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ABSTRACT

Lorenzen, Thomas Jay. Ph.D., Purdue University, May, 1977
Toward a More Realistic Formulation of the Secretary Problem.
Major Professor: S. M. Samuels.

This thesis considers several variations in the classical
formulation of the so-called Secretary Problem. These variations'are
presented to make the problem more realistic.

Chapter II contains a new formulation of the infinite secretary
problem, not limited by the classical formulation. The solution is
obtained and general results are given., These results are ﬁseful in
both of the variations considered ih.Chapters III and IV,

The first variation contained in Chapter III, is the addition
of a cumulative interview cost. The finite problem is formulated and
solved using backward induction. In the non-trivial case, the finite
problem tends to an infinite problem defined on the unit interval,

The solution is derived and explicitely given for the linear cost
rank problem.

In the final chapter, backward solicitation is consiaéred. In
this variation, you are allowed to solicit a candidate who has previously
been interviewed. However, the solicitation may not be successful. It
is shown that the exact solution is not easily obtainable in general.
A specific class can be solved and the limiting solution derived. For

any problem the limiting solution can be found by considering the unique

member of this specific class.
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CHAPTER I
INTRODUCTION AND BACKGROUND

This thesis deals with several generalizations of the so-called
Secretary Problem. These generalizations are presented to make the

formulation of the problem more realistic.

- The version referred to as the Secretary Problem is formulated
in the following way: n applicants apply for a secretarial position.
Some criterion is used to rank the candidates from 1 (best) to
n (worst) with no ties. The appligants arrive in random order and
when the iEh candidate appears (timé i) she is ranked relative to the
i-1 previous candidates. On the basis of her relative rank she is
either hired (and the proéess stops) or passed by. Once a candidate
is passed, she can nevér be recalled. If the n-l'§E candidate is
passed, the last candidate must be hired.

The problem as stated has been known under other names, beauty
contest, dowry problem, marriage problem, and google\just to mention
a few. This problem can be applied to any process where the decision
to stop is based solely on relative ranks. For this reason, the
number of applications is virtually unlimited.

The first time a.problem of this form appeared wés in 1960 in
Martin Gardnerfs column: Mathematical games [5] and [12]., It is said
to have an earlier origin for Gilbert and Mostellar [8] claim to have

heard of the problem in 1955 from Andrew Gleason who is said to have

heard of it elsewhere!



Classically, the problem has had two forms, the best choice

problem and the rank problem.

s
L]

1, Best Choice Problem

In the best choice problem, we are interested in finding a stopping
rule which maximizes the probability of choosing the best candidate.
This is the form of the problem as it appeared in 1960 under the pro-
vocative name google. Google works as follows: n slips of papers have
n different numbers written on them, The numbers range anywhere from
a small fraction to a ''google." (A google is a one followed by one
hundred zeros.) They are mixed and placed face down. An opponent
turns them up one at a time and announces when he believes he has just
turned up the largest number. What strategy should he use and what is
the probability of success?

Various methods are available to solve this problem. The optimal
solution has been shown to be of the form:; let k individuals go by then
stop and hire the first candidate of relative rank 1. It is easily

shown that for a given n the optimal k is

1 1 1
(1.1) k(n) = inf {r|T + 5 +eeet =7 <)
(1.2) k(n)/n-oe-1 as n-w, and
-1
(1.3) P(best choice) we .

2. Rank Problem

Under the hypothesis of the rank problem we are interested in
minimizing the expected rank of the candidate chosen. So the loss for
hiring the iEh (absolute) ranked candidate is i. For notation let

(1.4) Vh = minimal expected loss.



The best known method of solution is backward induction, sometimes

called dynamic programming. (See Lindley [11].) That is, for any

given n compute successively Cn_l(n), Cn-2(n)’°"’ Co(n) where

(1.5) Ck(n) = minimal expected loss given you have not
stopped by time k.

Then Vﬁ = Co(n).

It is easy to show the stopping rule consists of a cutoff point
rule. That is, there is an increasing sequence oy which gives the
optimal policy. The optimal policy is to stop on the first candidate
of relative rank < i arriving at or after time o, Take the last

candidate if you have not previously stopped.

Chow, Moriguti, Robbins, and Samuels (CMRS) [3] have shown

1
(1.6) V- T (—'Lﬂ) 3l . 3.87 as n-oo and
j=1 "
. . e
A, ¢ (1M
on B T

3. General Logs Problem

From the rank problem a more general problem can be stated.
Suppose q(-) is increasing and
(1.8) q(i) = loss for stopping on candidate"of (absolute)
rank i.
We are interested in minimizing the expected loss over all stopping rules.
(Note q(1) = 0, q(i) =1 for i > 1 is the best choice problem while
q(i) = i is the rank problem.) Again backward induction giﬁes the

solution

, T
(1.9) G () =2 B win@Q@,k), 0 () wvhere



(1.10) Q(r,k) = expected loss for taking a candidate of relative

rank k at time r

e ) (eot)
2=k (%

Vn = Co(n) and it can be shown that the optimal policy is again a cutoff
point rule, But, in general there is no simple relation between Ck(n)
and Ck(n+1)_so there is no simple way to evaluate lim Vh as n—ow,

CMRS [3] have suggested a heuristic method for obtaining this
limiting solution. This is to write (1.9) as a difference equation,
normalizing and letting this tend to a differential equation. For a
certain class of q(-)i Mucci [13] and [14] showea that the differential
equation actually is the limit of the difference equations. So if V is

the solution to the resulting differential equation, we know Vn—oV for

these cases,

4, Infinite Problem

To further consider the limit of this general probiem, Gianini and
Samuels-[7]‘following a suggestion of Rubin [17], considered the infinite
secretary problem, The formulation was motivated by the following

reasoning: Suppose we shrink the intexrval [O,n] to [0,1]. Then the

. . . 1 2 n .

candidates arrive randomly at times 2 3ttt ot If we consider the best
. . . . 1 2 n

candidate, she arrives uniformly among the points 2ttt ot The

second best arrives uniformly among the remaining n-1 poiﬁts. And so
forth, Letting n—o we conclude the best candidate arrives uniformly in
[0,1], as does the second best, and so on. That is, if

(1.11) Ui = arrival time of iEE absolute best

then Ui are identically independently distributed uniform [0,1]. At each



arrival time T the decision whether to stop or go on is based solely
on the observed relative ranks. If we reach time 1, pay sup q(n).
Some care must be taken since the set of arrival times is almost surely

dense. In other words, it is meaningless to say ''the next candidate."

If we let
(1.12) V = minimal expected loss and
(1.13) f(x) = minimal expected loss given we have not stopped at

time x
then Gianini and Samuels have shown £(0) <« implies £(x) <o for all x in

[0,1] and £ satisfies

(1.14) ' (x) =% > [£(x) -R ()]T where
k=1
- - ® k z-k
- (1.15) Rk(X) = lim Q(r,k) = ¥ q(g) <2-1> x (l-x) .
S - 4=k k-1
el

This is the heuristically postulated differential equation. In addition
(1.16) vV = £(0)

and the optimal rule is a cutoff point rule with @ satisfying

Gianini [6] showed by using intermediate models that

(1.18) lim V. =V,

Il =

Thus, whenever lim Vh<:m, lim Vn = V = £(0) where f satisfies (1.14).

5. Unknown Number of Applicants

Recently, generalizations of the secretary problem have appeared
make the formulation more realistic. One generalization considers the
number of secretaries (n) stochastic. Instead of being fixed, a known

distribution is assumed.,



In 1975 Rasmussen and Robbins [16] consider the best choice
problem with a random number of applicants. They showed that for n
uniformly distributed on [1,2,..., N], P(best choice)—»Ze-2 as Now,
Earlier, two Russians, Presman and Sonin [15] showed the same result
using different methods. In addition, they showed for n distributed
Poisson ()), P(best choice)— e'-1 88 A —»». They also showed the solution
need not be a cutoff point rule.

To show a simple example, consider n = 5 with probability .999 and
n = 1000 with probability .001, You must act as if there are 5 candi-
dates so solicit the 4£h or SEE candidate if she has relative rank 1.

But, if you don't solicit and a GEE candidate comes along, you know there
will be 1000 candidates, Therefore skip about 1000 e-'1 candidates before
considering stopping.

Gianini [7] considered the rank problem with the number of applicants
random. She showed the optimal rule need not be a cutoff point rule. In
addition, if n is uniformly distributed on 1,2,..., N, then VN-»m as Now.

The problem is still unsolved fof the general loss q(+) problem

even for uniform n.

6. Backward Solicitation

Another type of generalization has been termed backward solicitétion.
The difference is once a candidate is passed, she is not necessarily lost
forever. Instead, you have some probability p of going back and success-
fully hiring (soliciting) her. Of course the longer you wait the smaller
the probability is that she will accept. Once an applicant refuses, she
will always refuse. (Presumably she has taken another poéition.) Formally
we will preseﬁt Yang's formulation [20]. Let p(.) be given with p(0) =1

and p(+) decreasing. If we are currently at time k the probability that



the candidate interviewed at time i will accept is p(k-i) or O
depending if she has previously refused or not.
Yang [20] considered this formulation with the best choice problem,

The problem is solved using a set of recursion equations. For p(0) =1,

p(i) = p i = 1,2,... he showed P(best choice)— ep-l and for p(i) = pl

P(best choice)—oe-l. (Both limits as n-w.) Smith [18] extended these
"o .
p*-1 where p* = lim p(i).
i- o
The problem for general q(+) and backward induction is considered in

results to show P(best choice) —e

Chapter IV. It is shown that backward induction requires too many steps
for general use. Nevertheless, we can show that the limiting minimal
risk, as n-w, depends solely on q(-) and p* = lim p(i). For the par-
ticular recall function p(0) = 1, p(i) = p* forlzzl, this limiting risk
is obtained from a differential equation similiar to (l1.14). This recall

function also yields procedures which are asymptotically optimal for

general p(e«).

7. Interview Cost

A third generalization has been considered with the addition of an
interview cost. (Or sampling cost.) It is assumed that for each
additional interview a certain known cost must be paid. Then you must
minimize the expected cost plus the expected loss for the candidate .
chosen.

Bartoszynski and Govindarajulu [1l] have considered this generali-
zation for the best choice problem. They showed for "high" cost, you
should take the first candidate while for "low" cost the optimal policy

is similiar to the classical best choice problem. For "low" cost,

estimates of k(n) are given for large n and linear or quadratic cost.



(Recall the optimal policy is to let k(n) applicants go by and take the
first relatively best to arrive.)

Govindarajulu [9] also considered the rank problem with interview
cost. Using backward induction, a set of recursive equations is derived.
This set gives the solution to the finite problem, To evaluate the
limit, approximate differential equations are given. Hopefully these
give solutions which are good approximations to the actual limiting risk.
But as Govindarajulu himself points out, the optimal policy remains
unknown and the risks are only approximate. As an example, for zero
interview cost his best approximation is 4 while the true limiting risk
has been shown to be approximately 3.87. (CMRS [3])

Chapter III is devoted to the general q(-) problem with interview
costs For the finite case, the simple recursive equations are derived.
The optimal procedure is no longer a cutoff point rule, Instead, the
optimal rule is described by island rules. That is, the intervals of
stopping can be thought of as islands in the interval [0O,n]. An example
of the existence of an island is given.

To evaluate the limit, the heuristic method suggested in CMRS is
used. To do this, a special form of the interview cost is assumed.
Under this special form, the infinite formulation of Gianini and Samiels
makes sense and can be solved., The solution turns out to be the
heuristic differential equation. It is shown that lim V.2V and if the
interview cost behaves nicely, lim Vh =V,

For interview costs not of this special form, the limiting solution
is always trivial., Either ignore the interview cost or always take the

first applicant.,



The rank problem with fixed sample cost a per interview is
considered. This problem falls in the trivial class so lim Vn-+m.
However, for fixed n the finite problem is approximated by the infinite
problem with linear cost and the rate of convergence can be estimated.

This example illustrates the usefulness of the infinite problém.

8. More General Loss Structure

In all of the previous work, a loss function q(+) was specified
and from q(+) we calculated Q(r,k) in the finite problem and Rk(x) in
the infinite problem. For the moment, let Rén)(§> = Q(r,k). From the
calculations we actually forget the q(-)E and work only with the Rk(°)§.
This suggests that we drop the q(-)i altogether and instead of using an

expected loss, use an actual loss. That is, let

(1.19) Ak(t) (or Aﬁ(t) ) = ioss for selécting a candidate of
relative rank k at fime t
where the Ak(')i are not necessarily derived from some q(°).
In fact, both Chapters III and IV can be regarded in this form.
Chapter III has
(1.20) Ak(t) = Rk(t) + h(t) where h is the cumulative interview
cost

while the most important special case in Chapter IV has

- _ k-2
(1.21) A (t) = p R (£) + p(L-p) Ry(t)+euwt P(L-p)" ~ Ry ; (£)
k-1 '
+ (L-p)" 7 R (E)

We ask the usual questions about this generalized loss structure problem,

1) Does the differential equation £'(t) =1 ozo; [E(t) -Ak(t)]+

£ k=1
still hold?
2) what is the form of the optimal procedure? Is it a cutoff point

rule?
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3) For unbounded loss does the optimal risk for the truncated loss
converge to the optimal risk for the untruncated loss?
4) Do the optimal risk and procedures for the finite problem
converge to those for the infinite problem?
The answers depend on the properties imposed on Ak(-). If we demand
they have all of the following properties:
1) Non-decreasing in k for each t € (0,1);
2) continuous on (0,1), right continuous at 0 and left continuous
at 1 for each k;
3) Al(O) = A2(0) = tee;
4) lim Ak(t) non-decreasing in t and continuous on (0,1), left

k-
continuous at 0 and right continuous at 1;

5 s IKO(E) - n(d) 0 s nem

IKk<iln
6) Ak(t) non-increasing in t for each k;
then the answer to all four questions is yes! The classical formulation
satisfies all six §f these criteria. Moreover, the proofs presented in
Gianini and Gianini and Samuels go through with very little additiomal

effort.

