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Abstract

It is observed that in selecting an alternative to the usual maximum

likelihood estimator, 6°, of a multivariate normal mean, it is important

s
to take into account prior information. Prior information in the form of
a prior mean and a prior covariance matrix is considered; A generalized
Bayes estimator is developed which is significantly better than 6° if this
prior information is correct and yet is very robust with respect to
misspecificatibn of the prior information. An associated confidence region

is .also constructed, and is shown to have very attractive size and probability

of coverage.

KEY WORDS: Robust generalized Bayes estimators; Multivariate normal mean;

Quadratic loss; Risk; Confidence ellipsoids; Size; Probability of coverage.
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Section 1. Introduction

‘Let X = (Xi,...,)(p)t have a p-variate normal distribution with mean
vector € = (61,.;f,6p)t and nonsingular covariance matrix 2. (X will be
assumed known until Section 5.,) It is desired to estimate 6 using an
éstiﬁator 6(X)'= (GI(X),..;,GP(X))t and under a quadratic loss L(6,6) =
(G-GItQ(G-S); Q being a positive definite:(poj matfii. Two common problems
giving rise to this setup arev(i) estimating a multivariate mean where X is
‘the vector of sample means, and (ii) estimating a vector, 6; of regressibn
coefficients where X = (BtB)-lBtY is the least squares estimator and.t'=
cz(BtB)-l, B being the design matrix and 02 the variance of the errors in
the observation'Y,

The.usual estimator GO(X) =VX has been observed to have several
deficiencies. These include
1. ¢° is inadmissible if p > 3. Indeed an estimator &' can be foUnd‘with

R(8',8) < ﬁ($°,e) = trQl for all 6, where R(G,e).=.EeL(6(X),6)‘is‘the

expected loss, This was first noticed by Stein (1955). o
2. 8° doesn't use often existing prior information or felationships among

the coordinates, such as when the ei are a sample from a'superpopulation.
3. When X is the least squareé estimator from a regression problem, §° is

unstable in that (BtB) is often nearly singular, so that small changes
in the observation Y result ih very large changes in the estimaies.of
the regression coefficients. (This problem has given rise to the

theory of fidge regiession, introduced by Hoerl and Kennard (1970).)

In attemptihg~to improve upon 60; a number of different approaches have
been taken, For the most part, these can be catcgorizéd jnfo three areas,

according to the nature of the resulting estimator,



The first category consists of approaches resulting in estimators which
are linear (i.e. of the form §(X) = CX + u, C a matrix and u a vector). For
example, the Bayesian approach with normal priorskand the original form of
ridge regreesion (with a fixed ridge conetant) give rise to linear estimators.

The-secend category of approaches consists of~those for which coordinates
of 6 are set equal to zero, the remainder being estimated'in a standard way.
For example, preliminary test estimators and typical regression procedures
which'seleet ehe "significant" regression coefficients (effectively setting
the others equal to zero) are of this type.

The third category consists of approaches leading to estimators which

satisfy
(1.1) ) 6(x) =' (I _ B/(xtcx))x+ o(lxl—l) as lxl+ o,

where B and C are (pxp) matricee, lx| is the Euclidean normof X, and "o":
is the useal little oh notation. For example, miniﬁax,_empirical Bayee,
Bayes with t-likeipriors, and stochastic ridge regression-approaches all
result in estimators of the form (1.1). (By stochastic ridge regression is
meant those ridge techniques which choose the ridge constant from the data,
using the.inverse of some qﬁadratic form in X.)

A number ef articles dealing with the above approaches are listed.in
the references.- Unfortunately, the number of articles ie by now too. large
to allow discussieﬁ of eech contribution specifically, ahd even too large to
‘ reasonably include all in the references. Therefore, only the latest articles
and articles specifically referred to are listed. References to earlier

works can be found in these articles.



In looking for an alternative to 50, only the third category of
estimators will be considered., Linear estimators have the well known
disadvantage of a lack of robustness with respect to the assumptions under
which they are derived. For example, if a Bayesian approach with a normal
prior were taken, the resulting linear estimator would have infinite Bayes
risk if the true prior were Cauchy. (Even for bounded idsses“the results
could be bad.) In contrast, estimators of the form (1.1) tend to be
considerably more robust. Some evidence of this will be presented later,
(See also Rubin (1977).)

Estimators from the second category will not be considered for two
reasons., First, if indeed estimation is the sole goal, then it has generally
been found that discontinuous procedures (such as preliminary test
estimators) can be improved upon by smooth shrinkage procedures satisfying
(1.1). Of course, there are often compelling reasons (in regression for
example) to try for model simplification by setting "nonsignificént" coor-
dinates equal to zero. The goal then is not simply estimation, however, and
it seems simpiest’to approach the.problem in two stages - decide first which
coordinates are to be set equal to zero, and then use a good estimation pro-
cedure on the remaining coordinates. The first stage is outside of the
scope of this paper, while for the second stage using a smooth estimator

is desirable,

In chooging among estimators of ghe fofm (1.1), one is presented with
a wide array of principles to go by. The.key in choosiﬁg among these
piinciples lies in observing the behavior of the estimators - namely, that
the estimators:perfofﬁ well (have risk significantly better than 60) only

in specific regions of the parameter space RP. oOutside these regions they



have risks which are either essentially equivalent to or possibly worse

than 60. (This is basically due to the fact that &° is minimax, so that

no uniformly iarge improvement in risk is possible.) Since the region of
significant improvement differs from estimator to estimatof, it seems
inescapable that-choosing an estimator can be best done by choosing the
region of 6 over which improvement in risk is desired. In other words, prior
knowledge must come into play in effectively choosing an estimator

of the form (l,l). (As we shall see this prior knowledge can be quite

vague, such as merély believing that the prior distribution of the ei is
exchangeable,)

Note that the above reasoning is not the usual rationality argument for
being Bayesian, but instead a seemingly inevitable cohélusioniof'the parti-
cular problem being considered. Indeed .if it is felt that thére is no prior
information whatsQever available, then'Go-might as well be used, since the
"chance'" that g would happen to be in the region of significant improvement
of a competing estimator would be negligible, In the remainder of the paper
comments will often be phrased in Bayesian terms, not necessarily because
a prior distribution on 6 is thought to exist, but because it seems nécessary
to act as if one does exist if a good alternative to 8° is to be chosen.

Thevabove cbhsiderations also point out ‘the difficulty in meaningfully
comparing estimators of the form (1.1) by numerical studies., In numerical
studies, the 6 at which the estimators are evaluated must be chosen in -
some fashion,»and'different estimators will perform‘best-dependihg on how
the § are choseﬁ. This point was raised by Efron and Morris, Bingham and
Larntz,‘and Thisted in the discussion of Dempster, Schatzoff, and Wermuth

(1977).



It is obviously unfeasible to specify prior information for a particular
problem, and then choose among all available estimators of the form (1.1)
according to Which does best for that particular set of.prior beliefs.
Instead, an estimator should be developed which allows the direct incorporation
of prior information in order to adjust its region of significant improvement.
This and other desirable properties of an estimator are listed below.

1. & should readily allow incorporation of prior information.

2, 6§ should be robust with reSpect to misspecification of prior information.
Equivalently, & should not have risk R($,6) seriously worse than R(Go,e) =
tr(QZ) over a significant region of the parameter space.

3. & should be expressible in a closed form, relatively simple formula, not
only for ease of calculation but also to enable examination for unintuitive
or unappealing features.

4. & should be stable in a ridge sense (providing this is consistent

with 1.)

5. 6 should be admissible (or nearly so).

6. ¢ should have the following "empirical Bayes”.property. -Assume f = ozI

and that the eiarea random sample from a prior distribution with mean O and

variance Tz. Then 1im |X|2/p = 0% 4 1° with probability one. The estimator
2 2
(1.2) §(X) = (1 - po/|X| )X

is thus very close to the optimal linear Bayes estimator GL(X) =
1 - 02/(02 + rz))X, while having a risk uniformly better than §° - a very

desirable situation, (See Efron and Morris (1973a) for further discussion.)



7. & should havé good associated confidence regions fof 0.

The rationale for property 1 has been discussed. Property‘2 is also
crucial, in that while it is necessary to make use of prior ihformation
to significantly improve upon 60, we do not want tb run the risk of being
significantiy'worse than 6° if the (often vague) prior information is
wrong. Property 3 seemsbimportant,‘partly to make the estimator more
attractive to practitioners, but also to make a thorough analysis of the
estimator possible, Properties 4, 5, and 6 are all appealing, but perhaps
will not be compelling to some statisticians, depending on their philosophical
viewpoint, Property 7 is of considerable importance in typical applications
of estimation. Section 3 will be devoted to the deVelopment and analysis of
an interesting set of confidence regions,

In attempfing.to verify the above properties for a proposed estimator,
numbers 2, 5, and 7 cause the most difficulty. In cheéking #2, Berger (1976b)
can be useful, though numerical studies are probably necessary. Thé only
certain method of ensuring that #5 is satisfied is fd_develop § as an
admissible géneralized Bayes estimator., (Brown (1971) shows that an
estimator must be generalized Bayes to be admissible.) Trying to verify
that an estimator is 'mearly" admissible is difficult. ~A useful negative
result is given in Berger and Srinivasan (1977), namely that estimators -
sa;isfying (1.1) are approximations to generalized Bayes estimators (up to
a o(lxlql)term) if and only if B = k 2 C for some constanf k.

