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ABSTRACT

Let Xl"
sequentially. The problem is to select the maximum observation in

..,Xn be a random sample of size n which are observed

the sequence while observing the random variables one by one without
recall. Gilbert and Mosteller [J. Amer. Statist. Assoc.'él, 1966, 35-73]

have treated this problem in the situation of no prior information con-

cerning the random variables (the dowery or secretary problem) and in the
situation that the fandom variables are i.i.d. with known distribution

F (the full-information game). The problem is treated here in the
intermediate case of partial prior information by means of the Dirichlet
process prior introduced by Ferguson [Ann. Statist, 1, 1973, 209-230].
Optimal sequential decision rules are developed and compared, using the
probabilities of correct selection, toithe optimal rules for the

secretary problem and the complete information game.
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1. Introduction. In the dowery problem, there are n slips of
paper with one number on each, correspoﬁding to the monetary values of
the doweries of n girls. The problem is to select the slips of paper
one at a time, stopping at that slip with the largest number, where
one is prohibited from going back to a previous selection. Thus, at
each stage, the choice is to either select that dowery and stop or to
continue and select one of the remaining; In the event that there is no
information concerning the distribution of the numbers, this is also
called the secretafy problem. If the numbers on the slips of paper
are i.i.d. from a known distribution function, the problem is referred
to as the total- or full-information game. Gilbert and Mosteller
[6], among others, have treated both these problem in terms of optimal
decision rules and the probabilities of winning. However, often there
is neither total distributional ignorance nor certainty concerning the
distribution of the dowery numbers. The purpose of this paper is the treat-
ment of this problem under partial prior information concerning the

distribution function. An allied problem is rank estimation with prior



information, which has heen treated in Campbell and lollander [3].

The key to the partial prior information problem is Ferguson's
[5] Dirichlet process prior. The notation and preliminaries concerning the
Dirichlet process are introduced in Section 2. Section 3 is devoted to
the developmént of optimal rules for a game based on the Dirichlet process.
In Section 4 the probabilities of winning for this Dirichlet game are
contrasted with the probabilities for the secretary problem and for the
full-information game. The question of performance of the Dirichlet rules
in non-random situations is addressed in Section 5 under the realistic
assumption that the underlying distribution function is unknown yet
estimated. In the event of less than perfect estimation, the Dirichlet
rules will be seen to exhibit an element of robustness not to be
found in the full-information rules employed with the estimated

distribution function.

2. Preliminaries. This section defines the Dirichlet process

on the real line g with Boel o-field @8 and its properties which will be

of use in the sequel.

DEFINITION 2.1. (Ferguson) Let (R ;8) denote the real line with

Boel o-field g and let o denote a non-null, finite measure on (R,3).: Then

P is a Dirichlet process on ®,3) with parameter o if, for any k = 1,2,...,
and every measurable partition (Bl,...,Bk) of R, the vector (P(Bl),...,P(Bk))
has a Dirichlet distribution with parameter (a(Bl),...,a(Bk)).

DEFINITION 2.2 (Ferguson). The real-valued random variables X X

17Xy



constitute a sample of size n from a Dirichlet process P on (R,8) with

parameter a if, for every m = 1,2,..., and measurable sets Al""Am’

C ,C_,

17006,

[ =]

Pr{Xlecl,...;XhECan(Al),...,P(Am),P(Cl),...,P(Cn)} =i

1P(Ci) a.s.
where Pr denotes probability.

THEOREM 2.3. (Ferguson). If X is a sample of size one from P’ then

Pr{X¢A} = a(A)/a(R) for every Acg.

THEOREM 2.4. (Ferguson(1973)). Let P be a Dirichlet process on (R,3)

with parameter o and let Xl...,Xn be a sample of size n from P. Then

the conditional distribution of P given xl,...xn is a Dirichlet process

n :
with updated parameter o + Z GX » where for each Aeg, GZ(A) =1 if

1=1 "1
z€A and §_(A) = 0 if z ¢ A.
THEOREM 2.5. (Campbell and Hollander [1]). If Xj,...,X_ is a sample of
size r from a Dirichlet process on ®,8) with parameter o and if
AE@n, the n-dimensional Boel o-field for Rn, then for r < n,

Pr{(xl,...,xn)eAlxl,...,xr}

= *
/ Pr{(Xl...,Xn)eAle,...Xr,F}an (F),
where Qa* denotes the probability measure induced on the space of

distribution functions by the Dirichlet process with updated parameter

T

*

a = qa + z §., .
. X.
i=1l i

For Xl...,Xn a sample of size n, let K,L, and M denote the random
variables for the number of Xl...,Xn that are less than, . equal to, and

greater than Xl’ respectively. For a sample from a Dirichlet process,



the following theorem giVes the distribution of the triple (K,L,M),
where the notation y[k] denotes the kl:-}l ascending factorial y(y-1)...
(y-k+ 1) for k a positive integer and y[O] = 1.

