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 dimensional Brownian motion and for this choice of vy inequality (1.3) is

I. Introduction

Let y(t) denote the Bessel process of order y + 1 where y > -(1/2).
Associated with'y(t) is the semigroup T(t)f(x) = E{f(y(t))]y(0) = x} =
Exf(y(t)) whose infinitesimal generator G is the singular second order

linear differential operator
(1.1) Gf(x) = (1/2)f"(x) + (y/x)f'(x), x > 0 acting on the domain
(1.2) DG = {f: f¢ CO[O,w), Gf € CO[O,w), f'(0)= 0}.

CO[O,m) is -the Banach space of bounded continuous functions with domain
the right half line [0,«), vanishing at infinity, and equipped with the
sup norm |f]| = sup, Olf(x)l. For further details on the semigroup

T(t) = exp(tG) the r;;der sﬁould consult Brezis, Rosenkrantz and Singe?

(1971).

Theorem 1.1. Let t be a stopping time for the Bessel process y(t), and

let k = 1,2,...,n, denote a positive integer. Then there exist constants

a(vy,k) and A(y,k), independent of t, such that

(1.3) 2 (LB () < Bty < AGLRE, ).

Remarks: When y = (n-1)/2 then y(t) is the radial component of n

\

a special case of recent results of Burkholder (1976) who stated them for

the maximal function y*(1) = sup y(tAt). More precisely he showed that
O<t<o
; ,
(1.4) cp.mig (1™ < 1 o (0Py < cpume, ([ne)™?,

for all p in the range p » 0. In addition, he obtains the result



Q

%im c(p,n) = %;g C(p,h) = 1. Our constants are less sharp. 1In fact,

our estimates yield -

ACY,K) < [4k(y+k-(1/2)1X

(1.5) "
[(v+(1/2)) /K]

v

aly,k)
Putting yv= (n-1)/2 in (1.5) yields

nA((-1)/2, K) < (4K[(1/2)+ (k-1)/n] }¥
(1.6)

nfa((-1)/2, K > @7k,

and this is cleafly less sharp than Burkholder's estimates. On the
other hand, oﬁr estimates are valid for a much larger class.of processes
and we believe this extension as well as the method of proof are of
independent interest. Incidentally, the method of proof used here

appeared earlier in an unpublished paper of Rosenkrantz and Sawyer (1972).




IT. A martingale generating function

Our proof of Theorem 1.1 is based upon a martingale generating
function for the Bessel process y(t) that we have constructed elsewhere -

cf. Theorem 2 p. 278 of Rosenkrantz (1975).

Theorem 2.1. The function

u(t,x,1) = exp{-at)g(x,\), A > 0, whére

(1/2)-y,

g(x,1) = x [2A]1/2x),

v-(1/2)
o 2k
L) = /27§ (/2% [KIT(veke1))
k=0

is the modified Bessel function of order v, is a martingale generating
function i.e. wu(t,y(t),A) is a martingale for every value of the para-
meter X > 0.

‘ 1/2 2 . .

If we set 8 = (21) (so x =67/2), perform some routine mani-

pulations and cancel out the nonessential factor (6/2)Y_1/2 we get the

martingale generating function
(2.1)  v(t,x,8) = exp(qezt/Z) z (ex)Zk/(4kk!P(a+k)
' : k=0

for every value of the parameter 6, a = y+(1/2) > 0, and T denotes the
gamma function. Since v(t,x,8) is analytic in 8 we can expand it in a

power series in ¢like so:

(2.2) v(t,x,0) = 0%, (t,0).

I t~18

k=0

Lemma 2.1, uk(t,y(t)) is a martingale for k = 0,1,2,...

