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Abstract

COMPARISON OF EXPERIMENTS AND INFORMATION MEASURES

by
Prem K. Goel and Morris H. DeGroot

- Let g = {X,Sy3 Py» 8 € @} and & = {V,5ys Qy» © €6} be
‘two statistical experiments with the same parameter space'e
Some implications of the sufficiency of Ex for €Y according
to Blackwell's definition, are given in terms of (i) Kullback-
Leibler information contained in the experiment for discriminating
between the marginal distributions of the random variable with
espect to arbitrary prior distributions £, and €, on @, and (ii)
isher informetion matrices when g c:Rk. For a scale parameter 8,
nd kl > kz > 0, the experiment with‘parameter 9 1 is proved to
be sufficient for the experiment with parameter o 2 for a wide
k]ass of d1str1but1ons which includes the gamma dens1ty and the
porma] dens1ty with known mean. Some results of Stone (1961) are
eneralized to the class of experiment with both location and scale
arameters. A method of weakening Blackwell's definition of suffi-
ciency is proposed in whlch EX is more informative than eY if, for
every dec1s1on problem involving e, the expected Bayes r1sk from
is not greater than that from EY This concept is then app11ed
0 present a definition of marginal Bayesian sufficiency when there

re nuisance parameters in the decision problem,
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COMPARISON OF EXPERIMENTS AND INFORMATTON MEASURES*

_ by
Prem K. Goecl and Morris H. DeGroot

Purdue University and Carnegie-Mellon University

1. _Introduction and Summary, Let & = {X,Sx; Pe,e € €} denote a Statistical

X

experiment in which a random variable or random vactor X defined on some

sample space

Sx is to be observed, and the distribution Py of X depends on a

parameter 6, whose value is unknown and lies in some parameter space €. Also,

let & = {v,s

parameter spa

v’ O

ce G,

0 € @} denote another statistical experiment with the same

Blackwell's method (1951) for comparing two experiments

States that the experiment Ek is sufficient for the experiment 8& (denoted

€

Z(X) such that, for

distributions.

X': CY) if there exists a stochastic transformation of X to a random variable

each 6 € @, the randonm variables Z(X) and Y have identical

It was proved by Blackwell (1953) that this method of

comparison is equivalent to Bohnenblust, Shapley and Sherman's method for

comparing two experiments [see Blackwell (1951)] which states that gx is more

informative than EY

if for every decision problem involving 6 and every prior

distribution on &, the expected Bayes risk from Qx is not greater than that from

&

or e-deficiency of

"z LeCam (1964) generalized this notion to a concept of approximate suffj

EX relative to,ﬁy. Some other papers on this topic are

ciency

-

DeGroot (1962) and (1966), Torgersen (1972) énd (1977) and Feldman (1972).

We -shall now give a summary of the results presented in this paper.

*
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IniTheorem 1 of Section 2, we prove that if Ex.z €Y, then for every pair
of prior di;tributions El and 52 on ®; the Kuilback-Leibler (K-L) information
contained in SX for discriminating‘between the marginal distributions of X with
Tespect to 51 and 52 is at least as the K-L information contained in EY for
discriminating between the marginal distributions of Y. This theorem strengthens
result by Lindley (1956) and Sakaguchi (1964).’ Now supp;se that & is an open °
Subset,of thé k-dimensional Euclidean spac; Rk and the usual.regularity
condifibns that permit the Computation of the Fisher information matrices
fxff) and iy(g) are satisfied. It is proved in iheorem 2 that if Cx_i GY,“ )
then ix(g)-iy(g) is non-negative definite for each 6 € @ (denoted €X~z FGY)‘
For k=1, this theorem provides an alternative proof of a result by Stone (1961);
A céunper example is given to show that the converse of this result does not
hold. |

In Section 3, it is assumed that 6 is a scale parameter in the distribution
of Y and that x has this same distribution except that 8 is replaced by ek(k>1).
Let W denote a random variable with distribution identical to that of X with
6=1, and iet-q{t) denote the characteristic function of log W. In Lemma 2,
we show that if ®(t)/¢(t/k) is a characteristic function, then §x”: 6y. It is
hoted that ¢(t) satisfies this condition if and only if ¢«t) is a Self-decomposable
-characteristic function [see Lukacs (1970), p.161], Let Gn(a,b) denot¢ an

éxperiment in which a random sample of size n is taken from a gamma distribution

G(a,b) Qith parameters a > 0 and b > 0, for which the density function is

a-1 :
gW) = ——— exp(-w/b) for w > 0. (1.1)

b?r(a)
Also, 1let Nn(u,oz) denote an experiment in which a random sample of size n is
taken from a normal distribution with mean p and variance 02. The result in

Lemma 2 is used to prove that for any known numbers a>0 and b>0, Gn(a,bek);:



G,(2,b8) for a1l k>1, and'that N 0,0%%) » N (0,0%) for a1l k>1. .