THEOREM 2.6. If Xl...,Xn is a sample of size n from a Dirichlet
process on (R,3) with parameter a, then

PRIGLME = (otm) = [P0 Ny @] g

where G 4-1,m-

lyk,l,m("‘) = f a(‘w,x)[k]ﬁi({x}) + 1)[2-1]a(x,m)[m]da(x)_

The proof of Theorem 2.6 is contained in the proof of Theorem 3.6
of Campbell and Hollander [3]. It is clear that expression Wk 2 m(a)
in Theorem 2.7 depends on the measure a. However, if a is a non-

atomic measure o a({x}) = 0 for all X), it is easily verified that
= -1)! '
g = (& 1)-®k’m(aﬁi)),

where @k (c) = f © x[k](c—x)[m]dx.

m
For k and m small, the closed form expression of @ (c) is easily derived;
for example, Ql 1(c) 83 3, 1(c) 1,3(C) = ¢ /20 +C /4 +C /3.

Thus, if a is nonatomic,

Prl0GLM) = (tom) = L ()0 gyn] @an
Note that the distribution of (K,L,M) in such a case depends on the
measure o only through o(R) and does not depend on L, the number of

ties at Xl'

3. The optimal strategy for the Dirichlet game. In this section

the strategy for the following game is developed. Let Xl""’xn be
a sample of size n from a Dirichlet process on (R,3) with parameter a,
where o is known and, for convenience, nonatomic. The problem is to

observe the X's one at a time and to stop at the maximum X, where recall



is not permitted. This is called the Dirichlet game. -‘Note that it is
the dowery problem for which the numbers on the slips of paper are from
a Dirichlet process.

It suffices to consider the problem for o in the following form:
without loss of generality, assume a([0,x]) = a@®)*x for xe [0,1] with
a®\[0,1]) = 0. If o is of the form a(fo,x]) = a(R)-FO(x) for FO a strictly

increasing distribution function on (~=,=), the sequential optimal rules

0

A second general commentconcerns the nature of the optimal rules

are given by F of the optimal rules for a[0,x]) = a®) x.

for this game. If the loss function of the game is 0 if one fails to
select the maximum and 1 if one succeeds in stopping at the maximum,

the optimal rule must stop only at observations which are at least as
large as those preceding it; such observations are called candidates.
Unlike the secretary problem or the full information game in which F

is continuous, ties can occur in the Dirichlet game, even if o is non-
atomic. This stems from the fact that the Dirichlet prior places all
its mass on discrete distribution functions (see Ferguson [5], Blackwell
[2], Berk and Savage [1]1). Thus, the maximum of the sequence may not be
unique. It is therefore necessary to distinguish the different candidates.
A candidate of order 1 (or a primary candidate) is a candidate which
strictly exceeds all previous observations. A (secondary) candidate

of order ¢ (2 > 1) is a candidate which is as large as all previous
observations, but which is tied with (2-1) previous observations at

the time of its selection.



Let ps(y;k,l) denote.the probability that a candidate x of order
2 at the (k + l)Eh-selection is the maximum of tho sequence Xl,...ﬁl
from a Dirichlet process, where y is such that a(~,x) = y. Thus
ps(y;k,l) denotes the probability of winning the Dirichlet gamé by
stopping at a candidate of order % at the (k+s2)£h draw. It is straight-

forward to compute this probability.

THEOREM 3.1. If Xl""’xn is a sample of size n from a Dirichlet process

on (R,3) with parameter o, then
Pt = o+ kr 9/ E@) + ke DY (3.1)
where j = n-k-2 and Xk +9 =X with a(~,x) = y.
PROOF. For distribution function F given, the conditional probability that
Xk .0 is a maximum given it is a.candidate or order 2 is (F(x)jj, where
J = n-k-2 is number of unebserved X's remaining. By Theorem 2.4 the
random distribution funifion F given xl""’xk+,2 has a Dirichlet process

with parameter a" = o + z Gx . Thus, by Theorem 2.5,
i=1 "i

P ik, = [ ®eIaQ () = o(m,x) P jan) UL,

It is interesting to note that this probability depends on Xl”"xk+2
only through the value x of the REh-order candidate, the number (2-1) of
previous ties at x, and the number k of observations less than x; it does
not depend on the value of the other k preceding observations.

Let pc(y;k,z) denote the probability of winning the Dirichlet game
by deciding at stage (k + &) for which there is a candidate x of
order & such that y = a(»,x) to not select the candidate x but to continue

observing X's and to stop later using the optimal strategy. To the end of



finding an expression for'pc(y;k,l), the following lemma is most helpful.

