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Preface

In his fundamental paper "ﬁber die Analytischen methoden in der
Wahrscheinlichkeitsrechnung" Math. Ann., V.104, 415-458, 1931, Kolmogorov
derived his celebréted backward and forward differential equations for Markov
processes x(t). If x(t) is a one dimensional Markov process which is
homogeneous in time then the backward equation takes the form:

ut(t,x) = (a(x)/Z)uxx(t,x) + b(x)ux(t,x)

(1)
u(0,x) = £f(x).

In practice, however, one is not given the Markov process, instead one is
giveﬁ only the diffusion and drift coefficients a(x) and b(x) respectively,
and the problem is to construct the Markov process corresponding to these
coefficients - this is called the existence problem. If the state space of
the Markov process is Rl, a satisfactory-theory can be tonstructed via

the stochastic differential calculus of Ito. In genetics and analysis there
occur Markov processes whose state space is a subinterval I = [ro,rl] of RY
and the question arises how to define the process when, if ever, it reaches
the boundaries. In addition there are Markov processes whose associated
Kolmogorov differential equation involve non-classical generalized second
order operators. For such questions the Ito calculus is inadequate and a
different approach due to Hille and Feller is, in the author's opinion, more
successful. This approach is primarily analytic and reélies heavily on
semi-group theory, the essentials of which are given in Chapter III. The
author's debt to Dynkin's masterful presentation of this material is obvious
~and need not be eleaborated on here. We do, however, include quite a bit of
material not to be found in Dynkin or any other treatise on Markov processes
e.g. the Trotter-Kato theorem, the Trotter product formula and some
perturbation theory - ideas which play an important role in limit theorems

for Markov processes, as well as existence theorems. Indeed one of the



themes of these lectures is that a strong existence theorem leads to a strong
limit theorem; this is why in Chapter IV we give a careful discussion,
following Mandl, of the "'stationary equation'':

(2) AF)\(X)-(a(X)/Z)F'}:(X)-b(X)F)'\(X) = f(x).

A noteworthy consequence of these methods is a counter example to the so-called

"diffusion approximation'. We construct a family of Markov processes xN(t),

1 < N < » for which lim aN(x)=1, lim bN(x) = 0 and 1im xN(t) = x(t) (in the
N N> N-o

sense of weak convergence of stochastic processes) and yet x(t) # Brownian

motion! The limit process x(t) is what Ito-McKean call a skew Brownian motion.

We conclude these lecture notes with a theorem, 5.1.1, which may be
regarded as a semi-group version of Ito's lemma. Several applications are
given including some theorems of Burkholder-Gundy, Burkholder, Doob and Lai
as special cases. The novelty here is that the drift coefficient has a
singularity at one of the boundary points which precludes the use of Ito's
lemma.

Because of time the author was unable to include other topics of great
importance e.g. the L2 theory of the Kolmogorov equation and the corresponding
eigen-function expansions; applications of the perturbation theory and
Trotter-Kato theorem to the equation of neutron transport; the diffusion

approximation in genetics, etc. For these topics the reader should consult

the items of the supplementary bibliography.
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I. Preliminaries.

Let {Q, % P} denote our basic probability space, i.e., ¥ is a signma
field of subsets of Q and P is a probability measure with domain ¥ A stoch-
astic process with index set J is merely a collection of random variables
{x(t,w); t € J}. In these lectures J will usually denote the half line

R, = [0,°) or a subinterval thereof e.g., J = [0,1], J = [a, B], O <o < B< e

We denote by #{x(u,w); u €J} the smallest sigma field with respect to which

all the random variables x(u,w), u€ J are measurable. If J = [0,t], then we

write @(t) foré@{x(ﬁ,w): u €J}. To simplify the notation we shall often

drop the w and denote a stochastic process by x(t) instead of x(t,w). Notation:

X =Y a.s. means P{w: X(w) # Y(w)] = 0 and '"a.s." means ”almbst surely'".

Definition 1.1. The stochastic process x(t) is said to be stochastically

continuous if

(1.1) lim P{Ix(t+h) - x(t)lig} = 0 for every g > 0 and every t in J = [a,B]
h-0 -

At the end points we require

lim P{|x(a+h) - x(a)|> e} =0, lim_ P{|x(8-h) - x(B)|> e} = 0.
h->0+ h~0 .

Stochastic continuity is just a condition on the two dimensibnal joint distri-
butions of the process x(t) and in practice it is a very easy one to check.

So far we've assumed that x(t,w) takes values in R1 = (~»,©), By a vec£or—
valued stochastic process is meant a collection of random n-vectors which we also
denote by x(t,w) = (xl(t,w),...,xn(t,w)). More generally it is possible to
define random variables with values in normed linear spaces or even in locally
convex spaces, but such ideas will play only a small role in these lectures.
Definition 1.2. The stochastic process {x(s); 0 < s < t} is said to be a

Markov process if



(1.2) P {x(gn) j_x|x(t1),...,x(tn;l)} = PIx(t)) < fx(t, )} a.s.

for0_<_t1 Sty <o <t <t <t
The following apparently more general definition of the Markov property (1.2)
is actually equivalent to it (see Doob [ 9 ], p. 83 for the proof).

Definition 1.3, {x(s); 0 < s < t} is a Markov process if for every bounded

Borel measurable function f and s1 < 52 we have

(1.3) E{f(x(sz))laxsl)} = E{f(x(sz))lx(sl)} a.s.

Notation: By Ex{ } is meant E{ [x(0) = x}.

We've just defined a Markov process with state space Rl. To define an R" valued
Markov process we just replace the function f in (1.3) by a bounded Borel
measurable function g(xl,...,xn) and replace x(s) by the random vector ;(5) =
(X, (), 0,x(5)).

One of our concerns will be to determihe the regularity properties of the
.sample functions x(t,w] of the Markov process. For example,is x(t,w)
continuous in t with probability one? If not, is x(t,w) right continuous with
probability one with no'discontinuities other than jumps?‘ For the time being
we shall content ourselves with the following weak regularity properties:
Definition 1.4. 1If x(t,w): J xQ- R is measurable with respect to the product
sigma field #(J)x% then x(t,w) is called a measurable stochastic process;
x(t,w) is progressively measurable if x(u,w): [0,t]x22 + R is measurable with
respect to Q[O,t]xj |
Definition 1.5. The process x(t,w) is called separable if there exists a
countable sequence_95={tj} C;J and a subset NC Q with P(N) = 0 such that w & N
implies {x(t,w)eF for all telI} = {x(tj,w)EE F, all tj65_97W I} for any open subset

T of J and any closed subset F of R1 (or Rn).



Theorem 1.1. (Doob) Every stochastic process x(t,w) has an equivalent

~

version x(t,w), i.e. P{x(t,w) # x(t,w)} = 0 for all te J, which is separable.

Theorem 1.2. (Doob [ 9 ], p. 60): If x(t,w) is stochastically continuous
"and separable then x(t,w) is a measurable stochastic process. In addition
the sample paths x(-,w) are with probability one Lebesgue measurable functions
of t. Moreover if E{x(t,w)} exists for t € J it defines a Lebesgue measurable

function of t (with probability one) and if f E{lx(t,w)l}dt < = then almost
A

all sample functions x(-,w) are Lebesgue integrable over A.
The importance of the notion of separability is that without it we could
- not infer the measurability of certain functions of the stochastic process.

For example, x(t,w) = lim sup x(t',w), x(t,w) = lim inf x(t',w), x(t+,w) =
ti>t t'ot -

lim sup x(t',w) and x(t+,w) = lim inf x(t',w) are not in general measurable,
ti>t+ t'>t+ _

since they are obtained gs a2 limit of an uncountable number of random variables.
If, however, x(t,w) is a separable version then each of these random variables

is measurable. A particularly useful application of these ideas is to continuous

parameter martingales (or supermartingales or submartingales) which we may

assume to be separable. Let us recall the definitions.

Definition 1.5. {x(t,m); t €J} is a martingale (supermartingale) if
E{|x(t,w) |} < =, tE J and E{x(t,) lg(tl)} = x(t)) a.s. t) <t (E{X(t)) {g;(tl)} >
X(tl) a.s. tl < tz); If -x(t,w) is a supermartingale then x(t) is a

submartingale.

Theorem 1.3. (Doob): Let x(t,w) be a separable supermartingale, which is
stochastically continuous on [a < t <B]. Then there cxists an equivalent
process y(t,w),i.e. P{x(t,w) # y(t,w)} = 0,such that y(t,w) is right continuous,

with probability one and y(t-,w) exists with probability one.



[TI. Transition functions, semi-groups and the Kolmogorov differential equations.

Definition 2.1. The function P(s,x;t,A) defined for all 0 <s <t, x €][a,b],
and A a Borel measurable subset of [a,b}, is called a transition function if

it satisfies the following three conditions:

(1) P(s,x;t,A) is a probability measure (as a function of the sets

A),

(11) x + P(s,x;t,A) is a Borel measurable function of x for each fixed

(2.1)

|
l.
\
' s, t, A and
(iii) [ P(t,x;s,dy)P(s,y;1,A) = P(t,x;t,A)

where the integration is understood to be over the state space of the Markov
process; in this case, over [a,b]. Condition (iii) is called the Chapman-
Kolmogorov equation,

Let Bfa,b] denote the Banach space of bounded Borel measurable functions
with domain [a,b], and C[a,b] denote the subset of bounded continuous functions

with domain [a,b]. The norm is denoted by |f| = sup If(x)l. For f € B[a,b]
a<x<b

the operator T(t,t)f(x) ff(y)P(t,x;T,dy) is well defined and satisfies the

conditions listed below:
(i) If f(x) > 0 all x, then T(t,t)f(x) > 0 all x.

} (ii) |T(t,0f| < |£].

I A

(2.2)
(ii1) If t <s < T then T(t,s)T(s,t) = T(t,1),
{ X

J
\ (iv) If f € B[a,b] then T(t,1) f € Bla,b].



Condition (iii) is called the generalized semi-group property. We shall call
a semi-group of operators T(t,t) satisfying (2.2)(i) - (iv) a positivity-

preserving, contraction semi- group, or Markovian semi- group for short.

Theorem 2.1. Given a probability distribution p(A) and transition function
P(t,x;1,A) there exists a Markov process X(t) with initial distribution
P{X(0) € A} = p(A) and transition function P(t,x;t,A); more precisely we have
P{X(t) € A]X(t)} = P(t,x(t);7,A) a.s. In particular if p iS"concentrated

at the point x i.e!, p(A) = 6X(A), then the measure induced on function

space by this process yill be denoted by Px{ } and expectations by Ex{ }.

Proof: For each (n+l) tuple 0 = tO < t1 < ... < tn define the family of

cumulative distributon functions via the formula:

X X

n 0
IR R e IR L LR AT B J LA RN ICIY
e e Kpoeeex)) = Fy S een,t, FPaXnee X )
1 : 0’1 n

Remarks: We integrate with respect to dyn first, then dyn_l, etc.
It suffices to show that the collection of distribution functions F N

O’ 1""’
forms a consistentent family i.e.

(2.4) lim F

to,est (X45-,%X,,.,x. ) =F ’ (X.,.,x »X sesX ).
Xk1‘+oo 0 n O k n tO,.,tk_l,.’tk'f'l , tn 0 ‘ k-l k+1 n

Xn xk+2

Set £(y,, ) = [ [ Pt oY1t @Y ) P(E oYy 3t 0dY, ) and

-0 -0

g(y) (y)J f(y); IA denotes the indicator function of the set A. The
k+1 ‘

integral on the right hand side of (2.3) is evaluated by first computing

) I(_m’x

t

n



o{ Pty 15 13tpodyy) !;g(ykﬂ)l’(tk,yk;tk+1,dyk+1)=,

= T(tk—l’tk“"l)g(yk"l) hd

xk+1

J O DR Y58, )

-0

Now continue the integration with respect to the remaining variables yk 1’

yk—Z""’YO' The result is clearly F ‘ t-(XO""xk—l’Xk+1""Xn)

t k-1"Tk+1" "0 5

0,...,1:
as defined at (2.3). Hence by the Kolmogorov existence theorem (cf.Billingsly

[ 2 1 pp. 228-230) there exists a stochastic process x(t,y) such that

(2.5)  Plx(ty) € By,..,x(t )E B } = é ..é Pt )oY 1t ) - -P(tgLy gt L dy IP(dy,)
n. 0 '

All we have to do now is verify the Markov property i.e., it suffices to show
(2.6) P {x(tn)f_X]x(to),..,x(tn_l)}= P(t ;s x(t _;)5t ,A) a.s.

_i}. In the course

of establishing (2.6) the following calculation iscarriedouta

where A = (-»,1]. Set B = {uw: x(tO)GE BO,..,x(tn_l)EE Bn

(2'7) E{ IBf(X(tn—l))} = é A é f()’n_l)P(tn_l;)’n_z;tn_l,d)’n_l)P(to)’o;tld)’l)l)(dyo)
n-1 0

Now it is enough to prove (2.7) for f(y) = IF(y), in which case the left hand side

is merely

l‘{x(to) c BO,..,x(tn;z) < Bn_z,x(tn_l) c Bn-l NF} =



& AF} é I{ POt 2 Yy 23t @Yy )Pty vty dyIP(dy)) =
n-1 n-2 0
= é’ g IF(yn_l)P(tn_z’yn_z;tn_l)dyn_l)"P(to)yO,tl’dyl)P(dyO)'
n-1 0

Let us return to (2.6), the left hand side of which is E{IA(x(tn))[x(to),..,x(tn_l}.

We must show

(2.8) g IA(x(tn))dp = é P, _px(t, 1)t A)dP.

Set f(y) = P(tn_l,y;tn,A) and apply (2.7) to the right hand side of (2.8) which

becomes

|
—

(2.9) E{IBf(X(tn_l))} = f P(tn_l;yn_l;tn,A)...P(to,yo;tl,dyl)P(dyo)

B ,---B,

P{x(tO)E BO,..x(tn_l)E Bn—l’ x(tn) € Al}.

é I,(x(t ))dP. gq.e.d.

EXAMPLE: For Browniaq motion,

P4 = (2100172 expl- (-0 22 (c-t)1dy
A .

Remark: In practice-an explicit formula for_the transition function is not usually

known; instead one first constructs by various methods, e.g. the Hille-Yosida

thcorem, a Markovian semi-group T(t,t): B[a,b] » Bf[a,b]. Given the semi-groups

one can casily construct the transition function. More precisely we have

Theorem 2.2, To every Markovian semigroup T(t,t) satisfying conditions (i)-(iv) of (2.2)



there exists a transition function ( and hence Markov process) such that
T(t, D) f(x) = [E(IP(e,x;57,dy).

Proof: Let f EE([a;b], If [a,b] is not compact assume ih addition that f

has compact support. The mapping f - T(t,t)f(x) is a positive linear functional

on Cla,b] and hence by the Riesz Representation theorem (W. Rudin [ 27 ] p. 40)

there exists a probability measure P(t,x;T1,A) such that T(t;r)f(x)‘= ff(y)P(t,x;T,dy).
Since P(t,x;T1,A) = T(t,T)IA(x)GE B[a,b], because IA EEB[a,bj; we see at once that

x » P(t,x;T,A) is Borel measurable in x. The Chapman-Kolmogorov equation is

now a consequence of the semi-group property T(t,s)T(s,t) = T(t,Tt). Thus

P(t,x;T,A) is a transition function in the sense of defini#ion 2.1.

To proceed further and develop an interesting theory, additional conditions
on the transition functions must be imposed. In particular, we assume the
existence of functions a(t,x) and b(t,x) continuous on R+,x [a,b] and satisfying
the conditions:

For every § > 0

(i) | P(t,x,t+h,dy) = o(h) as h - Q
|y-x|>8
(2.10) £ (ii) [ (-x)P(t,x,t+h,dy) = b(t,x)h +o(h) as h +0
y-x|< ¢ '
(iii) f:' (y-x)ZP(t,x,t+h,dy) = a(t,x)h+ oth) as h > 0.
y-x| <8 o

Remark: a(t,x) is called the diffusion coefficient and b(t,x) is the drift

coefficient.

Theorem 2.3. Let £ €C[a,b] and u(t,x) = T(t,t)£(x) € C2[a,b] for all 0 < t < t.

If the transition function P(t,x;T,A) satisfies conditions (1)-(iii) of (2.10) then



u(t,x) satisfies the parabolic partial differential equation (P.D.E.).