a class of experiments with location parameter & to the class of experiments
with both a location parameter W and a scale parameter 0. For u unknown and ¢-

”
known, it is €asy to see and well known that Nn(u,cz) i_Nn(u,ko“) for all k»1,

given values ¢ > C, > 0. We prove that if f is a Symmetric function on the

Since two experiments € and EY may not be comparable in Blackwell's sense,

Feldman (1972) introduced a weakened definition in which E& is more informative

C* is more informative than EY for a fixed Prior distribution on & if, for every
decision problem involving @, the expected Bayes risk from 8X is pot greater than
that from €§. We then apply this concept to problems in which 9 1s a vector with’
a given prior distribution, and we are interés;ed in decision problems involving
only some of the components of 6. We present a definition of the marginal
Bayesian sufficigncy of Qx for EY in this context. Some examples are given to

illustrate the usefulness of this concept.'




2.¢ Relationships between'Sufficiency and Information. Consider again two

arbitrary experiments Gx and CY with thé Same parameter space ® as defined -
at the beginning of Section 1. We shall assume that there exists generallzed
probability dens1ty functions (gpdf's) p(x|6) and q(y[e) for the distributions
,Pe and Qe, with respect to some o-finite measures u and v respectively. We
shall now investigate the implications of the relation €k 2.8 in terms of
some well known information measures. Let = denote the class of all prior
'distributions on the parameter space ©. Given two prior distributions 51,52

€=, let pi(x) denote the marginal gpdf fp(xle)dii(e), for i=1;2, and let
. @ -

I (51,5 ) denote the K-L information contained in 8 for d19cr1m1nat1ng

between pl(x) and pz(x), defined by
p; (x) :
x(El.E ) = fpl(x)log 5,0 du (x) (2.1)
x .

If £, assigns probabiiity 1 to a point 6=60, we shall denote'Ix(ﬁl,Ez) by

Ix(eo,sz). The K-L information IY(51,€ ) contained in &, is defined

\'
analogously.

Llndley (1956) has shown that if ?x > ﬁy, then the Shannon 1nformat10n

contained in &, is at least as large as that contained in 6 That is, if

X
éx_ CY then

élx(e,_g)dg(e) > éry(e,g)de;(e) for all £ €3, (2.2)

If (2.2) holds for 5 and EY we shall denote it by EX >'L EY The following

stronger version of Lindley's result was proved by Sakaguchi (1964).

Lemma 1. 1If Cx > 6y, then
Ix(eo,g) > 1 (eo,g), for all 90 € @ and g €=, (2.3)
It was also stated by Sakaguchi that (2.3) does not imply EX > 8y, although he

gave no counterexample. We shall now prove the following result which is

stronger than Lemma i.



Theorem 1. Let €x and SY be two statistical experiments with the same

parameter space ®, If 8x > 6y, then

<
p—

Ix(gl,gz).z_ IY(gl,gz) for all 1,8, €E. . (2.4)

Proof, 1If 6 > €Y’ then there exists a nonnegative function h(y|x) satisfying
the relations [See DeGroot (1970), p.434]
q(yle) = f h(y|x) p(x|6) du(x) for every 6 € @ and y € Sy, (2.5)
S
X

[ hiylx) dvy) = 1. | | (2.6)
SY :

It follows from (2. 5) and a change in the order of integration that

q; () = fq(yle)ds (8)

= fh(YIX)piCX)du(X), i=1,2 2.7)
Sy _
Let
q, (v) .
t(y) = ql(y)log o ' (2.8)
QY

Then from (2.7) and Corollary 3.1 of Kullback (1968),

p; (x)
t(y) :_thcylx)pl(x)log PRERIOR | (2.9)

X
It now follows from (2.9), a change in the order of integration, and (2.6) that

Iy(€):8)) = [t(dv(y)
S
Y
p, x) Py ) )
< pxlog du (x

= L5, B - - (210



Example 1. 'Lef 8(61,92;93) denote an experiment in which a ﬁoin with unknown
probability of heads 0 is flipped n times and the parameter space & contains
only three points:Q :_91 :_62 < 93 < 1. Blackwell (1951) remarks that the
experiment 8 = €(0,3,1) is not sufficient for the experiment 6 = €00,5,)
even though our intuition suggests the contrary. In other words, suppose that’
theée are only three possible states of nature and we have a cholce of either |
(i) observing n flips of a coin Qx for which the probability of heads is 0,z,
or 1 according as 61,62 or 63 is correct, or (ii) observing n flips of a coin
8& for which the probability of heads is 0 if 61 is correct, but is 3 if either
02 or 63 is correct. | It would seem at first glance that 8 ‘must always be at
least as useful as € v’ but Blackwell pointed out that thlS conclusion is not
correct.