LEMMA 3.2. Let X .,Xn be a sample of size n from a Dirichlet process

127"
on (®,3) with parameter B which is nonatomic except possibly at the point
x. The probability that, of i observations that are > x, the first

selected such that it is > x is as large as the other (i-1) is given by:

12l i [i-1-q]
PCL A1), 80,2 =f [ (LD 6C0x) + ) 0 o(B0x, %))
q:

RGeS P )
PROOF. Let g represent the value of the first random variahle > X. Then
two cases are possible since B can be nonatomic at x: -
Case 1 z = x. Then z is a maximum only if all i values at
equal to x. Given F, the probability of this event is (F(x)—F(x_))i which
when integrated using the Dirichlet process yields B({x})[i]/B[x,w)[i].
Case 2 z > Xx. Tﬁe probability that z is a maximum for the i values

at least as large as x, conditional on F and Z, is (F(z)-F(x-))l_l which

integrates to 8'[x,z][l—l]/s'[x,w)[i—ll, where B' = B8 + Gz. Use that
k . . i-1 .

(a + b)[k] =y (g)a[J]bLk_J] to rewrite this as ) (1_1)8(x,z)[q],
j=0 q=0 ¢

B({xhH+ 1) [i_l_q]/av [x,%) [i-1] -

From Theorem 2.3 the distribution of z (z > x) is known, so integrating

over all z > x,

X8

i-1 . i i
Zo(l(;l)S(X,Z) [q](B({X}) + 1) [1'1“q]dB(Z)/BI[X,m) [1"1]3()(,00)
¥ .

i-1 . s |
L C e oBeom @etxny + ) Bl /g oy [0 ).
q= ’ o



Multiplying this probabiiity by the probability that z > x; namely,
%{%fg%-and adding the probability from Case 1, the lemma is proved. II

It is easy to intuit that p(i,B({x}),B(x,~)) must be at least
as large as %3 since if the observations were from some non-random
distribution the probability would & if the distribution function
were continuous and greatér than %—if not continuous. The rolé that the
mass of the measure plays in the Dirichlet process is illustrated by
the following limiting cases for p(i,z,cj for & a constant, where ¢ tends

to either 0 or .

PROPOSITION 3.3 As c + @, p(i,%,c) + 1, and-as c - ®, p(i,2,c) - &,
1

i-1 . .
PROOE. Iim p(i,2,0) = 1im (] ("hy » pli-l-aly (o, ,li]y,
C > % : 4 c+°°q=0q q,0

1/(c + 2) [1] = 11im {(Di_l O(c) +G(C1-1)}/(C[l] +G(Cl-l))
C > o >
i .
“lim g/eei

| i1, . .
Mso, lin p(is2e) = tin (] (‘o s 1)[1'1‘q]¢q NORERARIE

c >0 c >0 q:O
. [i]
1/(c + gyt =i~m= 1. ]

The quantity p(i,%,c) is useful in caiculating the probability of
winning by continuing, pc(y;k,z).
THEOREM 3.4. If Xl"“xn is a sample of size n from a Dirichlet process
on (®,3) with parameter o, then the probability of winning at the

(k + R)th stage with a candidate x of order & by continuing with the



optimal strategy is:

p_(y3k,2) =_§1(§)a'(—w,x)[j'i]a'[x,«o[-”pci,z,acx,w))/a"m)[j], 5.2)

1=

k+2
where j = n-k-2, a' = g + i 6y. . and y = a(~-»,X).
i=1 i’

PROOF. The conditional probability that of the j remaining observations
exactly i are greater than or equal to x given F is (i)F(x—)j_i(l-F(x_))i.
Integrating F over the updated Dirichlet prior by Theorem 2.5, the
probability that exactly i of the j remaining values are greater than or
equal to x is (i)a'(—m,x)[j_i]a’[x,w)[i]/a’(g)[j]. It is reasonable to
expect that the optimal strategy be such that the indifference values of
x at each stage for which one stops for candidates larger or continues
for candidates smaller must be decreasing. Thus, if the candidate falls
exactly on such a point, if one continues, the optimal strategy is to
select the first observation at least as large as x of the i such
observations. The probability that this occurs is p(i,,a(x,»)).
Therefore, by multiplying p(i,%,o0(x,®)) by the probability that exactly
i future x's are at least as large as x and by summing i from 1 to j, the
proof is completed. ||

In order to obtain the optimum rules for the Dirichlet game, it
is a matter of equating the probabilities ps(y;k,l) and p (y;k,%) for
each pair k and % and solving for y. Let yk,l denote theC$olution for
the pair k and &. The decision rule is then to stop at candidate x if x

is such that a(-=,x) > Yi s and to continue if a(-=,x) < Y g*

Consider the simple case in which n = 2. At the first stage

(k = 0,2 = 1),
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y+1/@®) + 1);
@®R)-y + Dp(1,1,a®R)-y)/(a®) + 1).