(2.11) -u (6,0) = (a(t,x)/2)u (£,9% b(t,xu_(t,x)

lim u(t,x) u(t,x) = f(x)

ttt

Remark: The parabolic P.D.E. (2.11) is the Kolmogorov backward differential

equation,

Lemma: Let f G{CZ[a,b], Then

(2.2) lim T(t,t+h)£(x) - f(x)

= (alt,x)/2)£"(x) + b(t,x) £ (x).
h~>0+ o

Proof: T(t,t+h)f(x) - f(x) f(f(y) - £(x))P(t,x,t+h,dy)

= (£(y) - £(x))P(t,x,t+h,dy) + 2|f]o(h).
ly-x]<s
Because | (£y) - £))P(t,x,t+h,dy)| < 2|f] [  P(t,x,t+h,dy)
ly-x|>6 ' ly-x|>8

= Zlflo(h) by (2.10)(i).
Now expand f in a Taylor series:
£(y) - £00 = £100 (y-x) + (/€00 (r-x)° + R(x,y,8),

R(X,¥,6) = (1/2) (£7(£) - £7(x)) (y-x)°

and £ is a point between x and y. Givene > o we can find a § > o small snough

so that lf”(g) - fﬁ(x)l < 2¢ for ]y-xl < § uniformly in x.
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Now

ROy, )P, x,tvh,dy) | < e [ (y-x)%P(t,x,t+h,dy) = efha(t,x) + o(h)]
y-x|<8s | ly-x|<s |

We thus arrive at the expansion
T, t+h) £(x) - £(x) = (a(t,x)/2)f"(x) + b(t,x)f'(x)

+e0(h) + o(h)(|£'] + |£"]).

Put G(t)f(x) = (a(t,x)/2)f"(x) + b(t,x)£'(x). Then

T(t,t+h)f(k) - f(x) - GE)fX)] <e0(h) + o(h)(}f'[ + [£1]).
h h h :

Now let h +0 and the proof of the lemma is complete. The same reasoning shows

that

(2.13) lim T(t—h,t%f(x) - () _ G(t)£(x).

h—-> 0+

N

We return to the proof of Theorem 2.3. From the semi- group property we see

that

u{t-h,x) - u(t,x) T(t-h,t)T(t,t)f(x) - T(t,t)f(x)

T(t-h,t)u(t,x) - u(t,x).

Apply (2.13) to u(t,x) (as a function of x) and get

lim u(t-h,x) ; u(t,x) - lim
hs0+ ' h> 0+

T(t_h’E)U(t’X) - u(t,x) _ G(t)u(t,x),

or
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- ut(t,x) = G(t)u(t,x).

Finally
u(t-h,x) - f(x) = / (£(y)-£(x))P(t-h,x,1,dy) + o(h).
| ly-x|<s o

But f € C[a,b] implies [f(y) - f(x)| <& for |y-x|<§. Thus |u(t-h,x) -f(x)]|<e + o(h).

Clearly this implies  lim wu(t-h,x) = lim u(t,x) = f(x). This completes the
h -0 ‘ tir

proof of Theorem 2, 3.

Definition: The Markov process is said to be homogeneous in time if its transition

function satisfies the condition
(2.14) P(0,x;t-t,A) = P(t,x;T,A).

In particular this'implies P(t,x;t+h,A) = P(O,x;h,A). Put P(t,x,A) = P(0,x;t,A)
In this case the conditions (2.10) (i) -(iii) become

‘@) [ P(hux,dy) = o(h)
ly-x|>6

(2.15) §(ii) [ (¥x)P(h,x,dy) = b(x)h + o(h)
ly-x|<s

(iii) [ '(y-x)zpch,x,dy) = a(x)h + o(h)
|y-x]|<é
as h> 0+.

In the time homogeneous case the Kolmogorovbackward differential equation reduces
to
u (t,x) = (a(X)/Z)uxx(t,X) *+ b(xju, (t,x)

(2.16) lim u(t,x) = u(@,x) = f(x) where
t¥

u(t,x) = TO,0E(x) = [E()P(t,x,dy)
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Notation: We write T(t) instead of T(O0,t) and put Gf(x) = (a(x)/2)f'"(x) +
b(x)f'(x). T(0 =1, the identity operatgr.

The operators T(t) form a semi-group acting on the Banach space

Bla,b]; more precisely we have:
. T(t): B[a,b] ~ B[a,b]
(2.17) Tty < |£]
If £ >0 then T(t)f > 0
T(t)T(s) = T(t+s), t >0, s >0

Let us look at the Kolmogorov differential equation (2.16) from the point of view of
semi-group theory, which we shall study in detail in Chapter 3. In this
approach a crucial role is played by the operator G and its domain Z(G)

defined by

T(hf - f

(2.18) 2(G) = {f: 1lim h

h-0+

- Gf| = 0}; G is

called the infinitesimal generator of the semi-group T(t). Suppose now u(t,x) =

T(t)f(x) and f €EY(G): Then

lim u(t+h,x) - u(t,x) _ lim T(t+h)f(x) - T(t)f(x)
h>0 h h0 h
= 1lim T(t)(T(h)f(xa - f(x)) = T(t)GF(x)
h~0
- 1im M) - I%T(t)f(x), = GT(t)£(x).
h-0

Formally then u(t) = T(t)F satisfices the differential cquation
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u'(t) = Gu(t)
(2.19)
u(0) = £

Throwing caution to the winds we can "solve" (2.19) via the formula
(2.20) u(t) = exp(tG)f = T(t)f.

Under suitable hypotheses we've shown that Markov processes, homogeneous
in time, give rise to positivity-preserving contraction semi-groups T(t) whose
infinitesimal generators G are second order linear differential operators of

the form
(2.21) GE(x) = (a(x)/2)£"(x) + bO)E'(x), a(x) > 0.

In real life, one is usually given only the diffusion and drift terms and
the question then becomes '"Does there exist .a Markovian semi_group

T(t): Cfa,b] - C[a,b], say, whose infiniteéimal generator is G?'" An
affirmative answer to this question implies, by Theorem 2.2, the existence
of a Markov process.whose Kolmogorov differential equation is (2.16). In
the next chapter Qe shall give necessary and sufficient conditions for G to

generate a Markovian semi-group T(t) = exp(tG).
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IIT. Semi-group theory

I. Let X denote a separable Banach space the elements of which are denoted

by f, g,.. and norm Ifl. Examples: B[a,b}, C[a,b] with |f]| = sup If(x)l;
a<x<b
' k
Ck[a,b] with |[f] =} ]f(g)l, here £(*) denotes the M derivative; Lp[a,b]
5.=0 .

b 1/
with |f] =(_f lf(x)lpdx> Pl 1<p <o,

a

*
We denote by X the class of continuous linear functionals f*: X - R.
This means (i) f*(af + Bg) = af*(f) + Bf*(g) for every £, g € X and
a,8 € R and (ii)

lim  f*(f ) = £*(f) if lim Ifn - f| = 0.

n-eo n--w

Sometimes it is convenient, depending on the context, tb set <f*, f> =
f*(f).

Definition 3.1.1. A family of bounded linear operators T(t): X- X is called
a semi-groupif T(t+s) = T(t)T(s), s, t> 0, T(0) = I. T(t) is calied strongly

continuous if for every f € X

(3.1.1) , lim |T(h)f - £]| = 0.
: h~>0

T(t)f will be called weakly continuous, weakly right continuous or weakly
measurable if for evéry f* & X* the corresponding real valued function

< f*, T(t)f> is continuous, right continuous or measurable in the
ordinaty sense. More generally if u(t): [a,8] - X we shall éay that u(t)

is strongly continuous. at the point t if 1lim iu(t+h) - u(t)l = 0 and we write
: h-+0 '

s - lim u(t+h) = u(t). Similarly if <f*, u(t)> is contihuous, right continuous
h->0
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or measurable all f* € X* we shall say that u(t) is weakly continuous, weakly
right continuous or weakly measurable,

From the Hahn-Banach theorem we know that

(1) <f£*,f> = <f*,g> for all f*¢& X* implies f = g;

(3.1.2)
ii) given any f € X there exists f* & X* such that <f*,f> =

[f| and <f*,g> < |g| , all g€ X.

Let J denote a closed interval [o,B8] and u(t): [a,B] = X.-

Definition 3.1.2, We say that u(t) is strongly differentiable at t if
- s-1lim  (u(t+h) - u(t)/h) exists;
h~0
the limit is then denoted by u'(t). If u'(t) exists for all t €{u,B] we say

that u(t) is strongly differentiable on [a,B].

Definition 3.1.3. We say that u(t) is strongly integrable on [a,B] if

. n .
s-1im z ult, )(t, -t ) exists where
h0 k=0 k’ 7k k-1

h = Max lt -t |,
1 <k<n k k-1 0 1

8 B8
The 1limit is then denoted by f u(t)dt. If s-lim f u(t)dt exists then we
o B+ @ '

‘write [ u(t)dt as the limit.
a

8
Properties of the integral f u(t)dt:
. o
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. 8
(1) If u(t) is strongly continuous on [a,B] then f u(t)dt exists
8 8 a
and | fu(t)dt| < fluce)ldt.
a o

(ii) Suppose A is a bounded linear mapping from X into the Banach

space X . If u(t) is strongly differentiable then so is Au(t)

and (Au(t))' = Au'(t).

‘ 8
(iii) If u(t) is strongly integrable then so is Au(t) and A( Ju(t)de) =
a
B
[au(t)de.
o

.1, . . . .
(3 3) (iv) If u(t) is strongly integrable on [a,o+h] and s-continuous

from the right at o then
a+h

s-1im % f' u(t)dt = u(o),
h=0 o

(v) If u'(t) is strongly continuous then

B
[ur(tyde = u(®) - u(e)

o
(vi) If u(t) is strongly integrable on [a,B] then u(t-h) is strongly

intégrable on [a+h,B+h] and

B+h B »
[ u(t-hdt = fu(r)de.
a+h o

The proofs are routine. Consider for example (v)
B 8

B
<f*, [u'(t)dt> = [ <f*,u'(t)> = [ <f*,u(t)>'dt
61 . a a

<f*,u(B)> - <f*,u(a)>

<f*,u(p) - u(a)>.
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An application of 3.1.2(1) completes the proof,
Set a(t) = long(t)] and observe that a(t1+t2) f_a(tl) + a(tz). Assume T(t)
is strongly continuous. for 0 < t < =, Since IT(t)fI is continuous in t it
follows that IT(t)I = ;up IT(t)f] is lower semicontinuous and hence

<1

measurable. So a(t) is a measurable subadditive function, (cf Hille-Phillips

[ 15]). Hence

log|T(t)|= T exists, - <T <o

lim t
toe

(3.1.4)

where I' = inf t—llong(t)
o t>0

Suppose IF! < ®,
We have then 1lim supjtfllog ]T(t)f] < T'. Hence for all t > 1, say, we can find
a constant M(f,Z;WSUCh that 1og|T(t)fl-(F+e)t < M(f,¢). Thus

eXP(-t(I‘+e))'_lT'(t)f| < expM(f,e)).. |
By the uniform boundedness principle there exists a constant M(g), independent of f,
such that |

exp(-t (T+)) (T()E < M(e) o

IT()f] < M(e)exp(t(T+e), t > 1.
On the other hand'if'T(f) is strongly continuous on 0 < t < 1 we must have IT(t)l<i
M, say. It suffiées to show that |T(t)f| is bounded on [0,1] for all f€X. But
IT(t)f] is continuous in t, so it is obviously bounded. A similar argument works if
' = -=. Summing up then we have
Theorem 3.1.1. If T(t) : X > X is a strongly continuous semigroup then- there exist
constants M and vy such-that

exp(—ty)IT(£j| <M, 0<t <o,
Remark: By considering the semi-group S(t) = exp(-ty)T(t) we can therefore assume

the semi group is bounded i.e. |S(t)] < M.
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Definition 3.1.4: Xo = {f: T(t)f is strongly continuous}.

It follows at once from the semi-group property that T(t)XO CX0 and moreover XO
is a closed linear subspace of X. In general it is not an easy matter to find a
nice subspace X0 on_which T(t) is strongly continuous. The. following theorem is
useful in questions'of this sort (c¢f. Dynkin [11]).

Theorem 3.1.2: Supﬁoée T(t): X » X is weakly right continuous. Then T(t) is
strongly continuous.

As an application consiaer the case where X = C [a,b] and T(t) is a Markovian
semi-group with transition function P(t,X,A). Let P(O,X,A)'Q.G(X,A) = unit mass
concentrated at X, Aséume

(i) lim P(t,x,A) = P(t,XO,A) in the sense of weak convergence of

XX -
0

(3.1.5) measures and

[ (i1) 1lim P(t,x,U) = 1 for every neighborhood U of X.-
t+0 :

Lemma 3.1.1. If the_tfansition function of a Markov process-satisfies (3.1.5)
(i) and (ii) then T(t): Cla,b] -=C[a,b] and T(t) is weakly righf continuous and
therefore T(t) is strongly continuous. (If [a,b] is noncompact then T(t) is
strongly continuous 6n'C0[a;b])

Proof: 1If f e C[a,b] and w-1lim P(t,x,*) = P(t,xO,-) then limr'T(t)f(x) =

XX XX
0 0

T(t)f(xo) i.e. T(t)fvé Cl[a,b]. Pick f* € X* which means f* is a signed measure.
Now Lim <f%,T(t)f> = <€%,£> because (3.1.5) (ii) implies lim T(£)£(x) = £(x)
poinE;gse and boundedly, since IT(t)fl j_lfl. The proof E:Onow completed by
applying the Lebesgue Dominated Convergence Theorem. Actually we've only shown

that T(t) is weakly right continuous at the origin, but the semi;group property

immediately implies that T(t)f is weakly right continuous for all t.
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Definition 3.1.5. The infinitesimal generator G of the semi-group T(t) is defined

by the formula

6f = s-1im TREE - oroyided the Timit exists
h»0
Z(6) = {f: Gf = s-1lim I—g—}l})-;—f—‘:-:f--exists}. 9(G) is called the domain of G.
h~0 - '

Remarks: C1ear1y£2(G)(; XO and T(t)YAGIC 2XG). 1In general G is an unbounded
linear operator and-férmally at least we can recover the semi-group from its
infinitesimal generatof G via the formula
(3.1.6) T(t) = exﬁ(tG).

Since, as we'vé already remarked, G is an unbounded linear operator we cannot
just put exp(tG) = X t"G"/n!l. What is true however is Hille's beautiful
exponential formulan=0

tG -1
)

(3.1.7) T(t) = exp(tG) = s-1im (I - Eg_)—n where (I - — denotes the
P n n

n>eo
inverse operator.
The standard method of recovering T(t) from its infinitesimal generator G is via

the '"Yosida approximation" which we present in II1.2 . The representation (3.1.7)

will be derived in III.4.

2. The Hille-Yosida Theorem

From now on we assume T(t) is a strongly continuous contraction semi-group on
the Banach space X witH infinitesimal generator G and domain Z(G). Our plan is to
characterize those linear operators G which generate contraéfion semi-groups. As a
first step we derive hecessary conditions that must be satisfied by G and Z(G). We
then show that these conditions are in fact sufficient - this i; the Hille-Yosida
theorem which, together with the Trotter-Kato Theorem, will play an important role
in the existence theorems and limit theorems for Markov proceSses of Chapters IV and

VI.
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Lemma 3.2.1. 9XG) is a dense subspace of X, i.e. the strong closure of 2(G) is X.
Proof: By hypothesis T(t)f is strongly continuous in t for each f € X. Thus g(t) =
ft T(s)f ds is well defined. We claim for each t > 0, g(t)e 2(G). Setting aside

0
for a moment the proof of this fact we note that according to

(3.1.3) (iv) s-1lim &(_}1}9_ = f. But -&(—:-—69(@ and since f was an arbitrary element
h=0

of X this shows QP(G) = X. Let us show that g(t)e D(G).

t t+h
T(h)g(t) = [ T(s + h)fds = [  T(s)fds. Hence
0 _ h
t+h h t+h h
T(h)g(t)-g(t) = [  T(s)fds - [ T(s)fds = [  T(s)fds - [ -T(s) fds
h 0 0 0
t
- f T(s)fds =
0
t+h h
T(hg(t)-g(t) = [ T(s)fds - [ T(s)fds. Thus
t ‘ 0 .
T(h 1 t+ﬁ | 1 h _
( )g(ﬁ)—g(t) = i—f T(s)fds - Hf T(s)fds. Let h>0 and involving (3.1.3)(iv)
t- 0

once again we deduce s-lim T(h)g(}t})—g(t) = T(t)f-f. Hence g(t)eZ(G).
h~>0

Lemma 3.2.2. If fé"f’Z‘(G) then

t t
(3.2.1) T(t)f = f + f T(s)Gf ds. Conversely if T(t)f = f+ f T(s)g ds then
o 0

0 ,

fe P(G) and Gf = g.