Formula (1.21) satisfies properties 1) through 6) so the specia}
case of the recall problem is no more complex than the classical problem.
Properties 1) through 4) are sufficient to guarantee affirmative
answers to questions 1) through 3) but without property 6) the optimal
procedure may be an island rule as we have previously noted. The islands
are specified by a &ifferential equation,

The main difficulty when property 6) does not hold is with question

4). If all losses are bounded, we can still get an affirmative answer
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CHAPTER II1
A MORE GENERAL LOSS STRUCTURE

The first part of this chapter will consist of an analysis of the
infinite secretary problem (see Gianini and Samuels [7]) under the more
general loss structure defined in the introduction. The second considers
the relations between the finite and infinite problems.

The first section contains many results isimilar to those in
Gianini [6] and Gianini and Samuels [7]. If the proofs are straight-
forward extensions improvements or when old proofs do not extend readily.
Among the results, it will be shown.that the minimal risk and optimal
procedure is given by a differential equation with a right boundary
condition. It is also shown that the risk for the truncated loss
problem tends to the risk for the non-truncated problem. (Three methods
of truncation are considered.)

In the second section, it is shown that for truncated loss, the risk
for the finite problem tends to the risk for the infinite problem. In
general, it can be shown that the limiting risk for the finite problem
is at least as large as the infinite problem risk.

The main results of Chapter II will be used in both Chapters III and
IV, where the interview cost and the recall problems are considered. In
Chapter IV it is shown that the limiting risk actually equals the
infinite problem risk. In Chapter III, conditions are given that

guarantee the equality of the two risks.
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using equicontinuity. For unbounded losses, we can get the difficult
inequality lim Vn;3 V. But the other inequality, a simple consequence
of property 6) can no longer be asserted in general. For Chapter III, it
does hold whenever the interview cost is bounded. |

In Chapter II, proofs are given for only two reasoms, either they
improve previous proofs or they do not follow immediately. Otherwise

we merely indicate why the proofs still work.
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1, The Differential Equation for f

Using notation similar to Gianini and Samuels let
(2.1) Ak(x) = loss for stopping at time X on a candidate of
relative rank k,

(2.2) U, = arrival time of iE-}—1 best (Ui are IID Uniform [0,1]),

i
(2.3) Xt = absolute rank of candidate arriving at time t
(2.4) Yt = relative rank of candidate arriving at time t'(w.r;t. [0,t])

(2.5) T = stopping rule satisfying
1) 0< 1< 1

2) ¢ is a function of the Y%

3) v € {Ul, Uz,...} v{0,1} (If 7= 0, we pay Al(O) and if

=1 1) =A 1.
T we pay Sﬁp Ak( ) =A (1).)

(2.6) V = inf E(AY (t)) = minimal expected loss where Y0 = 1 and Y1==m.
T T
2.7) £f(t) = inf E(AY (™))
T

>t
Let us assume certain properties on the loss function Ak(x).

(2.8) Ak(x) < Ak+1(x) for all k and x
(2.9) Ak(x) is finite and continuous on'(bk,l) for some bk, and
infinite on [O,bk]

+ +
(2.10) A, (0") = A,(0") = ...

(2.11) A (x) = lim Ak(x) is non-decreasing in x and continuous.
(o<}
kow

The first question must concern the relation between £ and V. It
is obvious that Vv < f(t) for all t but it is not true that every proce-
dure is greater than some t greater than zero, Therefore, it is not

obvious that V > f(0+). However, as in Gianini and Samuels

Prop. 2.1 V = £(0)).
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Proof:
+. . . .
V< £(0) is immediate.
Consider any interval [0,t]. The minimal possible risk is inf A. (s)
0<s<t

and £(t) is the minimal risk for all procedures stopping after time t so

V> min(£(t), inf A (s))
0<s<t

Since this holds for all t
, + +

(2.12) V> min(£(0), Al(O )
By considering any procedure that stops in (t,t+§) and letting §-0 it
follows that £(t) S_Aa(t). Now letting t-0,
(2.13) £¢0h) < A ") = A1(0+) = 4,(0).

[ee]
Inequality (2.12) together with (2.13) give V > f(d+)2¢7

If V= Al(O), we are in a trivial case, i.e., the game is not worth

starting. So let us assume V < Al(O). (Equivalently f(0+) < Al(O).)

£(t) for all t

i

Then £(t,) < inf A, (s) for some t, and we get V
0 L1 0 .
0<s<t
sufficiently small,
Of course; the main result of this section has to be thevderivation
of the function f. It is little surprise that this function takes the
same form as the function given in Gianini and Samuels,

Thm, 2.1 f(t) as defined by (2.7) is continuous and satisfies the.

differential equation

@i £ =g T -

subject to £(1) = Ab(l)’

Proof:
First I will prove continuity. Using the reasoning in proposition 2.1

(2.15) f(s) > inf AY (x)A£(t) for all s < t.
s<x<t 'x



15

Let s < 9 < t‘. Theane‘r w as t-s-0 so

(2.16) £(s) = A (s)AE(sT) for all s.

But £(t) < A (t) implies £(s) < A (s) and £(s) < £(s") so
(2.17) £(s) = £(s.

The same reasoning gives £(t7) = £(t).

Let ‘t be such that Al(t) < £(t). Then define
(2.18) r = ma.x{jIAj (t) < £(t)} and s close enoxigh to t that
(2.19) Ar(u) < f(u) for all ue(s,t).

If r = ©», then we will stop by time t with probability one (see
next proposition) so assume r < ». Define a stopping rule ¢ by
(2.20) o = inf {U € (s,t)|Y <7]

1 if the set islempty

UI{O'S_t} +TI{c>t} is an accep?able rule so we let T approach

optimality in the set of all rules greater than or equal to t and

conclude
(2.21) £(s) S E(Ay (©) Tr 3 + £(0) Tr o)
o S
S AU sup A, RIAE(E))
s<x<t ¢
Defining ¢ so () = inf ( (x)) for s<p < twe get
AYe s<x<t AYx

£(s) > E(4, (8) N E(L))
0

Now Yo < r iff YG <r, P(Ye >r) = (s/t)r, and

P(Yc=k) =1/r for k = 1,2,.4e, * on {og<1} so
(2.22) E( sup A, AE(r)) = L/ 2 5w A @) +E )rf<c>
s<x<t ‘o r k=1 s<x<t t -

and for s close enough to t



r /s k-1 s T
(2.23) E( @Inf(t))= ¥ (% (1-2) (8) + (s/t)” £(t).
AYe . k=1 t t Ak

r
LG6/" 5 e have

Letting s-t, using continuity, and noting prs

£(£) -E(A, () AE(E))
o)

12 +
L% [£(t)-A (©)]F = lim
t k=1 Ak st t=-s
> 1lim £() - £(s)
- t-s
sTt
= £'(t)
£(t) - E(sup Ay ) AE(E))
> lim , s<xgt o
sTt _ t-s
- 1% @ -ao1
£ =1

But obviously when A;(t)>£(t), £'(t) = 0 so the differential
equation also holdsz%y

The optimal procedure is also a consequence of the differential
equation as will be proved in the next theorem. The procedure bears
the same relationship to the differential equation as the classical
case but_loses many nice properties. In the classical case you are to
stop at time x on a candidate of relative rank k if Rk(x) < £(x) and
you have not previously stopped. Since Rk(x) is decreasing and £(x)
is increasing it follows immediately that there are unique o
satisfying Rk(ak) = f(ak). The optimal rule is then to stop the first
time after @, an arrival of relative rank k appears. These rules have
been called cutoff point rules.

Like the classical case, the optimal procedure is to stop at time

x on a candidate of relative rank k if Ak(x) < £(x). However, since

16
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Ak(x) is not necessarily decreasing, there need not be unique Xk for
which Ak(xk) = f(xk). Despite this fact, there are still fixed closed
intervals where Rk(x) < f£(x). These intervals can be thought of as
islands.

Def. t is an island rule if r stops the first time a candidate of
relative rank k arrives in I, where [0,11 21 21,2002 {1}.

The restriction I'kZIk+1 is not a restriction at all since

Ak+1(x) < £(x) implies Ak(x) < f£(x).

We will refer to cutoff point rules as single island rules.

Perﬁaps the nicest property of island rules is that they are fixed.
That is, I’k is defined independent of the arrival times of the candidates
and can be computed prior to the start of the process.

Of course, the most important thing about island rules is that some
island rule is optimal, That is,
Thm, 2.2 The island rule 7% given by
(2.24) L = {xlAk(x) < £(x)} 1is optimal whenever v < ..
Proof:

Let 7 be any stopping rule with E(AY (1) ) <w. I will show T can
be improved on the sets {T<T%*} and {T> T;TV} .

Assume P(t<t*)>0. If we let I. = [0,1], then there exists k.

0

with P{r<t*}n{vcI, ;- Ik})>0. Since Ak(x) is continuous, for each

k-1

X< Ik-l -Ik there exists €y so that
Ak(y) > f(x) for ye(x-ex,x).

Then, using the finite subcovering theorem, for some Bx = (x-ex,x),

p({7<T#}n {reI,_; -LINB) > 0.
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* -

But on {v<rT }ﬂ[erIk_l Ik} NB_, E(AYT(T) ) > Ak('r)>f(x).

So 7 can be strictly improved by waiting until x and using a rule with
expected loss suf_ficiently close to £(x).

So max(T,T*) is at least as good as T for all 7.

Assume P(T>T*)>0. It is easy to see for any stopping rule o
E(AYU(G) I{cr>t} > £(t) I[o>t}' As in Gianini and Samuelg this can
be extended to

> ' L] L] i L]
E(AYG(G))I[C>T']— £(r") I{o>'r'] a.s. This and (2.24)

glves E(AyT‘(T) ) I[q->'r*} 2 f(T*)I{'T>'r*}
2 AYT*(T*) Ir>rw)

This implies min(T,T*) is at least as good as T for all 7.
- ' o= i %* i v
Let T be such that E(AYT ('rn) ) V and To mln('rn,'r ). Since
n
TR = max('r*,'rx'l),

V< E *
< By ()
<E@Gy (1)
Tn

< By (1))

n .
But E( (t ))= V so we have equality./
N, /
Cor. 1 f£(t) = E(AY (t%) ) for all t where T* is the island rule
= rx t t
given by Ik = {x | Ak(x)t_<_ fx)}n(t,1].

Proof:

Exactly as above /

2, The Truncated Problem

To fully understand the infinite secretary problem it is often
necessary to consider the truncated problem., In the classical

situation, a natural truncation is to truncate the increasing function
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q(*). This gives both an upper bound on the loss and a greatest

acceptable relative rank.

Corresponding closely to this, we consider the truncation
M
(2.25) Ak(x) = Ak(x)/\AM(x)/\M
of course there is nothing forcing us to consider an upper bound of M.

We could just as easily consider

M

(2.26) Ak(x) = Ak(x)/\AM(x)/\h(M)

for some increasing function h, Two other truncations of interest are
M

(2.27) Bk(x) = Ak(x)/\AM(x) and
M

(2.28) Ck(x) = Ak(x)/\M.

Each is interesting in itself and is squeezed between the
non-truncated problem and (2.25). So if we prove the risk for loss
(2.25) tends to the risk for non-trqncated loss then we have the same
relation holding for (2.27) and (2.28).

The main result of this section is to show the risk for loss (2.25)
tends to V. That is, if we let T be the optimal procedure for lqss
function (2.,25) then we will show E(AYA(;) )= V as M—-», This gives
similar results for (2.26), (2.27), a;g (2.28).

To prove this result, I need the following lemma;

Lemma 1, Assume Ab(l) < o, Let T(n) and Tep) be iéland rules defined
by I ana 1™, 1f Ié“)-»léf) and inf If”)>>o then E(A, ™y

C e ()
By )

Proof:
The proof is an extension of that in Gianini and Samuels.

Let tén) = inf (Ié“)), té“) = inf (1&“’) for all k. Define

E = {T(m)<t]§m), 'r(m) # 7 ) for some m>n}.
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En¢ ¢ implies an arrival of relative rank i has appeared in

F? = (nﬂ - N Igm), for some i = 1,2,..., k. But F?"O so
i i
m>n m>n

P(E )0 as long as F. is bounded away from 0. Inf Ifb)>>0 is

i
sufficient.