Ps(y;o,l)

P, (¥;0,1)

But p(1,1,x) = 1 for all x by definition since there is only one value
> x to choose. Solving for y yields y = a(®)/2. Then if X is the value
such that a(—w,xo) = a(®)/2, the rule chooses Xl = x if x > X and selects

X2 if x < XO'

For each pair k and %, the solution Yien (if one exists) to the equation
pc(y;k,Z) = ps(y;k,l) is unique. In order to see this, the monotonicity
of P, and pC must be noted. That p; is strictly increasing in y follows
directly from equation (3.1). The non-increasing nature of pé is
most easily demonstrated by appealing to the definition of f -- the

c

probability of winning by continuing with the best strategy if a candidate
X is such that a(-®,x) = y. As y increéses, so must x, and hence the
probability of winning is non-decreasing. The strict monotonicity of p
then assures that there can by at most one intersection of functions R, and R >
fork and 2 fixed.

It is possible that no solution exists if one probability uniformly
dominates the other. In such instances, by convention y will be chosen
~to be 0 if P, > P, (one would then wish to stop) and to be a®) if
p < pé (one would wish to continue).

s
Let di denote the solution Yk o when & = 1(i = k + 1). Then Table

5.1 gives the optimum decision numbers di for the Dirichlet game for
n = 5,10, and 20 and a@®) = 1.0, 10.0, 100.0, and 10,000. Table 3.2

provides the Dirichlet decision numbers Yk o in the presence of ties for
3



n

10

20

OPTIMUM DECISION NUMBERS di FOR THE DIRICHLET GAME (%

iEh-draw

NN

Nedie <BRN B N7 EN - SN S

R JAAUVT R WN -

R e b s e e g
\OOO\IO\U'I-h(NNP—‘O

a(R) = 1.0

.80981
.53054
. 04939
.00000

. 90498
.79427
.65820
.48380
.24962
. 00000
. 00000
.00000
.00000

.95198
.90130
.84640
.78601
.71880
.64318
.55713
.45807

.34252
.20573
.04099
.00000
. 00000
. 00000
.00000
. 00000
.00000
.00000
.00000

TABLE 3.1

a(R) = 10.0

.82111
.75016
.62529
.35000

.91258
.89329
.86899
.83738
.79456
.73320
.63794
.47017
.10000
.95604
. 94934
.94190
.93360
.92426
. 91367
.90154
.88751

.87109
.85160
. 82807
.79909
. 76251
.71488
.65026
.55761
.41367
.16000
.00000

a(R) = 100.0

.82418
.77323
.68342
.48500

.91558
.90487
.89133
.87370
.84975
.81541
.76203
.66791
.46000

. 95845
. 95580
.95286
.94955
.94583
.94160
.93674
.93111

.92451
.91666
.90718
.89549
.88072
.86147
.83535
.79787
.73961
.63690
.41000

11

1)

full information

.82459
.77584
.68990
.50000

.91604
. 90627
.89391
.87781
.85595
.82459
.77584
. 68990
.50000

. 95892
. 95671
.95424
.95148
.94836
. 94483
. 94077
.93606
. 93054
. 92398
.91604
. 90627
.89391
.87781
.85595
. 82459
.77584
. 68990
. 50000
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TABLE 3.2

OPTIMUM DIRICHLET RULE FOR N = 5, ALLOWING FOR TIES

k L a®) = 10.0
0 1 .8211
0 2 .7883
0 3 .7083
0 4 .5000
1 1 .7502
1 2 .6674
1 3 .4500
2 1 .6253
2 2 .4000
3 1 .3500

n=>5and g®) = 10.0.

Let a(-»,x) = a@g)F(i) for distribution function F(x). The next
d.
theorem establishes the limits of the rules 3%53 as a{2) tends to

infinity.
THEOREM 3.5. If Xl""xn is a sample of size n from a Dirichlet process

With parameter o with decision numbers d; for the Dirichlet game, then,
d

af-e=,x) F(x), a distribution function, 5%53 approaches

a(R)

the optimum numbers for the full-information game with distribution

as a(R) =+ « such that

Fix).

v i S bt e

. e At i b e ot i ¢+t 2Tk b

PROOF. It is first shown that as a@®) = =, pc(y;k,l)'+ 23 for

. . . . + k + 1
j =n-k-% and z = 1im L— . The J terms in the product ZGR) T

o) » =)

(i =1, ...,j) converge to z as a®) + ~, so pc(y;k,l) -> zJ. By a similar

termwise argument, 1lim p (y;k,2) = % (;)zj_l(l-z)1 lim
wig ) vow i=1 a@) +

Since

H.l —

pli,%,a@®)-y). By Proposition 3.3, lim p(i,2,0@®)-y) =
aR) >

all these functions are continuous in z and o(R), the solution of

p (y;k,2) = p (v;k,y) must converge as a(R) - « such that y/oR) =+ z
S C
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to the solution of
= % h?Tra-2) i,
. i
i=1

which is the equation in Gilbert and Mosteller [6] from which the full-
information rules are derived. ll