T(t)f, £ € Q(G) then U(t) is obviously s-differentiable with
t

Proof: If U(t)

U'(t) = T(t)Gf. From 3.1.3(v) we obtain U(t)-U(0) = f U'(s)ds or equivalently
t g Q ’
T(t)f-f = [ T(s)Gfds.
0
t .
Conversely, suppose there exists g€ X such that T(t)f = f+ f T(s)g ds. Applying
' 0

3.1.3(iv) yields s-1im(T(t)f-f]/t = g so f € 9G) and Gf=g.
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Corollary: G is a closed linear operator.
t
Proof: Assume s-lim f =f, s-1im G f = g. Then s-1im T(t)f -f. = s-1lim f T(s)Gf ds
neo N n>o n N> non n>e 0 n
‘ t
As n>« the left hand side tends to T(t)t-f and the right hand side tends to f T(s)gds.

t
Thus T(t)f-f = f T(s)gds. Thus f € Z(G) and Gf=g. For each A > O,Iexp (-At)T(t)fl <
0 v -
8 w :
exp(-At) and hence s-1lim f exp (-At)T(t)f dt = f exp(-At)T(t)fdt exists.
o 0
Definition 3.2.1. The resolvent operator R(A) is defined via the formula R(A)f =

f exp(-At)T(t)fdt, A > 0. The one parameter family of operators R(A), A > 0 satisfy
0

the following conditions:

(i) ’ ]AR(A)f] i'lfl i.e. AR(X) is a contraction

(ii) g = ROA)f is the unique solution to (AI-G)g=f satisfying the condition
ge D(G); we write

g = ROE = (AI-6)7'f = (r-6) ¢,

(iii) s-lim IAR(Ajf—fl = 0
Ao
(iv) _(A-u)R(A)R(p) = R(u)-R(1), the resolvent equation.

Remark: In the literature the equation Ag-Gg = f is sometimes referred to as the
"stationary equation'.

Proof: (i) [ROUE] < [ e ™*|rc)elde < [£] [ e = a7V e[ Thus [aR(Y] < 1.
0 0

(ii) TMRME = | e M T(esh) £dt = / efx(t’h)T(t)fdt

1l

0 _ h

= M e r(eyfat
h

Ah bt

= e [ROEF- [ e ""T(t)fdt]
0
) Ah
We note in passing that T(h)R(A) = R(A)T(h). Now TR E-RIE = (e h_l)

h B

\h  h

ROVE - S— [ &7 T(e)fat.
0 :
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Letting h»0 we get

GROF = s-lim h™ L (T(R(A)E-R(A) £) = AR(A) £-£
h0

where we've used (3.1.3)(iv). Thus (A-G)R(A)f=f as claimed. The same argument
shows that if f€ Z(G) then
GR(A)f = R(A)GE.

(iii) Suppose £f€ 2(G). Then AR(A)f-f = GR(A)f = R(A)GE. Hence

[AR(A) £-£| = {R(A)Gf1'<'1'1lcf]. Thus 1im [AR(A)£-f] < lim A"1|G£|=0. Since
- A T ,

IAR(A)I < 1 and 2(G) is dense in X we conclude lim IAR(A)f—f]=O all £ € X.
o Ao

(iv)  Set F, = R(A)f and F, = RO)E.

Then A(F, - F )-G(F, - F) (AFA-GFA)—AFU + GF

£-AF + uf -f
H uu

| (u—)\)Fu.
But F}\-Fue Z(G) and so FA-F‘u is the unique solution to Ag-Gg = (u-A)F .i.e.
F\-F, = (A—G)—l(u—X)Fu = (-DROVF

© = (-DROIR(WE.
But FA_Fp = RM)£-R(Wf = (u-A)R(A)R(u)f. This completes the proof of. (iv).
Remarks: (i) It follows from the estimate [ROVt] < A-llfl that |(A-G)g| >
AI(A—G)—I(A—G)g| > Algl if ge D(G). Hence ]gl # 0 and g €e D(G) implies
](A—G)gl # 0. So (A-G) maps Z(G) in a one-one fashion into X. In fact the
map is onto because f = .()\—G)R()\)f. Similarly R(A) is a one—-one map of X onto
ZXG). Hence the rangé of R(A) is independent of X and equals 2(G).
(ii) It follows from (iv) that R(A)R(u) = R(u)R(N).
We are now ready to state and prove the basic,
Theorem 3.2.1 (Hille-Yosida): The necessary and sufficient conditions faor the
linear operator G with d&main 9(G) to be the infinitesimal generator of a

strongly continuous contraction semi-group T(t) are:
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(1) 2(G) is dense in X
(ii) G is a closed operator
(1ii) For every f € X there exists a unique solution FAEEQKG)Fof the equation
(A—G)Fk=f such that
(iv) AIFAI < |f], i.e. (>\—G)-1 is a bounded linear operater of norm i_l_l and
range Z(G).
Remarks: (i) The necéssity of conditions (iii) and (iv) has already been
established when we'derived the various properties of the resolvent family R(X)
-see the discussion following Definition 3.2.1. The necessity of conditions (i)
and (ii) follow from lemmas 32.1, 3.2.2.
(ii) The hypotheses of the theorem are not logically independént of one another.
That G is a closed opéfafor follows from (i), (iii) and (iv). To see this, let

F € 2(G) denote a sequehce such that s-lim F_=F and s-1im GF_=g. Then, as we now
n foeo D o D

show FE 2(G) and GF=g. Set fn = (A—G)Fn, then s-1im fn = AF-g implies s-1lim (J\—G)_'1
i . n->o nr«
fn = (A—G)—I(AF—g) = s-1im Fn. Thus Fe 9XG) and F = (A—G)—I(AFg) or (A-G)F = AF-g

n>e

which implies GF=g,q.e.d.

(iii) 1If we denote (A—G)_l by R(2) then hypotheses (i)-(iv) of our theorem clearly
imply that the family of operators R(A) satisfy (3.2.2) (i)-(iv)- the reader should
check this assertion for himself. 1In the course of our proof use is made of

Lemma 3.2.3. Let A and B denote bounded linear operators with domain X and suppose

that AB=BA. Then exp(A]'= Z An/n! is also a bounded linear operator and moreover
: n=0 '

(1) lexpA)| < exp(]a])
(ii)_ exp(cI) = exp(c)I, c a constant
(iii) exp(A) exp(B) - exp(A+B)

(iv)  lim|t l(exp(tA)-1)-A] = 0
£+0

{v) If [exp(tA)]

I A

1, ]exp(tB)I_i 1 then lexp(tA)f-exp(tB)fI < tlAf—Bf[,

all £ € X and all t

| v

0.
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Proof: The proofs of (i), (ii) and (iii) are obvious. Now Iexp(tA)—I—tAI_i

(e 0]

2 tn]Aln/n! = O(tz), and this suffices to establish (iv). This proves that
n=2
every bounded linear operator A generates a strongly continuous semi-group exp(tA).

To prove (v) we write exp(tA)f-exp(tB)f as a "telescoping sum'"

(n-k)t
C— n

B) (ex p(—-)f eXP(—) f)

n
E exp(ik:%lE-A) exp
k=1

and therefore
|exp (tA) £- exp(ts)fl < nlexp(—-)f exp (&2 )fl
But exp(—;ﬂf—exp(—;ﬂf“ (exp(——)f f- (exp(——Jf ))

and so
exp (Eﬁ-) £-f  exp (Eﬁl) £of

t/n /n

n]exp(——af exp( )fl tl s

Let n== and use (iv) to .deduce
lexp(tA) f-exp(tB) £] < t|Af-Bf].
We turn now to the proof of the Hille-Yosida theorem. Our first step is to show
that even though G is ‘in general an unbounded.linear operatOr it can be
approximated by a fémiiy of bounded linear operators GA' Moré'precisely we
have the '"Yosida approximation'
(3.2.3) fo = AGR(M) £ = A(AR(A) f-£).
Clearly IGAfI < 2A[f[, since [AR(N)| <1, and G\G, = GG, because
R(AJR(u) = R(WIR(A). Thus the operators G satisfy the hypotheses of lemma 3.2.3.

In addition if f€ _@(G) then lim |G £f-Gf| = lim |\R(A)GE-Gf| =

Koo Ao

This suggests that we define T(t) = exp(tG) via the limit: lim exp(tG ) =
Koo

lim T (t). According to lemma 3.2.3

Ao

Iexp(tGA)] -{exp(—tA)exp(tsz(x))I

exp(-tA)exp(tA]AR(A)I) = 1. Therefore

| A

IT}\(t)f—Tu(t)fl < tIG)\f-Gufl and f€ 9)(G)
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imply that s-1im Tk(t)f = T(t)f exists, and the convergence is uniform for t €
>0

compact subsets qf R+. Since ITA(t)l <1 and2(G) is dense in X it follows

that lT(t)l < 1 and T(t) can be extended uniquely to all of X. All that

remains to be done is (i) to establish the semi-group property T(t+s) = T(t)T(s)

(ii) the strong continuity of the semi-group and (iii) that G is the infinitesimal

generator of T(t).

But Tx(t)TA(s)f =_TA(t+s)f imply that as A= the semi—groﬁp property is'preserved

in the limit. To prove strong continuity we begin with the inequality
IT(t)f—f].:_IT(t)f-TA(t)f|+|TA(t)f—fl.

Given € > 0 there exists AO such t:at A i-XO implies lT(tjf—TA(f)f] < £/2 all

0 <t<1. Moreover T, (t)f-£] f_flTA(t)GAflds < tle,f| < 2xt|£]l. By choosing

2xt|f] < %—or equivalently t < €(42]f])_1 = & we have ITA(t)f—fl < €/2. Thus

for t < § we have lT(t)f—fl < E. )

Let G denote the infinitesimal generator of T(t); we want to prove that G = G.

Now Gx is certainly the infinitesimal generatgr of exp(tGA) so

t
T, (t)f-£ = f T,(s)G,f ds. If £€ Q(G) then
0 .

[T(s)Gf—TA(s)GAfI

| A

lT(s)Gf—TA(s)Gfl + ]Tx(s)Gf—TA(s)Glfl

IT(s)Gf—Tx(s)GfI + ]Gf—GAf'

| A

since ITA(S)I < 1. From this it follows at once that

lim lT(s)Gf—TA(s)GAfI = 0 uniformly for s€ compact subintervals of R+. Therefore

A->c0
t t t
lim [ T (s)Gfds = [ T(s)Gfds lim T, (€)f-f = T(t)f-f = [ T(s)Gfds. Thus if £€ P(G)
0 o

A+ Ao
then f€ Q(G) and G f = G f.

Finally we showf@(é)czﬁg(G).
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Suppose A F,-G FA = f and

A FA—G FA = f. Since F>\€ Q(G)CQ(ES)

we have G FA = G FA and therefore FAis also a solution to the equation X FA_G FA = f.
But the solution to such an equation is unique, hence

F, = F, and this implies Q(é)C@(G).

A refinement: For the applications to probability theory we need to know whether

or not T(t) is positivity-preserving. More precisely, if X is a function space,

say C[a,b], and x* = {£(x):f(x) > 0} is it true that T(t)x Cx'?

Corollary: Suppose in addition to the hypotheses of the Hille-Yosida theorem we

have a closed cone X C X (i.e. f,g e X+, C1’C2 > 0 then le + C2g€5X+) such that
+ . ) Lo + +

f€ X implies R(A)f€ X'. Then T(t) X C X".

Proof: Since TA(tjf = exp(-tA)exp(tA2R(A))f, it follows that R(A)f € x* implies

T, (t)f € X" and hence.s-1im T,()f = T(t)f € X",

Ao

Remarks: (i) The'hypéthesis IT(t)I_i 1 is-merely a convenience. We could just as
well have assumed.

IT(0)] <M and |(-6)7%] < m7K,

(ii) Suppose only that there exists a XO > 0 and a constant M such that A > XO

implies ()\—G)—k iM(A—AO)_gNow consider the operator G = G-A, I. For every i > Aq

l(x-6) 7 |>=" [ (+r)-6)7K] < mk,

~

hence G generates a strongly continuous semi-group T(t)

of norm < M, Finailvae observe that the existence of a strongly continuous
semi-group T(t) with infinitesimal generator G implies the existence and
uniqueness of solutions to an abstract Cauchy Problem (ACP).

Theorem 3.2.2. Supper T(t): X»X is a strongly continuous contraction semi-group

with infinitesimal generator G. .



27
If £ €ED(G) then U(t) = T(t)f is the unique solution of the equation of evolution
ut(t) = GU(t); U(0)=f which satisfies the conditions
(i) U(t) is strongly differentiable and
U'(t) is strongly continuous
(ii) lU(t)l < C exp(kt), C and k constants

(iii) s-1im U(t) = U(0) = f.
t->0 :

Proof: Cf Dynkin.[il_] p-28, Theorem 1.3.
Examples: Brownian motion

An illuminating example of the general theory is provided by the standard
Brownian motion process (also called the Wiener process) subjected to various
boundary conditions é.g. reflection, absorption or adhesion, etc. Set p(t,x,y) =

ES .
(2nt) 2 exp(—(y—x)2/2t) and P(t,x,A) = [ p(t,x,y)dy. Then P(t,x,A) is the transition
A

function of the Bréwnién motion process x(t). It is easily checked that p(t,x,y)
satisfies the heaf}equation

P (t,x,) = (B)p,, (t,x,¥)
(3.2.4)

lim p(t,x,y} = §(x-y)

t+0

Proceeding in a purely formal manner we see at once that the infinitesimal

generator of the cor;ésponding semi-group T(t) is Gf(x) = (2)f'(x). More
precisely we have éhé following result:
Theorem 3.2.3. Let UC(—w,w) denote the set of bounded uniformly continuous
functions. Then the Brownian motion semi-group T(t): UC(-,®)>UC(-»,») is

strongly continuous with Q(G) = {f: f,f" € UC(-»,=)}. It is easy to prove this

directly using the explicit form of the p(t,x,y) see Dynkin [11], v. 1, pp. 65-66.



28

' . L, d? .
Let us pretend, however, we are only given the operater (%) ;;E-and our task is to
construct the semi-gfoUp T(t) via the Hille-Yosida theorem. In particular this
means we must study the "stationary equation" |
(3.2.5) Ag(x)- (2)g"(x)=£(x), f(x) € C(-=,»)
Lemma 3.2.4. Suppose g € C(-~,») is a solution to the equation (3.2.5). Then
Algl ]fl and hence g is the unique bounded solution to (3.2.5).
Proof: Set ge(x).= g(x)/(1+ex ),e > O;

Then an easy calculation which we omit shows that 8, satisfies the equation

(3.2.6) (- —)g (0- (ZEg ' (x)-3 g (0 = L&
1+€x 1+ex E l+ex

Choose 0 < .€ < ) spo 0 < €/(1+€x2) < A too. By hypothesis gtx) is bounded, thus

lim g (x) = 0. Let'x0 denote a point at which sup g (x). is attained.
lx 300 € . —0<x <00 € .

Case 1: x0=iw, then ge(x)_: sup ge(x) < 0 since gE vanishes at *». In particular

-1, X

then g_(x) < A" |f].
Case 2: IXO' < =, then ge'(x0)=0, ge"(xo)_f_O imply (A- 1+ax 2)g (x ) <

£(x,)

< | L8 < el
1tex? ~ leex? T
€Xg X,
Since (A- ) > 0 we infer
1+sx0

=) el < o-e) Vsl
0

g(X)<g(X)<0\—
l+ex

Thus g(x) < (1+ex2)fx—e)—1]f|,e < A. This is true for every € < A; let e » 0

_1|f|. A similar argument with -g and -f yields the estimate

and deduce g(x) < A

| A

-g(x) < A-ll-fl A]f]: Thus |g] 5_x'1|f|. The solution g(x) is given explicitly

by the formula:
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1 X
(3.2.7) g(x) = (20) % exp(-x/2X) [ exp(y/ZN)f(y)dy +
(2A)"‘% exp (-xv2X) [ exp(-yv2X) f(y)dy.

X

We leave it to the reader to check that g is bounded whenever f is. Since g" =
2Ag(x)-2f(x) it follows that g" € C(-~,») and hence by Lahdéu!s inequality -
]g'lli 4]g||g"l - it follows that g' is bounded and therefore g is uniformly
continuous. Thus fhe closure of this class of functions is again a uniformly
continuous class of functions; to satisfy the conditions of the Hille-Yosida
theorem we must choose X = UC(-»,») and then check separately that Z(G) =
{f: f,f" € UC(-~,»)} is dense in X. We leave this task>to the reader. Noté
that (3.2.7) implieé g.i_O if £ > 0 and hence T(t) = exp(tG) is positivity-
preserving. |

Let us now conéider reflecting Brownian motion. Analytically this
corresponds to the eqﬁétion

(\Ag(X)—(%)g"(XJ = f(x), 0 <x<e

(3.2.8)
g'(0) =0

Theorem 3.2.4. To every f € C[0,») there exists a unique g € C[0,») satisfying
the equation (3.2.8) and the boundary condition g'(0) = 0; moreover Al gl §_|f| holds.
Proof: Let £(x) = £(x) if x > 0 and set £(x) = £(-x) if x < 0. Then £€ C(-w,x)
and if é is the sélution to (3.2.5) then gl(x) = é(x), X > 0 is a particular
integral of (3.2.8). To satisfy the boundary condition bring in exp(—x#ﬁi} vhich
is a bounded solutipn to (3.2.8) on R+. All we have to do is choose the constant
C so that g'(0) = 0 where g(x) = gl(x) + C exp(—x/EX); the choice C = (2A)-%gi(0+)
serves. We're still not done because we have yet to establish the estimate

x| gl f_'fl- Familiar reasoning as in lemma 3.2.4 with the maximum principle
yields the estimate g(x) < (1 + exz)(x—e)—llf]. The only tricky point is what
happens if ge(x) has a maximum at x, = 0. Clearly in this case gé(O) = 0 and

0

gg(O) < 0, for otherwise ge(x) would be increasing in a neighborhood of 0,
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contrary to the hypotheses that 0 is a point at which sup gs(x) = g€[0) is attained.
x>0

Thus Z(G) = {f: f,f" € UC[0,»), £'(0) = 0} and it is easy to check that Q(G) = UC
[0,=). The Markov»prqéess corresponding to this semi-group is called the reflecting
Brownian motion and is equivalent in law to Ix(t)l. In Chapter IV we shall pursue
this topic in a mofé systemati; manner for operators of the form

Gf(x) = (a(x)/2)£"(x)+b(x)f' (x).