Lindley (1956) showed that ;XEE.aY for these experlments. However, it can
be shown that I x(85,8) > 1 v(85,8) if and only if 38, + &, <1, where £ = s(ei).'
‘Hence (2.3) does not hold for 60 2 and a prior distribution & for which 351 +
g, > 1. '

Since 8 is not sufficient for GY in this example, there must be a decision
problem in which the expected Bayes risk from CY is less than that from 6 The
fbllow1ng simple decision problem has this property. Suppose that the hypothesis

HO: ] -92 is to be tested against the alternative H. : 0 # e with the usual

1
0-1 loss function and the prior distribution g€ defined by g(e } = X and g(e ) =

n-1 1

5(63) = (1-12)/2. If A satisfies 2 < A (1-2) < 2" -1 + 2, then it can be shown
that the Bayes rule for the experiment EY is to reject HO if the number of heads
is 0 and the Bayes rgle for the experiment Gx is to accept Ho regardless of the
outcome. Since the outcome of Qx is of no value to the éxperimenter in this

decision problem, it follows that the expected Bayes risk from E& is larger than

that from & B
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Example 1 shows that Sakaguchits result (Lemma 1) is stronger than that
of Lindley. We believe rhar Theorem 1 is stronger than Lemma 1, although we
do not have.an example in which (2.3) is satisfied but not (2.4). Furthermore,
we conjecture that the converse of Theorem 1 does not hold.
_We shall now consider the implication Qf the relation'Ex_z &Y in terms of
Fi;her information. Suppose that @ is an open subset of the real line R and
that the Fisher information ix(e) in the experiment E& is defined, as usual,

by the relation

1x(6) = f p(xle) [sg-log p(xle)]zdu(x). (2.11)

The Fisher information iY(e) is defined analogously. Stone (1961) proved that

if (2.2) was satisfied, then under certain regularity conditions,

ix(a) 3_iY(9) for all 8 € @, (2.12).
i.e., E&_: F GY It follows from Lindléy's result that under these same
condltlons, if CX-Z €,, then 8X-: F SY We will now generalize this result

to the case when 6 is a parameter vector.
Let g = (91,...,ek) and suppose that @ is an open subset of Rk Let
pcl)(xle) 36 p(xle) i=1,2,...,k. Furthermore, let 1x(6) denote the kxk

Fisher infbrmat1on matrix for the experiment X whose (i,j). term is given by

P (x]0)p) (x] o)

g P(x]8) du(x), and let iy(8) be defined analogously.
x ~

Suppose that Qx.: EY° If p(x|6) and q(y|®) satisfy the usual regularity
conditions that permit differentiation inside the integral, then it follows

from (2.5) that

Moo - Jrolor® aloanco, O @ay
X



for all g € @ and y € Sy. 1°

of fx(Q) that [g bip(i)(xlg)lz

For ?' = (b ...,bk

3]

), it follows from the definition

b @p = PO du (x).. (2.14)
)
Let T = } b;p 1 (x]|6)/p(x]e6). By (2.6), we can write
L § 8 _
b* i, ()b = [ Tp(x[0) [f h(y|x)dv(y) Jdu(x)
T SX ) SY
5 P(x|0)h(y]x) .
= [T —= Ty e latylavin. (2.15)
SY SX qly ~

Since p(x[ﬂ) h(ylx)/q(yle) is a gpdf [see (2.5)] and E(T ) > [E(T)] ,

it follows from (2.15) that z b. p(l)(XIe)

p(x|6)h(y|x)

b iy(O)b > / [f pCxX[6)
Sy S, -

Hence, by (2.13)'

(e)b >
b i@ 2 |

k .
1} 5,0 v 01
aly(8)

| = b 1, (9b.
Thus, if EX-: EY and we can differentiate ins
then (2.17) holds for all @ €@and b € Rk.

following theorem.

alyl®) 4 ()]? aly|8)dv(y).
(2.16)

dv(y)
(2.17)

ide the integral sign in (2.5),

This result is summarized in the

‘Suppose also that 6 > 8

Theorem 2. Suppose that @ is an open subset of Rk
and that the usual regularlty conditions which permit differentiation inside the

integral sign in (2.5) are satisfied. Then the matrix ix(e)-i (8) is

non-negative definite for every 6 €g@.

Remark 1. It should be noted that if 1x(6) i

iY(e) is positive definite, then |1x(6)|3l1Y(

Y(9) is non-negative definite and

8) | [See Rao (1973), p.70].

g bt

Ly



In other words, the generalized Fisher information in & is at least as large

X
as that in &-
The following counterexample shows that the converse of Theorem 2 does

not necessarily hold.