Estimators so far proposed do nét fully satisfy the above list of
properties. The only estimators of the form (1.1) which allow fhe incor-
poration of prior information are empirical Bayes estimators (see for.

éxample Efron and Morris (1973a) and Rolph (1976)) and Bayes estimators arising



from flat priors (see for example Leonard (1976)). Unfortunately the
estimators which have been developed using these approaches cannot be written
in closed form (except for a few special cases of Q, Z?aﬁd prior information},
making a meaningful analysis of them very difficult. in Section 2 a reasonable
generalized Bayes estimator is developed which does satisfy the above 7
properties,

Before proceeding, a word is in order as to what type.of prior input
is envisaged. Recall that the real goal is to decide what region of the
parameter space is of greatest importance, A relatively simple approach would
be to specify an ellipsoid of interest; This ellipsoid could be written as
{6: (e-u)tA-l(e-u) :_p}. Altérnatively it seems plausible to assume the
availability of a prior mean vector, u, for 6, and also of a variance (or
covariance) hatrix A which reflects the believed acéuracy of the guess, u.
In either case the prior input is conveniently summarized by u and A, Only
rarely will additional prior knowledge (such as knowledge of the functional
form of the prior) be available. Hence it is desired to construct an
estimator which can make use of u and A, but which requires no further
k nowledge of the prior in order to be better than §°. The estimator should
also be robust in the sense that if p and A do not reflect the true
value of 6 (or the true prior of 6 for Bayesians), the estimator should not
be significantly worse than 6°,

Further discussion of the prior input is given in Section 4, where it -
is shown how to incorporate into the above framework such things as a belief
in exchangeability of the prior, or a belief that certain linear restrictions
on © hold. Until then it will also be assumed that ¥ = 0, a simple translation
which saves considerably on notation.

In the following sections the notation det(B), lr(u), and chmux(B) will

be used to denote the determinant, trace, and maximum characteristic root of



a matrix B. Also, E will be used to denote expectation, with subscripts
denoting parameter values and superscripts denoting random variables with
respect to which the expectation is to be taken, When obvious, subscripts

and superscripts will be deleted.
Section 2. The Generalized Bayes Estimator
2.1. Development of the Estimator

Let C be a (pxp) symmetric matrix such that (c-1) is positive semi-
definite, Define B(A) = A_IC—x, for A > 0, For n > 0, consider the

generalized prior density

1
(2.1) g (8) = [ [detBM N Zexpi-atr(n)Loy21a (M"1-P/2) g,
: 0 .

Note that the conditional density of 6 given A is normal with meén 0 and
covariance matrix B(A), while A has the (generalized) density A(n-l-p/2)
on (0,1). This prior is a generalization of one considered in Berger (1976a),
and for £ = C = I was first introduced by Strawdérman-(197l); (Judge and
Bock (1977) give a good discussion of these special cases.)

Several aspects of g, are interesting to observe. First, it can be
shown that asymptotically (for large Iel) g, behaves like k(etc-le)n for-
some constant k, Thus larger n correspond to "sharper tails" for the
prior, It can also be checked that g, has finite mass for n > p/2,

For certain C, n, and P gn(e) can be calculated explicitely. For

example, if C =c} (c.i 1), p=4, and n = (p-2)/2 = 1, then

g (6) = k(l-exp{-8%7" Y6/ [2(c-1)11)/0%2 Lo,



The actual fofmvof g is not of great importance, however, being as we don't
really think that g, is the.true prior, It is just being used as a tool to
develop an estimator which we hope will exhibit desirable behavior,

The generalized Bayes estimator of 8, with respect to g is given by

R [ 8 exp{-(x-e)tz'?(x-e)/z}gn(e)de

/ exp{-(x-e)tz'l(x-e)/z}gn(e)de

It is straightforward to check that gn(e) has finite mass over any compact
neighborhood of zero, This, along with the fact that gn(e) is bounded outside
a neighborhood of zero, allows interchanging the order of integration in the

numerator above to get

[ 6 expl-(x-0)"2" (x-0)/2)g_(0)do

[ 8 exp{-[(x-e)tzfl(x.e) + etB(A)'le]/z}de [det{B(X)}]—l/zx(n'l"p/ZJdk,

——

Completing squares and integrating out over 6 in the last expression results

in the equivalent formula

1 .
[uam . B0 ™H W exptx 17 - 17« By TH T v 2)
«[det (3 + BOO ™1™ ? et )17/ 2 (1P 2 g

Using the matrix identities

1

[t
s =g - g oI

R (2 R S DY Yok 3

+ BOOHIB(Y) = $'IB(A) + 1= 17,

(2.2) -1

[§

it
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it can be concluded that

[ o exp{_(x-e)t$‘1(x-e)/z}gn(e)de

1
= [ (@ - Mchx expl-axtclx/2}det (172" 01,
0
A similar calculation verifies that
1 tg-1
[ expl-(x-0)*4~ (X-6)/2}g_()de
0
(2.3) )
= [ expl-axtcix/2} [det (3™ )1/ 2an-14n,
0

1

Hence, defining IIXIIZ = x*¢™*x and

1
v [ Aexp{-Av/2}dA
0

(2.4) T (V) =

/ A(n-l)exp{-lv/Z}dk
0

it:follows that

v (|1x]1%$c™?

(2.5) sh(X) = (I -
| 1x] ]

An integration by parts in the numerator of (2.4) establishes that

1
(2.6) r () =22 - [n [ A" lexpl-(r-1v/23] 7).

Integration by parts also shows that

1 -1

% i
(2.7) [n [ A“'lexp{_u_l)v/z}dx]'l = (7 I(n+1)(v/2) ]
0 i=0

T(n+1+i)
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CV/2)n

n-1 i
Y (v/2)'/it]
i=0

if n is an integer

n![exp{v/2} -
i

/)"
. (n-3/2) .
P(n) [explv/2terflev/2)H 2} = ¥ w2y Y2 (44372
i=0

if n - 1/2 is an integer,

z .
where erf(z) = (2//m) f exp{—tz}dt. The last expressions in (2,7) are
0 o
obviously particularly convenient for calculation, The following lemma

gives several useful properties of ro.

Lemma 2,1.1. If n > 0, then

(1) 0% r (v) < 2n.
(ii) rn(v) is increasing in v.

(iii) lim r_(v) = 2n,
yso 1

(iv) lim [rn(v)/{nv/(n+1)}] =1,
v>0

v) iiz rn(v) =V,

~(vi) 1lim [rn(ch)/(Zn{min(l,c)})] =1,
N>«
(vii) rn(v)/v is decreasing in v.
(viii) lin [r!(v)/{exp(-v/2) (W/2) ()} = 1, where T!(v) = %; r (V).

1 o

(ix) 1im V™r'(v) = 0 for all m > O,
Voo n

(x) rn(v)/v'f_n/(n+l).

(x1) 1lim vm(r (v) - 2n) = 0 for all m > 0.
V-0 n
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Proof, Parts (i), (ii), and (iii) follow immediately from (2.6).and the
first expression in (2.7). Parts (iv).and (v) follow from the first
expression in (2,7), after noticing that the first two terms of the
summation are dominant as v -~ 0 or n - «,

To prove part (vi), the first expression in (2.7) will again be used.

For fixed i, the ith term of the summation satisfies

1im [(nc)ir‘(n+1)/r(n+l+i)] = ci.

N>
Hence
o i -1 o 0 ifc>1
: (me)'r(n+1), ™ _ S =
Lim [.Z T 4 T [.Z ;17 =) ifo<c<1°
no>eo 1=0 i=0 ,

The result follows,

To prove part (vii), consider A as a random variable with density

) ,
eXP{-AV/Z}A(n'l)I(O,l)(A)/ g exp{-av/21 Dy,

where I )(A) is the indicator function on (0,1)., It is easy to check

(0,1
that the above density has decreasing monotone liklihood ratio in v, and

hence that the expected value of A must be decreasing in v. But from (2.4)
it is clear that the expected value of X is simply rn(v)/v, and the conclu-

sion follows.

To prove part (viii), observe that a calculation using (2.6) gives

NS
exp{~v/2} [ A (1-2)exp{~Av/2}dA
‘ 0 .