3. The Trotter-Kato Theorem

In our proof of the Hille-Yosida theorem in III.2 we derived, interalia,
the following proposition: |

Let T(t): X+X be a strongly continuous contraction semi-group with
infinitesimal generator G. Put GA = A(AR(X)-1). Then for every f € 9G)

s-1im GAf = Gf and s-1im Tx(t)f = T(t)f i.e. s-1im exp(tGA)f‘= exp(tG) f.

Ao Ao A
This suggests the. following problem of independent interest.
Problem: Given a sequence of strongly continuous contraction semi-groups

Tn(t): X=X, under what conditions is it true that s-1lim Tn(t)f = T(t)f where
n-ro

T(t) is also a strongly continuous contraction semi—group?' Let us proceed to
derive a necessary condition. Clearly, if

(3.3.1) s-1im TnCt)f = T(t)f all f € X,

N>

uniformly for t € comﬁact subsets of R+, then

(3.3.2) s-lim [ e M p (t)f dt = | e Mt T(t)f dt, A > 0. -
nre n 0 '

To avoid confusion with the Yosida approximation GA we denote the infinitesimal
generators of Tn(t) and T(t) by An and A respectively. Thus a necessary
condition for (3.3.1) to hold is that the resolvents converge strongly i.e.

(3.3.3) s-1im (A-A )_1 f = (A-A)_1 f, every A > 0.
o "

1
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Theorem 3.3.1. (Trotter-Kato): A necessary and sufficient condition for

s-1im T_(t)f = T(t)f all f € X is s-lim (x-An)‘1 £f=0-A"1F for all £

n2w n->eo
in a dense subset of X and some A > 0.
Proof: The necessity has already been established. We first show that if

f = (A—A)-lg and s-lim (A—An)_lf = (A-A)f then s-1lim Tn(t)f = T(t)f uniformly

ne . e

for t€ compact subsets of R . This is enough because such f are dense in X.

Now T ()£-T()f = T_(£) (A-A) g - T(t) (A-a)Lg

=I + II + III where
n n n
-1 -1

L = T, 0-07"g - (-A)7'T_(t)g
I = O-A) T (g - (-A) " IT(t)g

n “"n n'E€ - n g

' -1 . -1
IIIn = (A—An) T(t)g - T(t)(X-A) g
We show that In+0, IIIn+O and IIn+0 in the indicated order. In = Tn(t)
{(A—A)—lg - (A—An)—lg} where we've used the fact that T (t) commutes
with (-A )", Thus 1| <lo-ahyg - (A ) 'g| > 0 as n > = by hypothesis.
Now the resolvents are uniformly bounded by A—l, so if we have strong
convergence to 0 on_é.dense subset of X we have strong conVergence to 0 on all
of X.
: -1 -1
1L | = [(-A)7" T(0)g - (-A) 7 T(t)g]

where we've used the fact that T(t)()‘—A)“1 = ()\—A)-1 T(t). Clearly 1im

N
I()\—An)-1 T(t)g - (A—A)‘l T(t)g| = 0 for each t. Actually we have uniform
convergence for t € compact subintervals of R+ because T(t)g is strongly
continuous. .

Finally we come to the term IIn:

-1 -1
IIn = (A-An) Tn(t)g - (A-An) T(t)g.
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We may as well assume that g 1is of the form (A-A)—lé since such g are dense in X.
Lemma 3.3.1.

(3.3.4) (A—An)-l(T(t)-Tn(t))(A—A)_lé - 1

T (=) {0-A )" 0= iT(s) 7 ds.

Ot

t .
1l < [ 10-A) 7107 - -0 Ts)glds, and 1in [0-a ) )7 - 0oa) (e
0 o

N>
= 0 in the sense of bounded pointwise convergence. So by fhe Lebesgue dominated

convergence theorem 1im lIInl = 0. We turn now to the proof of the lemma. Set
N>

u(s) = Tn(t—s)(A-An)il, v(s) = T(s)(A—A)_l. Strictly speaking we should write

1 f1 and v(s) = T(s)(A—A)_lf2 where f. € X. Clearly u and v are

u(s):Tn(t—S)(A—An)
strongly differentiable and so is their product with derivative computed in the

standard fashion:

(u(s)v(s))' = u'(s)v(s) + u(s)v'(s).

Now
W) = DT 0-AD™H (T (e-5)A_(r-n )] )
=(-DT, (t-5) [A(A-A )7 '-1], and
Similarly
v'(s) = T(s)[A(A-A)"1-T].

So u'(s)v(s) = (—l)Tn(t—s)[A(A-An)'l_I]T(S)(A_A)—l
u(s)v'(s) = Tn(t—g)(A-An)"lT(s)[A(A_A)-I_I]-

Adding and making the obvious cancellation we obtain

(3.3.5)  (()v())' = T_(£-5)T(s) (h-A) "L - T, (t-5) -A ) 71T(s)

T (t-s)[(-m)7 - (A-A ) 7MIT(s) where

1

we've used the fact that T(s)(A—A)—1 = (A-A) "T(s).
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Integrating both sides of (3.3.5) from 0 to t yields

. t
u(t)v(t)-u(0)v(0) = | Tn(t—s)[(A—A)_l-(A—An)_l]T(s)ds.
0

But u(t)v(t)

(A;An)‘l T(t) (A-A)"L and

u(0)v (0) Tn(t)(A-An)“lcx-A)'l s0

u(t)v(6)-u(0v(0) = (-A )TN (T(£)-T_(£)) (A-A)"}
where we've used again the fact that a semi-group commutes with its resolvent.
This completes the proof of the lemma and hence the Trotter-Kato Theorem.
Definition 3.3.1. Letif be a dense subset of XA). We shall say that & is a
core if for every f€ SHA) there exists a sequence fnes Zfsuch that

s-1im f =f and s-1im Af =Af.
poeo D w1

Although the necessary and sufficient condition of the Trotter-Kato theorem is in
general indispensable the condition itself is not always easy to check in practice.
For some purposes the following condition suffices:

Lemma 3.3.1. Let % denote a core for the operater A and suppose A’Al’AZ"'An

are generators of strongly continuous contraction semi-groups T(t),Tl(t),...

Tn(t), respectively.  Suppose for all fe€ ¥, An f is defined and s-lim An f = Af,
o n->ow

’

Then for every X > 0 we have

1 !

s-1lim (A-An)"-1 £=(A-A)7" £, all £€ X.

T
Proof: First we show that (A-A)¥ is a dense subset of X. Clearly (A-A)XA) = X.

Now pick fnfE.ifwith_the property s-lim fn=f, s-1lim Afn=Af, which exists for every
' nre ne

f € ), to deduce that s-1im (A-A)fn = (A-A)f. Put g = (A-A)f where f € % such
n->ro
. - -1
g are dense in X and for g of this form we shall prove s-lim (A—An) 1g=()\-A) g.

n>row

Observe that (A -A)f ='[(A-A)-(A-An)]f = g-(-A ) (-A) g, So (-a )M -A)E -

(A—An)ﬁlg—(A-A)_lg.. Thus I(A-An)—lg—(A-A)—lgl :_A_II(A"—A)f]. By hypothesis

lim I(An—A)fl = 0 for f€ ¥ and hence lim !(A-An)'lg-(A-A)‘lgI = 0 for all g in a dense
N ' nre

subset of X and therefore for all g € X.
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Extensions: typical applications of the Trotter-Kato theorem include
(i) numerical solutions of partial differential equations and (ii) the
so-called ”diffusion_approximation in genetics. The preceeding theory
is not, however, directly applicable here, since the semi-groups Tn(t)
act on Banach spaées Xn which differ from X. This leads quite naturally
to the notion of an "Approximating sequence of Banach spaces“. Suppose
we are given a sequeﬁce of Banach spaces Xn and a sequence of bounded

linear operators nﬁ:' X+Xn with the property lim Iwnfl = Ifl all f € X,
: N>

The uniform boundedness principle then implies Innl <M, n=1,2,...
Definition 3.3.2. (i) A sequence of Banach spaces Xn together with a

sequence of bounded linear maps ﬂn2X+Xn is said to approximate the Banach

space X if lim lnnfl = |f] all f€ X. (ii) We say that lim fn=f, fnE Xn

noro n-o-o

if lim |7 _£-f | = o.
n n

o
Theorem 3.3.2. Suppose {Xn,nn} approximates the Banach spaée X and Tn(t):
Xn+Xn, T(t): X->X are strongly continuous contraction semi-groups with
infinitesimal generaters An and A respectively. If for some A > 0

. -1 -1
T - - - =
(3.3.5) lim | -8 g - (A-A) 'ﬂngl 0 all g € X,

n—>o

or a dense subset of X, then lim |Tn(t)ﬂnf - ﬂnT(t)f| = 0 uniformly for
N>

t € compact subsets of R |
S

We omit the proof because it is similar to the proof of the original Trotter-Kato
theorem, a careful discussion of which we've already given. For additional variants

the reader is advised to consult the treatise of Kato [17 ] or the papers of

Kurtz [ 18], [19]1-_



4. Perturbation theory - an introduction

Suppose it is known that B and C generate stroﬁgly continuous
semigroups exp(tB), exp(t () respectively: under what conditions
can it be inferred that B + C generates a strongly continuous semi-
groups exp(t(B+C))? Since many of the operators that occur in
mathematicai physics, e.g., transport theory see, and analysis
are of the form A= B + C , the results on this problem to be
presented below will turn out to have immediate and interesting
applications - sée [ 1], [16 1. But, first, we need a modest

amount of new términology.

Definition 3.4.1. The graph of a linear operator A with domain
D(A) is the set G(A) = {(f,Af): f €ZXAY}; G(A) is a linear
subspace of X x-X. We endow X x X witﬁ the product topology derived
from the norm |(f,g)]| = (lfl2 + lglz)l/z. With this;horm, as is

easily checked, X x X is again a Banach Space.

Remark: The closure G(A) of the graph of an operator A is not in

general the graph of an operator. If, however s-lim fn = 0 and
N>

s-1im Afn = g together imply g = 0, then it is clear that G(A)

n -+

~

is the graph of an operator A, which is closed. A is sometimes
denoted by A.QXAJ. We shall say that a linear subspace D is a

core of A (A is assumed to be a closed operator) if A = A|D.

Notation: B(X,X) = set of all bounded linear operators from X to
X. We begin our introduction to perturbation theory with a result

of independent interest due to P. Chernofft [ 7 ].
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Theorem 3.4.1: Let F(t): [0,») > B(X,X) be strongly continuous, i.e.
F(t)f: [O,wj'%-x is for each f € X strongly continuous, with F(0) = I,
[F(t) | < 1. Let A = F'(0) denote the s-derivative at 0 and suppose
that the closure of A generates a strongly continuous contraction
semigroup exp(tAj. Then

s-1im F(E)n = exp(tA).

N ,
Before proceeding to the proof we derive the Hille-exponential formula
as a conéequence. We assume therefore that A generates a strongly con-

Lol ]

tinuous contraction semigroup exp(tA). Set F(t) = (I-tA)-
where R(1) = (AI—A)_l. We claim that F(t) satisfies the conditions

of the Chernoff theorem. Clearly lF(t)] < 1 and is strongly continuous
for t > 0. Mofeover s-1imF(t) = s-1im -AR(}) = I, so F(t) is

£ A0

strongly continuous on [0,~). Finally, t_l(F(t) - I) = A[AR(N)-1) = Ax,
t_l = A, where AA denotes the Yosida approximation of A. Hence
s-lim ™ I(F(t)-T)t = Af for £ €Q(A), so F'(0) = A. Therefore,
t >0 '
n . -n

s-1lim F(t/n) = s-1im (I-tA/n) = exp(tA},

n+>o n-ee
and this compIétes the derivation of the Hille-exponential formula.
Another application is to the Trotter product formula:
Theorem 3.4.2: -Suppose exp(tB), exp(tC) are strongly continuous

contraction semigfoups on X. Suppose the closure of A = B + C, with

A =D(B) NG'C), generates a strongly continuous contraction
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semigroup exp(tA). Then

s-1im (exp(EgJ exp(EN)™ = exp(t(B+C)).

N0 .

Proof: Set F(t) = exp(tB)exp(tC). If f €QD(B+C) then
t'l(F(t};I) = t-l{exp(tB)(exp(tC)—I) + exp(tB)-I}
implies

s-lim t L(F(t)-t)f = C£ + Bf = Af. Thus

t>0
s~1im  F(E)n = s-1im (exp(EEJexp(EEJ)n
nve n e n n

exp(tA).

We return now to the proof of Chernoff's result.

Lemma 3.4.1. Let H denote a bounded linear operator of norm |H| < 1. Then

exp(t(H-I)) is a contraction semigroup. For all f € X we have

[(exp n(H-1) - W] < n!/?| D).

Proof: exp(t(H-I)) is a semigroup because |[H-I| < 2. 1In éddition,
we have

o

exp(-t)| ) (t H)k/kll
k=0

Iexp(t(H—I))I

| A

exp(-t)exp(t) = +1.

To complete the proof we need some elementary facts concerning the Poisson

distribution. Suppose £ is a random variable with Poisson distribution
P(e= k) = exp(—n)nk/k! for k = 0,1,2,... Then Z kP(£= k) = n and
k=0

) (k-n)zp(g; k) = n.
k=0 '



By Schwarz' inequality

E(|g-n|) f_E(IE-HIZ)l/Z = nl/2 which means

o

exp(-n) } |k-n|nk/kl f_nl/z.

Now
Ieip[n(H—ﬁ[E-an] = exp(-n)| ¥ nk(Hk-Hn)f/kﬂ
- k=0
sexp(-m)] ] (k0 [
k=0
< exp(-n)| ¥ (nk/k!)l(ulk‘“l-x)q
But lHIk"“I-Il = |Hlk'“|-1|k‘“l| < |k-nf[H-1].
Thus
exp(-n}{ } (nk/k!)I(Hlk'n,-I)fl} <
k=0

exp(-n){ ) (nk/k!)lk-nl}l(H-I)fl 5_n1/2|(H-I)f|,
k=0

This completes the proof of the lemma. -We turn now to the proof of

the theorem itself.

{f: s-lim t_l(F(t)f—f) = AF exists}

D (A) =
t>0 _
Set An = (n/t)(F(t/n) - I) for fixed t > 0 and note that exp(tAn/n) =

exp(F(t/n) - I) is a contraction by Lemma 3.4.1. Thus exp(tAn/n) is a

semigroup of contractions and therefore so is exp(tAn). In addition,
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s-1lim exp(tAn)f s-lim exp(n(F(t/n) - I))f

exp(tA)f, because

s-1im Anf = Af all f €9

A)? Now apply lemma 3.3.2. On the
e (A)

other hand

lexp(tA )£ - F(t/m)"f| =|exp n(F(t/n) - DF - F(t/n) ¢

< n1/2

[(F(t/n) - T)]f]

= tn 2 (t/m) L reem) - D

For £ €(A) then

s-1lim lexp(tAn)f - F(t/n)nfl

n->oo

0. Thus for all f €Q(A)

s-lim |F(t/n)"f - exp(tA)f|

N>

[
(=]

Since D(A) is dense in X, the result holds for all f € X. q.e.d.

We complete our brief introduction to the perturbation theory of
semigroups of operators by presenting a theorem of Hiile-Phillips

[ 15]; the proof, howéver, is due to Kato [ 17 ] pp. 495-496.

Theorem 3.4.2. Suppose B generates a strongly continuous. semigroup
U(t) = exp(tB) with |U(t)| < M exp(Bt). Let C denote a bounded
linear operator Qith norm |C|. Then V(t) = exp(t(B+C)) is a strongly
continuous semigroup such that lV(t)I <M éxp t(B+MIC|), and Z(B+C) =
9XB).

The proof relies on the following



Lemma 3.4.2. Suppose u(t) is a solution to the (inhomogeneous) equation

of evolution

{ u'(t) = Bu(t) + £(t), £(t) is s-continuous

u(0) u

0’

Then u(t)

U(t)uy + [ U(t-s)f(s)ds.
0

Proof: (U(t-s)u(s))! -U'(t-s)u(s) + U(t-s)u'(s)

U(t-s)Bu(s) + U(t-s)[Bu(s) + f(s)]

U(t-s)f(s).
Integrating both Sides from 0 to t yields
t
u(t) - U(t)u, = [ U(t-s)f(s)ds. q.e.d.
0

To motivate the proof we observe that if B + C generates a strongly
continuous semigroup V(t) = exp(t(B+C)) then the equation of

evolution

vi(t) = (B+C)v(t)

{

v(0) = v, €D(B+C) =Q(B)

has the unique solution v(t) = V(t)vO.

