is chosen so that (see (3.4.4)) I(B]) = 1(83) =

:3-1(U Ai) and I(Bz) = .4-I(u Ai)' Solving I(0,c) = .3-I(UA.)
1 i i

for ¢ yields ¢ = 1.80. Since ¢ > Xos Bi C:Ai for all i, so this

Bi satisfy the inclusion conditions. The lower bound of Theorem
3.4.1 4s (F,(.5) = F3(.5))/(14F,(.5) - F,(.5)) = .276 > .205.

Hence &* is F.Zos—minimax. The fact that 6* is r-minimax for up to
ZQ% contamination seems to reflect favorably on &*. It is also
interesting to note that if the lower bound of Theorem 3.4.3 is
computed for this problem, Ai = Aé = .249 and Aé = .7254 éo-the
Tower bound is .249/1.249 = .199. Hence the range 6f possible
values for €' given by Thecrems 3.4.2 and 3.4.3 is very éma]i for

this problem viz., .199 < ¢' < .205.

Example 3.4.4. An example in which the lower bound of Theorem

3.4.3 is attained is the following. Consider the same classification
problem as in Example 3.4.3 with the only change being in the loss.

Rather than 0-1 loss, assume the loss matrix is

0 1 2
(L(i,aj)) = (Lij) =f{1 0 2
2 1 0

The Bayes rule has the same form, (3.4.8), where, for this loss and
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prior, it can be computed that Xy = -.95 and Xo = 1.55. For this
loss A] = A2 = {x: &*(x) = a3} = (1.55,«) and A3 = {X: 6%(x) = a)}
= (~»,-.95). The set € contains only two sets, viz.,

E, = A, NA, NAS = Ay and £, = A (1Ag NAy = Ay, Computations

] 1 2 3
yield'I(A]) = ,0370 and I(A3) = .0798. The question is, what choice
of 81’82’ and B3 will maximize the min{61,62,€3}. Obviously, 63

is maximized by choosing 83 = A3 which, from (3.4.2), yields
(3.4.9) 63 = I(A3)/('c3 +I(A3)) = 117,

The min{E],EZ} is maximized by choosing B] and B2 so that € = &

For any choice with inequa]ity,‘say E] > 62, the min{el,ez}-can be
increased by making B] slightly smé]]er and 82 correspondingly largér.
Also, it is required that B] U B2 c A] but the min{e],ez} is maximized
by choosing B] U B2 = A] since larger Bi‘s yield larger 61'5’ Finally,
from (3.4.2) it is seen that € = & if and only if

I(Bi)/c] = 1(82)/c2 and, substituting I(BZ) = I(Ay) - I(By), this

yields I(B]) = c]-I(A.)/(c]+c2) and 1(82) = CZ‘I(A])/(C]+C2).

1

From (3.4.2) this best choice of B, and B2 yields

(3.4.10) € = € = T(A)/(cprept(A)) = .026.

But, in Theorem 3.4.3, Ay = A = I(A])/(c]+c2) and Aé = I(A3)/c3. .

So the'theorem asserts that €' min{I(A])/(cl+c2+I(A])),

| v

I(A3)/(c3+I(A3))}. However (3.4.9) and (3.4.10) show that in

]

this problem €' min(61,63) is equal to this Tlower bound. The
Tower bound for €y given by Theorem 3.4.1 is again .276, as in

Example 3.4.3, so finally it can be stated that §% is T 026—minimax.
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The upper bound of Theorem 3.4.2 can be computed to be .055. As

in Example 3.4.3, the upper and lower bounds do not differ greatly.

. 3.5. Hypothesis Testing

In this section, the important special case of hypothesis testing
is considered via two examp]eé. In the first example it is found that
for appropriately chosen Bi's, the least favorable distributions of
Theorem 3.3.1 are the same as those found by Huber (1965). The
second example exhibits the importance of considering S when

determining ¢*,

Example 3.5.1. In a hypothesis testing problem, there are. two

distributions with densities f](x) and fz(x) and- G = {a],az}. The
loss has the form L(],a]) = L(2,a2) = 0 and L(i,ai) = Li >0, 1#].

A version of the Bayes rule is given by

2, if fz(x)/f](x) < TY-‘L]/WZLZ
8*(x) = '
4

The sets Ai of {(3.3.5) are given by

it
it

A, = {X: &%(x) a,} ND = {x: fz(x)/f](x) > w]L]/ﬂsz}

>
N
f

{x: &§*(x) = a;} N D = {x: fz(x)/f](x) < "]Ll/"ZLZ}‘

Since’A] N A2 = ¢, B1 and 82 can be any non-empty subsets of A]

“and AZ' But suppose they are chosen to be of the form
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By = {x: fz(x)/f](x) > ¢ i_W]L]/WZLZ}

l=e)
i

O £,(0) /6, (x) < ¢ < mly /oyl

where ¢” and c¢' are constants. Then, if ¢' and ¢" are such that
E](B]) = 6%(82) = &, the densities of the least favorable distribu-

tions of Theorem 3.3.1 are given by

(]—E*)f](x) if y(x) < ¢"
g](x) - Tol.
(1-€%) waf f,(x) A v(x) > ¢
) (1-€*)f,(x) if y(x) > ¢!
go(x) =
Ml
(1-e%*) w2L2 f](x) if y(x) <c¢'

where y(x) = fz(x)/f](x). These least favorable distributions are
of the same form as found by Huber (1965) and lead to a censored

probability ratio gz(x)/g](x) of the form,

do if y(x) > c"

9p(x) . ,

(3.5.1) 5']—(7)‘ = v(x) if ¢" > y(x) > ¢
d] ifc' > v(x)

where'dO and d] are constants. But, if ¢' and c" are such that

E](B]) # 62(82), the éensity ratio has the form
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(by#by/v(x)) 7! if () 2 ¢
95(x) .
10 byv(x) if ¢ > y(x) > ¢
b4+b5- y(x) if ¢' > y{(x)
where b],...,b5 are constants.

Example 3.5.2. As a continuation of Example 3.5.1, a problem in

which the censored probability ratio of (3.5.1) is obtained and which
exhibits the importance of including S in (3.3.9) is the following.
Let 2= R and fi(x) = f(x-ei) for constants 0 and 0, where f(x) is
a density with respect to Lebesgue measure which is symmetric about

zero. Suppose n]L] = “2L2’ Then for ¢' > 1, fixed, if

B] = {x: y(x) > c'} and B, = {x: Y(X) < 1/c'},

2
because of the symmetry, P(B]IF]) = P(BZIFZ) and P(BZIF]) = P\B]]FZ)

are obtained. So, from (3.3.8), the equa]ity’

"

&/(1-€) = P(By|F,) - P(B;]Fy) |

P(B,[F{) - P(B,F,)

62/(]'62)
is obtained. Hence
G] = EZ = (P(BZIF]) - P(BZIFZ))/(] + P(BziF]) - P(BZIF2>)'

Thus, if €, is ignored and €* is set equal to SE the censored

0
probability ratio of (3.5.1) is obtained. But this does not

ensure that 316* n 326* is empty. Indead, if ¢' = 1, the logical
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value to choose in crder to maximize €, the two densities 93 and

g, are equal, viz.,

(-, (x) i y(x) < 1
0,(x) = g,(x) =
(1»6*)?2(x) if y(x) > 1

. 1s not empty. € in (3.3.9) can not, in general,

Thus, 316* n 32&

be ignored.
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