The rest of the proof follows immediate1y2¢7

A sufficient condition for inf Ifm) > 0 is

Lemma 2 >0 if Tm By, ™)) < a0,
Proof:
. (m) . ( )_ (n) (n)
Since Ik is closed for all k, n, lim ty . E(AYT(n)(T ))

< A (0) so Tim E(AY ( (n)) ) < A (0). If lim t{ n) = 0, then since
Al(O) = A2(0) ces 5 11m E(AY (T(n)) ) = A1<0) by the reasoning in

Gianini and Samuels [7]2%7

Thm. 2.3 Let VM be the minimal risk for truncated loss (2.25).
Then VM - V.
Proof:

Obviously VM_<_ VM+1 and V' < V so lim VM_<_ V. If lim V= Al(O),
we are done since V< A (0). So assume lim VM < A (0). Let
Iﬂ = {x lAkM> (x) < £ (x)} be the island rule specified by ™ the
optimal rule for loss (2.25). Choose a subsequence Mk that converges
as in lemma 1. For convenience relabel this subsequence and let T@n?
be the limiting island rule. For each N apply lemma 1 and proposition

2.1 to show

N
M- E(AY (M) > E(AYAN('TM)) By )(T(‘”))) a5 Moreon
T w
By applying the monotone convergence theorem as N—® we get

T(m)

> i:f E(AYT(T)) = v./

n V' 2 BGy CSO PPN D
T
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This also proves the same result for the three other truncations

considered. Note also that the proof applies whether V< o« or = =,

3. TFinjte Problem and its Limit

In the classical formulation of the secretary problem a loss
sequence'q(-) is specified, From this sequence, the expected loss for
stopping is computed for a finite number (n) of applicants and an
infinite number. A natural relationship between the two exist. The
expected loss for stopping at time i (out of n) in the finite problem
tends to the expected loss for stopping at time x in the infinite
problem as i/n tends to x. The differgnce goes to zero uniformly in
i as n-w,

We have already presented a loss function on the infinite problem,

so let us consider

(2.29) Aén)(i) = loss for stopping on the iE-Il candidate (out
of n) with relative rank k; where
(2.30) Csuwp | A @ - A (2) ]~ 0as noe.
i<ign
1<k<n

Then we have defined a finite secretary problem and can obtain
the solution using backward induction. That is, let
n,. s . . X . .
C (i) = minimal risk given we have not stopped by time i,

V' = minimal risk = min E(Aén)(T) )
. 'r T

then backward induction gives

]

n .
Cn(n-l) % kza Aén)(n) and

-1 =1 3 mina™@ - @),
k=1



Using heuristics, we write the recursion equation as a difference
equation, normalize to [0,1], and let thig tend to a differential
equation, we arrive at f'(x) = i Z 2 I[E(x) - Ak(x)] which is immediately
Tecognized as (2.14), the solution to the infinite problem,

The main result of this section is that the limiting risk for
the finite problem equals the risk for the infinite problem when
the loss is truncated, The method used is suggested by Gianini [6];
imbed the finite pProblem in the infinite problem,

Two intermediary models will be considered. The first is called
the finite memory model and the second the full memory model. In both
the unit interval is divided iﬁto n equal parts, The stopping process
is altered so it can only stop on the best arrival in each interval
after observing the entire interval, 1In the f1n1te memory model the
stopping decision is based solely on the ranks of these best arrivals
relative to themselves, In the full memory model, the stopping
decision is based upon the ranks of thege best arrivals relative to
all previous arrivals,

The notation used will be

(2.31) Tr = arrival time of best candidate among all candidates

. N r-1 r
arriving in =5 n

(2.32) Yr = relative rank of individual arriving at Tr among those
arriving at Ty» Tyseees I..
(2.33) Y: = relative rank of individual arriving at Tr among all

individuals arriving in [O,IEI] .

22
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(2.34) V = minimal risk for infinite problem
Vn = minimai risk for finite pfoblem
Vﬁ* = minimal risk for finite memory problem
VK = minimal risk for full memory problem.

At first, we will consider only the truncated loss (2.25). That
is, for all k and x, Ak(x) S_AM(X) and Ak(xj < M. An essential
property that is often used is equicontinuity.

We consider the four types of problems in pairs.

Prop. 2,2 For truncated loss l Vh -V:* -+ 0 as n-w
Proof:

For the finite memory problem the decision to stoﬁ or go on at
time Tr is based solely on Yyseees Yoo But it is easy to see that
Yyseees ¥, are distributed exactly as the relativelranks in the finite
problem, The difference is the timé scale. If we let time I_ in the
finite memoxry problem be equivalent to time r in the finite problem,
then rules are interchangeable,

But, for the finite problem the loss for stopping at time r with
Y, = k is Aén)(r) while the finite memory problem loss is
AY:(Tr) > Ak(Tr). Using equicontinuity and Eil-g_Tr < i, for each
€ we can guarantee

Vﬁ S.VE* + ¢ for n sufficiently large.

Let T be the optimal procedure for the finite problem and apply

it to the finite memory problem. Ignoring the difference between

Aén)(r) and Ak(Tr) for the moment the two procedures give the same

expected loss when

. n
(i) Y, =y, or
n n 0
(ii) y_. > M which implies Y > M.
Ty — T~



24

(n)

Now considering the possible difference between Ak (r) and Ak(Tr)
‘'we get
(n)
* -
Vik -V <M P(Yk > Yy for some k and Vi < M) + e for
n sufficiently large.

Gianini [6] showed P (Y (n)

> yk for some k and yk<M) -0 so
-e¢ < Vn -V:* < e for all n sufficiently large. Since e‘was arbitrary
we have proved the proposition/

So, in the limit the finite problem and the finite memory problem
have the same minimal risk. The same can be shown for the full memory
problem and the infinite problem.

Prop. 2.3 V;';-»V as n—- for truncated loss.

Let T be the optimal procedure for the infinite problem. Consider

the procedure on the full memory problem that stops on Tr precisely

when T stops 1n[ -1 ;] . We immediately get
vk < VL
a 1 /-1 V7L
Recalling Y 1t can be shown that P(Y = k) = ~ <—r—> for

k =1,2,ee. « - Since only n decisions must be made backward induction
can be used to solve the problem. Use this solution to induce an

island rule on the infinite problem, That is, if you would stop at .

T on a candidate of relative rank k, then [ﬂ, l:-] SI. Leto
r n’n k n

denote the policy on the full memory problem and T the induced
policy on the infinite problem. There are several ways in which the

procedures can differ. One is to have the point of minimal risk

different than the point of minimal rank in some [%, -::] That is,

0 n

the difference is less than € for n sufficiently large. So suppose

perhaps T, # u; where i, = inf {i I U = [r =1 E] }. By equicontinuity,
0
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T =1 defined above. Then ¢ and T always stop in the same

s 1
r 10 0
interval. Then the risks can only differ if Y :>YT and T, <M.
n n
(Same reasoning as the previous proof.) But the probability

Yo > Y, and T, < M goes to zero as in the previous theorem and our
n n

loss is bounded so
V< lim V; + €.
But 'this holds for all ¢ > 0 so the proposition is provedz%f

One leg stiil remains. We must show the finite memory and the
full memory problems have the same limit.

Prop, 2.4 For truncated loss; Vg,- Vﬁ*-+0 as n-o,
Proof:

Vg < V:* is obvious.

Let T; be the optimal procedure for the full memory'problem.
Induce a procedure c:* on the finite memory problem from Tg. That is,
if 7; would solicit at time r if a candidate had rank relative to all
previous candidates < k, then o;* would solicit at time r if a candi-~
date has rank < k relative to only I5 Tpreees Too Obviously
03*'5 Tg. Since the loss for soliciting the MEE relative best is
equivalent to soliciting the (M-+1)St, (M-FZ)nd, etc., the two pro-

cedures differ only when o%% < Tg and Y e < M. Therefore,

Rk - UK Fode - %
Vi - VES By | (030 - v
n

< M P(o**<T* and y_,, <

M)
-0 as in propositions 2.2 and 2.3.
This and the other inequality prove the proposition2%7

We can now put the three propositions together to yield

Thm. 2.4 For truncated loss (2.25) vn-.v as n—eo,



Proof:

vn-vl

| V- vk itk - VR VX - V|
n n n n n
<|v -v**[+|v**-‘v*|+|v*-vl-o
= n n n n n
by propositions 2.2, 2.4, and 2.3 respectivelykff'
Cor. 1 1f Ak(x) is given with gm(1)<:w, Vhﬂ V as n—®,
Proof: '

Since Aw(x) is continuous and increasing, An(x)-*Am(x) uniformly
in x. Let ¢>0 be given, Choose M, so n>M, implies Aw(x) ZAn(x)Z
Am(x) - ¢ for all x. Choose M2 so A (1)<:M2.

For M> (M1 VM ), Ak(x) as in (2.25) we have

Ak(x) ~e < Ak(x) < Ak(x) for all k and x.

Let Vﬁ and VM be the risks for the finite and infinite truncated

problems, Then

Cor. 2 For any Ak(x), im V > V.
Proof:

Let Ak(x), Vﬁ and VM be as in corollary 1. Clearly
lim

Vﬁ < V_ so VM

n

M
Vﬁ < lim V for all M. Since V =V by theorem 2.3,

26
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One gap still exists. Is it always true that 1im Vh < v
For Ak(x) decreasing in x for all k, the answer is trivially shown
to be yes. For Chapter IT1I, the interview cost problem, the answer is
yes whenever the cost is bounded. But in total generality, the

question still remains.
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CHAPTER III

‘THE SECRETARY PROBLEM WITH SAMPLING COST

~ This chapter consists of three main sections. The first contains
the exact solution to the finite secretary problem with a known
sampling coét. Few detalls are given since the backward induction
argument is essentially the same as Govindarajulu [9].

The secoﬁd section contains the exact solution to the infinite
.8ecretary problem with known sampling cost. Again few details are
given since this is merely an application of Chapter II. However,
more detail is given to the relationships between the finite and
infinite problems since some results were missing in Chapter II.

Finally, in the third section, the rank problem with fixed
cost a per interview is considered., The behavior of the solution is

analyzed quite closely.

1, Why a Sampling Cost?

A secretary problem with an additionﬁl sampling cost is
certainly more realistic. If no cost per interview were considered,
the hiring plan would be the same for both a nationwide and a local
search, The cost for a nationwide search will certainly become
prohibitive since the number of candidates will certainly be large.
But significant gains in quality will probably not be obtained. Thus,
we will want a rule that will take the cost per interview into

consideration,



In this chapter we consider the problem in total generality,
.that is for arbitrary payoff functions q(°) and cumulative sampling
cost h(+). The relative values of q(+) and h(.) determine the

stopping rule,

Of course we add additional complexities into the form of the
solution., Instead of the well-known cutoff point rules we get
island rules. (Recall definition given in the previous chapter,)

A simple example 111ustrates this point,
Let n = 1000, q(i) = i, h(i) = 0 i=1,2,,.., 50
100 i = 51 332,000, 1000.
From the SL—— candidate on, we can treat the problem as if there
is no interview cost., Using the algorithm given in CMRS [3] we
conclude no candidate is to be solicited prior to the 258-!:--Il position,
So in particular you should not solicit the 51-§-E candidate.

The algorithm also states that the expected loss for stopping
at time i on a candidate of relative rank j is <%$%>»j. So you
should solicit the SOEE candidate if her relative rank is less than
or equal to 5. (Losing at most 98.51 which is certainly better than
paying 100 for one more observation.) So under the optimal rule,

you could solicit the 50--1-l candidate but not the Slst'

2, The Finite Problem

We will assume the following are known prior to the start of the
interviewing:
A) n - the total number of applicants
B) q(¢) - the payoff function

C) h(+*) - the cumulative sampling cost,

29
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Following CMRS [3] we let

(3.1) Xi = absolute rank of iEE candidate to appear
(3.2) Yi = relative rank of iEE candidate to appear
(3.3) T = a stopping rule on [1,2,.,.., n] which is

1) a function of the Y%

2) can stop only on the present candidate

3) must take the n-t-:-ll candidate if 7>n-1,

(3.4) Vh = inf E(q(XT) + h(r)) the optimal expected loss

T
(3.5) ¢™(r) = inf E(q(X ) + h(r)) for r=0,1,2,..., n-1.

™Y

=-1\/n~g
: n~(r-k)
(3.6) Fm) = E@E)[Y =k) = T q@) ()
gk (*)

expected loss for stopping at time r with

candidate of relative rank k.

Backward induction yields the optimal solution easily:

3.7) *(n-1) = -rl;kz [900 +b@)]
(3.8) -1y = 2 zl min(Q(x) + h(x), € (x).
k=l

The equation Vh = Cn(O) gives the optimal risk and the optimal rule’

is to stop with the rEE candidate if her relative rank k is such

that Qz(r) + h(r)-len(r). (Provided you have not previously stopped.)
As was previously stated, the general solution is an "jsland

rule," For simplicity define island rule as follows:

Def. An island rule consists of the following:

1) Il( o [1,2;..., n] With IlQ‘i‘l o Ikc
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2) Stop on the first arrival of a candidate of relative rank

k in Ik.

Then clearly the optimal rule is an island rule with

(3.9) I = {x]Q (x) < ¢®(x) - h(x)}.