Proof: Immediate.
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Lemma 2.2, uk(t,x) is a polynomial of the ZkEh-degree in x and_kzh

degree in t of the form

x2k—23tJ

k
(2.3) uk(t,x) = z o, where

jto 3%k

@4 e = (DY@ g, 8 - v @irE, s,

Proof: Just expand exp(~62t/2) ir a power series, then multiply the
two power series occurring in (2.1) and collect the coefficients of
o2k |
We now have at our disposal all the tools we shall neéd for proving
Theorem 1.1. In what follows, we shall assume that T is a bounded
stopping time replacing 1 by tAn if necessary. One can then let n-ow
and pass to the limit in the usual way.‘_
Step 1. Ther¢ exists a:.constant a(v,k), independent of the stopping T,

for which the estimate
(2.5) acy,k)EO(Tk) < E (0% holds.

Proof: The optional stopping theorem of Doob (1953) applied to the
martingale uk(t,y(t)) yields
| k

(2.6)  Egulr,y(x)) = PRUTELE

2k-2j 3,

Thus -

k-1
k
(2.7) o8yl Eg(r) < _Z |ajsk_j| Ey{y (1)
j=0

2k=21.3;.

To each term on the right we apply llolder's inequality with q = k/j,

P = K/k-j and get E {y(n?*?Izd) < Boly (07} 0/ Mg (ok)I/k,



Thus from (2.7) we deduce the inequality

, k-1 1-G/K) 4 i
(2.8) Iakeo[ EO(Tk) f_jzolajsk_j|E0{y(T) 2ky” Eq{T Pk,

1/k

set Z = [Eo{rk}/EO{y(T)Zk}] and divide both sides of (2.8) by

2k '
Egly(1)™"} andiakBOI.

Inequality (2.8), rewritten in terms of Z, becomes
' K k-1 j
(2.9) " - .) (Iajsk_jl/lakeol)z < 0.
j=0
The right hand side (2.9) is a polynomial Qk(Z)which has a root of largest
modulus P+ Clearly Z 20 But this is equivalent to the

statement

EO{Tk}/EO{y(T)Zk} f-pkkf-

. -k
So a(y,k) 20
The root of largest modulus Pk of the polynomial Qk(Z) may be estimated
by means of an inequality to be found in Mitrinovic (1970):

Lemma 2.3. Let r ST denote the roots of the polynomial

"
x k k-1
Qz) =z + ) w,Z -, lu.|#0, i=1,...,k.
1=i 1
Let r = max |r.|. Then

1<j<k

(2.10) i_Maxv(2|Q1|, 23 O PR Y NN I (T P O P

We now apply this estimate to the polynomial Qk(Z) with'u2 =lak_£82/ak80|

and obtain the estimate Z < kA . Hence

@11 atyk) 2 (305 = (/2745

Step 2: There exists a constant A(y,k), independent of the stopping time T,



(3

for which the estimate Eo(y(T)Zk) 5_A(y,k)50(rk) holds.
Proof: As in step 1 we apply Doob's optional stopping theorem to the
martingale uk(t,y(t)). This leads to the equation

' ok, Kl 2k-2j_j
(2.12) Eo{uk(r,y(r))} =0 = BkEO{Y(T) } o+ jzlajsk_j EO{Y(T) ™}

Applying Holder's inequality as before leads to the inequality .

k-1 . -
2k weey 2k 1-3/ks o kyj/k k
(2.13) BE {y () }—jzl lajBk_leo{/(T) } Ejit'} +oBaEy (1) < 0.
s kK, .k 2k k
Dividing through by EO(T ) and By and setting s = Eo{y(r) }/EO{T } transforms
(2.13) into

-

kKL k-1
(2.14) Pk(s) =‘s - jzllajBk_i/Bk]s + (akBo)/Bk < 0.
‘Thus s is smaller than pi where pk' =  Max |s.!, Sys-+-35) are the roots of

C1<j<k
the polynomial Pk(s). We now apply estimate (2.10) to the polynomial

Pk(s) and after a routine calculation obtain the estimate

(2.15)  AGLK) < (o, 5 < [ak(ysk-(1/2))1F gee.q.
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