(2.8)° rﬁ(v) = T
[f A(n-l)exp{-AV/Z}dA]2
0
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But

- (m+1) V?Z
0

1
[ expl{-awv/2}dr = (v/2) AMexp{-A}dA
0

v/2)" ™) (rme1y - ov™hy.

Using this in (2.8) gives the desired result,
Part (ix) follows immediately from part (viii). Part (x) follows from
parts (iv) and (vii)., Part (xi) follows from (2.6) and the first expression

The first question which arises is how should n and C be chosen? The

in (2.7).

choice of n that is recommended is n = (p-2)/2. The estimator 6™ can then
be easily calculated ﬁsing (2.5) and (2.7), and the resulting estimator will
be seen to have many nice properties, Note that by Lémma;2.1.1 (iii), |
lim rn(v) = 2n = (p-2) for this choice of n, When C = * = I, the

Z;zimator 6(p-2)/2(x) is thué similar to the original Stein estimator

§(X) = (1 - [p-2]/|X|2)X° Further justification for this chdice.of n will
be seen later.

As a guide in choosing C, note that the covariance matrix of gn(e)

(for n > R 1) is given by ({n-p/2) is the normalizing constant for g )
2 y P n

h=m -5 [ etgn(e)de

1 |
m-B) [ [ o o [dettB(1)}]1 7 Zexpr-0"B(1) "Lo/23d0n (W17F/ Dy
0

1
(- B [ B (1P/ g,

<o

i
(n - .R) f [{‘__ *])\(n-l-p/z)dk
0

(n-p/2)
1o/ C
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Hence if A is felt to be the true covariance matrix of the prior (see
Section 1), then it is reasonable to equate A and A, The implied choice

of C is

. (n-1-p/2)
¢ G G-

While we will mainly be interested ip n = (p-2)/2 (for which g, has
infinite mass and hence no covariance matrix), the above considerations
suggest choosing C = p(I + A) for some constant p :_éhmax{$($+A)_l}. (Note
that the condition on p is necessary to ensure that C 1;*.)

An alternative viewpoint which suggests choosing C as above is to
consider the situation where the prior is known to have mean zero and
;ovariance matrix A. In such a definite setting one wbuld probably be quite
happy to use the best linear estimator (in terms of Bayes risk.) This best

linear estimator is easily calculated to be

§(X) = (I - 3§+ A)‘l)x.
Choosing C = p($ + A) results in

r (XDt + a™h
shx) = (1 - 2 lt - X,
X3+ ATX

where ||X|I2 = X"} + A)7IX/p. This estimator “corrects" X in the direction
(g + A)-lx exactly as does the best linear estimator, but controls the amount
of correction in a way which is quite reasonable. To see this, note that if

A is the "correct" prior covariance, then lim Xt(t + A)-lx/p = 1 with
p—)OO

probability one. Hence ||X]|2 = p/p for large p. ("='" denotes approximate

equality,) By Lemma 2,1.1 (vi) it follows that for large p,
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roiy/2C X% 2 p(nin{1,1/00).

Thus if A is correct, p is large, and
-1
(2.9) ch At +A " I<o=<1,

then
s®2/201x]1%) 2 1 -t + HTHX

as would be desired. If on the other hand A is wrong; or 6 is not in the
region expected, then [Xt($ + A)-1X] will tend to be much larger than
r(p_z)/z(llxllz), and ch-z)/z will correct 6°(X) = X very 1itt1e.

The above considerations are not meant to prove anything, but merely
to indicate why the éuggested éstimator is reasonéblé. Note in particuiar
that choosing 2n = p (as is n = (p-2)/2), was necessary to obtain the
desired convergence to the best linear estimator for large p.

A decision mustvalso be made as to what value of p (satisfying (2.9))
to use, Note that p affects 6n only through rn(Xt($ + A)-lx/p). It is clear
from Lemma 2,1,1 (ii) that L is decreasing in p, so that lafger p result
in more conservative estimators (in that they are closer to 6O(X) = X).
There are no apparent theoretical guidelines to help in the choice of o
l(for n = (p-2)/2), so a variety of numerical studies were performed (some
of whiéh will be seen later). Roughly, it was found that p = .6 gave the
best overall performance in terms of Bayes risks when A is large. For
smaller A, choosingrp =2 chmax{$($ + A)-l} worked well. Keeping in mind

the restrictions in (2.9), the following estimator is thus recommended:
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» . * * xt A _]-X/ * A -1 .‘
(2.10) s+(x) = (1 - 2 (¥t+ ) X/e IRICII.N M I
X3+ A)TX

where r* = r d

(p-2)/2 *"

(1 ifxr>.s

.p*. - min{l, max[z)\’.G]} = 2A if .3 =< A < 3,
- \lze if A <.,3

B -1
where A = Chmax{*(i + A) 1,

2.2 Evaluation of §*,

This estimator §* will now be examined carefully to see if it satisfies
properties 1 tﬁrdﬁgh 7 giveﬁ in Section 1. Some of what follows pertains to
the whole class of estimators 6n, while some refers specifically to 6*.‘
Which is being discussed will clearly Be indicated,

Property 1, &* feadily allows the incorporation of prior kﬁowledge as was
the main goal, The question arises as to whether fhe'incorporation of the
prior knowledge, A, leads to a significant improvement for esfimators of
this form (asSuming the prior knowledge is approximately correcf). To
investigate this question p-variate normal priors, £(9), with mean 0 and
covariance matrix fB were considered. (Note that these priors are not
really cldse to the priors gn(e) in terms of tail behavior. Therefore,

we are not loading the dice in favor of the estimator 6*.5 The Bayes risks

T(8,8) = fR(G,e)E(e)de of three estimators, GTB, GB,‘and GI were compared.

B . . . . . ' .
87 is &% with the "correct'" choice A = 1B, GB is §* with A = B, meaning:
the wrong scale factor is being used, 61 is 8* with A = I, so that an

entirely wrong covariance matrix is being used. Typical of the numerical results
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obtained are those given in the first three rows of Table 1. The calcul-
ations there are for p = 6, Q = $ = I, and B diagonal with diagonal elements
{.1, .5, 1, 3, 6, 16}. (Note that this is a wide spread of variances (for
T = 1 anyway), in that some coordinates have comparatively small sample
variance, some have comparatively small prior variance, and some are in

between,) For varying T, the Bayes risks of GTB, GB,rand 61 are given in

Table 1. 6TB_is clearly best, while GB is significantly better thanVGI.
Thus it appears that the incorporation of prior knowledge in 6* is quite

worthwhile, though it need not be absolutely correct in order to achieve

significant gains. (The Bayes risk of the usual estimator is r(6°,£) =

6.)
Table 1. Bayes Risks ‘ _

.25 .50 .75 1.0 2.0 5.0 10.0 25.0 50.0
TP 3.44 3,88 4.14 4.32 4,72 5.18  5.46  5.69  5.82
sB 3.88 4,05 4,20 4.32 4,74  5.30 5.61 5.84 5.92
5 4.04 4,52 4,82 5.02  5.43  5.71  5.85  5.93  5.97
GEB 2.16  2.82 3,21 3.47 4,08 4,77 5.12 5.58 - 5.76
.gi 2,78 3,01 3,24 3,47 4,39 7,15  11.75  25.56  48.56
-SE'_ 3.16 4,83 6.49 8.15 14,80 34,80 68,00 167.8  334.0

Property 2., &* is quite robust with respect to misspecification of prior in-

formation, and has a risk R(6*,6) which compares quite favorably with R(5°,e).
The robﬁstness is indicated by Table 1. 6B and GI use (at say 1 = 50)

drastically wrong‘prior information, and yet still haVe better Bayes risks

than 6*, Indeed it can be shown that lim r(§*,£) = 6 no matter what fixed A
. -
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is used in §*. This compares quite favorably with the corresponding situation

when linear Bayes estimators are used, The estimators GTE, GE, and Gi in

Table 1 are the linear estimators defined by
A -1
§.(X) = (I -1+ A7™HX,

Thus GTE is the optimum linear and indeed optimum Bayes estimator for the |
situation of Table 1, GE and Si correspond to misspecified prior information.
The risks given in Table i show the nonrobustness of the linear estimatotrs compared to
§*, The case for estimators such as 6* would be even mbre telling if
priors with flat tails were used, (We are looking at linear estimators on
their home ground so to speak,)

Studies of Bayes risks alone tend to put estimators such as 8* in a
very flattering light, To discover the seamier side of such estimétbrs, it
is important to look at the regular risk R(6*,8) in comparison with R(so,e).
Since §* generally pulls GO(X) = X closer to zero, it can be expected that
R(8*,8) < R(GO,B) for 0 in a neighborhood of zero. It also usually turns out
to be true that R(6*,8) < R(Go,e) for 6 in certain difections of the parameter
space. The‘reverse inequality can hold in other directions. Of usefulness
in analyzing this behavior are the results of Berger (1976b). (See also.
Brown (1974)), Using'Theorem 1, Lemma 1, and Lemma 2 of Berger (1976b),
together with Lemma 2,1,1 (i, iii, and ix) of this paper, it can be shown

that

a(8) = R(s%,0) - R(s%,0) = —{é?i—-{tr(¢Q$C’l)
6 0

(2,11)
_ (2metclote 4

otc 1o

} o+ o(lel-z).
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Note immediately that A(8) > O as |o| +~ », Furthermore, if |e| is large
enough, it follows that A(6) < 0 if

emye’coicTle
otc~le

(2.12) tr(doicty.