It is natural to inquire as to the behavior of the Dirichlet rules
as a(®) tends to zero. It seems natural to expect that the limiting
rules are just those for the secretary problem. Unfortunately, this is

not the case. Let z = lim y/o®). Two cases are of interest:

a®) ~ 0
First, suppose k = 0 and % > 0. Equating ps(y;O,l) and.pé(y;o,l),

we have:

oeB gy gy -y« gl

ew +u0 5 gy 4 m[”

Z e s nte Jagyyy v ol

(@@-y + 2

Multiplying both sides by the non-zero (a®) + Q)[J] and simplifying,

v+ Bl - ,%1(§) ylmil 1l %1(J)y[3 i Dot tagyy.
i= i= q=0

Using the fact that (a + b)[J] = % (ﬂ) a[J—k]b[k] in the case where a = y
k=0

and b = £, the above equation can be reduced to:

. j . aqi=1 . .
ML AN R dhy v pliel)

® -y).
Lo INCIORY
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Now, as a(®) -+ O, rewrite.the left-hand side as (j-1)!y + Rl’ where

Rl is such that 1lim RI/GG%) = 0. Also, the right-hand side can be
aR) - 0

rewritten as 2, o@®RI-V (& + 1)[1'1] *+ Ry, where Jlim RZ/G(S%) = 0.
’ a®) - 0

Since QO O(C) = ¢ and lim y/a@®) = z, the solution for z is given by:

a@) ~ 0
G-Dlz = (1-2) 2 + 13-,

2+ 1/{G-1! + 2+ DIy por o =1,, - Bl gy

[l
(¢
-
N
1}

o
i
N}
-
N
]

(n-D(n-2)/((n-1) (n-2) + 2).

Consider the second case of k > 0, 2 > 1. It suffices as before to

. i-1 . .

. . s _ —g-1

sotve (y + 0T = § )y + U] @y o gy limacl, 0 (@RI

. 1 . - q 9,
i=1 q=0

Note that as a(®@) » 0, y - 0, so that the left-hand side approaches

k[J] whereas the right-hand side goes to 0. By convention, then z = 0

for k > 0.
d.
The optimal rules d.* = Jim = in the Dirichlet game for the
a®) » 0°®)
n-1
limiting case of a(R) =+ 0 and for 2 = 1 is dl* =" d2 = 0,...,

dn* = 0. Contrast this with the optimal rule for the secretary problem

which is of the form d1 =1, d2 =1, ..., dt =1, d
S

' -
where s is the optimal integer depending on n, with %—-+-e 1 as n - o,
For extremely small a(®), it is clear that the Dirichlet game is a poor
model for the non-random distribution function game with the distribution

function unknown. This is not the first situation in which the

Dirichlet model so fails; see Ramsey [7] and Campbell and Hollander [3]
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for other instances.

4. The probability of winning. The probability of winning for any

non-random strategy that has non-increasing decision numbers di is given
in Gilbert and Mosteller [6]. Here, the adjective non-random refers
to the distribution function, be it known or unknown. In the non-
random game with less ‘than perfect distributional information, éne
might consider employing a Dirichlet model and using the Dirichlet
decision strategy. ‘In this section the Dirichlet strategy is compared
to the optimal strategies for the full-information game and for the
secretary problem by means of the probabilities of winning. Also
considered in this section is the probability of winning if the sample is
actually from a Dirichlet process and the Dirichlet strategy employed.
Assume that one has correctly assessed fhe true distribution
function F(x) for the non-random game, but elects to use the Dirichlet
strategy with measure a given by a(-,x) = o(®)F(x) where the positive
value a(R) is used to reflect the degree of belief (see Ferguson [5])
or the confidence in the assessment F(x). (Larger values of a(R)
correspond to more confidence.). Table 4.1 compares the full-information
strategy and the secretary problem strategy with family of the Dirichlet
strategies indexed by a{R) by means of the probabilities of winning. It
can clearly be seen that, as o(R) increases, the probability of winning
with the Dirichlet strategy approaches that of the full-information
game. It is further interesting that for n = 20 and a®) = 1.0 the
probability of winning for the Dirichlet game is exceeded by that of the

secretary problem. This is a reflection of the poor modeling of the
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TABLE 4.1

PROBABILITIES OF WINNING THE NONRANDOM GAME
Dirichlet Rules

n Secretary Full
problem .oa®R) = 1.0 a®) = 10.0 a®) = 100.0 information

2 .5000 .7500 .7500 .7500 : .7500
3 .5000 .6424 .6831 -.6843 .6843
4 .4583 .5956 .6526 .6554 .6554-
5 .4333 .5608 .6349 .6391 .6392
10 .3987 .4532 ' .5944 .6085 .6087
15 .3894 .3938 .5726 .5984 .5990
20 .3842 .3535 .5554 .5932 .5942

Dirichlet process with small a(R) (relative to n) for the situation of
the unknown distribution function. In short, for a truly nonrandom
situation, if the amount of prior information concerning the distribution
is small, it is actually better to use ho information rather than to

incorporate what little information there is into a Dirichlet model.