Examglg 2. Suppose that Ex'is the expefiment Nn(u,oz) and éY is the experimeﬁt
.Nn(u,2q2+e), where u and o are unknown parameters and € is a.given nonnegative
constant. Then EX(H’UJ'EY(“’G) is a diagonal matrix with elements n(02+e)/
[02(202+s)] and 2n€(€+402)/[02(202+€)], which is positive definite for e > 0
and nonnegative definite for ¢ = 0. However, it will be proved iﬂ Section 4

that EX is not sufficient for GY for any ¢ > 0. EJ

3. ComEarlson of normal experiments with known mean and unknown variance. In

this section we shall consider experiments in which a random sample can be taken

from a normal distribution for which the mean is known and the variance is
unknown. Without loss of generality we shall assume that the known value of
the mean is 0,

To begin we note that N (o, 02) > N (a, o + k ) where k is a g1ven constant.
To see this, suppose that the random variable X is distributed as N(0,o ), the
randqm variable Y is distributed as N(O,c2 + k ), and the random varigb}e W is
independent of X and has the distribution N(O,kz). Then X+W has the same
'distribUtion as Y for every possible value of 02. Hence, N (0 o ) >N (0 02+k )
However, it is well known that if ex > 8 when only one observation is taken in each
experiment, then this same relation holds when a random sample of n observations
is taken from each experiment [See DeGroot (1970}, p.433]. It now follows that

2
N, (0,6%) »N_(0,0%4K?),
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Next, we note that for any given constant k, the experiments N (0,0 )

and N (o, kzc ) are equivalent in the sense that each is sufficient for the other.

We turn now to the much more difficult problem of determining whether either

of the experiments N (o, 02) and N (o, 02k) is sufficient for the other, where k
is a given positive constant. We shall prove that for k1 > k2 >0, N (0, 02k1)

Z_Nn(o 02k2) First we obtain some related results,

Lemma 2. Let W be a non-negative random variable with pdf é(w) and let ¢(t)
denote the cﬁaracteristic function of log W. Let 6 > 0 be an unknown parameter,
let k > 0 be a givgn constant, and let Gn(ek) denote the experiment in which a
random sample of n observations is taken from the distribufion with pdf (1/ek)
g(w/ek). For any given constant ¢ > 0, define

v (1) = q(c:) » - @<t <o, o ' (3.1

k k
If wk /K (t) is a characteristic function, then Gn(e 1).1 Gn(e 2).
R/ |

Proof. We can assume fhat k2 =k1 without loss of generality, since we could
redefine the parameter to be 6 2, and then to simplify the notation we replace
k1 by k. Let X and Y denote the observatlons in the experiments G (e ) and
Gl(e) respgctlvely. Slnce Y/6 and X/e have distributions identical to

that of W, it follows that %-log X - log 6 has the same distribution as
l%-log W and that log Y - log 6 has the same distribution as log W, Let Z

be a random variable, independent of W and X, with the characteristic function
wl/k(t)given by (3,1),Then the distribution of %-log W + Z is the same as that
of log W, and it follows that the distribution of Xl/k eZ is identical to that
of Y for every possible value of 9. Therefore Gl(ek) i_Gl(e), which in turn

implies that G (6*) > ¢ (o).
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¢
It should bé'noted_that wc(t), defined in (3.1), is a characteristic
function for all ¢ €(@©,1) if and only if ¢(f) belongs to the class of
self-decomposable characteristic functions, introduced by P. Lévy and A. Ya.
Khinchine [See Lukac; (1970),55.11]. Some interesting properties of this
class [also called L-class by Gnedenko and Kolmogorov (1954)] are as follows,
_(i) ’Agl self-decomposable characteristic fqnctions are infinitely divis%ble:
(ii) If ¢(t) is a self-decomposable characteristic function; then wc(t) is
infinitely divisible.
(iii) All stable characteristic functions are self-decomposable.
(iv) The necessary and sufficient conditions for ¢(t) to be self-decomposable
in terms of LéVy's #nd Kolmogerov's canonical representations of an infinitely
divisible characteristic functions are given in Theorems 1 and 2, of Chapter 6
in Gnedenko and Kolmogorov (1954).
We shall now assume that g is the density function of a gamﬁa distribution
G(a,b), defined in (1.1), with known values of a and b, and prove that the |

assumptions in Lemma 2 hold for this pdf.

Theorem 3. Let Gh(a,b) denote the experiment in which a random sample of n
observations is taken from the gamma distribution G(a,b) with pdf (1.1).
Then Gnéa,bekl)_: Gn(a,bekz), where 6 > 0 is an unknown parameter, and .

a,b,k1 and k2 are given positive constants with k1 > k2'

Proof. Let ¢(t) denote the characteristic function of logew, where W is a

1° Then

random variable with pdf (1.1), and let o = k,/k
= 1 it a-1 -w/b
Wt) = [ - wity@ - lew/by,
0 b“Tr(a)

b 1t ra+it)/rea). (3.2)
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For a < 1, consider:

_ q{ts _b it(1-0‘)1"(a+it)
wa(t) T glat) I'(a+iat) (3.3)

. 4
The Wierstrass expansion of 1/T'(z) [See Whittaker and Watson (1935), p.236] is