-1/2 -1/2
This can be written in a more enlightening fashion by letting I' = C / fQic / s

letting {ai} denote the eigenvalues of T, letting {v;} denote an associated

set of orthonormal eigenvectors, and expressing o as

(2.13) 8 = (etC'le)l/2 ﬁ e.Cl/zv., where 'E' e = 1.
| i=1 * * i=1 *

Noting also that tr($Q$C'1) = tr(T) = E o, it is clear that (2.12) can be
i=1 :
rewritten

(2.14) (2+n) f a6’ < ﬁ a,.
. i'i o001
i=1 i=l

From (2,14) can bé determined the directions in which A(9) < 0 for large

|e

. Usually, R(Gn,e) will be less than R(GO,S) for all 6 in these
directions, Note in particular that if (2.14) holds for all e;s or

equivalently that

(2+n)chmax(¢Q$c'l) = (2*n)max {e.} < igl a, = tr(iqic'l),

then A(8) < 0 for large |8]. Indeed using Theorem 1 of Berger (1976¢), the

following stronger result can be obtained:
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Theorem 2.2.1, If (2+m)ch __(fQic™!) < tr(doic™), then R(s",6) < R(&°,6)

for all 6, (Gn is hence minimax.)

~ Proof: Since n > 0, the condition of the theorem clearly ensures that p > 3,
Assumptions (i) and tii) of Theorem 1 of Berger (1976c) follow immediately.
Assumptions (iii) and (iv) of Berger (1976c) can be verified by a simple
calculation of Vrn(the gradient of rn), together with Lemma 2.1.1 (ii,

iii, and ix). Assumption (v) of Berger (1976c) is satisfied by the condition

given in the theorem. The conclusion follows.

Corollary 2.2.2, 6&* is minimax if p > 3 and

(2.15) ey, Uobd + A7 < 2 eeliabd - 07
This is in particular true if

>0, c, > 03

(a.) Q= cll, i = c21, A= CSI’ ¢ >0, c 3 >

(b.) Q
(c.) A

2
c(I + $-1A)$—1, ¢ > 0; or

ciab-, ¢ > en (17,
|

Thus whenever (2.15) holds, 6* will have risk_smaller than R(Go,e) for

Pfoof: Immediate,

all @, a very nice situation. Note, in particular, that this will bé true

for the symmetfic situation described in (a.) of the Corollafy.r (The result

of Corollary 2,2,1 was obtained in the particular case A = [chmax(i—;Q_l)iQi-i]

in Berger (1976a), and in the case Q = $ = I.and A = Q in Strawderman (1971).)
Unfortunately, for nonsymmetric problems (2.15) will not typically be

‘satisfied. It is instructive to examine the risk functioan(G*,e) in such‘

a sitﬁation by numerical methods., The situation considered was p = 6, Q = I,

A =1, and $ diagonal with diagonal elements {,1, 1, 1, 1, 1, 10},. This is a
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case of considerable nonsymmetry where &* can be expected to be worse than
§° in certain directions of the parameter space, Indeed, calculating T shows
that @, = 1/110, @y = Op = Q= 0

just the unit vectors on the corresponding axes.Thus (2.14) becomes

= 1/2, and O = 100/11. The {Vi} are

2

: 2 2 2 2., 2
(2.16) 4[e1/110 + (e2+e3+e4+e5)/2 + 100e6/11] < 11,1,

and for {ei} satisfying this equation we would expect that A(8) < 0 for 6

in the directions (see (2.13))

(1.05e,, 1.41e )t

l.41e 3.32e

1.4le;, l.4le

1’ 2° 4 5° 6

The risk funetion R(8*,6) was numerically computed along the six coordinate
axes and along the line 6 = le|(1,1,1,1,1,1)t/61/2. From (2.16), we would
expect that A(Q) < 0 along all these lines except the 66 axis. The numerical
results in Figure 1 bear this out. (R(GO,G) = 14,1 is the constant line on
the graph.)

The risk of &* along the 6  axis appears to be seriously worse that that

6

of 60, but recall it is being assumed that A = I, Thus the prior belief is

6 has mean 0 and variance one. If indeed 96 turns out to be

10 standard deviations away from zero, some penalty must be expected. Note,

roughly that ©

at least, that the penalty is bounded., For comparison purposes, the risk

R(GL,G) along the 6, axis of the optimum linear Bayes estimator is also

6

given in Figure 1. The comparative robustness of §* is clear,
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Figure 1.
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Figure 1 makes it graphically clear that in using 6* minimaxity will
often be sacrifieéd. It seems ressonable, hewever, to give ur minimaxity '

B

in unimportant areas of the parameter space in order to achieve sizeable

improvement elsewhere, Minimax estimators do not appear to be able to achieve

the sizeable gains in (Bayes) risk offered by §* in nonsymmetric pfoblems.
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The difficulty with minimax estimators can be seen by examination of the

typical minimax estimator (Hudson (1974) and Berger (1976a))

' - -1,-1
M. (p-2)Q %
§X) = (I - 3ty
x4 1x

Clearly coordinates-with high variance get pulled in (towards zero) pfo-
portionally less.than coordinates with low variance. This is contrary to

the intuitive idea that inaccurate Xi should be corrected more than accurate
Xi. This problem seems to be common to al; minimax estimators, with the
result being tﬁat little improvement is obtained in nonsymmetric problems.
(Hudson (1974), Thisted (1976), Morris (1977), and Casella (1977) also discuss
this problem.)

§* has another advantage over minimax estimators which is of a more
practical nature. This is that the loés matrix Q need not be known in order .
to calculate §*, (On the other hand, Q plays a crucial role in all minimaxv
estimators.) In applications it is usually much easier to obtain prior
information (iike u and A) from a client, than it is to obtain Q. (People
will readily guess where g is, but are reluctant to say which coordinates are

more important than others.) This point was also made by Morris (1977).
Property 3.. 6* is clearly relatively easy to calculate, use, and analyze.

Property 4. Stochastic ridge estimators make no formal'allowanée for prior

information, but they are similar to s" with the choices C= [Chmaxci)]l,and

n = p/2. Hence estimators ¢" can be found with about the same '"stability"

as stochastic ridge estimators. (See Casella (1977) for some definitions of-
stability). The prior input into an estimator seems far more important than

its stability, however, so no uttcmbt was made in choosing &* to force it to

be stable.
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Property 5. .As in Berger (1976a), the results of Brown (1971) (in particulaf
Theorem 6.4.2) can be used to show that §" is admissible if n > (p-2)/2,
and inadmissible if n < (p-2)/2. Thus 8* is admissible.

‘As indicated previously,; the flatter the tails of a prior are, the more
robust the generalized Bayes estimator derived from that prior tends to be,
Since, for gn(e), smaller n correspond to flatter tails, it appears that &*
is about as robust as possible (in terms of choice of n), while preserving

admissibility, This waé another reason for choosing n = (p-2)/2.°

Property 6. The discussion leading to the choice of §* in Section 2.1 showed
that 8* has a crude empirical Bayes preperty - namely that if A is chosen
correctly and p is large, then 8* is approximately the optimum linear Bayes:
estimator. For the symmetric empirical Bayes situation dis;ussed in Section
1, the following stronger empirical Bayes property can be obtained.

Assume t = O?I, A =cI, and the'ei are a sample from a prior distribution

with mean zero and variance T2. Note that for &%*,

2
e WXL X2 e
p P pp*(o-+c)  p(a+c)

with probability one.

Lemma 2,1,1 (vi) can be used to conclude that

0’2+T2 }

1im (| [X||® = p min{1, - with probability one.

P p*(02+C)

Hence 8§*(X) behaves like (1.2) as desired, providing (02+T2)/[p*(02+c)]'3_1.
This last equality would hold for. all T2 if p* had been chosen to be

‘ 02/(02+c) (= ch {$($+A—1)}). " The choice given in (2.10) was deemed more

max

desirable, however. Note in any case that since p* <1, (02+12)/[p*(02+c)] > 1

if 12 > c.
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Property 7. The next section deals with confidence regions for 6 based

on 6*,
Section 3. Confidence Regions for 6.