3, The Infinite Problem

Heuristically speaking we can get the solution to tﬁe infinite
problem from the finite problem. The now familiar argument goes as
follows:

Normalize [{1,2,..., n] to.[O,l] and write (3.8) as a difference
equation. Letting n—o we get a differential equation which is "the

solution” to the infinite secretary problem. In brief, the details

are .
. -1 ;] T +
@i EE) - <L 5 [OE) - () - ]
Letting i-»x we have
(3.11) c“(r—f) - £(x)
o k -k
(3.12) q (%)~ R () = I 9 a1y (1-x)*
(3.13) h(i) - h(x).
Dividing (3.10) by % and letting n-eo we get
(3.14) £ =3 él [£G) -R () -h (1

(For no interview cost h=0 and we get the differential equation
obtained by Mucci [14].)
It is through this line of heuristics our section differs

significantly from Govindarajulu's [9]. Govindarajulu Considered
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the case q(i) = i and made approximations to get a different set

of difference equations, Then, letting these tend to a differential
equation, a limiting risk was estimated, No attempt at a limiting
solution was made.

Unfortunately, even for the zero interview cost problem, his
methods are too crude, For two different estimations, limiting
solutions of 2 and 4 are given. CMRS showed the true limiting
solution is E (i§2>§%1 ~ 3.87. Incidently, this is the quantity
given by (3.i2§ with h=0.

The differential equation (3.14) also gives the optimal procedure.
The procedure is to stop at time x on a candidate of relative rank k |
provided Rk(x) + h(x) < £(x) and you have not previously stopped. If
1 is reached, pay SEP[RR(I)] + h(l).

That both the optimal risk and the optimal procedure are given
by (3.14) is a consequence of Chapter II with
(3.15) Ak(x) = Rk(x) + h(x). 7
It is.only necessary to verify (2.8) through (2.11) for Ak(x) défined
by (3.15).

We only need to assume

(3.16) h(x) is continuous in x and

(3.17) h(x) < « on [0,1),
Since Gianini and Samuels [7] have established (2.8) through (2.11)

for Rk(x), it follows trivially that

Ak(x) is continuous for all k (verifying (2.8)),
' Ak(x) < w on (bk,l) where bk is defined by the same

relationship for Rk(x) (verifying (2.9)),
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A;(07) = A,(0") =...= R (0") +1(0) (verifying (2.10)), and
Ab(x) = Rﬁ(x) + h(x) = q(w) + h(x) which is non-decreasing
(verifying (2.11)).
So the results of Chapter II can be applied here and we have

proved that if V<« (recall Chapter II) then (3.14)

£100 =3 3@ -R ~nel"
k=
(3.18) inf E(R, (r) + h(r)) = £(0), and
T T
(3.19) E(RY (%) + h(s*)) = £(0) where r* is the island rule

T%
(recall Chapter II) given by

(3.20) I = {x|R (x) + h(x) < £(x))

But we can go further into the form of the island rules in the
application considered in this chapter. One characteristic is that
T%* stops earlier than the correspénding procedure for the zero

interview cost problem,

To briefly review the optimal procedure for the zero interview

cost problem let

(3.21) g'() =2 I (860 ~R 61"

Then the optimal policy is given by the single island rule (recall
Chapter II) Ik = [ak,ll with o uniquely satisfying

~ Formally we have
Prop, 1 If V< w, h(t) < » on [0,1) then for Ik defined by (3.20)

and @ defined by (3.22) we have [ak,l] g;Ik for all k.
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Proof:

Let x Z'GR" Then recalling the definition of £ and g,

£f(x) = inf E(RY (7) + h(v))
. ,

T>X

v

inf ERy (1)) + h(x)
T _

T>xX
g(x) + h(x)

> R.k(x) + h(x) since x?_ak.

Therefore xe]’.k and our propogition is proved./

- The easiest rules to work with are single island rules. This
is because a solution for one cutoff point uniquely gives the next
cutoff point. We will derive sufficient conditions on Rk and h to
guarantee single island rules. Specifically these will be used later
to solve a wide class of problems,
Prop. 2 Let £(0) < R;(0) + h(0), q(k) < q(=), h be differentiable,
and let

k .
(3.23) W (x) == I, (i 00 =Ry 60) - 1 ).

If, for each k, Wk(x) has at most one sign change; from + to -, then
the optimal rule is a siﬁgle island rule.
Proof:

Define gk(x) = f(x)-Rk(x) -h(x). We immediately conclude gy is
continuous, g, is differentiable, gk(O) < 0, and gk(l) = Rb(l) -Rk(1)>>0.
Let I = [0,1], Ik = {xlgk(x) > 0}, and X, = sup(I-Ik). By continuity
gk(xo) = 0 while by definition gk(x) >0v¥ x> X, and g(y) < 0 for

! ) .
some y < Xge Tﬁerefore gk(xo) > 0, Assume x1<:x0 exists so that

gk(x1)>>0. Then by the mean value theorem we can find
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¥, e[xl, xO] r]Ik satisfying gl'{(y1)<0. We will show that this
inequality contradicts our hypothesis.

Let zeIk. Then, since R{{(z) =§ (Rk(z) -Rk+1(2)),

g1(z) = £'(2) = R(2) - h'(2)

N |

- El[f(z) -R,(2) ~h@]" + 5 Ry (@) ~R(2) - (2)

k K . |
j'fl[f(z) -Rj(z) -h(z)] +2 (R'le-l-l(z) -Rk_(z)) ~h'(z)

v
N |

v
N |

k k .
jEl[Rk(z) +h(z) "'Rj (2) ~h(2)]+7 Ry 4(2) R (2)) -h'(2)

= Wk(z).

At x> We can show equality so gl'c(xo)z 0 implies wk(xo) > 0. But

' .
Wk(yl) < gk(yl) < 0 and ¥q < X, 39 wk(x) must have at least two sign
changes and we have contradicted our hypothesis. So we can conclude

that there exists By s© that
(3.24) £(x) 2 R (%) +h(x) for x &lp,,1]
f(x) < Rk(x) +h(x) for x E[O,Bk] .

Since it doesn't matter what we do at x if Rk(x) + h(x) = £(x),
we can conclude Ik = [Bk,l] for all k and our proposition is proved.‘/
In a later section we consider the solution to differential
equation (3.14) for a large class of qE and h2. For this class we

will use proposition 2 to show the optimal rules are single island
rules and derive a set 6f recurrsion equations. These equations are

solved to give both the minimal risk and the optimal procedure.
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We diverge momentarily to develop the conditions for which we’
can conclude V< w. For these conditions, we refer to the zero
interview cost problem and use conditions developed by Gianini [6]
and Gianini and Samuels [7]. The knov_m results are summed up in the

following proposition.

[
Prop, 3 V =o if A) EM%Q,:“, .
k=1 k
PR x)
V< o if B) h(x)< B<w and ;;-l‘fllz—xk— <o
k-1/%;
for choice of 0_<_x1$.o.51 and Pe= I |3
3=1\® 341

or C) q(+) grows like a polynomial.,
Proof:
A) 1is immediateé since Gianini showed this leads to infinite risk
in the zero interview cost problem.
B) is also immediate by a préof in Gianini.
C) follows from a result in Gianini and Samuels no matter how
fast h grows!
Gianini and Samuels showed that for zero interview cost and q(*) growing
like a polynomial (i.e., q(k+1)/q(k) =1+ 0 (-1]:) ) and for any T
(0<T<1), there exists 7

< T with E(q(xT )) < ». Applying the same

T
T
T to the problem with interview cost gives V < E(q(xT )) +h(T) which
T
is finite for T chosen so that h(T) < oo,/ -
Thexre is still a gap. Does there exist a q and h with

inf E(q(x )) < » and

T T

inf E(q(x ) + h(7)) = = ?
T T

That is, if there is a finite solution with no interview cost is there

always a finite solution no matter how fast the interview cost grows?
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4, The Infinite Problem as the Limit of the Finite Problem

In the heuristics of the earlier part of this gection we
normalized the interval [0,n] to [0,1] and normalized the appropriate
sampling cost function h, Thus, we are essentially letting h be
defined on [0,1] and taking h™(i) = h(;i), for i = 1,2,..., n. This
may seem unrealistic. So let us consider an arbitrary sequence
(3.25) 0<h(l) <h(2) <eee
(3.26) h(w) = 1lim h(n) < w.

Then take hn(i) = h(i) for 1 = 1,2,,.,., n. Of course q(+) is
defined in the usual way. Let
(3.27) q(w) = lim q(n) < = .

It is shown that for h defined by (3.25) lim Vh (where Vh is the
optimal risk for the finite n-girl problem) ig-;Tways trite.

Thm, 3,1 If V = i¥f E(q(xT)) is.the minimal risk for the infinite
problem with zero interview cost, then

(3.28) lim V_ = min(V + h(=), q@) + h(1)).

N~

That is, in the limit, either take the first candidateiand obtain a
risk of q(w) + h(l) or ignore the interview cost and obtain a risk
of V + hio).
Proof:

The inequality 1lim Vh‘s.min(v + h(w), q(=») + h(1l) follows from
the remark followin;1:;z theorem,

Recall (3.6). It is easy to show

(3.29) ‘lim Q(r) = g() for any fixed k and r.

N o

Let Vn’ Th be the optimal risk and rule for the n-girl problem,
*
In addition, let Vﬁ, T: be the optimal risk and rule for the n~-girl zero

interview cost problem. Then, we get
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V, = E(q(x, ) +h(T))
n
> [Q] (M) +h(1)] P(T_<N)+E(q SRALISIERAS
> [Q] (M) +h(1)] P SMHE@G DI 5 gy +BE) BT 2N)

2 [0 +h(1)] P(r <M) +E(alxy, NI, o g +h ) B(T 2 N)
n n-— :

[Q7 () +h(1)] P(r <N)+[VX+h(N)] B(*_>N)
2 min([Q] M) +h(1)], [VX+h®)])

for n so big that 'rg 2 N.

Letting n -« and applying (3.29), we have lim Vn > min([q(=) +h(1)],
[V+h(N)]). Since this holds for all N, and h(N) »h(»), lim Vn->-
min(V+h(e), q) + h(l))'./

We may still be interested in thg case h(w) =w, q(x) = «, the
only interesting case, We know from the above theorem that Vn-u:n
but not the rate. No clues are given by the above arguments. A .

. ‘
general method 1is to épprcximtq the n~-girl problem with the infinite
problem having apprOpriately choﬁen interview cost h™. Then let h"
vary and consider the corresponding solutions. This should give a
good approximation to the true ra;e.

An example is given in a later section with h(i) = ai and q(i) =i
for some positive constant a, (Linear cost rank problem.)

So, without loss of generality, let us consider the loss structure
(3.30) h() = h(3), h:[0,1] = [0,e], B 1. i

We are interested in showing Vn-V. That is, we want the infinite

problem to be the limit of the finite problems.

+

\d
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Using (3.6) and (3.12) it 1is easy to show

i

1< iu<pn]Qk(i) R‘k(n) I - 0 as now,

1<k< i
So, invoking corollary 2 of theorem 2.4, we conclude
(3.31) lim Vh >V,
We must obtain the other inequality. For this, let us assume h is
uniformly continuous on [0,1]. Undoubtedly this condition can be
weakened near 1 since the process has only a remote chance of
actually being neaf 1; but the relationship is in general too
complex to work with.
Prop. 4 If V<= and h is uniformly continuous on [0,1], then -
%ﬂV.
Proof.

Lete > 0 be given.

Choose k so that h(l) « P(sup §>k) < €/5 for & distributed as Brownian

Bridge. Choose N so large that lx -y' gﬁl- => lh(x) -h(y)' < ¢/5 and
2k
|x-y|< JN =

a *, ', and ". The star process is a finite problem with h" (i) = h(n—tl)

Ih(x) -h(y)' < €/5. Consider 3 processes, labelled by

For n > N, Vh < Vg + sgp[h(ﬁ) - h(;ii) l S_Vg + €¢/5, The prime process
; i

is an infinite problem where it is known if a candidate is one of the

n best or not. Clearly V; < V. The " problem is exactly the ' problem

except you must stop on one of the n best candidates, V: being the
corresponding minimal risk.

Let Y be the (random) arrival time of the iE-lrl candidate in
processes ' and " (y. being one of the n best). It follows that
V" > Uk - ( max Ih(y ) - h( ) I ). But E(y ) = i1 and by applying

1<£i<n .
the Kolmogorov-Smlrnov statistic to the uniform [0,1] distribution
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(recall that a given candidate @rriVes uniformly on [0,1]) we get
for n > N, suplyi -;i-j;i- | < %N—*with probability > 1-P where P
satisfies h(l) +P < ¢/5) So fot n>N, V">Vt~ ¢/5-h(l)-p
> V* - 2 ¢/5. ‘
And by the same reasoning, sup (yi+1 yi) < 7=- w1th probability 1-P
| so V' > V;; --236- for n>N, (Th;_’.c.iiézfj;rence being the time until the
next candidate (out of best n) ;rrives.) Putting all these inequalities

together, for n > N we have §
%

VoS V*+ ¢/5

< V' 4+ 3 ¢/5
- n
gv1'1+¢

S_ V + ¢ .
Since this holds for all e, Vn-fV'./
Cor. 1 If V<o, h is uniformly continuous on [0,1], and hn(i) can be
written as h(a(i,n)) where sup la([nx] ,N) = xl -0 as n~w, then

X E[O 1} 4

Vn—'V. (According to the hypot?esise if gt implies ao(i,n)—x
uniformly in x, then Vn-'V.) | b
Proof:

. __ ,
sup| a(i,n) = == | ~0 so above_ proof goes through verbatum, /’
155kn L S

In particular, hn(i) = (fnl) satisfies the conditions in the
corollary. This turns out to be helpful in comparing the finite and

infinite linear cost problem,
S._Solving the Differential Egﬁation

Suppose the optimal procedure is a single island rule and h

is differentiable, Then on [ﬁn,ﬁm_l) (recall Ik is of the form
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[ﬁk,ll) our differential equation becomes

M
£ =3 I £ -R () -BCIT.