Lo, mias Dexp(-2/1)} - (3.4)
j=1

where v is the Euler's constant. Therefore, after some.algebraic manipulation,

wa(t)can be written as

o it ’
wa(t) = lt(l a)exp{ -yit(1-a) (%1&529 H %1451%3- _T{I-Q) (3.5)
j= _

or, equivalently, as

-

b () = expl-it(1-a) (y-tnb)} [ar(1-a) (1+ 2 ] ; fo+ (1-0) 1 ?;35 e e
| (3.6)
The first factor in (3.6) is the characteristic function of a degenerate
random variable T0 with probability one at the point [- (1 a) (y-2nb)], and the
factor elt(1 0} /3 is .the characterlstlc function of a degenerate random variable
Tj with probability one at the point (1-a)/j,j=1,2,.... Furthermore,
[a+(1-a) (2+ j%é?-ll is the characteristic function of a random variaple

Zj, j=0,1;2,..., which takes the value 0 with probability o and, with probability

(1-a), has the pdf
(G+Dexp[(j+3) z]for z <0

0 for z >0 " 3.7

fj(z) =

Let {T., i=0,1,2,...} and {Z.,i=0,1,2,...} be independent sequences of
1ndependent random variables with the distributions defined above Define
S. % (T2+22)’ and let w (t) denote the characteristic function of SJ It

b/
fbllows from (3.6) and the above discussion that

wa(t] = lim ¢j(t). | ' (3.8)

j-m
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It.is obvious that wu(0)= 0. Furthermore, since the gamma function I'(z) is
analytic for complex arguirents except at the points 2=0,-1,-2,..., where it
has simple poles, wa(t) is continuous at t=0. Hence by the Continuity Theorem
[Theorem 3.6.1, Lukacs (1970)],'wa(t) is a characteristic function. It now

follows from Lemma 2 that Gn(a,bekl) 2_Gn(a,bek2) for all g, > kz > 0.

1

Remark. (i) An alternatlve way to prove that % (Z + T.) converges in
i=0

dlstrlbutlon to a random variable Z, is to use Theorem 3.7. 3, Lukacs (1970).

Since Z Var(z + i) = a(l-a) Z 1/(i+3) } < o, ¢ (t) converges to a

0 1=0
characterlstlc function ¢ (t) as j » =,

1
(ii) Another proof of fact that wa(t) is a characteristic function could be
given by proving that %(t) is self-decomposable by using either Theorem 1 or
Theorem 2 in Chapter 6 of Gnedenko and Kolmogorov (1954). However, we prefer

the proof given above, because it gives the specific form of the random »ar1ab1e
Z in the proof of Lemma 2, |

(iii) Using Theorem 3.7.6 of Lukacs (l970), it can be shown that the distribution

function of the random variable Z is continuous.

We shall now prove the main result of this section.

Theorem 4. Let k and k2 be given constants satlsfylng k1 > k > 0. Then

N_(0,0%K1) > y (0, 02“2)

‘ gzggf. .As explained earlier, we can assume withoﬁt loss of generality that
k »=1 and k =k Let X and Y denote the observations in the experiments
N (0,0 ) and N (0,0 ), respectively. Since X /o 2k and Y /c have the same
x2 distribution, it follows from Theorem 3 that the experiments in which X2
is observed is sufficient for that in whicH Y2 is observed. Furthermore,
since X2 is a sufficient statistic for the experiment Nl(O,ozk) and Y2 is a
sufficient statistic for the experiment N (0,02), it follows that Nl(O,gzk) >

N (0,0 ). Hence, Nn(O,c ).Z Nn(O,o ).
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If X and Y have the distributions specified in the proof of 'Theorem 4,
we now know how to generate a random variable equivalent to an observation
on Y from an observation on X.

Let the random variable Z be as defined in the proof of Theorem 3,

independently of X, with a= =5 and a = kz/kl’ and let Y' be defined as follows

1x|® e?/? yith probability 3 ,

Y' =
-1x1® e¥/2 with probability . - -

Then Y', has the same distribution as Y for every possible value of 02.

4. Comparison of experiments with location and scale parameters. Stone (1961)
N e . -

considers the class of experiments {€(c);c > 0} where €(c) is the experiment in
which an observation is taken from the pdf cflc(x-8)], for a fixed pdf f and

® = R. For given values of ¢ and Cys he obtains conditions under which
C(cl).z 6(c2), e(cl) 3-L8(c2), or C(cl)fi F 8(c2). Let ¢(t) denote the _
characteristic function of the pdf f. .Stone shows that if f(+) is bounded

and ¢, > c, > 0, then a sufficient condition for S(cl).: €(c2) is that

P(t) = ;ﬁﬁ;ﬁ;{f : ' (4.1)

be a characteristic function. However, it can be seen from our proof of
Lémma 2, that the>boundedness of f(+) is not needed in this result. Furthermore, it

follows that if ¢(t) is a self decomposable characteristic function, then
> ' .
.C(cl)__ 8(c2) for all ¢, > ¢, | |
Stone also established that if £(+) is bounded and the family of pdf's

> 0.