While there has been a great deal of research on multivariate estimation
of 6, there has been comparatively little on the development of improved -
‘confidénce regions'for 6. The theoretical works of Brown (1966) and Joshi
(1967) eétablished that the usual.confidence region could be imprqved upon,
but did not provide explicit improved confidence regions. By thé usual

confidence region is meant
o] ty-1
X = {o: (x-8) 177 (x-8) < k(a)},

where k(a).is the lOO(l-a)Eh_percentile of the chi square'distribution with
p degrees of freedom. Stein (1962) and (1974)'suggeSts'certain confidence
regions for large p (based on heuristic éonsiderations); but leaves open
the question of what to do for small or moderate‘p. Faith (1976) in the
symmetric'situation.($= A=1) develops Bayesian confidence regions:using
priois similar to gn(e), and gives convincing numerical and theoretical arguments
to support their superiority over c®. Unfortunately, his confidence regions
are difficult to work with, having a complicated shape arising from theif
Bayesian derivation. | |

Morrié (1977) suggests an appealing way to proceed in a Bayesian fashion,
with a resulting confidence region which is fairly simplé. In the symmétric
situation he considers the pridr gn(e) with n = (p-2)/2 and C = I,.gnd
calculates the posterior mean, Gn(X), and posterior covariance matrix, tn(X).
He uses the diagonal elements of $n(X) to construct confidence intervals for

the ei, centered at 62 (X). The resulting confidence region is simple and
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yet hopefully retains the advantage of a robust Bayesian approach.- We will
differ somewhat from Morris by considering confidence ellipsoids based on

the entire in(X), and of course dealing with the nonsymmetric situation.
3.1, Development of the Confidence Region

The first step is the calculation of in(X), the covariance'matrix of the

posterior distribution of 6 given X (for the prior'gn(ﬁ)). c1éé¥iy,v$an)

is given by

| | [ To-6"(X) 1 [6-6"(X)1%exp{-(X-0) 41 (X-0)/2}g_(0)d0
3.1y . X) = : . : - 2 P
| i ,

[ expt-(x-0)47" (x-0)/2}g_(8)do

Using (2.1), completing squares, and interchanging orders of integration as

in Section 2, gives that the numerator of (3.1) is

1
(3.2) [ expt-xt 7t p g e o0 ™) "1 x/2) [detB (1) 17 1/2) (n-1-P/2)
0 - |

xf 180587 (06" (X0 Fexpl- (9-2) Bt I+ (0) 1) (6-2) /2}d6d),
P ,
R

where z = ($_1+B(A)_l)-l$_lx. Replacing [eet] by [(e-z)(e-z)t+ezt+z9t—zzt]~

and integrating over 0, the inside ihtegral in (3.2) is equal to

JTdet™ )™ 1721 e 00) et s N (06 (0 B

Using this along with the identities in (2.2) and the definitions of 5n(X)
and z, the expression (3.2) can be calculated to be

1 |
(3.3) [ expl-A] [x] 2720 der 4710) 17V 2 [4-n8 ¢y
0 |
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r (|1x]1%) 2 1x]1% .
Y L. M (e bt axxte i« 02 - i I
TIx| Hx]
Using (2.3), (2.4), (3.1), (3.3), and defining
2 * ' 1.,
v [ expl-av/2h ™ aa
(3.4) t () = - ,
f exp{-Av/Z}An-ldA
0
it follows that
r (l1x] 1% [e_cHxl1%) - x2¢)Ix[)?
(3.5) b o=t "JETT"Tff'— ¢l o T n H$c'1xxtc'1¢.
X X

Integration by parts in the numerator of (3.4) establishes that

(3.6) t (v) = 4n(n+1) {1 - i+v/{2(n+1)}

}.
n [ expl-(A-1)v/2" Laa
0

The integral in the above expression can be evaluated using (2.7). For

calculational purposes, it is probably easier to observe from (2.6) that
(3.7) tn(v) = 2(n+1)rn(v) - v(2n-rn(v)) = rn(v)[2(n+l)+v] - 2nv.
The following properties of t, will be needed.

Lemma 3.1,1, If n > 0, then

(i) o <’tn(v) < 4n(n+l).

(ii) 1lim tn(v) = 4n(n+1),
Voo

(ii1) lim [t (v)/(v%/(m+2)}] = 1.
v-+0

(iv) tn(v) - ri(v) = Zrn(v) - 2vrﬁ(v).
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(v) 0 < tn(v) - ri(v) < 2rn(v).

Proof: Parts (i), (ii), and (iii) follow from (3.6) and (2.7) exactly as

|

To prove part (iv), note that differentiating in (2.6) gives

did the corresponding results in Lemma 2.1.1.

2
: ) rn(v) tn(v) rn(v)
rn(v) Y, Y, Yy

Rearranging terms gives the desired result., The upper bound in part (v)
follows immediately from (iv) and Lemma 2.1.1 (ii). To establish the lower
bound, note that by Lemma 2.1.1 (vii),log[rn(v)/v] is decreasing in v,

Hence

r (V)

r (v) ©

d -
0> s [log rn(v) - log v] =

s

or rn(v) - vrl(v) > 0. Part (iv) then completes the argument. | |

The following lemma will be needed later on, and provides an interesting
bound on in(X). For two (pxp) matrices A and B, let A < B mean that (B - A)

is positive semidefinite.
Lemma 3.1,2.
n -1 | n —i
! - ey I <0 < e CRARE

Proof: The lower bound follows from (3.5), using Lemma 3.1.1 (v) and
Lemma 2.1.1 (x). The upper bound follows from Lemma 3,1,1 (v), Lemma

2.1.1 (x), and the fact that ||x||72c™Y 2xxbc1/2 < 1.

-l
nzl S

(This follows from Lemma 3.1.1 (iii) and Lemma 2.1.1 (iv).) The upper bound

The lower bound in Lemma 3.1.2 is sharp in that in(O) =1 -

am
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1/2 1/2

is not sharp in that the rank one matrix C -/ “xx'c” was bounded by the
rank p matrix IIXIIZI.

The confidence regions that will be considered are the ellipsoids
(5.8) 0 =(eerR: [0-8"001%_ (07 [e-s" )] < k(a)3,

where k(o) is the 100(1-o)th percentile of the chi squaré distribution with
p degrees of freedom. Note that these are not the true Bayesian eonfidence
sets for the priors g, but are only approximations based on the posteriqr means
and covariances. They do have a familiar shape, however, and are quite easy to

work with. In the calculation of $n(X)—1, the following lemma is useful.

Lemma 3.1.3. If Y is a (pxl) vector and B a (p*p) matrix, then

') = (- s vty lvytey.
Proof: Calculation.ll
For convenience, define
r (l1x/1% e (X5 -22 X[ 1%
(3.9) u=mHMF)L%rWT—,w=wHHH%= n n .
X

qu“.

Letting B = (§ - uiC_li)_l and Y = ic'lx, Lemma 3.1.3 can be applied to

(3.5) to give

(3.10) B0 = d - uich T a s wiehote i - ute iyl

B(I - [1 + wY®BY] lwyyts).

Thus the calculational problem is reduced to finding B = (§ - u$C—l$)-l. If,

in particular, * =1, C = pI, then
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(3.11) 07 = (ew/o) " a-wxx®/ [ ousw [ X[2))

The particular choice of n and C that is recommended is n = (p-2)/2
and C = p*($+A) (p* defined in (2.10)), so that the resulting confidence
region is centered at §*. Let C*(X), $*(X), and t* denote C"(X), in(X),

and tn for these choices of n and C. Thus

s 400 -4 - S oy l[t*(llx'ﬁiﬁ:(”x"2)21¢c¢+A>‘1xx“-c¢+A)'1¢,

where HXH.2 = Xt($+A)—1X/p*, and
(3.13) Cr(X) = {0:  [0-6*(01H* 00 [6-6%(0)] < k(a)}.