This can be rewritten as

();4 ) = <x‘1‘ g(kkm + h(x)) ) h—};‘f)-

Integrating from BM to BM+1’ substituting RM(BM)-kh(BM) for f(BM),

and RM+1(BM+1) + h(BM+1) for f(BM+1) we obtain the following

recurrsive equation:

M-1 M-1
(3.32) D Ry ) "R Gl = T [RGB R E]
By k1 ' By k=l
Pare1

- (M- hi(y)
o [ e
BM
(Note: for general island rules, the integration is performed over
IM'-IM+1' Of course IM--IM+1 can be written as a discrete set of
intervals a.s, but the problem is still complex computationally.)
Let us consider a class of q(')i and h(')8 defined by

_ T(e+k-1)

3.33 ) = L{E+E-1)
(3.33) 0 = 5T 82
(3.34) h (x) = i§1 fai'xi a, 2 0.

In particular, when =2, m=1, we are considering the rank
problem with linear cost, This particular problem is considered in
some detail in the final section of this chapter,

We will use proposition 2 to verify the optimality of single-island
rules.

Mucci [14] has shown

(3.35) R @) = 4. (0 =78,
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Therefore Wk (x) becomes

e/ k Mo i-1
Wk(x) = x g (jfl[qg(k-i-l) qg(j)] ) - ifl ie, ‘x .

This equation has the same sign as

0 6= 5 [qg (k) - qg(m - T 1a 5T
j=1 i=1

for x€[0,1].

Now, tsk(O) > 0 and is differentiable so if ﬁk(x) changes
sign more than once in (0,1),_t3k(x) has a local minimum in (0,1).
We know that no local minimum exist since

14E=2

-~ M
W (x) = - T i(i+€-1) a, x <0 xe(0,1),g>2.
k -1 1

(At a local minimum the derivative has value 0.)

- 80 we conclude that Wk(x) -chgnges sign at most once, and from +
to -, We also know £(0) <= and R.k(O) = @ go all conditions in
proposition 2 are met, We have thus proven that the optimal rules
are single island rules,

If we rewrite the recurrsion equation (3.32) asé

| o
E1) o .7 c+i-1
gEHI-1 _ ( 3 ) W-1) q @) -7 1 ( i) 85 gEHlI-1
M Wl
Mg (8=1) oy - g+i-1
() e gge- 31 o () e T 000w
and use the fact that pM-+1 a8 M- o, we can get
. m L L€ 1/g+g=1
@360 P2 T\%E " GO@WDED RO} y (M>m) -

If we let Xy be the cutoff point for the zero interview cost

problem and use a result of Mucci, we get

. ® 1/g+4-1
' = e
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We have upper and lower bounds for By that squeeze together
a8 Mwo . We make An approximation on By and use (3.32) to
successively get approximations on BM-l’ BM—Z"“’ 51. When the
upper and lower approximations on p, are sufficiently close to
each other, we can find V=£(0) =f(ﬁl) =R1(al) +h(51), the minimal
limiting risk.

We can then solve the recurrsive equation forward to obtain
the optimal procedure. As an example, the linear cost rank problem

is solved in the next section,

6. Linear Cost Rank Problem

Consider now the rank problem (q(i) =i) with linear interview
cost h;(i) = ai for fixed a > 0. Thebrem 3.1 tells us Vh-»m but no
more. Since this is probably the most realistic situation, we will
look carefully into the solution. Various questions that arise are:
When should you solicit the first candidate? If you don't solicit
the first, then what? How fast does Vh tend to infinity?

These questions and others will bé answered in the final pages
of this section,

The first question is simply answered.,

Prop, 5 If a>>E§l, solicit the first candidate.

That is v =1,

(Note: An obvious inequality is obtained by considering when the cost
for interviewing one more candidate is prohibitive. This leads to
the inequality a-kgil < 2a+1 or a > Bél. But the above inequality,

2

a slight improvement, will be useful later.)



Proof:

Let S, be the minimal acceﬁtablg rank at time i.

the only three cases 82 =, S =1 and S =2,

A) Sz=2. Then C" (1) = $+2—1-+ 2a so

}

2 n k 2a
Sl = [m (N EY) -h(l)):l ll-l-—n:-f]z 1,

¥

2

Congider

B) S,=0, Then c” (1) =C* (2)>min<-——1-+ 3a, 1+4a>

s0 5, = [ ™) - h(l))]% £ (i;l+ )] [g +%+a—l-

b0y )
¢) s,=1. ThenC(1)=—’(—-]“¥+2> % 2)>

As in B), _Sl > 1

8; =1, that is stop imedia;eiy;/

A partial converse to this ﬁghe Qm we have
Prop. 6 If a < (.082)(nt+l), t&n z

That is, do not solicit the fi?l; candidate.
Proof: |

Consider the procedure r discri.iud by s i =i-1,

We have C; < E(q(xT) +h(7))

i=2
ntl

nt+l
3 + 2a,

n-1
=z [<1+1>(_)+a“ 1’]( Dt [n)zrl * ““] (n_fin

Now S, =0 if C, < === + & = risl§ fors atopping immediately.

0-= 2
A sufficient condition is to hage

E(ax) +h(n) ¢ B4 e

which is equivalent to

44
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ml(2 2 __1 o1
2 \3" 5 @D)Haor) " e-ht

ax< nl
2 Ty
i=3 (1-2)0
~  «081977 (n+l) for n > 8.

= ,056 (n+l) n=3
= L,075 (n+l) n=4
= ,080 (n+l) n=5
= L0817 (n+l) n=6
= ,0819 (nt+l) n=7.

But for n®2,3,..., 7, we canvcheck the propositionaﬂﬂ7

Now, if you do not stoﬁ on the first candidate, it is conceivable
that the cost will become so great that you will stop at a certain
later time regardless of the candidate's relative rank. That is,
conceivably T < k< n a.s. could hold for some k. The next proposition
proves this is not the case, |
Prop, 7 If 7>1, then P(T=n) > d, where T is the optimal procedure.
So we have a dichotomy on ?r, either stop ininédiately or you may not

stop until the last candidate. .

Proof:
. ntl
T > 1 implies Sl =0 which by proposition 5 implies a < %
It suffices to show Si<i for all i<n,

ntl
2

5, = [i“ (€ (1) -h(i))] < [ﬁ—i (&’2'—1- + a(i+l) -a(i))]

Ll

2 o+l

Clearly C"(i) < = + a(i+l) so

o+l _ o+l | pbl ool | opdl | (otl) (i-1)
6 2 3 2 i+1 2(i+1)

i+l  a(i+l) .
So 5=+ =7 <i= Sigi-l for:l_>_2/

a<

IA
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Let us now compare the finite and infinite problems

computationally, Let

(3.38) h(x) = Kx,.
The finite problem was solved directly using backward induction

and equation (3.32) was used to solve the infinite problem. Since

n @
I L\ T - 1 £_\FFL =0 L it is hard to get good
4=1 42 4=1 £+2 n

copputational accuracy on the bounds for BM by directly taking the
product. Therefore, the Euler Maclaurin sum formula was used to
approximate the log of the infinite product (14 terms of the sum
formula give at least 10 place accuracy). The interval halving
method was used to solve the iterative equation. Computations were
made on the CDC 6500 at Purdue University. The comparisons are

summarized in the following chart:

Table 3.1 Minimal risks for the linear cost rank problem

K\n 10 100 1000 10000 ®
0 2.5579 13.6032 3.8324 3.8649 3.8695
3.1415 4.1189 443320 4.3619 443661
5 4.9110 5.9592 6.1505 6.1641 6.1674
10 6 .5000% 7.8553 8.0489 8.0716 8.0745
100 15.5000% 23.0564 24.6013 24,7520 24.7688
500 55.5000% 46,0512 54,5161 55.2973 55.3845
1000 105.5000% 60.5000% 76 .5554 78.1496 78.3255

5000 505.5000%* 100.5000% 166 .0788 174.2509 175.1412
10000 1005.5000* 150,5000% 229.4733 245,9021 247.6871

* Select first candidate.

To get a visual picture of the rate of convergence of the finite
problem to the infinite problem several computer graphs were constructed,

the following two illustrate the convergence for K = 100 and K = 1000.



Please notice the bottom scale, chosen to show the actual rate of
convergence, In the two graphs the cost per interview is 100/N

and 1000/N respectively.

EXATKE SECRETARY PROPLEMxER
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COST PER INTERVIEU [§ THEREFQRE 100/N
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GRAPH OF EXPECTED RISK vs. N
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THE MINIMAL RISK FOR Ne1@ IS 15.50000
THE MINIMAL RISK FOR N=25 IS - 17.00000
THE MINIMAL RISK FOR NS IS . 21.35323
THE MINIMAL RISK FOR N=100 IS 23.05640
THE MINIMAL RISK FOR N-S@@ IS c4.43248
THE MINIMAL RISK FOR N=1000 IS c4.60135
THE MINIMAL RISK FOR N=1900Q0 IS £4,.75201

THE MINIMAL RISK FOR N=1000@0 IS 24.767¢9
THE MINIMAL RISK FOR N=INFINITY IS 24.76875

Figure 3.1 -Rank problem, linear cost, total cost = 100.
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EXXTHE SECRETARY PROBLEME2X

.

UHERE THE TOTAL COST FOR OBSERVING ALL N SECRETARIES IS 1009
COST PER INTERVIEW 1S THEREFORE 1090/N
UHERE NeNUMBER OF APPLICANTS.
GRAPH OF EXPECTED RISK VUS. N
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THE MINIMAL RISK FOR Ne=100 IS 60.50000
THE MINIMAL RISK FOR N»500 IS 74.76363
THE MINIMAL RISK FOR N=1000 IS 76.55537
THE MINIMAL RISK FOR N=1000@ IS ?8.14963
THE MINIMAL RISK FOR Nei@Q020 IS 78.30794

THE NINIRAL RISK FOR N=INFINITY 1S 78.32553

Figure 3.2 Rank problem, linear éost, total cost = 1000.

Notice the strange looking dip in the second plot (K = 1000).

. ntl
The first four points are a result of stopping immed1ate1y.éa>—3—>

Because the cost per interview (1000/N) is so high, the minimal risk

mist be high. To alleviate this situation, it has been suggested we

i-1

let hn(i) =h (-;;-).. Recalling corollary 1 to proposition 4 we know

!
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than our new Vh still tends to V. As a matter of fact, the difference

in the Vﬁ is exactly

K l%?g for this case,

nl

The new result is plotted on the next graph, Now the risk is

increasing in n, a property which was proven to hold in the zero

interview cost problem. (See CMRS [3].)