{f(u-9); é €R} is boundedly complete, then a necessary condition that
e(él)_i E(cz) whenever ¢ > ¢, > 0 is that y(t) be a characteristic function.
In addition, if all the cumulants of f(+) exist, Stone proves that y(t) is a
characteristic function, only if (i) f(*) is a normal density or (ii) the

even-order cumulants of f(.) are positive. After proving this result, he states




that "it is poss1b1e that condition (;1) is inconsistent with &(c ) z 8(c )
whenever ¢ > Sy, in whlch event, yet another characterization of the normal
distribution would be provided'". However, for f(u) = exp(-u),u > 0, and

¢ > <, >0, it can.be shown thaf ¥(t) is a characteristic function and
the:efore €(c ) >'€(c2).

the even order cumulants of f(+) are positive, f(-) is bounded and the fam11y

Furthermore, all the cumulants of f(-) exist, all

of distributions {f(u-6); 8 € R} is boundedly complete. Hence, this result
.does not provide yet another characterization of the normal distribution, as
suggested by Stone.
A natural extension of the above results is to consider the class of
- experiments {Ef(c); ¢ > 0} such that Sf(c) is the experimen; in which an
observation is taken from the pdf (c/o) f[c(x—u)/o]; where f is a given pdf
- and the parameter space is © = {(u,oj: ‘uw €R, 0 > 8}, One may ask whether
ef(cl) >'€f(c2) for ;> c2 > 0. In particular, one may ask whether N (u o )
‘is sufficient for N (u,o /c ), where ¢ < 1 is a known constant. We will prove
 that the answer is negative, even though Nn(p,o ) > F Nn(u,c /c ).as mentioned
in Example»2.
For any two givén joint prior distributions 51 and 52’ let Ic(El,Ez) denote

the,K-Llinformation contained in the experiment Nn(u,ozlcz) as defined by (2.1).

-i

Theorem 5. For c; > <, > 0, the experiment Nn(u,oz/cf) is not sufficient for

2,2
N, (u,o7/c5).
" Proof. Without loss of generality we will assume that S =1 and c, =c¢ <1

For i=1,2, let Ei denote the joint prior distributions of (u,0), such that u
has a normal distribution with mean 0 and variance rz and o takes the value di

with probability 1, where 9 # 0, are given positive constants. Since X and
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n , - . :
S2 = Z(xi-ijz are sufficient statistics for the experiment Nn(u,oz/cz), the
1 _
- *
marginal distribution Py of X and Sz, for the experiment € (c), with respect
to the prior dist;ibution &i is given by

2.2 n-1

(C S )-—2— -1 :
o2 207 2.2 L 52 :
P (X s = & ) exp[- ] explez —=}, (4.2)
. 20 2 r("—él-) Zai YZrT_(c) NG

' 93,2
_where ri(c) = r + E{-EJ .

It follows from (2.1) and (4.1) that IC(EI,EZ) is given by

' f 02 x, (c) S
I (EI’EZ) = ( 2 ){1 g 2 - clf 2)}+ 2[1°g ( ) T (C)]' (4'3)
% % ‘1 2

On taking the partial derivative of IC(EI,EZ) with respect to ¢, we find that

Thérefore, for any ¢ < 1, _
| I)(5,85) < I (£),8,). 3 BN CNS
Hence, it follows from Theorem 1, that Nn(u,oz) is-not sufficieﬂthfor Nn(u,oz/éz)
for any ¢ such that 0 < ¢ < 1, =2

Furthermofe, as mentioned after Example 2 in Section 2, it can be shown
that the experiment Nn(u,oz) is not sufficient for the experiment Nn(u,202 +¢e),
where € is a known positivevconstant. This result can be established through a
proof similar to that of Theorem 5 provided only that the prior distributions

) )

El and 52 are chosen so that t° > ¢..

-
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It should be noted that for the degenerate prior distributions El and 52,
. C L 2 »
where gi assigns probability 1 to the point (ui,oo) and My * Hos 11(51,52) >
IC(EI,EZ). It follows from this fact and the expression (4.4) that neither of
" the two experiments Nn(u,cz/ci) and Nn(u,oz/cg) will be sufficient for the other
2,2, o 2,2 :
for ¢, $ c,, even though N_(u,0%/c}) Z ¢ N (u,0%/c3) for ¢, > ¢, >0.
Stbne (1961) also proved that in the location parameter case, 8(C1).i F
E(cz) for c; > ¢y 0, whenever the Fisher information exists; We shall now
*
extend this result to the family of experiments € (c) with both location and

scale parameters, defined at the beginning of this section.