Ferguson (1973) suggests a prior sample size interpretation for a(®)

which may help in terms of how to use the prior information.

Consider the truly Dirichlet game in which'Xl,...,Xn is a sample
of size n from a Dirichlet process with parameter a. It is quite difficult
in general to find an expression for the probability of winning this game
by employing the optimal Dirichlet strategy, as detailed in Section 3.
The strategy for this game depends on the number of ties at the candidates

and the order of the observations, so that the sequential decision
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procedure is a triangulaf array dk,Q with 1 < k + E.i n-1and ¢ > 1. In
the very simple case of n = 2, a compact expression for the probability
of winning the Dirichlet game is possible.

PROPOSITION 4.1. For a sample of size 2 from a Dirichlet process with
nonatomic measure a; the probability of selecting the maximum of the

. .1 L -1
sequence with the optimal Dirlchlet strategx is Z{S + (a®) + 1) 7).

1
PROOF. From Section 3, it is known that dO 1= EaGg). Let X1 denote the
iEE—observation and let P, denote the probability of winning by stopping

after the iEh- draw.

=]
i

1 n a®) a(—w,xlf+ 1 da(x)
i P{)(1 > X, Xl 2_'2"0‘&9} = f}ﬂCR) a®) * 1 )
2

|1}

- FERY/ (@) + 1)

In a similar manner,

la®

_ 1 _ (2 alx,») + 1 da(x)
p, = P{Xl 2 XX _<_§05CR)} - [0 a@) + 1 da®)

1 1
=5 -50@R)/ R + 1)).
Thus, the probability of winning is P+ P, = %{3 + (a@) + 1)_1). [

Note that as a(R) tends to infinity, the probability of winning approaches

g? which is the nonrandom full information winning probability. More
interestingly, as o(R) tends to zero, the pirichlet probability of
winning approaches 1. This is due to the proliferation of ties which

the Dirichlet process with small a(®) encourages.

5. The Dirichlet strategy for the nonrandom game. This section

focuses on the nonrandom game with less than perfect information

concerning the distribution function. There are basically three
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alternatives in such a situation. (i) One can ignore all prior information
concerning the distribution and use the secretary problem's strategy.
(ii) One could estimate the distribution function and then employ
the full-information rule with the estimated rather than known distribution
function. (iii) One could use the prior information to estimate the shape
and mass of the ﬁeasure o from a Dirichlet process and then employ the
Dirichlet model to obtain a sequential decision procedure. These three
approaches can be compared via the probability of winning for the non-
random model as in Section 4 if the distribution function estimate is
correct. The difference is that here the estimate F and the true
distribution functioﬁ FO can differ considerably. From Section 4,
it is clear that if aR) is small relative to n that procedure (i)
(the secretary problem's strategy) is the only one to be considered.
If aR) is relatively large, one of (ii) or (iii) should be employed. 1In
ordgr to compare (ii) and (iii), it will be assumed that the estimate
of F of FO in (ii) is also the shape of the Dirichlet measure in (iii),
i.e., &(—w,x) = a®)F(x). If the estimate F agrees everywhere with the
true distribution FO’ table 4.i demonstrates that the full information
strategy is to be preferred. The question addressed in this section
concerns the comparison of the sequential decision rules in the
presence of less than perfect estimation of the distribution function.

In the study of the robustness of these procedures, it is helpful
to interpret the parameter a(®) for the Dirichlet Procedure as the
size of a previous sample on which the estimate F of FO is based.

Without loss of generality the true distribution function FO is the
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uniform distribution [0,1]. The metric employed to reflect the distance
of the estimate F from FO is D = s%plF(x)-FO(xﬂ. The following are

the inverses of 8 smoothed but incorrect estimates for Fo(x) = X:

1P = 2x-x° ?25
2. BN = %7+ 3x%(1-x) .0963
3. F 0 = x° + sxtaex) + 10x3 (102 .16
4. F4+(x) = Vx .25
5. F(x) = x + k(.05 k=1,...,9 (0.05)k
6. Fo'(x) = (10/(10—k))(x—%9 +2 k=1,...,9  (0.05)k
7. P (x) = ((10-k)/10)(x—%9 . %- k=1,...,9  (0.05)k
7. K1k 0<x <2 k=15 .0741

70 122811k %-g_x <1 k= 2.0 .1250
8. Logkld gk o, <1

Fg_(x) = {%-+ Zk_l(x ) %Jk %_E-X < Same as F./.+

k = 1.5,2.0,

Define F,”(x) = 2x-F,"(x), for i = 1,2,3,5,7 and define F8+(x) = 2x-Fg" (x).
The reason that pairs F' and F~ are considered is that the pairs

F* and F~ are the same vertical distance but in opposite directions

from the line y = x at the same point. The superscripts "+" and

"-" are used to denote whether the distribution function is above or
below the line Fo(x) = X near x = 1.