'

WETHE SECRETARY PROBDLEMEXR

WHERE THE TOTAL COST FOR OBSERUVING ALL N SECRETARIES IS 1000-1/N
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THE MINIMAL RISK FOR Ne«S@0 IS 72.763263
THE MINIMAL RISK FOR N=1000 IS 75.55537
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Figure 3.3 Rank problem, linear cost, total cost 1000 - 1/N.
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A close look at the last column in Table 3.1 indicates
Vg ® 2.477/K for K large. This observation motivated the next
proposition,
Prop. 8 Let‘hK(x) = Kx, q(i) = i, VK = inf E[q(x ) +h_(7)]. Then
Ve = 0(V/K) and not o(/K).
Proof:

Let T} be the single island rule 7 applied to [0&%2]5 where

T ig the optimal stgpping,rule for zero interview cost. That is

- L T (LT i i
Py /Kj51<3+2> S S S S

butions on [0, 1'—-] are uniform and play the same role as the arrival
/K

The arrival distri-

distributions on [0,1]. Also, Ri(x) = i so we can conclude

Ve < E(q(xTK) + h(r))

1
< Batx, ) + h(ﬂ(>

= /K EG@x) + 7z

1
© —
=k 7 (2T 4+ 1)< 4.87 K
s \ - |

Suppose now we could observe the entire unit interval and choose

the place to stop. Obviously you would choose 1 = t where Xt==io, iO

minimizing (i+KUi) and Ui is the arrival time of the ish best candidate

(wer.t. [0,1]).
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Then, V > E(m:iL.n(i+K u;))

K+1 :

= f P(mi'.n(i+K Ui) >vy) dy

i :
1

{ml K
VK, o\
> % (1.2
- iél< K>
[/X]
> /K] (1-1&11( ) -t

Vg is mot o(/X) /
We can show that VK//'K actually has a limit by using the

following trick:
£,(x)

Letng(:) =K
f1'<(x) = ) (fK(x) -i- - Kx)+. Letting y = /K x we substitute into

where fK(x) < ® on [0,1), fK(l) = o, and

i=1

8y to obtain
(3.39) ) =L 3 () -k 35,8 ) <= on (0./E)

K Y j;p K77y UK

gx VK ): = o,

VK VK -1
31ear1y gK(O) =7E and gK(O) is decreasing in K. Since 7}-{- > e 7,
71-12- has a limit., If we define g_(x) by
(3.40) @) == % ( @ -L-yt e @<o [0,

e gw - x E gm y y ’ gm on » )

i=1
g, (@) ==

then hopefully gm(O) is unique and equals lim VK//K. We can prove even

more, we can prove lim gK(x) satisfies (3.40) for all x, Since gK(x)
k=
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is decreasing in K for each x and gK(x)>>0, lim gK(x) exists. Let
| koo
h(x) be this limit. Consider any interval [0,z]. Choose Ko 80
/K >z. From an earlier section we know that there are unique Xps
. . __1 < : .
satisfying gK(xKi) = ;;; + Res and since gK(x) is decreasing in K
for fixed x, s is increasing in K for fixed i. Choose I so large

I .
that xKOI > z. Then for all K > KO’ x e [0,2], gK(x) < ;-+ z and we

can replace (3.39) with

I +
' _1 i
(3.41) gK(y) - i>=:1 (8 (") - y) K> Kys ¥ £ 2o

Let us now consider gi(y). On [O,xll], gk(y) = 0 for all K so
zero will not bother us. Since gK(y) is continuous in y and decreasing

in K so is g (y). For all K>K,, x € [0,z], 0 < g'(x) < -!;-<l + z)
K -0 = K = Xqq \2

80 8y» K.2;K0 is an equi-Lipschitzian family. Therefore gK(x)

converges uniformly to its limit h(x) for x € [0,z] and h(x) is

Lipschitzian. Using (3.41) it is easy to see gi(y) is equicontinuous

so lim gk(y) exists and equals h'(y), y € [0,z]. Since z was chosen
k~o

arbitrarily, we get

+ +

h'(x) = lim g} (x) = lim = ‘°>°:1(gK<x> 1oy -
1=

K= K=o

LR

@ i
1§1(h(X) -z = %)

and since h(x) < o for x < o, h@m)==@, h(x) satisfies (3.40).

We can numericélly show (3.40) is unique and evaluate it by
approximating with cutoff points as was done earlier, Let X1 be the
cutoff point. A lower bound for_xKi is also a lower bound for x ; 8°
we have already obtained lower bounds. An upper bound is obtained by
setting gm(N) = N. This corresponds to the problem where, if yog
have not stopped by time N, the loss is N, which is the limit of the
corresponding finite problems, These give upper and lower bounds on

all possible gm(O), which computatibnally is unique to seven decimal

places.
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(3.42) lim VKA/K = gm(O) = 2,4768709,
It is interesting to note that 2.477 appears as a solution to
a secretary type problem presented in an entirely different format.
This problem was presented by Professor H. Robbins while visiting
Purdue University during the summer of 1976. Its solution is given
by the rank problem with linear cost. Briefly stated, the problem is:
You are interested in obtaining the best possible itém where each
item is drawn at random from an infinite population having an unknown
continuous cumulative distribution function F(x). (Best meaning
lowest possible x value.) Yoﬁ pay an amount c per observation and
cannot recall any items. Upon stopping, pay an amount equivalent to

the expected percentile of F,

In statistical terms, if Y is the relative rank of the 1th

item, then the expected percentile is Yi/(i+l). So we are interested in

Y
= L.
(3.43) Vc = igf E<T+1 + c'r> .

Robbins showed /2¢ < V(': < 2/2c, so wanted to know the value of

v
lim 79' o We will show this limit is gw(O)w2.477.
c— 0 '
Choose K. For any sequence ¢ -»0 let N be chosen so that

(Nm+1l/bm -1, Then if VN is the finlte N-glrl secretary problem
/K.

with linear cost Kx, we will use continuity of the ¥ to conclude

\'S
c Y
. om o _ S,
I s E[/ @D "/ T]
1 [(N +1> ]
< lim  inf +—r—— E Y [N (N+1)e | -
e e -r<N Jc (N +1) ™1 m
N
= lim 22 %N +1) VNm(N +1)¢
m— o m m m m m

V.
= % < g, .
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For the other inequality let us consider the kickback problem

as considered in Gianini and Samuels {7]. Take the rank problem with

linear cost Kx and the loss for T= 1 equal to K. It is easy to see

that the risk divided by /K is given by hK(O) where hl( satisfies

differential equation (3.40) with side condition hK(,/R) = /K.

So for the same sequences ¢ and Nm’

lim 7e

m=-— o

\'
c
-2

m

i Y
= ,:_j;!:, il':.f E _ﬁ;(i'rﬁ; +/e T
> lim infE_—i— + /¢ .,.-1 +/c N I
= L_/cm(T+1) m " {T<N} mom (2N )
= lim i“pr—iL“tfc'r]I +/c N I
m-w TSN L_f":m(""'l) ™ (T<N )} mom {7 =N}

N +1
1 m
= lim inf ’ [E — Y _+[N (N +1)c_]T ]1
- "'.<..Nm (Nm+1)’/cm ™1 T ' m'm m Nm {TgNm]

+ Nm (Nm+1) ch (7= Nm]

= hK(Q) .

Since this is true for all K, and by computation hK(O) -’gm(O)_, lim

\Y
Je

c=0

koo
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CHAPTER IV
THE SECRETARY PROBLEM WITH BACKWARD SOLICITATION

In this chapter the secretary problem is considered under less
restrictive criteria. We assume the number of candidates n is fixed,
the candidates are rankable and arrive in a random fashion, However,
we do not make the restriction that the present candidate must be
selected now or lost forevef. Instead, we assume that a candidate
who has been passed can be recalled. However, the longer you wait,
the smaller the probability of successfully hiring the candidate. We
assume that once a candidate refuses an offer she will always refuse,
(Presumably she has accepted anotﬁer offer,)

This new formulation makes the secretary problem much more
realistic., For example, in the application formally known as the
secretary problem, a candidate is generally available until she accepts
another offer. Or, in the application concerning the purchase of a
house, the house is available until someone else buys it; the longer
you wait, the smaller the probability of its availability,

As is typical, the more realistic the problem, the more difficult
it is to solve. In the classical case, only the rank of the present
candidate is important. (Since this is the only candidate you could
possibly hire at the present time.) In our new formulation, all of

the previous candidates can possibly be hired, so all must be considered.
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This fact discourages the use of the well known method known as
backward induction. For the classical problem with n applicants, n
steps are requirea to solve the problem with backward induction. For
the new problem, if we are presently at time i, we must consider the
- position of all i candidates and whether or not they have previously
refused an offer. Since there are il ways in which the numbers 1
through i can be ordered, backward induction will require'1£4-21-2 1

2n-1

+ n! steps. Even for n as small as 10, we need approximately

two billion steps to solve the problem. For n=50, we require greater

than 1079 iterations. To give some idea how large this number is,
it is estimated that, in all the universe, there are only 1074
particles! And 50 applicants is certainly a reasonable number.

To make matters worse, we no longer have independence of the past
and future. For example, if I havé previously attempted to solicit
the fifth candidate to arrive, then in the future, this candidate can
never accept. if I have never attempted to recall, then the prob-

ability she will accept is specified by a probability function, and

need not be zero.

1, Formulation

Let us use a formulation similar to Yang [20]. Let

(4.1) X, = absolute rank of i't-:l—1 candidaté to arrive

(4.2) Yi(k) ‘= relative rank of :i.-E}-1 candidate among first
k.to arrive

(4.3) q(i) = 1loss incurred for_hiring candidate of absolute

rank i, q(°) increasing



(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

p(i)

2, ()

t, (k)

\
n
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probability of successfully hiring the candidate
interviewed i candidates back given she has never
previously refused. Let l=p(0)>p(1l)>p(2)>...
and lim p(n) =p(*)> 0. We assume p(0) =1

n-re n-oe
because p(0)< 1 gives a positive probability
all candidates will refuse.
time of arrival of candidate of relative rank i
with respect to the first k. (i<Kk)
k-zi(k) >0 if :I.-t"l--1 ranked candidate has not
‘been previously solicited
Zi(k) k< 0 if il:'ll ranked candidate has been
unsuccessfully solicited, t is the "time" elasped

since candidate of current relative rank i has

been interviewed

n- (k-i) £-1)(n-£),
= x q(L) (5—1)—(@ the risk (expected loss)

2R

if the candidate of relative rank i (w.r.t.

first k) accepts.

minimal risk for given p(°*), q(°) and n.

For the best choice problem, q(1) =0, q(i) =1 i>1, Yang [20]

and later Smith [18]' considered this formulation. Since they are only

interested in obtaining the best candidate, then at time k they only

considered the candidate of current relative rank 1., (Obviously no

other candidate could possibly be absolute best.) The ordering of

the remaining candidates is irrelevant. Since at time i, there are

i possible positions for the relative best, backward induction can work,

It requires 1+2+...-_l-n=n(n+1)/2 steps. This is certainly feasible.
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Yang solved the best choice problem by giving the set of
recursive equations. He considered some special cases and studied
the limiting behavior. Smith generalized his work by considering
the general limiting risk and limiting optimal procedures. Smith
showed the limiting solution depends solely on p(0) and p(®). 1In
particular, if p(0) =1 and p(®) =0, then the limiting risk is e-l,
the limit with no backward solicitation. Also, the classical pro-
cedure is asymptotically optimal., If p(®) > 0, procedures similar
to the classical procedure are asymptotically optimal. These
procedures are described by skipping r candidates and taking the
first relatively best candidate arriving after T (If there is
one.) If none appear by the time n is reached, go back and solicit
the bes;.

In this chapter, we will use é technique similar to Smith, A
certain class C of p(-)i will be considered. For this class,
backward induction is feasible and is used to solve the problem.

The limiting solution is easily derived using results from Chapter 2.

Next, the asymptotic solution for a general p(e) is considered.
It turns out that the class C is asymptotically essentially complete
in the sense that the limiting risk, as n—«, depends only on p(®)
and can be computed using the unique member of C with the same value
p(=).

Both the procedure and the limiting risk are obtained at least
as easily as the classical case, That is, they aré given by a
differential equation with a right boundary condition.

Specifically, the results for the best choice and rank problem

are obtained., The best choice result agrees with Smith,



2, Non-optimal Procedures

Suppose we have just interviewed the k&h candidate to arrive,
(We are at time k.) Our available procedures are to attempt to hire
(solicit) any or all of the previously interviewed candidates (and
in any order) or go on. Let us denote each of these procedures by
an ordered set Jk = <j1, jz,..., jﬁ> for some L<k, jn # jm and
1< jn.é'k' By Jk we mean the following procedure: First.solicit
the candidate of current relative rank jl’ 1If she refuses, solicit
the candidate of current rela;ive rank j2. If both refuse, solicit
the candidate of current relative rank j3. And so on, If all £
refuse, go on. (That is, interview the next candidate.) Jk = f
is interpreted as going on without solicitation.

In general, the optimal choice of Jk is random., It depends on
both the arrival times and the availabilities of all previously
interviewed candidates. Jk cannot be specified prior to the start
of the process.

The ti(k) (recall (4.6)) contain information on both avail-
ability and arrival times of all previously interviewed candidates,
ti(k) < 0 means the iEE relative best is unavailable and ti(k) >0
tell how long ago she has been interviewed. Let us represent the
past by Tk = (tl(k), tz(k),..., tk(k)). Thén we know the optimal
procedure is some Ji(Tk). That is, if 'l‘k were known, the optimal
procedure could be found. But there are 2? k: different T% 80 we
cannot possibly specify all J;(Tk)é.

Despite this difficulty, it is not too hard to show that

certain procedures are inadmissible, and dominated by an essentially

complete class,
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The first result is obvious, do not solicit a candidate who has
previously refused an offer. Once an individual has refused, she will
always refuse so the additional solicitation is useless. However, there
is no solicitation cost and it may be notationally convenient to include
this individual in the solicitation set.

A true reduction in the class of admissible procedures can be made

using the following theorem.

Thm, 4.1 An essentially complete class CO is given by

C0 = [Jk Iwith probability ohg the co-ordinates of Jk are in increasing
order}.

Proof:

The proof is a consequence of the following lemma:
Lemma 1 If X; < X2 Seees X 0< Py <1 for i=1,2,.e., n and o is

a permutation on 1,2,,.., N, then-

n i-1 n i-1

o <351 @-», )> =1 <1><jfl(1 g (a)’) %) *
Proof:

Choose £ so that g(g+l) < o(4).

o(i) i# 4, 4+

Let ol(i)

ot () = o(gtl)

oL ()= 0 (p).