By the lemma just proved v(t) satisfies the integral equation

A t
(3.4.1) _v(t) = U(t)vy + [ U(t-s)Cv(s)ds.
' 0

Under our hypotheses we can actually solve the integral eqation (3.4.1)

by the method of successive approximations. To see this, set

40
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v(t) =} U (t) where Uy (1) = u(e),
n=0

ot
Un(t) = é U(t-s)cu_ ,(s)ds, n = 1,2,...

Proceeding formally we have

t o
V(t) = Uy(t) + [ U(t-s) c{ [ U (s)} ds
0 n=0 "
t
(3.4.2) v(t) = U (t) + [ u(t-s)c v(s)ds.
0

To make this rigorous all we have to do is to establish the convergence

of the infinite series J U,(£).  We claim: |U_(1)] <M Mexp(e) tVn1,
n=0

n=20,1,..

The case n = 0 is just the hypotheses qf'theorem 3.4.2. We proceed by

induction on n.

t t
| f U(t—s)CUn(s)dsl i_%| [ M exp(t(B—s))lCan+1]C]n exp(Bs)s'ds
0 : 0
n+2, .n+l t n
=M “c| exp(Bt) { (s /n1)ds
0
= M 2™ oxpgt)/(n+1)!
Therefore ) IUn(t)l is absolutely convergent and less than or equal

n=0
to M exp(8t) Z MlcH™"/nt = M exp(B+M|C|)t. The next step is to
n=0

vhow that R](X) = f exp(-2tIV(t)dt for A > Aﬂ =P + MIC] is in fact a

o resstvgint: é?nmit'{?:-kct wl shall stow thatif £ & )(,./ Al>/\Q +hn



FA = RI(K)f satisfies the €quation (A—B'C)FA = £ and the inequalities

]FA,k < M(A—AO)_k, k=1,2,... To see this multiply both sides of (3.4.2)

by exp(-it) and integrate to obtain

Y © ! t .
RI(A) = g exp(-At)U(t)dt + é exp(-at){ g U(t-s)CV(s)ds }dt
= ROV + [ exP(2t) ([ u(e-s)cv(s)dsat,
0 ' 0
=RM) + [ / exp(-At)U(t-s)CV(s)dt }ds.
0 S
But
[ f exp(-At)U(t-s)CV(s)dt }ds =
0 -s _
f { [ Vexp(-A(t—s)U(t—s)eXp(-AS)CV(s)dt}ds =
0 s :
f exp(-At)U(t)dt - f exp(-is)CV(s)ds.
0 ' 0 :
Thus
(5.4.3) SR =R+ R(A)CRI(A) = R(AT(I+CR1(A)).

In particular RI(A): X >9(B). Apply (A-B) to both sides of 3.4.3
and obtain (A-B)RI(A) =1+ CRl(A) or equivalently (A—B—C)RI(A) = 1.

Thus RI(A) = fl-(B+C) _l. We now proceed to estimate

R0 - (1/k!)m1(A)k+11=(1/k!)|ole(x), (where

Dk denotes the kth derivative)

(1/k!1) tkexp(—At)]V(t)]dt

| A

O 3

(k) tkexp(-t(}-Ao))di

(I

Ty

"

(M/k!)(x-AO)'(k+l’P(k+1; - MCA—}O)_(k*'].

42
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' denotes the Gamma function. According to remark(ii) after the proof

of Theorem 3.2.1, it follows that Rl(A) is the resolvent family of a

semigroup Ul(t). The uniqueness of the Laplace transform now implies

Ul(t) = V(t), so V(t) itself is a semigroup.
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1v. Applications to one dimensional Markov processes
1. The equation AFA(x)—C%)a(x)FA”(x)—b(x)FA'(x) = f(x)- existence and
boundary behavior of FX'
Intuitivelyrit is clear what a probabilist means by reflecting or
absorbing Brownian motion on [0,2): in the interior of (0,») the process
is ordinary Brownian motion untillit reaches the boundary 0, at which time
it is either immediately reflected back into the interior:of (0,°) or it is
absorbed at 0. It is possible, in fact, to impose more complicated boundary
conditions than reflection or absorption. For the general class of diffusion
processes studied in Chapter TI the situation is less obvioué. In genetics,
for example, there occur diffusion processes with state space [0,1] for which
it is ng_possible to impose a reflecting boundary condition at 0, say. It
1s our purpose in this chapter to study the possible boundary conditions that
can be imposed upon a one-dimensional Markov process x(t,w) with state space
[ro,r]J and diffusion and drift coefficients a(x) and b(x). It was shown in
Chapter TI that the existence of such a process is equivalent to the existence
of a Markovian semi-group T(t) with infinitesimal generéter Gf(x) =
(a(x)/Z)f”(x)+b(x)f'(x). Analytically, then, our problem is to describe all
those domains & (G) for which Gl (G) generates a Markovian semi-group; and

thus will be done by means of a careful study of the "stationary equation"

(4.1.1) AFA(x)—GFA(x) = £(x), A > 0.

Now this is just a second order linear differential equation of the sort

discussed in any'good undergraduate text on ordinary differential equations

The existence of a Markov process x(t) satisfying various "boundary
conditions" is thereby reduced to the study of solutions to cquation
(4.1.1) satisfying boundary conditions in the classical sense. For
example, the boundaqycondition corresponding to reflection is FA'(TO) =0

and the boundary condition for absorption is FA(rO) = 0, etc.



Our plan then is to construct the most general solution to equation (4.1.1) -
a routine but tedious process - and then construct resolvent families ()\—G)—1
satisfying the Hille-Yosida theorem. Before proceeding to the study of

solutions of (4.1.1), however we make the following notational conventions

and assumptions:

(i) [ro,rl] and (ro,rl) denote the closed énd open intervals with

end points Ty Ty with - i_ro < r < °; "a'" will denote a fixed but

arbitrary point in the interior of (ro,rl).
(ii) C[ro,rl] is the Banach space of bounded continuous functions

on [ro,rl] with lim f(x) = f(ri) and normed with the sup norm

X2>T.,
1

lfl = sup lf(x)l; C(ro,rl) is the set of functions continuous

(4.1.2) To ZXZr

on the open interval (ro,rl), but not necessarily bounded;

Ck[ro,rl] = {f: f(z)ec[ro,rl],‘o < 2 <k}

(iii) a(x) > 0 on (ry,1,), a(x)EC(rO,rl);

however we do allow a(ri) = 0.

(iv) b(x) € C(ro,rl)
Examples:
(i) Brownian motion: Ty = -, T = 4, a(x) = 1,b(x) =0
(ii) Ornstein-Uhlenbeck process: Tg = =, Ty =+, a(x) = 1, b(x) = -kx
{iii) Radial component of n-dimensional Brownian motion: rO = 0, r1 = +m;

a(x) = 1, b(x) = (n-1)/2x.

{(iv) Markov prOcesseé in genetics: rO = O,r1 =1, a(x) = Ax(1-x), b(x) = Bx(1-x).

tollowing Feller we define the monotone increasing functions p(x) and m(x) via

the formulae:
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— X

[ px) = f exp(-B(y))dy
f a

(4.1.3) \ m(x)

X .
2[ a ™! exp(B(y))dy
a

X
B = 2f a ™l bay
7 a

Remark: p is‘cailed the scale and m the speed measure. Since P and m are
monotone increasing functions they induce measures on (ro,rl) denoted by
dp(x) = exp(-B{(x)dx and dm(x) = 2a(x)_1 exp(B(x))dx; it is obvious that
these nmeasures afe independent of the choice of a. It was observed by

Feller that the allowable domains 9 (G) depend on the boundary behavior of

the functions

. X
S’(i) u () = [ m(s)dp(s)
a
(4.1.4) and
X
(1) vi(x) = [ p(x)dm(s)
a
Definition 4.1.17
(1) We say that ri is an accessible boundary if ul(ri) < » and

inaccessible if ul(ri) = 400,

(ii} An accessible boundary is regular if Vl(ri) < @ and is exit

if Vl(ri) = 4o

(iii) an inaccessible boundary is entrance if vl(ri) < « and is natural

if vl(ri) = fm.

Examples:
(1) Brownian motion, rO = -0, rl = +x are both natural.
‘(2) Brownian motion on R+, rO = 0, r] = w; here rO is regular, r1 is
natural.

(3) Radial component of n-dimensional Brownian motion with a(x) = 1,

b(x) =vB%%; Ty = 0 is entrance, ry = is natural.
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Remark: It is té be observed that T, is regular if and only if both m(ri)
and p(ri) are finite, If T, is an exit boundary then p(fi) is finite but
lm(ri)l = 4o, If T, is an entrance boundary then lm(ri)l’< @ but ]p(ri)l =
+o0,

A trivial calculétion shows that

Gf (x)

(a(XJ/Z)eXp(—B(X))(eXp(B(X))f'(XJ)'

- ' /pr(x));

m' (x)

via the formulae:

; thus suggests we define operatoré Dp and Dm

£10/p' (x) = 1im SR £00

R e ETe)
(4.1.5)
Dmg(x)'= g'(x)/m' (x) = lim £(xh)-g(x)

h0 m(x+h) -m(x)
from which we arrive at the "Feller form"

(4.1.6)  GE(x). = DD £(x).

The following properties are easily established and left to the reader -cf
Mandl [21] p. 22.

(i) If DmDpf(x) = g(x){ f,g € C(ro,rl) then

' X
f(x) = |
a

S

g(s)dm(s)dp(y) + f(a) + Dpf(a)-p(x).
W.1.7)

y
(ii) f’Dpf(x)dp(s) £(y)-£(x) and
2

y
[ D g(s)dn(s) = g(y)-g(x)
X

We now return to the study of the stationary equation (4.1.1) which can be
completely solved, provided, we can construct two linearly independent
solutions wl(x,A) and w2(x,x) of the homogencous equation

(4.1.8) (A—DmDp)wi(x,A) = 0. Since » > 0 will be held fixed throughout the
remainder of our discussion we shall often suppress the explicit dependence

of w. on A. Our first step is to solve the homogeneous equation (A—DmDp)u(x) = 0
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subject to the initial conditions u(a) = 1, Dpu(a) = 0. This is equivalent
to the integral equation
(4.1.9) (x) =1 + Au(x) where

u

y
LE(x) = [ [ £(s)dm(s)dp(y).
a

D ==

This can be solved in the usual way by setting uo(x) =1, un+1(x) = Lun(x)

8

and defining u(x) =
n

Anun(x). The convergence of this series follows at
0

It~

once from the

Lemma 4.1.1: uk(x) i.uj(x)ul(x)k_j/(k—j)! for j < k.

Proof: The lemma is obviously true for k=j and to prOve:it in the general
case we proceed by mathematical induction on k. We use the fact, easily
established, that un(x) is monotone increasing on [a,rlj and monotone

decreasing on [ro,a] with un(a })=0, n=1,2,.,. In addition, ul(x) =

Xy X : )
Luo(x) = f f dn(s)dp(y) = f m(y)dp(y), which is the way ul(x) is defined in
a a . a ’

definition 4.1.1; in.particular dul(y) = m(y)dp(y). From the induction

hvpothesis and the monotonicity properties of ul(x) we infer

k-
u (7 y

X
U1 09 <300 [~y [ dn(s)dp(y)
a a
k-
x u, (y) ko3 .
Ll e =yl PR Y 4y GO/ (k)

The proof of the lemma is now complete.

Anun(x) converges uniformly on compact subsets
0 .

Ho~18

Corollary: u(x) = u(x,A) =
n

of (ro,rl)'andrthe following inequality holds:
(4.1.10) 1+Au1(x) < u(x) j_exp(Aul(xD,
In addition

DmDp u(x) = au(x), ua) = o0, Dp u(a) = +1.



49

The only nontrivial statement to be proven is that u is a solution to the

homogeneous equation (4.1.8). But DmDpun(x) = un_l(x) implies

N Nil n g n § n
DD ( MVu (X)) = A AMu (x); also Au (a) =1, D ( Au (a)) =0
mp n=0 n ' n=0 n n=0 n P h=0 n
) N 1 N-
and this together with (4.1.7)(i) implies Z p\ un(x) = 1+ L( z Anun(x))-
o n=0 n=0

Passing to the limit we conclude u solves the equivalent integral equation

u(x) = 1+x Lu(x); ged For future reference we note that

)

\ lim ID u(x)| < = if r. is a regular boundary
) oxor, P .
(4.1.11) / t
I lim D ux)]| = += if r, is exit.
] X+ri p
i

—

X
This follows at once from the representation Dpu(x) = A f u(y)dm(y) and

a

the fact that ataregular boundary u(ri) is finite and lm(ri)l < o, whereas at

an exit boundary Im(ri)l = 4o,

Definition 4.1.2: Define the non-negative functions wi(x), i= ,2, by

X
w00 = w 06 = uloN) [ u () dp(y)
| r
\ T ,
Ao (0 = wy(GN) 5wl w0 dp(y) .
- ) X )

(4.1.12)

Lemma 4.1.2. Wy is monotone increasing and continuous on [ro,rl), W, is

monotone decreasing and continuous on (ro,fl]; (A—DmDp)wi(x)

0 and the

Wronskian W(x) ='Dpw1(x) wz(x) - wl(x)Dpwz(x) = W > 0, where W is a constant.

Proof: We first show wi(x) are well defined. Consider, for example, w,:

from (4.1.10) we obtain the inequality (for x > a)

¢

r T
1 1 -
uy(x) 2 u(x) [ (a0 2dpy) < uam() ™ [ (nu (1)) my)dp(y)
X X

r .
1
u(x)m(x)_1 f (1+Au1(y))_2 dul(y); thus

X

1]

1.13) wz(x)

[ A

u(x)m(x)‘lx“l{(1+xul(xl))‘l-(1+xu1(r1))fl} - sow

2

is well defined
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as claimed. The proof for wl(x) is similar and omitted. We now show that
X

Dpwz(x)—Dpwz(a) = A £ wz(y)dm(y), from which it follows at once that DmDpw2 =
sz. By direct calculation werobtain
1 .
: _ -2 -1 -1
Dpwz(x)-Dpwz(a) = Dpu(x) £ u(y) “dp(y) + u(a) -u(x}) .
on the other haﬁd r
X X 1
-2
M w,dn) = [ ) uis) Zap(s)) dm(y)
a a y
T
* -2
= [ DD uy){f u(s) %dp(y)} dn(y).
p
a y
SlnLe d(Dpu(y)) p u(y)dm(y) the last integral can be‘transformed into

f f u(s) dp(s)deu(y) which, after an integration by parts, becomes

I‘l'

X
D u(x) [ u(s) %dp(y) + [ D_uly) uty) 2dp(y) =
P a P

r1 : _2 X _2 }
D u(x) [ u(s)™%dp(s) + [ u(y) 2du(y) =
P X a

B

D ulx) f u(s) dp(s) + u(a) Leut)™l: thus
X

D D W (x) = Aw (x). Our next task is to show that W, (x) is monotone
decreasing. Now w (x) > 0 and D D W (x) = Aw (x) together imply Dpw {(x) is

nonotone increasing. ¥hus

D w,(x) =D u(0) [ uly) “dp(y)-ucx) !
p <2 p X
T
1 _2 .
f.f DpU(Y) u(y) “dp(y)-u(x) ~; hence
X

Tr
1 -1

(4.1.14) D w,(x) I u Pauy) vl - -u(ry) © < 0.
X

| A
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In a similar fashion we can show that wl(x) and Dpwl(x) are well defined,

monotone increasing on [ro,r ) and D Dpw1 = Awl. The proof of the lemma is

now completed by showing that the Wronskian W(x) is constant. From W(x)-W(y) =

f dW(s) we infer

Y
X X
W(x)-W(y) = wz(s)d(Dpwl(s)) f D vy (s)dw, (s)
y
X
- i wl(s)d(Dpwz(s)) - i Dpwz(s)dwl(s) =

X X
A£ Wy (s, (s)dm(s) + i Dpwl(s)Dpwz(s)dp(s)

X X
»Ai wl(s)wz(s)dm(s) - £ Dpwz(s)Dpwl(s)dp(s) =

hence W(x) = W_as.claimed. The verification that W > 0 is left to the

reader. We have the expected consequences that w (x)lwz(x) form a fundamental
set of solutions to the homogeneous equatlon (4.1.8).

Lemma 4.1.3: Suppose D D W(Y) = Aw(x); then there exist constants 1S,y such

that w(x) = ¢ wl(x) *c, (x)

Proof: The proof is standard - see Mandl [21]. Note that W(u,wl) # 0,

' t of solutions
W(u,wp) # 0; thus (u,wl) and (u,wz) also form a fundamental set o
for the homogeneous equation.