It is interesting to consider certain intuitive explanations for the
terms of $*(X). Note first that in the standard Bayesian model where 6 has
a multivariate normal distribution with mean vector zero and covariance matrix

A, the posterior covariance matrix is
-1 .-1.-1 -1
(3.14) B ¢ A Y R A 127 Vi 3

In Section 2,1 it was shown that if A is the correct prior covariance matrix
and p is large, then r*(||x||2)/(p*||x||2) = 1. Hence the first two terms’
of $*(X) behave like (3.14) when A is correct and b is large. On the other
hand, if the A used is incorrect, then r*(llxllz)/(p*llxllz) will usually
be small and {*(X) will behave more like {. Note that the last term of
$*(X) is relatively insignificant in large p situations since it is a rank
one matrix,

Another appealing facet of the large p behavior of C*(X) is that for

the symmetric situation-($= I, A =1I)C*(X) is similar to the confidence



31

region suggested by Stein (1962). Indeed when IlX]]z > p (the likely
situation for large p), then r*(llxllz) = p, so (ignoring the rank one

third term)

Cx(X) = {8: |o-(1 - —IP—I-E)xl2 <a- —P-I—2 Yk(2)},
1x X

which is the confidence region suggested by Stein up to first order terms.
The third term of i*(X) seems rather strange at first sight. It has a
very reasonable intuitive explanation, however. Note that the characteristic
vector corresponding to the nonzero characteristic root of the third term of
1*(X) is z = $($+A)—1X. Hence in the direction of z, the contribution of
the third term is positive. (The confidence ellipsoid is widened.) In
directions perpendicular to z the third term is zero and the confidence
ellipsoid is narrowed, Note, on the other hand, that 8* (at which i* is
centered) performs relatively badly when it "corrects" X along the same line
that contains 6. (Correcting only along a line results in escentially a
one dimensional_problem.) 6* achieves its gains when correcting those X for
which the direction of correction is close to perpendicular to (X-6). This
phenomenon is exhibited in Figure 2, where & is shown with four symmetrically
placed possible X values, Assume the simple estimatoflé*(X) = (1 - r*(lxlz)/
lxlz)x is being used, so the x values will be shrunk towards zero. Clearly
the effect of &* upon’ X, and Xq (the x's corrected along the line containing
8) is harmful, in that the average distance of 6*(x1) and S*(xs) from eﬁié
larger than the average distance of x., and x, from 6. On the other hand, &%

1 3

moves X, and X, closer to 6. (This type of picture was shown to me by

Lawrence Brown.)
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Figure 2,
1
X
* o
8 (x2) 2
-7 8%(x,) 8*(x,)
0 =" " 4} . . o
=T < * o <
S~ ! *3

Since §* corrects X in the direction z, our confidence region shoﬁld reflect
the harmful effect 6* would have upon 6 lying in that direction by being
widened in that direction. This is precisely how C*(X) behaves.

Morris (1977) bases his,éonfidence regions only upon the first two
terms Qf‘$*(X) and the diagonal elements of the third term. The above
argument indicates this may be undesirable.

We now proceed with a more rigorous analysis of the.properties of
C*(X). The two common criteria used in evaluating confidence regions are _
size and probability of coverage. Size will be considered first. (Many of

~ the mathematical results which follow will be stated for general in(X).)
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3.2. Size of C™(X)

There are a numﬁer of reasonable measures of the size df an ellipsoid.
Virtually all are functions of the lengths of the semiaxes of the ellipsoid,
For Cn(X), the lengths of the semiaxes are the characteristic roots of
b ol/2

Actually, it is perhaps more appropriate to be concerned with the roots
.of [Qtn(X)]l/z, in order to take into account the relative importance of the
various coordinates as reflected by Q. This is natural as can be seen by

transforming the problem by Ql/2 (i.e. define Y = Ql/zx, n = Ql/ze

, etc.).
_In the transformed problem the loss is sum of squares error loss so that
all coordinates are of equal importance. It is easy to check that the

posterior covariance matrix (given Y) in the transformed problem is
1/2 -1/2,.,1/2 1/2 1/2
M @M et/? = M3 a2,

and hence it is natural to look at the characteristic roots of the square

1/2. For those

roots of this matrix; or equivalently the roots of [Qin(X)]
who prefer to consider size of the original $n(X), merely set Q = I in the

results below.

The following three measures of size of Cn(x) will be considered:

1. det[(Qin(X)]l/2 - (detQ)l/z(detin(X))l/z, which up to a multiplicative
dimensional constant is the volume of the transformed confidence ellipsoid.
Clearly it suffices to consider only [detjin(x)]l/2 since Q occurs only in a
multiplicative constant which will be the same for all transformed ellipsoids.

Hence comparisons of volumes will be unaffected by Q.

(]
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2. tr[QIiZn(X)]l/2 which is the sum of the semiaxes of the transformed con-
fidence ellipsoid.

3. tr[Qtn(X)], which is the sum of the squares of the semiaxes of the
tyansformed confidence ellipsoid. This measure of size is of additional

. . co s . N
interest since it is also the posterior expected loss of ¢ .

The results in this section will be concerned with comparing the.
size of Cn(x) {(and C*(X))-to the size of CQ(X), the usual confidence region.
Note that for C° (X), the three measures of size that will be discussed are
det($l/2 s tr(Qi) , and tr(Q$) respectively.

The first result gives a condition on X under which i (X) < %, and
hence ¢" (X) has smaller size than c° (X) under any reasonable measure of

size. The notation in (3.9) will be used extensively from here on,

Theorem 3.2.1. If u([|X[|%) > w([|X||?), then i < f.

Proof: This foliows immediately from (3.5), noting that tC_IXXtC'li IIXII $C-1$.]l

To investigate the first measure of size, the following two lemmas are

needed.
Lemma 3.2.2.

dethy (0 = [detf] et (T-ud] x| 12 T o] 131D et~ Yeou] 1)1 Do) L.
Proof: Clearly

(3.15) det (0 = [det}] [det (I-uc™ fwc Ixxtc 14y

[dett][det(I-uc‘li)][det(1+wc‘1xxtc‘1¢{I-uc‘li}'l)].
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Note that C_lxxtB_has rank one for any nonsingular (pXp) matrix B, and has
characteristic roots 0 (with multiplicity (p-1)) and (XtBC-IX). (c‘lx is
the characteristic vector of the nonzero root.) The characteristic roots
of [I+wC_lXXtB] are hence 1 (with multiplicity (p-1)) and (1+thBC_1X). It

follows that.

1

det (I+wC 1xxtc "Ly uc 117 1wxte M ir-uc 1 Ix

1+wxt (et e-ucy) ~1x

Lemma 3.2.3., Assume that a, > 0 and bi > 0 (i=1,...,p), and that p > 2,

Together with (3.15) this gives the desired result,

§ b, =1, and E ; 22 max {ai}. Then
1<i<p
P -1
(3.16) I (1+yai[2bi-1]) <1 for all ye [0, (max{ai(l-Zbi)}) ].
' i=1 ‘ i

Proof: Without loss of generality assume that a. is the largest ai; If

1
bi-i 1/2 for all i, the conclusion is obvious. Hence assume bj > 1/2

for some j. Note then that bi < 1/2 for all i # j. Examining (3.16), it

is the largest ai).

is clear that the worst case to consider is j = 1l(since a;

Thus assume b, > 1/2.

1
Since 2a, < E a. (or a, < E a,), it is clear that
1 —.- 1 1 —. i
i=1 i=2
p p
(3.17) T (1+ya,[2b.-1]) < (l+y{ a.}[2b,-1]D)[ M (l+ya,[2b.-1])].
i=1 R =2+l i=2 ol

-

Denoting the right hand side above by:m(yi, a calculation gives
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d p
d vy =1 H2b -11[ T (1+ya, [2b,-1])
& » () igz a, H2b, ][i=2 (1+ya, [2b.-1])]

a [2b =17 (1+y{ E a. }[2b -1])
) i=2 )

(1+>'a [@b,-11)] E {
j=2 ‘ 1+ya.[2b.-1]

+ [

i

" = hye

> p 2 [2(o1#by-1)4y (2b,-1) (2b-1) (a; + ) a,)
=[x (1+ya [2b, ‘1])] Z{ . i=2
1=2 =2 l+yaj[2bj—l]

}.

Since (2b -1) > o0, (2b.-1) < 0, a; > 0, (b +b, -l) < 0, and (1+ya [2b -1]1). >0
(due to the domain of y), it is clear that — ?(Y) < 0. Hence.v(y) is maximized
at y = 0, which together with (3.17) establlshes the result, ||

The following theorem gives conditions under which the volume of Cn(X)

is less than the volume: of CO(X).

Theorem 3.2.4. [dett (X)]1'/2 < [detf]™? for a1l X, if and only if

tr(c'1¢) 3_2chmax(c‘1¢).

Proof: U51ng Lemma 3.2.2, it is clear that showing that [det$ (X)]

[deti] is equivalent to showing that

(318 H = ee(t-ull X5 e ) ] [x] B xt et Te-ud[ [x] [0y < 1.

For convenience, let T be orthogonal such that T.C 1/21:C_1/2T =D is

diagonal with diagonal elements {d d_}, d1 being the largest. Note

preeesdy
that the condition tr(C-li)_i 2chmax(C-1$) is simply

(3.19) .E d, > .
Also define z = TtC-l/Zx, so that llx[lz = xt¢x - lz]z. “Then H can be

.rewritten
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P - -
(3.20) Ho= [ eullz]HapT izl )2t o a2 D0 )
i=1

P
= [ _nl(l-uclzlz)di)][1+w(|zl2)_§1 {zfdi/cl-uclzlz)di)}l.
1= i=1

To prove the "only if" part of the theorem, choose z = ]zl(l,O,...,O)t.