Tables 5.1 and 5.2 present the probability of winning for n = 5

and n = 10, respectively, when the true distribution function is



o®) =5
100

Full information
k
oR) =5
afR) = 100
Full information
k
R) =5
aR) = 100
Full information
k
J®) =5

®) = 100
%ull information
k
a®) =5
a®) = 100
Full information
k
aR) =5
ale) =100
Full information
k
a(’g) =5
a(®) = 100

information

- Ful1l

TABLE 5.1

COMPARISON OF RULES FOR DOWERY PROBLEM FOR N = 5

.6267
.6391
.6392

.05

.6298
.6299
.6288

.05

.6098
.6299
.6307

.6275
.6356
.6352

.6212
.6359
.6363

1.5

.6220
.6192
.6179

1.5

.6041
.6223
.6231

WITH INCORRECT DISTRIBUTION FUNCTION

.5437
.4809
.4749

.10

.6142
.5959
.5933

.10

.5832
.6074
.6087

.6191
.6184
.6172

.6120
.6276
.6282

.5991
.5781
.5758

2.0

.5787
.5985
.5996

.5323
.5651
.5762

.15

.5740
.5301
.5253

.15

.5504
.5761
.5775

.5892
.5708
.5679

. 5996
.6153
.6159

.6128
.6039
.6019

.20

.5224
.4505
.4435

.20

.5141
.5393
.5408

4 -

.5414
.4972
.4917

.5848
.5994
.6001

.5944
.6124
.6133

.25

.4806
.3915
.3843

.25

.4766
.5000
.5015

.5060
4414
.4362

.5679
.5809
.5815

.5813
.5520
.5485

.30

.4436
.3415
.3311

.30

.4394
.4603
.4617

.4658
. 3895
.3765

. 5496
.5604
.5609

:5672
.5857
.5869

.35

.4205
.3092
.3030

.35

.4039
L4217
.4229

7

.4664
.3529
.3531

7

.5302
.5384
.5388

1.5

.6248
.6215
.6203

1.5

.6049
.6240
.6249

20

F4

.6149

.5835

.5672

.40 .45
.3840 .3482
.2862 .2552
.2778 .2441
.40 .45
.3707 .3404
.3855 .3523
.3865 .3531
8 9
.4562  .3500
.3526  .3517
.3531 .3531
8 9
.5099 .4892
.5154  .4919
.5157  .4920
2.0

. 5991

.5781

.5758

2.0

.5787

.5985

.5996



a(R)

a(R)
Full

a(R)
aR®)
Full

a®)
o ()
Full

a(®)
aR®)
Full

o®)
e®)
Full

aR)
oR)
Full

a®)
¢R)
Full

10
= 100
information

10
100
information

10
100
information

=10
100
information

10
100
information

10
100
information

= 10
= 100
information

TABLE 5.2

COMPARISON OF RULES FOR DOWERY PROBLEM FOR N = 10

. 5944
. 6084
.6087

.05

. 5895
.5735
.5683

.05

.5548
. 5807
.5834

1

.5912
.5834
.5793

1

.5687
. 5905
.5924

1.5

.5833
.5588
.5524

1.5

.5432
.5736
.5771

WITH INCORRECT DISTRIBUTION FUNCTION

.4587
.3766
.3628

.10

.5110
.4424
.4287

.10

.4970
.5249
.5283

2

.5202
.4621
.4495

2

.5288
.5517

.5542

2.0

.5301
.4733
.4619

2.0

.5084
.5441
.5487

. 5881
.5286
.5340

.15

.4379
.3430
.3294

.15

.4356
.4608
.4641

.4515
.3635
.3514

.4828
.5033
.5058

.5558
.5134
.5040

.20

.3804

.2856
. 2706

.20

.3783
. 3991
.4018

.3955
. 3085
.2944

.4358
.4525
.4545

.5228
.5553
.5594

.25

.3401
.2406
.2295

.25

.3283
.3444
. 3466

. 3597
.2607
.2534

.3908
.4034
.4050

.4854
L4112
. 3974

.30

.3083
.2124
.1919

.30

.2861
.2982
.2998

6

. 3302
.2413
.2109

6

. 3496
. 3585
.3596

1.5

.5956
.5792
.5743

1.5

.5540
.5844
.5878

.4921
L5294
.5344

.35

.2735
.1813
.1752

.35

.2514
. 2602
.2614

7

.2970
.1889
.1889

7

.3129
.3185
.3192

2.0

. 5301
.4733
.4619

2.0

.5084
.5441
. 5487

21

.5873
.5554
.5487

.40

. 2554
L1732
.1622

.40

.2230
.2293
.2302

8

.2653
.1889
.1889

8

. 2808
.2839
.2843

.45

L2412
.1586
.1392

.45

.1997

.2043
.2049

.2653
.1889
.1889

.2529
.2542
.2544
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Fo(k) = X but the estimated distribution functions as given .in the
table are used for the full-information strategy and the Dirichlet
rules (agz) =mn and a®) = 100). The following observations are
pertinent in the light of these tables:
1. 1In both tables all the entries are bounded above by the probability
of winning with the full-information strategy and true distribution
FO; namely .6292 for n = 5 and .6087 for n = 10.
2. As a(@) increases (the full-information probabilities can be
considered as the limit us u®) tends to infinity), the probability of
winning for the class F of distribution functioié.(F;)—l which over-