Theorem 6. Suppose that the pdf f(x) is symmetric around x=0 and let ic(u,o)
*
denote the Fisher information matrix for the experiment € (c¢). If ic(u,a)

exists for c=c, and c=c,, with ¢, > ¢, >0, then the matrix i (p,0)-i (u,d)
1 2 1 2 ~Cy -~y

is nonnegative definite for all values of u and o.

Proof. It can be shown that if f(*) is symmetric, then the matrix ic (u,0)-
"1

- (c;-¢3) d 2
ic (u,0) is a diagonal matrix with diagonal elements 5 ff(u)[aa log f(u)]
2 c R

and 0. Hence, it is nonnegative definite.

5. Marginally Sufficient Experiments. In general, the relation Cx.i 89 is

equivalent to the requirement that ﬂx is at least as preferred as EY for

every decision problem involving the parameter 6 and every prior distribution

on 8. Therefore, it is a very restrictive relation and induces only a partial

ordering on the class E(8) of all possible experiments with parameter space 6.



40

Feldman (1972) studied certain properties of orderings of E(®) induced by the

weakened requirement that in a fixed decision problem, the expected Bayes risk

from E& be not greater than that from EY for every prior distribution g€ =,

Following DeGroot (1962), he identified the decision problem with an uncertainty

function U(E) defined on = and considered the experiment Ex to be at least as
inf&rmative as the experiment GY with respect to U if Ucelx) i_U(EIYj for all
€ €Z, where U(EIX) is the expected posterior uncertainty if X is observed and
tﬂe prior distribution is £ and U(E|Y) is the corresponding value for the
observation Y. |

An alternative possibility for comparing experiments is to consider a

fixed prior distribution £ and study the brdering on E(E) induced by the

requirement that the expected Bayes risk from EX be not greater than that from

GY for every decision problem involving 6. In this case, we will say that CX

is at least as informative as EY with Tespect to the prior distribution £.

It is clear thét if Qx is at least as informative as EY with respect to an
uncertainty function U, then every experimenter interested in the decision probleh
corresponding to U will prefer 8 to GY On the other hand, if C is at least

as 1nformat1ve as 5 with respect to a prior distribution €, then an experlmenter

- with prior distribution £ on 6 will prefer EX to E& regardless of his decision

problem. We shall now give an example to illustrate this concept.

Example 3. Let c; > ¢, 0 be given constants and for i=1,2, let Xi denote a
2
random variable with the normal distribution N[y, 951. Suppose that the prior
: c
distribution of (u,0) is concentrated on just two pgints such that Pr[(u,o) =

(0,1)] = £ and Pr[(ﬁ,o) = (uo,oo)] = 1-g where 0 < ¢ < 1, N and ug are known

and arbitrary. It fbllows from Bradt and Karlin (1956) that with respect to

5
P
s
o

3
-
¥

&

2,2
this two point prior distribution, Nl(u,cz/cf) is sufficient for Nl(u.a /Cz)»

and therefore Nn(“’cz/cf).f Nn(u,cz/cg) with respect to this two point prior.

TLpTee - o
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RIS NS
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Hence Nn(u,oz/cfj is more informative than Nn(u,cz/cg) with respect to this
respect to this Prior distribution. B |

This concept éf relative informativeness With respect to a prior

distribution £ is'especially useful when the parameter e.ié vector valued,
9 = (91,92), and the experimenter is interested only in 91, i.e.,y?2 is a
nuisance parameter, For example, in the experiment Ef(c) defined in Section 4,
corresponding to the pdf s-f[g{x-u)], the decision problems of interest may

involve only u or only ¢, A detailed discussion on the elimination of

nuisance parameters in the framework of classical statistical inference is

given by Basu (1977). For a given prior distribution, 5(61,62) = El(el)az(eziel),

-~

a Bayesian statistician interested only in 6. wil}l eiiminate 62 from the analysis
and use the prior pdf 51(61) together with the conditional pdf

etxloy) - f P(x[91,8,)d8, (0, ]9)). BN CRY

Consider a particular decision problem with @ = {6 = (61,92)[61 € G,

denote the loss incurred from any decision d € p when 6 € 6 is true. We

*

*
t1(8158,0.4) = 2[(8,,63),4] for a1l %,

-~

€ G&, (5.2)
i.e., 2 depends only on the value of 61 and the value of d, and not on the
value of 92.

concept of marginal Bayesian sufficiency with respect to a given prior

For such decision problems, we now preésent a natural and useful

distribution 5(61, 2).

Definition, The experiment ¢X
€X~: GY(GI), with respect to the prior distribution 5(91,62) if the expected

involving only 8.,» when the prior distribution is 5(61,62).