Then

(3.21) H (l-u(lzlz)di)][l+w(|z|2)]z]zdl/(l—u(lzlz)dl)]

P
[ 1

i=1

p .
[T Q-uclzl®)d)11ed; tw(|2)?) |2 2ucfz] D).
i=2

Letting |z| =+ « and using Lemma 2.1.1 ((iii) and (ix)) and Lemma 3.1.1 (iv),

it is clear that

ullzl®) = = (121571212 = 20/]2]% + o([2]"3),

nd:h
2] I

2n/lz|2 + o(|z] 7.

| 2 (12]%)-2]z) % (]2]%)
w(lz]®) 4] %-u(]z]? = 20 n

Hence from (3.21)

2nd

1= - 2§ aeotla A1 2k ofalY)
|z] i=2 |z
| 2n -2
= 1+ —=— {d.- d.} + o(|z|™).
|z]¢ 1 igz 1

Thus if (3.19) is violated, then H > 1 for large enough IZI (and z in the

given direction). This proves the ""only if" part of the theorem.
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To prove the "if'" part, observe from (3.20) that

p p
(3.22) H [_H (1"“11)][.“ (1+wZi2di/{1-udi})_]

i=1 i=1

| A

p 2
I (1+d, [wz.-u])
. it
i=1

22?
i

(1+ud, [ -11),
1 i |Z|2

<

L= Ree]

i
the last step following from Lemma 3.1.1 (v). Letting y = u, ai'= di’

b, = zi/lz,z, and applying Lemma 3.2.3, gives that if (3.19) is satisfied

then H < 1, completing the proof.ll

Corollary 3.2.5. If C = b*(gil) and p > 2, then [detiin(x)]l/2 < [detji]l/2

for all X.

Proof: tr(Cfli) = pT > 21 = 2chmax(C-1$), so Theorem 3.2.4 gives the

desired result.

Corollary 3.2,6. C*(X) has'smaller volume than CO(X) for all_X, if and

bnly if
-1,.-1 -1,-1
tr(I+Al™) _1-2chma§I+A$ )7 .

1

Proof: Obvious from Theorem 3.2.4, noting that }(i+A)™" = (I+A$-1)_l.||

Note in particular that for the symmetric problem wﬁere $ and A are
multiplesrof the identity, then Cn(X) and C*(X) have smaller Volume‘than
c®(X) for p > 2.

The question arises as to how significant an improvement in volume is
obtainable using C*(X) instead of CO(X). Using Lemma 3.2.2 it is an easy

matter to calculate
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volume of C*(X) _ [detf*(x)]}/2

V*(X) =
volume of CO(X) [detj:]l/2

Typical of the results obtained are those given in Tables 2 and 3 below.
Table 2 considers the symmetric situation i = I and A = 2I' (so C = p*(f+A) =
2I) for p = 6 and p = 12, Vg and ViZ are the volume ratios in 6 and 12

dimensions, respectively. V*(X) is a function of IXI in this. situation.

It is somewhat easier to picture things in terms of
1
R¥(X) = [vr0)]17P,

which is termed by Faith (1976) the ratio of the effective radii of C*(X)
and CO(X). (The effective radius of a set is the radius of a p-sphere
having the same volume as the set.) In Table 2, Rg and RIZ stand for R*(X)

in 6 and 12 dimensions. In the symmetric situation C*(X) is ¢learly

significantly smaller than CO(X).

Table 2. Volume Ratio

|X| ‘
3 0 1.0 2.0 4.0 6.0 8.0 10.0 20.0 50.0
*
v6 . 296 . 309 .352 .561 .784 .877 .921 .980 .997
Rg .816 .822 ° ,840 + ,908 .960 .978 .986 .997 .999

VIZ .039 .041 .045 .075 .201 .422 .588 .881 .980

Riz . 764 . 766 772 .806 .875 .931 .957 .990 .998

Table 3 deals with the nonsymmetric situation p = 6, $ = I, and A
diagonal with diagonal elements {.1, 2, 4, 6, 8, 30} (so C = p*(i+A) =

($+A)). The entries V; and R; (1 <1 < 6) refer to the quantities V*(X)

and R*(X) calculated along the ith axis. V¥ and R* are calculated along the

7 7
line [X|(1, 1, 1, 1, 1, i)t/61/2. Note that
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er(eAt™) ™! = 1,720 < 1.818 = 2ch _(1eat ™D,

so by Corollary 3.2.6 it must be true that V*(X) > 1 for some X. Indeed
for large |X| along the first axis, Table 3 shows that this is the case.
Such X are very unlikely to occur, however, if the pfior information that

Ql has mean-.0 and variance .1 is even approximateiy correct.
Table 3. Valume Ratio
, ;o IVXJ ‘
0 1.0 3.0 5.0 7.0 9.0 11,0 20.0 50.0

VY 467 .514 .858 1,000 1,002 1,001 1.001 1,000 1,000 '

R* .881 .895 .975 1.000 1.000 1.000 1.000 1.000 1.000

Vi 467 .476 .556 .722  ,861 .,919 .946 .984 .997

R% .881 .884 .907 .947 .975 .986 ,991 997 1.000

vV .467 471 513 .605 .732 .833 .889 .967 .995

Ry .881 .882 .895 .920 .949 ,970 .981 .994 .999

vy .467 .470 .498 559 ,654 ,756  .833 .950 .992

R* .881 .,882 .890 .908 ..932 ,955 ..970 .991 -999

VE 467  .469 - .490  .536 .608 .698 .781 .932 .989

Ry .881 .882 .888 ,901 .920 .942 .960 .988 .998 .

vV .467  .467 .473  ,484 ,,502 ,528 560 . 757 .959

R> .881 .881 .883 .886 .892 ,899 .908 .955 .993

vy .467 .477 . .573 ,755 .901 .949 967 .990 .998

Ry .881 .884° .911 .954 .983 .991  ,994 .998 = 1,000

1/z.lgeneral resulés were

For the second measure of size, tr[Qtn(X)]
not obtained; However, for the case Q = t'l and C = pt(pz_l) (which
includes the Symmetric_oase where Q, §, and C are all multiples of the

identity) the following‘result shows that Cn(X) is smaller than CO(X) if p > 2.
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Theorem 3.2.7, If Q = i'l, C = pt(pz}), and p > 2, then tr[Qﬁn(X)]l/zli

er[qi)/ 2.

Proof: Defining a = u(llxllz)/p, it can be calculated that

ot 001% = [(-we)r + wxt/p?)1/2

= -0Y?1 v ea-a) V2. (-a+ (X Iowe? 12 B g 1t

Hence

erleh, 012 = -1 -2 v (eas (5 w022

-1 (1-2) 2+ ()2 < (e,

i A

the last step following from Lemma 3.1.1. (v). For 0 < a < 1,

| 1/2 -1/2 ’ |
ER T L L

Thus h(a) is maximized at h(0) = p = t:r(Q!Z)l/2 and the result follows.|

Numerical calculations will not be given for the above measﬁre of losé
since (at least for the symmetric situation) tr[Q#n(X)]l/2 behaves like
P(1-R*).

The final measure of size is L(X) = tr[Qtn(X)], which is also the

posterior expected loss. Clearly

(3.23) LX) = treb) -udl X1 Her@ict) + wil[x]1Hxtc ot x.

Theorem 3.2.8. L(N) = tr[Qf, (X)] < tr[Q}] for all X, if and only if tr(fQic™}) >

-1
2chmax(¢th ).
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Proof: The "if" part follows immediately from (3.23) and the inequality

2, '
2r (11x]1% xtc-ltqtc-lx
|1x] ]2 xtc1x

w(]1x]1HxtcHetc 1 x < )

< 2u(] x| [Hen_ cdatch.

max

The "only if" part is proved analagously to the "only if" part of
Theorem 3.2.4. Choose X to be a multiple of the eigenvector corresponding
to the largest characteristic root of C'1/2¢Q$C-1/2, let |X] > « in (3.23),

and use Lemma 2.1.1 ((iii) and (ix)) and Lemma 3.1.1 (iv). ||

Corollary 3.2.9, C*(X) has smaller size (measure 3) than CO(X).for all X,

if and only if

ercboreat™17h) > 2eh  choreat™lyh

Proof: Obvious.

An interesting observation can be made concerning the relationship between

R(6,8™) and EgL(X).

Theorem 3.2.9. If tr(iQic™!) > (2n+2)ch ._ciqic™l), then R(8,8™) < E,L(X)
- max -0

for all 6,

Proof: Integrating by parts as in Berger (1976c) (the technique was first

noticed in the symmetric case by Stein (1973)) gives

-2r t.-1, . -1

2
| 1X]1
2,t
4r 2 (LX) 5xtc &Q*f x . xtc” tqtr Ix
1)1 1x}1°
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Applying Lemma 3.1.1 (iv) and (3.23) to this expression gives

_ t.-1 -1

_ : T (r_+2)X"C™ iQic™*x

(3.24) R(8,8™) = E L(X) - E L {trctqic'l) n i
° x| 12

x|

}

211 1x] B g
1x[1?