estimate Fo(x) near 1 is strictly increasing and for'the class of

functions (F+)_l which underestimate Fo(x) near 1, it is generally
decreasing. »Thus, in the presence of the incorrect estimate (F+)—1 for the
distribution function, the Dirichlet rules outperform the full-information
rule. The reason that this is so is as follows:

The Dirichlet decision numbers di' for true distribution Fo(x) are
less than the full information indifference numbers di for each i due
to the ties ipherent in the Dirichlet process. Further, most of the non-
zero decision numbers are in the interval [%31]. If FO(x) is overestimated
by the distribution function (F_)-l, the attendant rule is to stop if
candidate x is greater than F—(di) (for full information strategy) or
F-(di') (for Dirichlet strategy). But F (x) < x for x near 1, so
F~ deflates the Dirichlet decision number even more. Then as a®)
increases, the Dirichlet decision numbers with incorrect distribution
function increase to F—(di)’ Thus, the probability of winning is strictly

increasing. However, if Fo(x) is underestimated by the distribution function
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(F+)_1 near 1, the Dirichlet rule becomes to stop if candidate

X > F+(di'). But although di' < di’ F+(di') > di’ so that the effects

of using the Dirichlet rule and underestimating Fo(x) cancel each other
out. The Dirichlet rule in this situation outperforms the full-information
rule with incorrect distribution function, and, as a(R) - =, di_+ di’
causing the probability of winning to generally decrease.

3. For a(®) = n and a(®) = 100, the probability of winning
using the Dirichlet strategy for the class F of overestimated distribution.
functions (F_)_1 deviates little from the value for the full information
strategy. From Tables 5.1 and 5.2 this deviation rarely exceeds .03
‘for n =5 and .045 for n = 10. In contrast for the F' class of functions,
the deviations frequently exceed .100 for bothn = 5 and n = 10. In
that the Dirichlet rules outperform the full-information rules for the
class F+, this suggests.a robustness for the Dirichlet rule in the face
of incorrect estimation of the distribution function which the full-
information strategy cannot match.

4. If all prior information is ignored, the strategy of the
secretary problem is optimal, with probability of winning .4333 for n = 5
and .3987 for n = 10. It is clear that there are entries in Tables 5.1
and 5.2 respectively, that are smaller than these probabilities of winning.
This discrepancy is due to the poor quality of the estimated distribution
function. In such situations it is better to have discarded what erroneous
prior information one might have and to proceed with the secretary

problem's strategy. A more detailed examination of the tables reveals that
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such small probabilities occur in Table 5.1 when the measure D is > .25
for a®) = 100 and for the full-information strategy and is > .35 for the
Dirichlet rule with a@R) = 5. Suppose that a(®) = m represents a
previous sample of size m on which the prior information and hence the
estimated distribution function is based. If one were to use the
empirical distribution function ﬁm as the estimate, the distribution of
D = s¥plﬁm(x)-F0(x)| is that of the well-known Kolmogorov-Smirnov
Statistic. For m = 100, the upper 80% grantile of D is .107 and for
m = 5 the upper 80% quantile is .447. (Conover [4]). If a smoothed
version of the empirical distribution function were employed as the shape
of the parameter o (in order to assure that o is nonatomic), and if a(R)
were selected to represent the previous sample size, it is clear that
large values of D are not.too likely to bccur, and, further, that the
relative largeness of D depends on a(R). For example, if a(®) = 100,
it is unlikely that D be as large as .25 if o is selected on the basis of
a previous sample. This self-correcting mechanism for'the_Dirichlet
rules alleviates the problem of when to ignore the prior information
by using the secretary problem's strategy, provided that a®) is
sufficiently large. Note that the full-information rule has no self-
regulating ability concerning the quality of the prior information.

In conclusion, optimium decision rules have been developed for
the Dirichlet game of recognizing the maximum of a sequence. These
rules behave quite Well for the non—rdndom dowery problem, in some sense
intermediate to the case of no prior infofmation and total priof
information. Furthermore, these Dirichlet estimates exhibit a property
of robustness which the full-information rule with estimated distribution

function cannot match. This suggests the Dirihclet strategy in all



situations -in which some prior information is available, especially

when the prior information is quite reliable.
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