-~

—————— T
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If there exiéts a randomizing function h satisfying (2.6) such that (2.5)
holds for all 81 E @ s with p(x|8) replaced by g(x[e ) as given in (5.1), and
q(yle) replaced by the corresponding conditional pdf of y given 91, then it
w111 be true that 6 > & (6 ) with respect to any prior distribution E that
yields the same conditional distribution gz(ezle ) as £. In this case, we
shall say that 6 > & (8 ) with respect to the conditional prlor distribution
£,00,18)).

We shall now give some examples of marginal Bayesian sufficiency.

ExémEIe 4. For a given pdf f, let ef(c) denote the experiment defined in
Section 4 and let o¢(t) = feltu f(u)du. For any joint prior distribution of
¥ and o, let E (o) denote Ehe marginal prior distribution of o and let
ql(t) fq(to)ds (o). It follows from (5.1) that if u and o are independenf
under thelr joint prior distribution, then g(x|u) is of the form cg*c(x-u)].
Therefore, if.qﬁ(t) is a self decomposable characteristic func;ion, then it
- follows from the result of Stone, presented at the beginning of Section 4,
that Gf(clj‘: ef(cz)(u) with respect to the conditional prior distribution
Ez(o) for ¢ > c, > 0.

In particular, let f(u) be the standard normal pdf and let e1ther (1)
the prior density of 02 be a gamma distribution of the form G(a B), or (ii)
the prior density of (1/0 ) be a gamma distribution of the form G(2,8). By.

carrylng out the analysis 1nd1cated in this example, it can be shown that

N (u o /cl) >N (u o) /cz)(u) with respect to both of these conditional prior

distributions of o> given u.
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Example 5. Let <, > CZ > 0 be given constants and, for i=1,2, let Xi denote a
. v 2
o
random variable with the normal distribution N[u,E—]. Suppose that our interest
_ ' i
lies in decision problems involving only 02. If v and o are independent under

their joint prior distribution, and if the marginal distribution of y is a normal

distribution N(m,rz), then it follows that, given 02, Xi is distributed as

2
o 2 s 2 €2. 2. .
N[m,'—§-+ T ]. Let W be distributed as N[(1- =9m, (- -Ear ] independently
c. : €1 c )
i . . 1
. : c2 .
of Xz. Then it can be verified that (E—sz + W has the same distribution as
1 2 2
Xl for every possible value of 02. Hence, Nl(u, gaﬂ'f_Nl(U.gfi(Gz) with respect
: <, )

to this conditional prior distribation of u, In fact, using the joint

distribution of X and S2 from a random sample of n observations given 02
2 2

[See (4.1)], it can be shown that Nn(u,2§J Z:Nn(u,gia(cz) with respect to this
c c o
. 2 1
conditional prior distribution of u.
2
However, if the conditional prior distribution of u given 02 is N(m,gia,
T

~ then it follows that Xi is distributed as N[m,oz(—%-+ —%9], given 02. Therefore,

Cc. T
, i
02 o
the experiments Nl(u,—ia and Nl(u,-iﬂ are sufficient for each other with respect
c c
1 2
to this conditional prior distribution of pu. Again, it can be shown,in fact,
2 2
that the experiments Nn(u’gia and Nn(u’gia are sufficient for each other with
c c '
1 2

respect to this conditional prior distribution of H. Ea

Examgle 6. For given constants c. > c, > 0, consider again the normal

1
2
experiments Nn(u,gia, i=1,2, and suppose that the joint prior distribution
c
2

2 . L . . . ‘o
of 4 and ¢ is a conjugate normal-gamma distribution such that the conditional
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2 52
distribution of u given ¢“ is N[m,—-ﬂ and the distribution of (1/0 ) is G(a,B).
T
It follows from Example 4, that for decision problems involving only 02, the

2 2
experiments Nn(u,—io and Nn(u,—ED are marginally equivalent with respect to

‘1 €2
this joint prior diStribution. However, for decision problems involving only u,
it is not known whether one of these experiments is marginally sufficient for the
other with respect to this conjugate joint prior distribution. Also, the
question of whether one of these experiments is more informative than the
other with respect to.this joint prior distribution, when one is interested
in all decision problems, is open. We can prove, however, that for est1mat1ng

any of the functions u, u/o, u/o ,Uo and ucz with squared error loss, the

G2
experiment Nn(u, -39 has a smaller expected Bayes risk than the experiment
¢
o? . -
Nn(u, -53 for this conjugate prior distribution. e
c .
2

='Exam21e 7. If a statistic T(Y) is partially sufficient for the parameter 61
according to Fraser s definition (1956), then it can be proved that the
experiment & p» in which only T is observed, satisfies 8 > 8 (9 ) with
respect to any prlor distribution 5(91, ) under which 91 and 62 are
independent. For example, if Yl""’Yn are independent and identically -

n
distributed with a gamma distribution G(a,B), then T = Z Yi is partially
. ' | '

sufficient for B8 in Fraser's sense and therefore, ﬂT :_6 (B) with respect to

any prior dlstrlbutlon for which a and B are 1ndependent. =2
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