Corollary: 1If T, is an accessible boundary then every solution w of the
homogeneous equation has a finite limit at T, .
Proof: Say r, is accessible. It follows from inequality (4.1.10) that u(x)

possesses a finite limit at Ty and obviously so does wz(x). But

w(x) = ¢ u(x) + c w (x) q.e.d.



To construct the general solution to (A—DmDp)FA = f we need only find a

particular integral to the inhomogeneous equation which we shall denote

by gA(x); thus
FA(X) gA(x) + ¢y (x) + C oW (x) where
(A—DmDp)gA(x) = f(x). We define a kernel

R(X,x,y) by

A
<
A
=

-1
W Wl (X)WZ(Y)» ro <X -
(4.1.15) R(A,x,y)

fo-1
{)V wl(y)wz(x), Ty <y < x< rl,

T
Theorem 4.1.1: gA(x) = f R(A,x,y)f(y)dm(y) is a particular solution of the

o
inhomogeneous ‘equation (A—D D )gx(x) = f(x). Assume f € C[ro,rl].

i)y 1f T, is accessible then lim gk(x) = 0.
X—>r1

(ii) If r, is natural then 1im gx(x) =.A_1f(ri).
! X->ri

' -1
[n general f(x) > 0 implies gA(x) > 0 and in all cases lg | < A lf'.

Proof: We use repeatedly the representation r

X I o
(4.1.16) ng(x) = wz(x) f wl(y)f(y)dm(g) + wl(x) f. wz(y)f(y)dm(y).
r, X

Recall that Dpwl(x) is of bounded variation on [rO,x] while Dpwz(x) is of .

. -1
bounded variation on [x,rl]. In particular wl(y)dm(y) = A d(Dpwl(y)) and

4 = 3TN, (),

From this and the representation

X
e, (x) = 27 M, (x) i D, ()
0

o

A-]wl(x) / r(y)d(npwz(y)) we see at once that g is well defined.
" ,
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A routine calculation shows that

T

‘ .
Wdg, () = ([ w I Edm(y))dw, () + (f Wy (D E(y)dm(y) ) dw, (x)
I‘O X '

and therefore
. X”
Wig, (xM)-g (x")) =w [ dg (x) =
x! r
x” b'e X” 1
[ Wi M E)dn(y) Mw, (x) + [ (f Wy (D E(Y)dm(y) dw (x).
x'r . X' x _ ,

0

Since dwi(x) = Dpwi(x)dp(x) we can transform these integrals into

x'" x x" rl
[ w0 Eydn(y)? Dyw, (dp() + [ {f wz(y)fcy)dm(y)}npwl (x)dp(x).
X! Ty . x' x
Hence -
X ‘rl 7 :
WD,8, (x) = Dow, (x) 1{ W (D EEIdn(y) + D w, (x) )f( W, F(y)dn(y),

0
from which we infer, without too much difficulty, that

WDmngA(x)i= A(-WE + ng) or (A—DmDp)gX(x) = f(x).

We now turn our attention to the boundary behavior of gA(x) as x’T. . We shall

carry out the analysis f%r %he boundary point r, as the analvsis at T, is similar.
171
Lemma 4.1.4. wz(x) > A f f w2(s)dm(s)dp(y).
. Yy ’

T
1 .
Proof: Dpwz(rl)—Dpwz(y) = A é wz(s)dm(s). But Dpwz(rl) < 0 implies
!
—Dpwﬁ(y) > A f wz(s)dm(S) and integrating both sides of this inequality with
2 i’ .
rl T
respect to dp(y) yields w2(x) i_wz(x)—w2(r1) > A f f- wz(s)dm(s)dp(y).
. . Xy

Corollary: If T is natural, exit or regular then lim w,(x) = 0. Similarly,

X T,
1

2

if r, is natural, exit or regular then 1lim wl(x) = 0,
X>T

0
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Proof: If r. is exit or natural then lim vl(x) = +%; thus,

1 X->1
1

X _ X
lim [ p(y)dm(y) = lim {n(x)p(x)-/ m(y)dp(y)}
a

X=>r a -¥
1 Ty

X
= lim [ [m(x)-m(y)1dp(y)

[ Im(r)-m()]dp(y) = +e.
a

On the other hand if 1lim wz(x) = wz(rl) = 8 > 0 then lemma 4.1.4 implies
o1 _ -
1

I'l a

wz(x) > A8 f [m(rl)—m(y)]dp(y), i.e. wz(x) = +o, which is absurd. So
X )

|

w?(rl) = 0. At a regular boundary lim f u(y)_zdp(y) = 0, because p(rl)
X*T. X .

1
T

o 1
is finite. Therefore lim wz(x) = lim u(x) f u(y)—zdp(y) = 0, since
X1, xT X :

lim u(x) = u(rl) is finite.

X1
1
Lemma 4.1.5. 1If Ty is inaccessible then 1lim D wz(x) = 0; similarly if ry is
X7Ty :
indaccessible then 1lim D w,(x) = 0.
1
x>
0
T
1 -2 -1 -1
Proof: Dpwz(x),= Dpu(x) f u(y) “dp(y)-u(x) > -u{x) 7, x > a. Therefore
X '

0 f_—Dpwz(x) :_u(x)—l. Since lim u(x) = +» when rl is inaccessible the )
X>T
1

assertion of the lemma follows at once.

Lemma 4.1.6. If r is accessible then lim wz(x)D wl(x) = 0. Similarly if Ty
' X>T P
1
1s accessible then 1lim w_(x)D w_(x) = O.
1 p 2
X,
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Proof:

T
1 X
up GO0 () = (a0 [ u) ap(n e ™ + D uto) [ u) dpy))
: X Tr
0
i -2 1 -2 X -2
= [ u “dp(y) + u(x)Dux) [ u( dp(y) [ uly) dp(y).
X X T

0

At an accessible boundary u(rl] < » and it is always the case that

) =2 X
lim f u(y) “dp(y) = 0, 1lim f u(y)—zdp(y) is finite,
X T X ’ X>r, r
170
So all we have to do is show that lim D_u(x) f
' x> P X

U(y)_zdp(y) = 0. But

X
Dpu(x) = K'f u(y)dm(y) < m(x)u(x) and
a

|

f u(y)_gdp(y) i'A_lm(x)—l{(1+Au1(x1))—1—(1+ ul(rl);lﬂ}see the proof of
x .

lemma 4.1.2)). TH%S
1 .
0 <D0 [ u) ey < uEd (s v 6070wy (r)) 7
) _

Now 1lim {(1+Au1(x))_l—(1+ku1(rl))-1} = 0 and this completes the proof. We are

x> :
1

now ready to prove theorem 4.1.1.

Step 1: Assume f(x) = 1. Then

r
_ X 1
wg, (x) = W, (x) £ Wy (Y)dm(y) + w (%) i W, (y)dm(y)
‘ 0
_1)(
= W, (X)X {0 DmDpwl(y)dm(y) +
T

1
wy oAt [ 0Dy () dn(y)

A—l{wz(x)(Dpwl(x)—Dp(wl(rO)) * wl(x)(Dpwz(rl)—Dpwz(X))}= A"I{Z-i(x)}

where H(x) wz(x)Dpwl(rO)—wl(x)Dpwz(rl).
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l.Let us assume rl is inaccessible, in which case Dpwz(rl) = 0, so H(x) =

w, (x)D wl(ro). if Ty is natural then lim wz(x) = wz(rl) = 0 and so 1lim
“ P X7 X7
1 1

gk(x) = A_l. If, on the other hand, r, is entrance then lim wz(x) >0

xX>r
1

and from this we infer 1lim gx(x) i_A_l. Suppose now T, is an accessible
X7 ’ :

1
boundary. Then W=1im (wz(x)Dpwl(x)—wl(x)Dpwz(x)) = lim (wl(x)Dpwz(x)
X>r Xr
1 1
(by lemma 4.1.6) = —wl(rl)Dpwz(rl). In addition, if ry is accessible,

we. have lim wz(x) = 0 (by the corollary to Lemma 4.1.4);_thus lim H(x) =

xX>r R . xXrr
1 , 1

-w,(r )D w_ (r,). Therefore when r. is accessible 1lim (W-H(x)) = 0 and so
11" 7p 21 1 x .
1

lim gx(x) = 0. The analogous assertions for the boundary T, are obvious

X‘*I‘I

and left to the reader. Putting all these facts together we obtain the

following result, which we state as a 1%mma.

1 :
Lemma 4.1.7. If £(x) = 1 then g (x) = f R(A,x,y)dm(y) satisfies the equation
. | A r,
(A—DmDp)gA = 1 and the a-priori estimate 0 f_gx(x) j_A_l,i.e. Algxl < 1.
: T

1

More generally, if f € C[ro,rl] then gA(x) = f R(A,x,y)dm(y) satisfies the
T :
0

_equation (A—DmDp)gA = f and the a-priori estimate A}gxl :_Ifl.

Proof. It suffices to prove the lemma for the case f = 1, because
T
-1 ) _
ley] < TE1 ] ROLx,y)dm(y) < [£] 277+ Clearly g € Clr,r;] and

"o
g, > 0 on [ro,ri].

Let x' denote a point at which gA(x') = ng|.

Case 1: ry X' < T Then DmngA(x') < 0 implies Algxl f_ng(X J-DmngA(X )
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Case 2: x!' = rl or T,. Assume x' = r,. If r is accessible 1lim gk(x) =0
X>r
1
implies ngl = 0 which is impossible. In this case fheh the maximum of g,

cannot occur at an accessible boundary. Suppose T is natural or entrance.
In the first case lim gx(x) = A_l and in the second case lim gx(x) j_k_l.

X>T : X>T
1 1

Thus in all cases lgAl = lim g, () i_A_l. This completes the proof of the

X>T
1

lemma. Now return to the proof of Theorem 4.1.1. Every function f € C[ro,rl]
can be written as a sum f = fl(x) + fz(x) where fl(x) = f(rl) and fz(x) vanishes
at s in particular we can even assume f2 vanishes in a neighborhood of T, and

pass to the general case in the usual way. Note that

g, (x) = gl(X) + gz(x) where
I‘l_

;00 = [ ROLX,YE (Ndn(y). Clearly,
Ir_ . !
0

gl(x) € C[ro,rl], so all we have to do is show that Qz(x) € C[ro,rl]. But

rl

Wgz(x) = wz(x) f wl(y)fz(y)dm(y) where f2(x) =0 for r! < x <1 But lim
ry T

w,(x) always exists, hence 1lim gz(x) exists also. The proof of Theorem 4.1.1
“ XT
1

is now complete.
Definition 4.1.3: D(DmDp) = {f: f ¢ C[ro,rl], DmDpf € C[ro,rl]}
Lemma 4.1.8: The set D(DmDp) is dense in C[ro,rl].
Notation: If p(x) = x we set Dp = Dx'
Proof:

Step 1 - A change of variable: Since p(x) is continuous and strictly
increasing it has an inverse p_l which is also continuous and strictly
increasing. Set gly) = f(p_l(y)) and n{y) = m(p_l(y)). Then it is easily

checked that f € D(Dm Dp) if and only if g € D(Dn Dy) and DmDpf(x) =
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Dn Dvg(p-l(y). It therefore suffices to establish the lemma for operators
of the form D_ D_.

m o x
Step 2: We recall that bounded Cm[ro,rl] functions are dense in C[rO,rl].
So given any f € C[ro,rl] and any € > 0 we can find a function j € Cw[ro,rl]

. X

such that lf—jl < €. From the representation j(x) = j(a) + f j'(y)dy we infer
a

that ;' € C [ro,rl] flLl[rO,rl].

Let @(x) =1 if o < x < B and @(x) = 0 otherwise, i.e., ¢(x) is a step function

with supporg the interval [a,Bk:(rO,rl). Let qi(x) € C[ro,rl], i=1,2 with the
1 ’ .
properties f qﬁ(x)dm(x) =1, qﬁ(x) > 0 and qb(x) = 0 for x ¢ [a-6,a],
r
0

x .
ql(x) = 0 for x ¢ [B,B+8]. Set y(x) = f [qb(y)—qi(y)]dm(y); clearly
T
‘ 0

0 <y(x) <1, py(x) =1 f%r a <x <Band P(x) = 0 for r < x <a-8 and

0
B+d < x < Ty Moreover f Iw(y)—m(yﬂ dy < 28; thus, we've shown that linear
: .
0

combinations of ‘step functions may be approximated in the L. sense by functions

1
X
of the form ¢ (x) = f L{y)dm(y) where 2 € C[ro,rl]. Hence, arbitrary functions
T,
in C[ro,rl] FiLl[rO,rlj can be approximated in L1 by functions of the form

X

#(x) = [ a(y)dm(y). Given e > 0 and jre C[ro,rl] n Ll[fo,rl] pick ¢ such that
Yo
1 o
[ 1ivo-von ldy < .
T o
0 Xy : X .
Set h(x) = j(a) + [ [ 2(s)dm(s)dy and note that [h(x)-5(x)| < [lvy)-j' () |dy < .
.a T a
0 .
Thus |f-h| < |f-j| + |j-h| < 2e. It is obvious that h € C[ry,r;] and

b Dx h € C[ro,rl];the proof of lemma is now complete.
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2. Markov processes satisfying boundary conditions

The general solution to the stationary equation (4.1.1) is of the form
FA(X) = gx(x) f_clwl(x) + c2w2(x). If r. is inaccessible then wi(x) is
unbounded and hence if both T, and r, are inaccessible the %nly bounded

1
solution of (4.1.1) is (by Theorem 4.1.1) FA(X) = gx(x) = f ROA,x,y) f(y)dm(y).
. T

0
From this and lemma 4.1.7 we arrive at the following result:
Theorem 4.2.1. Suppose ry,T, are both inaccessible boundaries; Then there
exists a unique Markovian semi-group T(t): C[ro,r1]+ C[rO,rl] with
infinitesimal generator
Gf(x)

2(6)

(a(x)/2)f"(x) + b(x)f'(x) and domain

{f? f € C[ro,rl], Gf € C[ro,rl]}

In addition T(t)l = 1-so the corresponding Markov process x(t) is
conservative, i.é., P(t,x,[ro,rl]) =1, t > 0.
Proof: All we need to do is check the hypotheses of the Hille-Yosida theorem
(Theorem 3.2.1). Tha£ 9(G) is dense in a consequence of lemma 4.1.8. 1In

addition, to every f € C[ro,rl] there exists a unique Fk € 2(G) given by
- .

1 ,
F)(x) = f R(X,x,y) f(y)dm(y) satisfying the equation (A—G)FA = f and the
o
estimate AIFAI i_lf] - this is a consequence of lemma 4.1.7. Obviously

£f>0 implieerA i_O. So G]E?(G) generates a Markovian semi-group T(t).'
1

We note that (A-G) 1 = - / ¢ At P(t,x,dy); from the uniqueness of the
- 0

Laplace transform we infer P(t,x,dy) = 1, t > 0.

Examples of processes to which the above theorem applies:

(1) Brownian motion on (-« )

(i1) Ornstein-Uhlenbeck process on (-, )

(1i1) Rudiul»éomponent of n-dimensional Brownian motion on [0,%); here, 0

is an entrance boundary, «,a natural boundary.
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More interesting possibilites occur when at least one of the boundaries is
accessible, say Ty To simplify matters let us assume T is a regular
boundary and Ty is inaccessible. Then the most genefal bounded solution to
equation (4.1.1) is given by FA(X) = gk(x) + C wz(x), beéause wl(x) is
unbounded. Td specify ¢ we must impose a boundary condifion at r,.

Definition 4.2.1: For r. a regular boundary, r, inaccessible, set

0 1

EZl(G) = {f: f € C[ro,rl], Gf € C[ro,rl], Dpf(ro) =vo}
9,©) = {f:'.f € C[ro,rl], Gf € C[ro,rl], Gf(ro) = 0}
2,(6) = {f: f€ C[ro,rl], Gf € C[ro,rl], f(ro).=70; Gf(r@ = 0}.

Theorem 4.2.2.
(a) Glgzl(c) generates a Markovian semi-group Tl(t): C[ro,r1]+ C[ro,rl].
The corresponding Markov process is conservative; this is the process with

reflection at ro;

{(b) §T§§;Tﬁj_generates a Markovian semi-group Tz(t): C[ro,rl]* C[ro,rl].
The corresponding process is conservative; this is the process with an
adhesive boundary at.ro.
(¢c) Let é[ro,rl] ={f: f¢ C[ro,rl], f(rb) = 0}. Eﬂ??}ﬁﬁjhgenerates a
Markovian semi-group TB(t): é[ro,rl]-+6[r0,r1 .  The corresponding Markov

process is non-conservative; this is the process with an absorbing boundary

at r,.
0

Proof: (a) Set FA(X) = gx(x) + c WZ(X) where ¢ is so chosen that DpFA(rO)

ngA(rO) + C Déwz(ro) = 0. Of gourse, one must show that D w ) and

P

ngA(rO) are well defined; a routine calculation, which we omit, (but sce

(4.1.11) where a similar calculation is carried out) yields the explicit

T

Dpwl(ro){ w, (y) £(y)dm(y)

: 0
—WDpwz(rO)

value ¢ =
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Thus £ > 0 implies ¢ > 0, since -Dpwz(r0)> 0, and in particular FA > 0.