Then
i=1 \ i-1
E n@d-p )] X - 2: m (- )] X =
i=1 pc (1)< o (J)) "Ul(i) i (1)< pd(j)) o (1)
‘e'-
n@-p )[ X +(1d-p; )P, Xy -p X
s o Pl sl ot (1) ot (ely ot (a1 o8O
) - (I-Pc(z)) Po(e+l) c(£+1)
z—

A T [ou)%uﬂ)‘ o ()" ou>)] =0

since X 411y S X (0"
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Applying this result for every {4 where o({+1l) < o(£), we get
successive inequalities that prove the lemmaz%7
The proof of the theorem follows easily since j1 < jz implies
R k) <R
3, <Ry,
regardless of the order of solicitationkéﬁ’

(k) (recall (4.7)) and the going on risk is the same

8o we only need consider procedures that solicit in increasing
order of rank.

Aﬁ interésting thought arises next. Suppose you are at time k
and an "acceptable" procedure calls for soliciting an individual of
relative rank j. Ié it always better to solicit a candidate of
lower rank first? That is, is there a situation where you want to
golicit a candidate of rank j but not one of rank i where i < j?
Intuitively the answer is no. if you are willing to take someone
who is fifth Best, then you should at least try to get someone
second best. Unfortunately, theré are no.clear relationships bes=
tween the going on risks given a candidate is available and given
shé is not. I will state the conjecture in general and prove it
in a special case that applies to the asymptot;cally essentially
complete class,

Conjecture 1 An essentially complete class C1 is given by

¢; = {313, =< 1,2,..., 4> for some 4).

The order of J, is gﬁaranteed by theorem 4.1. If the conjecture

k

were true, then we have a much simpler situation than we had imagined,

The Jkg are still random but the number of possibilities has been

reduced to k-kllavailable strategies, namely £ =0,1,2,.44, ko



62

A speéial case of the conjecture is the following theorem:

 Thm, 4,2 On {p(t, (k)) = 1 for some jnlé Jk]’ we can replace

J
m
Jk by JL =< 1,2,000, jm:> without increasing the risk. We may
actually decrease the risk.
Proof:
Let jl’ j2,..., jm be the first m components of Jk' Theorem
4.1 assures us that j1<j2<...< jm. Assume jz<j.< jm_i_for some
integers £ and j. (If this is not the case the proof is complete.)
I claim that 31: =< Jirenes Jgo Js Jpiqeeees 3> 1s at least

as good as J Let Lk and ik be the respective expected losses

k.
using Jk and 3k given we have reached time k. A direct calculation
gives
"~ ‘6-1 m i"l
L L = I [1-p(tj (k)] 2 1;)(tj (k))< I[1-p(t, (k))]>
n=1 n i=0+1 i n=4f In

+ Rji(k),'_p(tﬁ (k) Ra(k) -1 -P(tg(k))]

m i-1 .
+[ z P(tj (k))< i [1-P(t_:j (k))]> Rji(k)]
n '

i=g+1 i n=g
Cm i-1
= T p(e, (k) < I [1-p(t, (k))]) [R, (k) -Rg(k)l?_oo
i=g+1 Iy \n=1 In I

Successively applying this result at all g fbr which jﬁ< j£+1-1, and
prior to j; if j].#l, we arrive at our theorem?¢¢?

Conjecture 1 cannot be proved in the same way because we typically
have a going on risk. Using the k-hat procedure we have a smaller risk
if we stop but a larger risk if we.go on., (Since one less candidate
is available in the future.) Nevertheless, it is reasonable to assume
that, if it is better to take the candidate of rank jm than go on, it
ig even better to take the candidate of ramk j < e

A
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If conjecture 1 holds, we can concisely specify the optimal
procedure. At each time k, we need only specify zk==£k(Ik)
indicating the following procedure: Solicit the candidate of
relative rank 1 if she is available, If she refuses, solicit the
candidate of relative rank 2 if she is available. If both refuse,
etc, If all zk refuse, go on. (Lk = 0 means go on without
golicitation.)

Of course Ek is random (depending on the past) so even if
conjecture 1 were true, backward induction is not generally useful.
But this type of procedure is of sufficient importance that we
maintain the notation for later use.

Our next theorem is intuitively obvious but still must be
carefully proved. As the probability of successful solicitation
increases, the minimal expected loss decreases. Formally,

Thme 4.3 If pl(i) > p2(i) for i = 1,2,..., n and q(+) is £ixed,
then Vi < Vﬁ where Vi is the optimal risk corresponéing to pi,
i=1,2,

Proof:

Even though backward induction is too lengthy to use in practice,
it still gives the theoretical solution and is useful in this proof.

Let V; (i=1,2) be the optimal going on risk given we are at

|T
k
time k with the '"past" T, known., It suffices to show V1 <
k ank n]Tk
for all k, Tk'
At time n, we must select a candidate so both theorem 1 and
theorem 2 apply. Therefore, we solicit in order of increasing rank.

Since q(*) is non-decreasing,

1

v < for each T .
nITn - n

n[Tn



Assume the same is true at time k, i.e.,
Vl < V2 for each T ;
ank = nITk k
Congider the optimal procedure for the p2(-) problem applied
at time k-1. (Knowing Tk-l ) Necessarily, the risk for stopping is
smaller than the going on risk., (Otherwise it is not optimal.) The
same procedure, applied to the pl(o) problem has both a higher
probability of stopping and a lower going on risk. And this proce-

dure is not necessarily optimal for pl(-) given Tk-l‘ Therefore, we

have reasoned

1 V2
v < £ h T .
n|T,_; = n|T or each L1

and by induction our theorem is proved.4¢7

3, A Special Class of p(+)

In this section we consider a special class of p(+) functions.
This class was chosen for many reasons. One, mentioned earlier, is
the property of asymptotic essential completeness., Another is the
feasibility of backward induction. The form of the optimal solution
is easy to write down and lends itself readily to the analysis
developed in chapter 2, The limiting solution is obtainedvthrough a
differential equation with a given right boundary condition. The

class C considered is

4.9) pi) =1 i=0,1,2,00e, *
=p*  i=rtl, TH2,... (0<p* < 1).
We can immediately classify the form of the optimal risk.

Prop. 4.1 If p(*) is of the form (4.9) then the minimal risk is

attained using only procedures Jk satisfying

64
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(a) Jk = @ or Jk =< 1,2,.0., Yk-r(k)>
(@) on (3 =fforall k< k*<nm, I, #0,

Y () = min Y ()

s<r
(c) If r = 0 for each k there exists a constant a, 8o that
Jk =@ if Yk(k) > a,

=<L,2,000, [ (K)> if Y, (K) < a,.

In other words (a) if you solicit then the procedure stops with
probability 1, (b) you solicit only when the best among the previous
r is precisely r units back, and (c) for r = 0 the stopping rules are
no longer random. For r = 0, wait until the first time Yk(k) < a .
At that time, solicit candidates in increasing order of rank up
to an including rank ?k(k) if necessary. Since Yk(k) is the present
candidate, the process will stop gt this time with certainty,
Proof :

LeF k< n. If k =n, theorems 4.l and 4.2 apply so we know
we must solicit in or‘éller of increasing rank. This is equivalent
to Jn =< 1,2,000, Yn_i(n) >,

(a) Suppose Jk # @ and Yk_r(k) ¢“Jk' Let us assume

IR TEPSIIEN MR S L MR NP Jet1;m ™

(Recall these are typically random.) From time k to time k+1,

only the probability of recalling the candidate who arrived at

time k-r is changed so we obviously obtain the same risk using

e =P Tgn = UpeoTir) =<y goeees Ik, 0031, 170000 g, e
We can repeat this argument on Ji+1 provided Yk+1-r(k+1) ¢ J£+l' .
Suppose Yk-r(k) € Jk for some k. Then p(tk_r(k)) = 1 so theorems

4,1 and 4.2 appiy and we rewrite Jk as < 1,2,,.,., Yk_r(k)>-.



(b)

(c)
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Suppose Jk ={1,2,..., Yk_r(k)}. (By (a) these are the
conditions given in (b).) Let S0 be such that ¥ = min
k=5 gs<r
[Yk_s(k)]. If So=r, we have nothing to prove. If S0 <-},
then p(tk-s (k)) = 1 so by theorems 4.1 and 4.2 we can rewrite
0

k k

proof applies and we can modify the procedures until S0 =r,

J as J' = {1,2,440, Yk-S (k)}. But then part (a) of the
0

Let r = 0, Since the minimal going on risk is indeﬁendent of
the past and present and the stopping risk is independent of
the past given k and Yk(k), we can use backward induction.
(This will be done later.) For a fixed k then, the going on
risk is fixed while < 1,2,.40, Yk(k) > gives an increasing
risk as the value of Yk(k) increases. This implies the
existance of this fixed constgnt a satisfying the conditions

of (c)./

So for p(*) of the form (4.9) we can make many simplifications.

One mentioned earlier is that Jk(Tk) = zk(Tk). This is simplified

further since either zk(Tk) = 0 or zk(Tk) = Yk-r(k)' We know that

no solicitations are to be made until we are ready to stop, and then

we will solicit in order. Once we reach the time when we start

soliciting, one of the solicited candidates will accept the offer

with probability one. That is, once we reach a point where it is

not optimal to immediately go on, we will stop with probability one.

For r = 0, backward induction works easily so let us set up the

recursion equations. As in the previous chapters let

(4,10) n = number of applicants

(4.11) Vn(p*) = inf E(q(x*)) = minimal risk over all procedures
T

(4.12) CP*(k) = inf E(q(xT)) = minimal risk over all procedures

>k

that interview at least k+l candidates.



67

Then applying (c) from proposition 4.1 we get

k-1
4.13) (1) =2 T (z pr(l ~p0 it q(i)+<1-p*)k'1q(k>>
P k=1 \i=1 _
1 n
IR
n k=1 n
r -1 i-1
(4.14) € (-1) == T min| § p*l-piloe,i)
P Tr=1 \i=1

+ @-p0%1 e, cp*(r)>

1 r |
= ;:- ) m:m(Sr(k), Cp*(r))

k=1
where
£4=1\/n-g
n-(r-i) - -
(4.15) Qr,i) = § qg) il
= (3)
and
| k-1 i-1 k-1
(4.16) 5 (k) = 21 p*¥(l =p*)” "Q(x,1) + (1 -p*)" "Q(r,k).
i=

Implicit in these relations are the facts that Cp*(-) depends
on n and Sr(k) depends on p*, I will not introduce these into the
notation until later when they are needed,

Clearly we have'Cp*(r) increasing in r and Sr(k) decreasing in
r and increasing in k. So we can employ the arguments from the
classical secretary problem to prove that we have cutoff point rules.

That is, in addition to the fixed a, we have a fixed sequence of cutoff

k
points @, which specify the optimal procedure. That is, we are to stop
the first time a candidate of relative rank i arrives after time ;e
Upon stopping, solicit the candidates in order of increasing rank

until a candidate accepts. (One must accept with probability one.)

If we reach n, then solicit in order of increasing rank.
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Prop. 4.2 Cp*(r).is continuous in p* for all n and Te
Proof:
Fix n and use induction on r. From (4.16), Sr(k) is continuous
in p* for all r and k., Therefore CP*(n-l) is continuous in p¥*,
Assume Cp*(m) is continuous. Using relation (4.14) and the fact
that the minimum and sum of continuous functions are continuous,
CP*(m-l) is continuous., This completes the induction hypothesissz
The heuristics of the recursive equations (4.14) are straight-

forward, Normalize {1,2,..., n} to {%5%3..., 1} and let r/n—x. Then

(4.17) Cp*(r/n)-' fp*(x)
k-1 iel k-1
(4.18) Sr(k) - T, (x) = i§1 p*(1 - p*) Ri(x) + (1 - p*) R, (%)

where Q(r,k) -R (x) = cZ?qu(%) z-i xk(l-x)’z’"k-
4= k-

Writing (4.14) as a difference equation and letting this tend to a

differential equation we get

13 . + -
(4.19) fé*(x) =2 kza[fp*(x) Tk(x)] subject to
£, = % q@ pra-pi Tl pxgo
P i=1
= sup q(i) p* = 0.

Remark: For p* = 0, Tk(x) = Rk(x) and we have the classical
differentiai equation fé(x) = % kgtl[fo(x)--Rk(x)]+ subject to
fo(l) = sup q(i).

Chapter II developed a method formalizing the heuristics of such
an argument. The results can be applied here to show that the
difference equation indeed tends to the differential equation and
the risk Vﬁ for the finite problem tends to fp*(O), the corresponding

risk for the infinite problem,
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It is easy to verify properties (2.1),.(2.8), (2.9), (2.10), and
(2,11) hold for Tk(x) for each value of p*, So wé immediately conclude
that (4.19) holds for the infinite problem with loss function Tk(x).

Assume p* is such that fp*(O) < w. That is, assume a solution
to the differential equation exists for this value of p*. We want
to shcy Vn(p*) - fp*(O) as n - o, The.result follows from Chapter 1I.
Thm. 4.4 If fp*(O) < w, then Vh(p*) - fp*(O).

Proof:

Since suplsr(k) -Tk(-rr-l> | -0 as n-o, we can quote corollary 2 of
k,r ’

theorem 2.4 to prove

(4.20) Lim V(p%) 2 £,,(0).