Set FA Rl(k)f. All we need do now is establish the inequality AIFAI i_lfl.
Now h = Rl(A)l—A_l is a bounded solution to the homogeneous equation
satisfying the boundary conditionp (r ) = 0. But D w2(r0) # 0 implies ¢ = 0 and hence
{1(1)1 = _1. This together with the fact that R (X) is a positive operator

implies [Ry (] < [€]R, (01 = A7H[€]. It is obvious that 9,(G) is dense in
C[ro,rl]. Putting these pieces together in the usual - way we get that RI(A)

is the resolvent of a Markovian semi-group Tl(t). Cléarly 1 € EEI(G), -
Gl = 0 and Tl(t)lzl, so the corresponding Markov process is conservative.

(b) This time we choose ¢ so that

G FA(TO)-= G gx(r0)+ ¢ G w2(r0)= 0.

But Ggl(ro) =,Agx(r0)—f(r0). However, if ryis a regular boundary gx(r0)= 0

(Theorem 4.1.1) and so GFA(rO) = —f(ro) +C Gwz(ro) = —f(ro) + CAW )=0.

So we must choose ¢ = A_l f(rO)/wz(rO); clearly f > 0 implies ¢ > 0 and thus

2o

FA = RZ(A)f is again a positive operator. Moreover using the same reasoning
as in part (a) we infer Rz(x)l = A-l and hence AIFA' f_If[} Finally it is a

triviality to check that SZZ(G) is dense in C[r ,T

1
(c) Although 523(6) is not dense in C[ro, l] it is dense in ([rO, l]; also
1
note that 1 ¢ C[ro,rl]. From theorem (4.1.1) we see that FA(X) = f R(A,x,y)f(y)dm(y)
' r
0

satisfies the boundary condition Fx(ro) = 0 and the estimate AIFA| i_]fl. In

addition it is easy to see that RS(A)l < K—l (where FA = RS(A)f) and hence

f exp(-At)P(t,x,[r,,r,])dt = Rs(x)l < A—l,
0 .

0°"1

from which it is easily inferred that

P(t,x,[ro,rl]) <1, t - 0.
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This completes our brief introduction to the possibie boundary conditions
that can be imposed on a one dimensional Markov process. For a more complete
diséussion we refer the reader to Ito-McKean [ 5 ] of supplementary
biblography, Mandl [ 21 ] and the references therein to the papers of

W. Feller.
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3. Feller's generalized second order differential operators
It was observed in IV.1 that every second order linear differential

operator Gf(x) = (a(x)/2)f"(x)+b(x)f'(x), Ty <x <r can be put into the

13

so-called "Feller form" G = DmD It is an interesting and

b
éxtremely useful fact that DmDp remains well defined even if we drop the
differentiability assumptions on p and the continuity assumptions on m.

More precisely we have

Definition 4.3.1.‘ Let p(x) be strictly increasing and antinuous bn (rO,rl)

and m(x) be strictly increasing and right continuous on (rO,rl).

We define, provided the limits exist,

s £ -f(x)
Dpr £(x) = lim p(yY)-p(x)

X+

) = 1ig E0)-g(x)
D g(x) = ;ii m(y)-m(x)

A generalized seéond,order differential operator is defined by the formula

Hmhp+ f(x). We say that f € D(DmDp+) if £ € C[ro,rl] and DmDp+ f ¢ C[ro,rl].

Notation: To simplify the typography we drop the symboi + and continue to
writc these operators as DmDp.
Remark: Every definition and theorem of IV, 1 and 2 remains valid for these
generalized second order differential operaters. In addition we note that if
f € D(DmDp) and has an interior maximum at the point x then DmDpf(x) < 0.
Thus these generalized operatgrs of Feller, subject to appropriate boundary
conditions as given in 1y,2 for example, generate Markovian semi—groups{

It is a noteworthy fact that under suitable hypotheses on the Markov process
x(t) the converse:is also'tiue - cof Dynkin [ 11 }, V. II p-143 or Varadhan

[ 32 1 p. 174. Speéifically, supposce x(t) is a one dimensional Markov process
with continuous.pqths and regular, meaning that the prpbability of going {rom

< to y (and from y to x) in finite time is positive, and supposc the strong



64

Markov properfy holds (cf Dynkin V.I [ 11 ] p.99); then the infinitesimal
generator of the corresponding semi-group is a restriction of an operator
of the form DmDp. In addition to their obvious theoretical importance the
generalized opefétOrs of Feller play an important role in limit theorems for
Markov proces;éﬁi In the next section we shall exhibit a weakly convergent
family of one dimensional Markov processes xN(t), 1 < N < », whose infinitesimal
generators are classical operators of the form GNf(x).= (aN(x)/Z)f”(x)+bN(x)f'(x)
and yet the limiting process x(t) has as its infinitesimal generator a
generalized operater DmDp - see also the author's papers [ 23 ], [ 24 ].
4. Limit theorems for one dimensional Markov processes

Many of the stochastic models that occur in genetics, transport theory,
learning theory.etc., lead to a family of Markov processes xN(t) depending on
a real parameter N, 1 < N < «_ with corresponding diffusion and drift

coefficients aN(x) and bN(x). Under various hypotheses-one shows that lim
: . o N0

aV(x) = a(x), lim.bN(x) = b(x) and one would like to infer that the Markov
) N-+w |

processes xN(t) ¢Onverge in distribution to the Markov process x(t) whose
diffusion and drift coefficients are a(x) and b(x) respectively; this passage

to the limit is the so-called "diffusion approximation'. Such a theorem is

made even more plausible if one looks at it from the point of view of semi-group
theory.

Set GNf(x) = (aN(x)/Z)f"(x)+bN(x)f'(x) and

Gf(x) = (a(x)/2)E"(x)+b' (xX)f'(x). Then
Iim aV(x) = a(x), lim bN(x) = b(x) imply (at least formally) that lim
N N->oo N>
GVf(x) = Gf(x) and (hopefully) 1lim exp(tGN)f = exp(tG)f; from this the weak
: Noroo

convergence of the finite dimensional distributions is easily deduced.
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Of course our préblem now is to convert this heuristic reasoning into rigorous
mathematics. Thanks to the Trotter-Kato theorem the juStification of the
passage to the limit is not particularly difficult, although the proofs are
lengthy and admittedly somewhat tedious. There is, however, an unexpected

and noteworthy consequence of our methods. We shall exhibit a family of
Markov processes xN(t) which converge weakly to the Markov process x(t) (see
Billingsley [ 2 ] for the precise meaning of weak convergence) such that

lim aN(x) = a(x),'lim bN(x) = b(x), but the infinitesimal generatgr of the
N0 ' N->o0

the 1limit proceés x(t) is a generalized second order differential operatgor

DmD; f(x) # fa(x)/?)f“(x) + b(x)f'(x). For a more precise statement of this
counterexample. @5 well as others we refer the reader to Theorem 4.4.3 and its
consequences. This counterexample suggests that it mighf be more profitable

to set GN = Dm Dp and study the asymptotic behavior as N>« of the resolvents
N N :

(A—Dm Dp )_1 as a function of PN and my instead of studying the asymptotic
N “N : '

behavior of GN direct1y. One justification that comes to mind is the fact
‘ ) -1 .
that the resolvents are uniformly bounded (in norm) by A whereas GN is an

unbounded operator. The main result of this section is that if lim pN(x) =
N>

p{x) and lim mN(x) = m(x) at all continuity points of the latter than
N->o

1 1

lim (A—Dm D )T-'=-(A—DmDp)— . Of course when one or both boundaries are

N->co N PN

accessible these hypotheses must be supplemented by imposing additional
boundary conditions; to simplify matters we will assume that r,,T, are both
natural boundaries.

Theorem 4.4.1. Assume ry,T, are both natural boundaries for the operators

I <N f o, and DmDp. Suppose lim pN(x) = p(x) and lim mN(x) = m(x)

N-co0 N-+on

m D, >
N Py

at all continuity points of m.
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Then

-1 1

(4.4.1) 1im|(x-om D )

f-(A-D D )~

f| = 0 for all f € C[ro,rl].

Before proceeding to the proof we give an application to a central limit
theorem first obtained by Gihman-Skorohod [ 13 ] p.152, but see also A.
Friedman [ 12 ];

Theorem 4.4.2 (Gihman-Skorohod) : Let x(t) be a one dimensional Markov

- process with diffusion coefficient a(x) = 1, and driff coefficient

o]

satisfying the condition f b(x)dx = 0 (it is assumed thét b € C[-=,=] N

- 00

Ll (_oo’oo)) .
Then v
172
(4.4.2)  1im px(5§§%-< 2) = (21) 2 [ exp(-y2/2)dy.
t>oo t _oo

Proof (via theorem 4.4.1): Set xN(t) = x(Nzt)/N and oﬁsefve that xN(l) =
x(N*)/N = x(t)/VT, if we set N°=t. We will show that the finite dimensional
distributions of the xN(t) process converge to those of the Brownian motion.
We recall that the infinitesimal generator of Brownian mdtion is Gf = () f"
and its scale and speed measures are p(x) = cx, m{x) = 2c_lx with ¢ > 0, but
otherwise arbitrafy. An easy calculation shows that the infinitesimal generator
GN of xN(t) is
(4.4.3) GNf(x) = (3" (x)+ Nb(Nx)f'(x) and its corresponding scale and'speed
measures are given by

X

| exp(-By(y))dy
0

i

Py ()

X
(4.4.4) { m () = 2£ exp (By (y))dy

Ny
Nb(Nz)dz = 2 b(z)dz.
4]

i

2

O

. BN(y)
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Put ¢ = exp(Zf b(z)dz). We shall establish by means of a very elementary
0

computation that lim pN(x) =.¢x, lim mN(x) = 2c_1x. By theorem 4.4.1 and
' N N->c0 :

the Trotter-Kato Theorem we conclude lim TN(t)f(x) = T(t}f(x) where T(t) is
N0 o

the Brownian motion semi-group; clearly this proves the Theorem of
Gihman-Skorohod. 1In fact we can prove an even more general result.

Assume

(o0

f b(x)dx=a, where a need not equal zero,

- 00

(4.4.5) / ¢, = éxp(—Zf b{(z)dz) and c, = ¢ exp(2a),
; 0

|

\ S0 ¢ #10 implies ¢y # Cye

Then
(1im pN(x) =Cy X, X > 0; lim mN(x) = ZCII X, x >0
| Now N
(4.4.6) , ' o -1
éi: pN(x) =c, X, X < 0; ;iz.mN(x) = 2c2 » X <0

We now prove (4.4.6)- the special case o=0 is the hypothesis of Theorem 4.4.2.

From the hypotheses on b(z) we get

0 : oo

f b(z)}dz + f b(z)dz = a. Thus

~0o O

lim B (y) = 2f b(z)dz if y > 0 and
N

N->eo 0

(4.4.7) - o
'lim B, (y) = 2 b(z)dz = 2f b(z)dz-2a if y < O.
h N -
! Nowo 0 0 :

Therefore 1im exp(—BN(y)) = ¢y if y > 0 and

N>

exp(2a), if y < 0;

i

Cc

lim exp(-By (y)) .

N>

this completes the proof of (4.4.6).
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Definition 4.4.1. Define pa(x), ma(x) via the formulae

p,(x) = cx, x > 0; m (x) = 2c—1x, x >0

(4.4.8)

1]

c'x, x <0, ma(x) = 2¢'x, x < 0 where c' = ¢ exp(2a).

Lpa(X)
We note that (i) the boundary points +» are natural boundaries for the
operator D D and
m p
a (o4

(ii) p&(O), m&(O) do not exist for o # 0; in particular Dm Dp ~cannot be
a fa

put in the form DmaDpaf(x) =.(aa(x)/Z)f"(x)+ba(x)f'(x).

Now let ya(t) denote the Markov process whose corresponding semi-group will be
denoted by exp(tDmaDpa) = Sa(t)' The calculation (4.4.6).togéther with Theorem
4.4.1 lead to the following result which is a considerable generalization of
Theorem 4.4.2.

Theorem 4.4, 3. Let x(t) be a one dimensional Markov précess with diffusion

coefficient a(x) = 1 and drift coefficient b(x) satisfying the condition

f b(x)dx = a. Then the family of stochastic processes xN(t) = x(Nzt)/N,

-

1 < N < », converges weakly to the Markov process ya(t).

Remark: We've oﬁly established the convergence of the finite dimensional
distributions; for the proof of the more general result we refer the reader
to the author's paper [ 23 ].

Of, perhaps,.greater interest than the theorem itself are the following
counterexamples which we now proceed to derive. |
Examples: (i) Choose o # 0, let b have compact support énd assume b(0) = 0.
Then 1im N b(Nx) = 0 all x. We have thus constructed arféﬁily of Markov
proce?Z:s xN(t)‘bonverging weakly to a limit ya(t) £ w(t) (Brownian motion)

and vet lim aN(X) =1, 1lim bN(x) = 0!

N-reo _ N->e



69

(11) Choose a=0 and assume Ib(O)I#O. In this case xN(t) converges weakly to

Brownian motion but lim|b ) |= 4ol
] N+coN :
These examples show that the hypotheses of Theorem 4.4.1 cannot be dispensed

with., We novaroéeed to sketch the proof, referring the reader to the

author's paper [ 23] for a more detailed account.

1 f(x) and

. o -1
Fy () = O pmNDpN) £(x).

Sct F)(x) = (A—DmDp)

The boundaries ro,rl are natural so

T
o1
(4.4.9)  F,(x) =] RO,x,y)£(y)dn(y) and
o
_ 1
(4.4.10) PG = i Ry (A, x,y) £(y)dmy (y)
: 0

where R(X,x,y) and RN(A,x,y) are defined as in (4.1.15). 1In addition we set

.
uN(x) = ;A un,N(x) where
n=0 _
UO,N(X) = 1, un+1’N(x) = L un’N(x) and
. X _2
v N0 = [ a7 dpg ()
: T
: 0
(4.4.11) rl
-2
Wy N0 = uy () i uy 7 dp ().
W. = W(w w .
N ( 1,N» 2,N), the Wronskian of 1N and Wy N
Lemma 4.4.1. If lim pN(x) = p(x) and lim mN(x) = m(x) (at all continuity
N->oo N>

points of m)

then
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(4.4.12) 1im uN(x) = u{x)

N->co

(4.4.13) 1im W, N(x) =W, (x); 1lim w

= wz(x)
N> N->

2, N

(4.4.14) 1lim W_ = W;
N
N—Hn

the convergence being uniform for x in compact subsets of (ro,rl).
Proof: Our first step is to show that for a sufficiently large class of

functions

(4.4.15) 1lim f f (y)de(y) = f f(y)dp(y) uniformly for x in compact subsets

N-eo g
X pN(X) -1
of (r,,r,). Now [ £ (y)dp, (y) = [ £ (p, (z))dz implies that when
_ 0’71 . N N N**N
a py(2)

lim fN(y) = f(y) in the sense of bounded point wise convergence a.e. for x in

N-»o0

compact subsets of (r then (4.4.15) holds. 1In particular this implies

O,rl) 3

lim u; (x) = lim f my (V) dpy (y) = f m(y)dp(y) = u ()

N0 > N a

uniformly for x in compact subsets of (ro,rl). Similarly

y ' y
lim f u N(s)dmN(s) = f un(s)dm(s)
N+ g ? a

\\ for all continuity points y of m. Applying (4.4.15) once again we infer

Y Xy

N lim [ [u (s)dm (s)dpy(y) = f f u_(s)dm(s)dp(y).
aa .

\\v N0 aa

N

\\Tst lim u N(x) = un(x) uniformly on compact subsets. By lemma 4.1.1 we have

“. N+

Y1 N(")n
u N(x) j_——iT————- (with a similar estimate for un(x)) and from this (4.4.12)

is an easy consequence. (4.1.13) is proved in a similar fashion except we now
use estimate (4.1.13); the proof of (4.4.14) is also routine - see [ 23]
pp.619-620 for the complete details. We now have at our disposal all the tools

we need to prove lim [F (x) - F (x)| = 0. Assume f has compact support, say
How | AN A v
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[a,B8].
-1 X
Then Fy () = W™ wy (x) iwl’N(y)f(y)dmN(y)
-1 8
+ WN wl,N(X) £ wz,Nf(y)dmN(y). Since T,»T; are natural boundaries we know

that 1im W, N(x) = 0, lim wl,N(x) = 0

X+r ’ XT
1 , 0

and therefore in a neighborhood of r. we can make IFA N(x)l < € uniformly in N;
we may take this neighborhood to be the complement of”[u,B] itself. Now apply

lemma 4.4.1 to conclude 1lim FA N(x) = FA(X) uniformly for o < x < B. Summing up,
Now Ao -

then, we've proved that if f has compact support then lim ]F = 0. Next

-F
Now | oA
assume f(x)=1 and use the representation of step 1 on p.55 to conclude

lim {FA N¥F| = 0 in this case too. Finally, every function in C[ro,rl] is a

N3w

uniform limit of a linear combination of functions ofithe ébove éort.

Remarks: (i) Theorem 4.4.1 as given here is an improvement of Theorem 2 of

[ 23 ] in that we need only assume m is right cbntinuous;

(i1) That the hypotheses of theorem 4.4.1 are the most natural was first pointed
out by C. Stone [ 29 ]. The applicability of the Trotter-Kato theorem to this
problem was first noted by author [ 23 ]. Thecounterexambles following

theorem 4.4.3 are implicit in [ 23 ] and further elaborated in [ 241].
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V. Markov processes and their associated martingales
1. Martingale functions:

Call a function U(t,x) a martingale function for the Markov process x(t) if

U(t,x(t)) is a martingale; supermartingale and submartingale functions are
defined similarly. Such functions have been studied by several authors
including Doob [ 10 ], Stroock-Varadhan [ 301, Lai [20 7.

A classic exampie-is furnished by U(t,x) = x2—t with x(t) Brownian motion.
More generally, assume the Markovian semi—group T(t)f(x)’% Exf(x(t)) has G
for its infinitesimal generator. Then, provided U(t,x);_é(x) and b(x)
satisfy certain_régularity conditions - the precise nature of which need not

concern us here - it is known that
o t '
(5.1.1)  Z(t) = U(t,x(t)) - [ {U_(s,x(s)) + GU(s,x(s)) Mds
0

is a martingale. This is a consequence of Ito's lemma - see [ 12].

These regularlty conditions exclude many 1nterest1ng Markov processes e.g.
Bessel processes - to be defined below; processes whose infinitesimal
generators are nonc1a551cal operaters of the form D Dp; énd processes
satisfying boundarv conditions. To illustrate the sort of difficulties

that can arise suppose x(t) = lw(t)l - the reflecting Brownian motion -

and set U(t,x) = x. In this case 6f(x) = (H)f"(x) so U, (t,x)+ GU(t,x) =
implies, formally, that U(t,x(t)) = Iw(t)l is a martingale; this is obvioﬁsly
false and the question is why? One explanation is that U(t,x) t 2(G). Recall
that f € 9(G) implies f'(0) = 0, but Ux(t,x) =1 and in particular

Ux(t,O) =1 # 0. This example illustrates that a function U(t,x) satisfying
the differential equation

(5.1.2) Ut(t,x)+ GU(t,x) =

is not necessarily a martingale function; additional conditions depending on

D(G) must be imposed. One such set of sufficient conditions is presented in
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Theorem 5.1.1 below - a theorem which has been shown to:be useful in cases
where the hypotheses of Ito's lemma are not satisfied - see the author's
papers [ 257, [ 26].

Theorem 5.1.1. Suppose U(t,x) and Ut(t,x) are both jointly continuous for
(S,x) € R, x[ro;rl] and in addition-U(t,x) € 2(G), Uf(ﬁ,x) € 2(G) all t > 0.
Then Z(t), defined at 5.1.1, is & martingale.

Corollary: If,_inbaddition to the hypotheses of theorem (5.1.1),

(a) U satisfiés the differential inequality

(5.1.3) U (t,x)+ 6U(t,x) <O

then U(t,x(t) is.a supermartingale;

{(b) If U satisfies the differential equation

(5.1.2) then'U(t,x(t)) is a martingale.

Let us illustrate the theorem with examples some of which, strictly speaking,
do not exactly satisfy the hypotheses of. Theorem 5.1.1. The conclusions of
the theorem remain valid, however, and we shall indicafe 1ater on how to
adapt the Theorem to these cases.

Lxamples:

(1): Uit,x) =‘cxp(—At)R(X)f(x), f >

\%
o
-
>
A\
o

We have Ut(t,x) = -AU(t,x) and GU(t,x)
exp(-At)GR(A) f = exp(-At) [AR(A) f-f] =
AU(t,x) - exp(-At)f.
Hence Ut+ GU = —exﬁ(—kt)f <0, soU
satisfies the differential inequality (5.1.3). 1In addifion R(Mf € D(G) and
the hypotheses of theorem 5.1.1 and its corollary are satisfied. Thus

exp(-At)RA) f(x(t)) is a positive supermartingale.
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(2) x(t) is Brownian motion, Gf(x) = (3)f"(x) and U(t,x) = exp(ox - 92t/2),

6 a real parameter, U(t,x) is a martingale function.

(3) x(t) is the radial component of n-dimensional Brownian motion and

U{t,x) = xzént,'U‘is a martingale function. |

Remark: The martingale of example (3) leads to a simple proof of EO{TR} = R2/n
where ™ is thé:first passage time to the surface of sphere of radius R.
Assuming Doob ' optional stopping theorem holds in this case (which it does)
one sees immediately EO(Xz(TR)—nTR) = 0; but XZ(TR) = R2, q.e.d. We turn now
to the proof of theorem 5.1.1. |

. ' t
Lemma 5.1.1. If f € Z(G) then y(t) = £(x(t)) - [ Gf(x(u)du is a martingale.
g T

(This is obviouély a special case of the theorem).
Proof: From thé Markov property and lemma 3.2.2 we obtain
E{f(x(t))|D(s)} = T(t-s)f(x(s)) =
" t-s _l
f(x(s)) + é T (u) GE(x(s))du
But T(u)Gf(x(s)) = E{Gf(x(s+u) | DB(s)} and therefore,

t-s
E{ [ Gf(x(s+u))du|B(s)} =
0

(5.1.4)  E{f(x(t))-f(x(s))]|B(s)}

i

t
E{f Gf(x(u))du|B(s)].
0

On the other hand

t
y(t) =y (s) + £(x(t))-f(x(s)) | GE(x(u)) du;
S

Clearly (5.1.4) now implies E{y(t) | @(s)} = y(s); the proof is complete.
Proof of Theorem 5.1.1.

Step 1: The following decomposition holds for t; <ty
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E{U(tz,x(tz))-U(tl,x(tl))lga(tl)} =1 + IT + III,

where
tz,
I=E{f [U(s,x(s)) + GU(x,x(s))]ds| B (t))}
!
t
IT = B{] [U_(s,x(t,))-U_(s,x(s))]ds| B(t)}
L st
1
t
11T = E{J [GU(tl,x(s))—GU(s,x(s))]dslg?(tl)}.
t S
1

This decomposition will be derived below. Assuming, for the moment, its
validity we come to
Step 2: II + iII = 0. Deferring the proof of this as well we conclude

E{U(tz,x(t7))—U(tl,x(tl))|£3(t1) = I where I can be rewritten as

t
2
I = E{f [U(s,x(s)) + GU(s,x(s))]ds
0

Y

- | IU_(s,x(s)) + GU(s,x(s))Tds| B (t))).
0 ;

But this is clearly equivalent to the statement E{Z(tz)lga(tl)} = Z(tl)'
We now proceed to prove the assertions of steps 1 and 2. From lemma 5.1.1.

and the hypothesis U(t,x) € D(G) we get

t

(5.1.5) E{U(tl,x(tz)-f GU(tl,x(s))dslga(tl)} =
1 5

Y

U(tl,x(tl))—é GU(ty,x(s))ds.

Next observe - taking into account the obvious cancellations - that

£

1+ IT + IIT = E{f us(s,x(tz))dslga(tl)}
- t
1
&

+ B GU(tl,x(s))dsléa(tl)}.
"
|



But

t

2

(5.1.6) E{J U (s,x(t,))ds|B(t))} =
t

1,

E{U(tz,x(tz))-u(tl,x(tz))]53(t1)}, and from (5.1.5)

t

2

(5.1.7) E{fIVGU(tl,x(s))dsléa(tl)} =
t

1

E{U(tl;x(tz))—U(tl,x(tl))lga(tl)}.

Adding (5.1.6) and (5.1.7) yields the decomposition of step 1.

Proof of step 2. We first show that

(5.1.8) IT

On the other

IT

té t,
E(J [ GU_(s,x(u))duds|B(t)} =

ty s

t2 t2

= [ E{f 6U_(s,x(u))duds| B (t))}
t -1
1 .

t
2 .
{ E{U (s,x(t,))-U_(s,x(s)) | B(t,) }ds

1

t

- E{f [U_ (s,x(t,))-U_(s,x(s))1ds| B(t )} .
! |
1

76

hand interchanging the order of integration in (5.1.8) yields

t
2 u
E(/ [ 6U_(s,x(u))dsdu|B(t)} =

HYy

t
= E{

e

gg-GU(s,x(u))dsdulga(tl)} -
1 71
2

= E{f [GU(u,x(u))—GU(tl,x(u))]dulga(tl)} = -ITI, q.e.d.

t
t
t

1
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2. A theorem of Doob and its generalization.

Let x(t) be a one dimensional Markov process with state space [ro,rl],
associated semi—group TY)f(x) = Ex{f(x(t))} and infinitesimal generatpr
Gf (x) = (a(x)/Z)f"(x) + b(x)f'(x). Using the stochastic differential calculus
of Ito and the notion of semi-group of type I, Doob [ 10 -] proved the following
theorem (under slightly different hypotheses). '

Theorem 5.2.1 (Doob): Assume r,,r, are natural boundaries; a(x),b(x) are both

0’1

bounded and Lipschitz continuous on compact subintervals of (ro,rl).

cf(x) then f(x(t))-ct is a martingale

(1) If Gf(x)

(ii) If Gg(x)

Ag(x) then exp(-At)g(x(t)) is a martingale

Example: x(t) is Brownian motion, f(x) = x2 then Gf’Eil,so xz(t)—t is a
martingale. If g(x) = exp(6x) then Gg(x) =(92/2)g(x) 59 (ii) holds with

X o= 92/2, c.f. example 2 after statement of Theorem 5.1.1. Note once again
that neither f nor g js bounded and so theorem 5.1.1. as it stands cannot
be directly applied. Nevertheless, by.means of a suitable argument to be
sketched below, we can derive the following generalization of Doob's theorem.
Theorem 5.2.2. Assume G = DmDp with L natural boundaries. Then

(i) Gf(x)

cf(x) implies f(x(t))-ct is a martingale

(i1} Gf(x)

Ag(x) implies exp(-At)g(x(t)) is a martingale.
Remark: The methods by which these results are obtained can easily be extended
to the case where r, are entrance or even regular provided the functions f and

¢ satisfy the appropriate boundary conditions - see the author's papers [25 1,

(=]

[ 26 ] where such calculations are carried out.

Proof: If f € C[ro,rl], g € C[ro,rl] then there is no problem, because both f
and g belong to Z(G) and we may apply Theorem 5.1.1 directly. Unfortunately,

we have only the result that f € C(ro,rl), g € C(ro,rl).
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This is a standard technical difficulty and is circumvented by means of the
following device: truncate the function g (or f) in such a way that its
truncation g(x) € Z(G) and g(x) = g(x) on a compact subinterval of (ro,rl).

If G is a classical second order operator this can be accomplished by setting
g(x) = g(x)¢(x) where ¢(x) is a Cm[ro,rl] function such that ¢(x) = 1, x € T
and ¢ vanishes at the boundaries. If G is a generalized operator then a similar
truncation can bé carried out - see lemma 1, p.273 of [ 25 ]. Theorem 5.1.1
can now be applied to fhe function U(t,x) = exp(-At)§(x); a routine
application of'Déob's optional stopping theorem ([4] p.373 and "note added in
proof'" p.379) now yields the useful result that U(tAt, x(tAT)) is a martingale
where 1 denotes:the first exit time of the x(t) process-from the interval I(l).
In particularitﬁgn'we have

(5.2.1) U(0,x) = E_{exp(-A(tAt))g(x (tA1) }.

We would of coursé like to pass to the limit by choosing an increasing sequence
of compact subintervals In’ U In = (ro,rl) and a corresponding sequence of
stopping times Tn+w and thereby conclude

(5.2.2) U(G;x) = Ex{exp(—kt)g(x(t))}.b

More generally we would like to prove

(5.2.3) EX{U(t,x(t—s))} =U(s,x), 0 <s <t

for then '

(5.2.4) E {U(t,x())|x(s)} = Ex(s){U(t,x(t~s))} = U(s,x(s)).

In many cases the reasoning used to establish (5.2.2) may also be applied to
derive (5.2.3). In the present instance set V(t',x) = U(s+t',x), 0 <t' <=

and check that V satisfies the differential equation (5.1.2). Thus

(lkAT = min {t,7)
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(5.2.5) U(s,x) = V(0,x) EX{V(tArn, x(tATn)}

EX{U(S+ tATn, x(tATn))}

Now let rn+w as before to infer U(s,x) = Ex{U(s+t,x(t))} which is equivalent

to (5.2.3). We shall not carry out the justification of the passage to the
limit, referring the reader instead to an article by T. L. Lai [ 20 ] to whom
Theorem 5.2.2 isrdue. The (simpler) proof of (5.2.1)»isldue to the author -
see [ 25 ].

3. Lp estiﬁates‘for the stoppiﬁg times of Brownian motion and Bessel processes;
theorems of Burkholder-Gundy and Burkholder.

Let t denote é bounded stopping time for the Markov process x(t). A
number of authbré including Skorokhood [ 28], Rosenkfanti.[ 22 1,
Burkholder-Guﬂdy:[ 6 ], Burkholder [ 4 ] Rosenkrantz-Sawyer [ 26 ] have
derived inequalifies of the following kind:

(5.3.1)  a@E (P < B (x| < A@IE (P,

where a(p) and A(p) are independent of 7 and 1 < p < =, and x = 0.

If x(t) is Brownian motion then (5.3.1) plays an important role in the
so-called Skorokhod embedding [ 28], Chapter 7 . In a related development
B. Davis [ 8 ] has actually characterized the best possible constants in
the case of Brownian motion. It is not our purpose to enter into such
delicate calculations but merely to indicate in a purely formal manner how
estimates of the kind displayed at (5.3.1) are easily derived used the ideas

of V.1 and V.2.

Example 1: x(t) is Brownian motion with Ty = =%, T = +o, Set U(t,x) =
tP C(p)xztp—l'where 1 < p <« and C(p) remains to be chosen. A routine
calculation shows that the choice C(p) = p implies U(t,x) satisfies the

differential inequality (5.1.3 a) and hence U(t,x(t)) is a supermartingale.

Thus for any bounded stopping time T we have
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(5.3.2) 0 z_EO{U(T,X(T))} = EO{TP - PXZ(T)Tp—l}

Thus E {<P} < p E {XZ(T) Tp-l}
0 - 0 1

< p Eglx®P(1) P By (P} (P-1)/P

where we use Holder's inequality at the last step; dividing both sides by
EO{TP}(p-l)/P
(5.3.3) yields Eo{rp} :_(p)p EO{XZP(T)}, so a(p) = p‘P in this case.

To get the inequality in the other direction pick U(t,x) = )c2p—c(p)tx2p_2

with 2 < p. The choice c(p) = p(2p-1) makes U(t,x) a supermartingale function
and hence
EO{XZP(T)—p(2p—1)x2p—2(T)'T} <0 or

zp_z(r)-T}.

(5.3.4)  E,(xP(D)} < p(2p-1)E{x
The proof is now completed by using Holder's inequality again with exponents

@ = p-1and 8 = P/p-1. Here A(p) = (p(2p-1))P.

Remark: These arguments are due to L. Gordon [ 14 ] who made use of Ito's
.lemma instead of theorem 5.1.1. The proofs can be extended into the range

0 <p <1, but at the cost of some additional technicalities which we choose
to avoid here.

Recently, Burkholder [ 5 ], has extended the inequalities (5.3.1) to the
radial component of n-dimensional Brownian motion. By a different and
considerably simpler method Rosenkrantz and Sawyer [ 26 ] have extended
Burkholder's results to the so-called Bessel processes of order y+l. More
precisely, if we set Gf(x) = () f"(x) + (v/x)f'(x) where Ty = 0 <x <= T,
and -(3) < y and define

2 L -—
E?(G? = {f: f € CO(R+)ﬂ CO(R+), Gf € CO(R+),f (0) = 0}
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then G]E@(G) generates a Markovian semi-group whose cofresponding Markov
process we call the Bessel process of order y+1 - see [ 3 ] for the details.

2p _ c(p)txp—2 are also

It is noteworthy that the functions tP - C(p)xztp_l, x
supermartingale functions for the Bessel process of order y+l. However one
must choose C(p) = p/(2y+1), 1 < p and c(p) = 2py + p(2p-1), 2 < p. In the
latter case 1 < p < 2 requires a separate argument - see [ 26 ] for the details.
Thanks to Theorem (5.5.1) the arguments leading up to (5.3.3) and (5.3.4) can
be repeated word for word to yield inequalities (5.3.1). The case y=(n-1)/2

corresponds to the radial component of n-dimensional Brownian motion andso

includes Burkholder's results as a special case.
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