For the other inequality we use a trick of Gianini [6]. Let us
look at the infinite problem where we are given additional information.
Assume we are told whether a candidate is one of the best n or not.
Obviously we will only consider stopping on one of these best n. Let
V; be the associated minimal risk. Two things are obvious. First
this problem is identical to the finite problem i.e.,

V; = Vh(p*) for all n.
Second, since additional information is supplied, this risk is smaller
than the risk for the infinite problem with no additional informatién il.e.,
V; < fp*(O) for all n.
These, along with (4.20), prove equality2¢7

For p* increasing, Tk(x) is decreasing for each k and x so we
can trivially conclude fp*(x) is decreasing for all x € [0,1]. So if
fO(O) < o, we know.fp*(O) < « for all p*., So we get immediate
conditions on q(+) to guarantee fp*(O) < o for all p*, Furthermore,

for all q(-) f1(0) = q(1) so we can conclude fp*(O) < o on [0,t) for

some t,.
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By inspection, it can be seen that fp*(l) is continuous in p¥*,

It would seem logical that fp*(O) is also continuous in p*, no matter
what the loss function q(-). A direct proof is not tractable since,

in general, it is not possible to "bring the continuity down the unit
interval,"

Instead of a direct proof, the following probabilistic proof works:
Prop. 4.3 If q(s) is truncated at M, then fp*(O) is coni:inuous in p*,
Proof:

Let p* T p*. Since fp*(O) is decreasing in p*, lim fp*(O)pr*(O) .

Let 0 < % < Xy SeeeS Xy = 1 be the optimal cutoff po;.lnts for the
p* problem, Apply this rule to the p;:: problem. Suppose the process
stops at time x. Then the number of unsuccessful solicitations by the
p;'; and p¥* 'processes are respectively Nll\ Yx and NZAYx where Nl and N2

are geometrically distributed with parameters p: and p*, Rewrite Nl as

N, =N with probability pg/p*
= N2 +N with probability 1 - (p:/p*) where N~ geometric (pX)
and N3 is dependent of NZ'
Since for every x, T= x => Yx < M, we conclude
n T p
| £ (0) + [1- (pX/P9)] q0).

fp*(O) < EP#I(XT) < E*q(xT) +[1 = (p¥/p*)] q()

The right hand side goes to zero as n—« so we get equality. The same

process can used for p;l‘f i p*/

In general we have

Thm. 4.5 fp*(O) is right continuous in p*,



Proof:

Let P:l p*. We immediately have lim fp*(O) < fp*(O). Let
n
fg*(O) and fﬁ*(O) be the minimal risks corresponding to the truncated

loss

(4.21) @) = qE) Aqm) .

Using proposition 4.3 we have

lin £,(0) > Lim £5,(0) = £,(0) for all M.
o -, P P
n-—wo n n— o n

But applying theorem 2.3 from Chapter II

£,(0) - fé*(O) as M - & 80

Lin £,(0) 2 £,(0).
n-—ow n

Therefore we have equality:¢¢7

For the main theorem of this_chapter, right continuity is
sufficient. In general, it would seem like left continuity should
also hold. For the rank problem, solved at the end of the chapter,
left continuity can be shown. But'in general, the technique used
for that proof will not work. |

We have totally solved the problem with r=0. A similar but
more complex méthod can be used on the problem with r > 1. Since
we are only interested in the limiting solution, we:consider only
the next theorem. This theorem states that the limits are the same

for r=0 and any r > 1.

Thm. 4.6 Let p-(0) =1 and p2(i) =1 i=1,2,ee0, T

pl (i)

p*¥ for i > 1 pz(i) p* i>r+1l.

Then for r fixed,

Lim VA(p%) = lim V(%) = £,(0).

n-—-+o n=- o
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The intuitive reasoning behind the theorem is quite simple.
Suppose we can solicit r individuals back with probability one of
acceptance. For r fixed, r/n-0 as n-o so in the limit the P ( )
problem should behave as the p ( ) problem.

The actual proof is more complicated.

Proof:

P (1) <p (1) so by Theorem 4.3
(4.22) Tim V2(p*) < lim V> (p%) = £ (0)
* n -— n p* L .
For the other inequality, consider the truncated loss (4.21).
Let Vﬁ’l(p*) and Vﬁ’z(p*) be the risk corresponding to (4.21) for

Pl(‘) and pz('). It suffices to show
. sM LM _ M
(4.23) Lin VM (p%) > Lin V) = £5,(0)

because we can then conclude lim Vi(p*) > lim VIZI’M(p*) > f;i*(O) -
fp*(O). So let us verify (4.23). Consider the pz(-) problem.
Proposition 4.1 applies and we will use (a) and (b). These two can
be used to show the optimal rule is to solicit when (1) Yk_r(k) <
Yk_s(k) for s = 0,1,2,..., r=1 and (2) SYk-r(k)(k) < Ck(Tk) where
Ck(Tk) is the going on risk. It is easy to verify that Ck(Tk) is
independent of the first k-r arrivals. That is

() = Gy (s Yy (seees Y (B)),

i.e., Ck(Tk) depends only on the relative ranks of the last r-l
candidates. For notation ease, let Tk-Tk_r==(Yk_r+1(k),..., Yk(k)).
Let

Ck== sup{C(T, - T, _) where Y (k) > Y (k) for s=0 1,..., r-l].
k “ke-r

T = Tger

1a

v
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Then clearly C(Tk-Tk_r) < Ck==> Yk-s(k) < M for some s=0,1,.,.,., r-1,

(Recall q is tmncafed at M.) Define constants bk-r by
, k
bk-r = max [1|Si(k) < € where Yk_r(k) = i}
= 0 if the above set is empty.

Using the optimal rule, there is a positive probébility of stopping

at time k if'Yk-r k) <b If Yk-r(k) > bk-r’ go on,

k-r*

These bi induce a stopping rule on the truncated pl(.-) problem,
Call this rule 'r:;* and the corresponding risk VI];*. The rule 'r:;* is
to stop the first time i wﬁere Yi(i) < bi' Upon stopping, solicit
in order of increasing rank.

Let Ti’M and Vﬁ’M be the optimal procedure and risk for the
truncated p2(°) problem,

By definition 7" < m2°M, Since q(i) < 400 < =, 5.0 -

_ Si(k-r) -0 uniformly in i, k as n.—‘;:o 8o we have proved (4.23) if

2,M_ 1

*
P(T T +4+1r)-1 as now,
n n

2,M

% :
Assume T:l =X, By definition of Ck and b 'Tn’ >x+r only

k~-1>

if a candidate of rank < M arrives at x+l, x+2,:.., or xtr. That is,

(4.24) P(T§3M=Hr l 'Tl].;*=x) 2 (x,:.}.]_-M) (x+}2{+-2M) T (-}H-_;E;M) )

Let a(M,n) = min {i such that bi > 0}. By arguments similar to

these in Chapter II we have a(M,n) -» as n—-«x. We also have

1% _
T > a(M,n) so we can conclude

* : : 1%
P(Tz’Ma'rlﬁ-r> = z P(’ﬁ =x) P(TE’M=Ex+r 'rtll = x)
n n x>a(M,n)

r
Z[zﬂmu] ol e nme

a(M,n)
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So we conclude
L Vi(o%) 2 Un 2 Mow) =Lim V)" 2 Lim VM%) = £, (0) =£_, (0)
and our theorem is proved4¢7
So we have obtained the limiting risk for all p( ) of the
form (4.9). The limiting risk is given by fp*(O) where
f'*(x) -% z [fp*(X) -T (X)]
k=1

subject to fp*(l) = % q(i) p*(1 'P*)i-l p¥ #£ 0
: : i=l

= gup q(i) p* = 0,

The case r =0 gives procedures which are asymptotically optimal,

4. General Asymptotic Results

From the special class (4.9), we deduce the general asymptotic
results as follows:

Thm, 4.7 For any given p( ) and q( ), lim V = fp*(O)
- oo
where p*¥* = lim p(n), V = minimal risk for p(+), q(°), and given n,
N=-o ’

£ (x) = 3 k§1[f +@® =T 1% subject to

£.(1) = 3 q@) pr-p®* 1 pr g0
4 i=1
= sup q(i) ’ p* = 0,

Proof:
1,, : .
Let p7 (i) = 1 i=0
p* i = 1,2,3,-..
Then p(i) 2_p1(i) for all i so if Vi is the minimal risk associated

with pi(e),

(4.25) Timv <Tim vV = £4(0).
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Let ¢ > 0 be given. Choose N(¢) so big that n > N(e¢) implies
p(n) < p* +¢.
Let p’(i) =1 1=0,1,2,00e, N(e)
= p¥*t ¢ i =N() + 1, N(e¢) + 2,4,
Then p(i) S_pz(i) for all i so if Vﬁ is the minimal risk associated
with p2(°), |
(4.26) lim V> lim VIZ1 = fp*+¢<°)'
Since fp(O) is right continuous and (4.26) holds for all, ¢ >0,
lim V)2 £ 0 2 1im v,
and we have equalitygff?
In general, the exact solution to the finite n-girl problem has
been shown to be unobtainable, In spite of this, we have obtained

the limiting value for the minimal risks. Many procedures will

actually obtain this limiting value. We will present a particular

solution,
Cor, 1 The cutoff point rule given by the recursion equation (4.14)
. 1 I
icee, C(r-1) = T ¥ min (Sr(k), c(x))
k=1
k-1 L i-l k-1
where Sr(k) = Zl p*(1 = p*)” "Q(r,i) + (1 - p¥) Q(x,k)
i=
e (e =1\ /n-g
;oo mn(r-i) (i-l) (r-i)
and Qr,i) = T q) m
_. e ()

is asymptotically optimal in the sense that lVﬁ--C(O)I-oO.
Proof: | -
We have shown C(0) - fp*(O) as n—o in section 3 of this chapter

and our theorem states V- fp*(O), as n-w therefore ]Vn - C(O)I -0

as n-oco./



- 76

Smith [18] solved the best choice problem. We can easily show
that our results agree with his general results,

Smith showed P(best choice) = e (1=p¥) and the limiting optimal

. - -p¥
procedure is a cutoff procedure with rn/n - e (1-p ).
Let q(1) =0
q(i) =1 i =2,3,b,... .

Then,

Rl(x) =1-x ,

Rk(x) - 1 k = 2,3,4,...,

Tl(x) =1-x ,

Tk(x) = p*(l "x)+ 1 - p* k = 2,3,4,..-,

£,(1) = 1= p*< T (x) for k = 2,3,4,..0, .
So £ is the only cutoff point # 1 and our differential equation
| - 9 fp*(x) Lo :
becomes fp*(x) = ” - = on [tl’ 1]j.
This is the same as
) ]
<f2*(x)> o x-1
X 2
. x

Integrating gives

fp*(l) i fp*(t]_) ) 1 x-1 dx = 1 - on(t,) - 1.

1 t, I 2 1 t
e X 1
1

and since fp*(O) = fp*(tl) = Tl(tl) = l-tl,

t, = e-(l =pY) lim rn/n and

1

fp*(O) e1-e1=P® oL P(best choice).
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4. The Rank Problem

Let us novw consider the rank problem q(i) = L. By applying the
approximations considered in proposition 4.3, we can show that

£p*(0) is both right and left continuous, as the solution will iﬁdicate.

Computations yield

Rk(x) = k/x
k * X P
P
k
= X p* m
v 1
fp*(l) = ok p* # 0
= [ ) p* =0 .

Since fp*(l) > Tk(l) for all k, there are an infinite number of cutoff

points. On ; ai’di+1] we have

i K
£ ) = s £,00 T 1-(1-p).  px#0
P x P k=1 -
i
1 K
e= f ,(X) = - * = 0,
5 ) k§1 2 P

Ignoring pkx =0 for the moment, We get

£ | £ (%) i fp*(x) C1-pr(it) -4 Y i
—P—-——xi 'P‘"xi ! - o2 12 -
P X

* - :
Integrating from o, Fo,ai+1 and using fp (ak) Tkork) we obtain

o = o
L - (L+ ()P0 (1 - P%) i+

i
i+l 1 - (L+ip*) (1-p*) i+l

§ 7. )
“[1+2] oy | p* = 0.
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But a - 1, see Mucci [13] so

[

| 1 | | .
n[iartpmna -t t+ :
*1 " T+ - pr#0
i=1{1-QQ+ (i+1)p*) (1 - P*) '
1
© 1
T i+l
= 1 a'z'] p¥ = 0.
i=1 L
Since fp*(O) = fp*(al) =.1471,
. 1o
oo o i+l i+l
- * - * .
£ ,(0) = T [1 .(14-(i+1}p ) (1 ip ) p* 4 0
1=1 L1~ (1+1p*)(1 - p¥)
1
o i+l
II [iig] p* = 0,
. i
i=1

Taking the second derivative of fp*(O) and using the fact that
the first derivative ig negative, it is possible to show fp*(O) is

convex in p*. Some values and g graph is given,

Table 4.1 Some limiting values for the rank problem with recall.

pk 0.0 |0.05/0.1 | 0.2 0.3 0.4 [0.5 [0.6 |0.7 | 0.8 0.9 1.0
£#(0)3.87]3.34 3.01] 2,53 [2.19] 1.92 | 1.70 | 1.52 | 136 123 1.11]1.00

Of course, for a specified recall function p(-) many asymptotically

optimal rules exist, In general, the exact optimal rule takes an

extremely complex form, requiring far too many steps for computation. -
What is given, however, is a relatively simple rule providing a good
approximation to the exact risk and giving the_means to examine the

limiting risk.
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