1.
Since rﬁ(IIXIIZ) >0, _([[x[1%) < 2n, and

xtcLigtcIx

"Xllz = ch:iiiax(-IQ*C'_l)’

the conclusion follows,

Corollary 3.2.10. If $QfC7' = tI and n < (p-2)/2, then R(6,6™) < E,L(X) for

all g.
Proof: Obvious. ||

The above result was obtained for the situation‘Q‘= $=C=1andn = (p-2)/2
by Morris (1977). Stein (1974) has‘related results in the symmetric situation.

Theorem 3,2,9 essentially says that, under the given condition, L(X) is
an overestimate (on the average) of the true expected loss for §". 1In some
sense, this indicates that the corresponding confidence sets Cn(X) are laréer
than necessary, i.e. an error on the side of conservatiém-is being made. Note
that for the symmetric situation, C*(X) satisfies the condition of Coroliary
3.2.10. /

Theorem 3.2.9 is somewhat puzzling in light of the fact that if n >Vp/2

(so that the priors g, have finite mass) then

JR(o,6% g, (0140 = [[E LX) ]g, (0)do.
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(Both sides are equal to the Bayes risk, up to the normalizing constant of
gn.) If n < p/2, the integrals above are infinite, making the result of
Theorem 3.2.9 possible. The following result indicates what happens for

(p-2)/2 < n < p/2,

Theorem 3.2.11. If (p-2)/2 < n < p/2, then

fIR(6,6™ - E.L(X)]g (8)de = 0.
0 n

Proof: From (3.24) and Lemma 3.1.1 (iv) it can be:seen that

rntr(iqic‘l) t x"cHopcx
][ 111

n
A(8) = R(8,87) - EL(X) = Eq [

Denoting the integrand in the last expression above by T(X), it is straight-

forward to check that

f (B |TO0 g (0)do o
for n > (p-2)/2. Letting

n (x) = f(zn)‘P/z(detx)‘l/zexp{-(x-e)ti‘l(X—e)/z}gn(e)de,

it is thus clegr that orders of integration can be interchanged to get

fA(e)gn(e)de = jT(x)mn(x)dx.
Using the definitions of r and tn and the fact that

m (x) = (2m)P/2(ger})~1/2 z expl-A| [x| | 2/212 (Vg

it follows that

fa(erg, (8140 = (2m) P/ %(gett) V211 AMexpi-a] [x][2/2s

x[axtc ot Ix - er(iqicly]datax.
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It can be checked that the above orders of integration can be interchanged

for n > (p-2)/2. Since
(2m) P2y fexpi-axtclx/2) (b Liqbc xy ax = P 2ercttcl),

the resulting expression will be zero.|]

The above theorem shows that for n > (p-2)/2, EeL(X) is-"on the average".
~equal to R(G,Sn), and heﬁce L(X) is not an overeetimate.

In conclusion, it can be noted that for the important symmetric problem
(Q,t, and C multiples of the identity matrix), Cn(X) is smaller ;han CO(X)
for all measures of size considered and p > 2, Even for nonsymmetric
problems, ct (X) tends to be smaller than c® (X) under quite weak condltlons.
For example, the conditions of Theorems 3.2.4, 3.2. 7, and 3.2.8 tend to be

considerably weaker than the minimax condition of Theorem 2,2.1.
3.3 Probability of Coverage of cm.

The other major facet of the confidence region c” which is of interest

is its probability of covering the true value of 6, i,e.

(3.25) PoleeC ) = [(2m) P/ % (dett) ™ Zexpi- (x-0) 14! (x-8) /2}dx.
{x ¢ RE: ¢ Cn‘(x)} .

Note that (3.25) is the usual (frequentist) probability of coverage not
a Bayesian probability.
Dealing with probabilify of coverage analytically is very difficult.‘
It seems virtually impossible to obtain uniform (for all 6) dominance resﬁlts
as were obtained for size. Numerical studies of probability of coverage
are very useful (and wiil be given), but tﬁey have the weakness in these

high dimensional, many parameter settings of not being
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able to adequately cover the broad range of possible problems. When

discussing R(G,Gn) in Section 2.2, it was shown that a very useful

analytical way of determining approximate risk behavior was to look at the
""tail approximation" given in lines (2.11) throﬁgh (2.14). This éﬁggests

doing a similar thing for probability of coverage: obtain a large 6 approx-
imation for the prbbability'of coverage of Cn. In looking at numerical studies,
it will bevsgen that this approximation is a very good guide in determining

the behavior of Pe(e € c“(X)).

Theorem 3.3.1. For the confidence ellipsoid

' = {o: [0-6"0)]1% 7 [e-6"(X)] < k(e)},

- L p/2 t ~ly-1,
Po(oe C"(X)) = (1-a) + nfk(a)/2] tex€{-k(a)/2}{trctc-1) (2+2n)etc_1$c 8,
pr(p)87C e S ecTe

+o(le|™h.

Proof: Given in the Appendix.||

Corollary 3.3.2, If 2n < [tr(tc‘l)/chmax(ic‘l)]-z and 0 < a<l, then

Po(0€ Cn"(X))‘> (1-a) for large enough |6].

Proof: Obvious from Theorem 3.3.1 and the fact that (etC'ltc—le)/(etC'lé) <

-1
ch (3|

Corollary 3.3.3. If C = p}, then

v /2 -
Po(B e c(x)) = (1-a) + 2n[k(a)/2]P eXP{-g(a)/Z}[p-(2+2@)]+0(le|_4).
pr(p)|le|| :

Proof: Obvious.

Corollaries 3.3.2 and 3,.3.3 show that Cn(X) can possibly have probability

of coverage greater than (l1-a) for all 6 only if n i_(p¢2)/2. Unfortunately,
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the estimator 8" is inadmissible if n < {p-2)/2. Thus to obtain a good
estimator and a probability of coverage which is not seriously worse than
(1-a), it seems that the choice of n = (p-2)/2 should bé'made. In part,
this is why 6* and C* were recommended with the choice n = (p-2)/2.

For problems in which C # ot, Thoerem 3.3.1 is useful in determining
the directions in which C*(X) has greater or smaller probability of coverage
than (1-a¢). Indeed, being as the error term in Theerem 3.3.1 is'0(19|-4)
while the dominant terms is B(IGI-Z), the approximation is faifly aécurate
for even moderate values of lel. (Numerical studies showed this‘to be-the
case.)

As an eXample, the case p = 6, $ = I, A diagonal with.diagdnal elements
{.1, 2, 4, 6, 8, 30}, and 1 - & = ,90 was consideredf> (This example
was discusséd ih Seétion 3.2 with respect to the size dfﬂc*(X),) The
probabilities of coverage Py(Be G*(X)) were,calculéted along the six axes
and along the first quadrant diagonal. Table 4 gives the results fof vérious

values of leI. (pi stands for the probability of coverage along the ith

axis (1 < i < 6), while Py is for along the diagonal.) From Theorem 3.3.1

(with C = p*($+A)) it could be predicted that C* would have a probability

of coverage'smallér than (1-a) for large enough |6| along the first two axes

and the diagonal, and probability of coverage larger than (1-0) along the. remaining
axes. This behavior is exactly what is observed in Tablé 4, Theicoverége prob-
ability along'fhe first axis appears particularly bad, until it is remembered that
the prior input states that 61 has mean zero and variance .1. Hence for 61:

within several standard deviations of zero, the probability of coverage is

greater than (l-o),
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Table 4. Probabilities of Coverage of C*(X).

o 1.0 1.5 2.0 3.0 4.0 50 6.0 10.0 15,0
p, .960 .935 .885 820 .787 .821 .852 .870 .890 .895
p, .960 .957 .953 .947 .931 .915 .903 .897 .899  .899
Ps .960 .959 .956 .955 ,950 .943  ,933 = ,923 ,908 .904
p, .90 959 958 957 .952 .948 .941 .935 .914  .905
P .960 .960 .960 .959 .956 .953 .949 .944 923,910
P, -960 .960 .960 .960 .960 959 .95 .958 955,943
p; 960 .956 .950 .94l .9II .873 .850 .848 .880 .892

For symmetric problems (or more generally

hope that C*(X) does have coverage probability greater than (1-a).

those with C = p}), one would _'

Unfor-

tunately, Theorem 3.3.1 or Corollary 3.3.3. are no longer of any assistance,

since [p-(2+2n)]

as the following theorem shows,

Theorem 3.3.4.

If C = pf and n

(p-2)/2, then

o0 (0 = (1-0) + 22 [k(a)/2]p/ o

Proof;

Corollary 3.3.5.

xp{ k(a)/2}

Given in the Appendix. ||

4pP(p/2)(e

k(@)
2(p+2)

)2

{4p(p-2)

= 0. It is thus the term of order |6|"4 that is dominant,

[p>+2p>-32p-48]1 + 0(]8] %),

If A = p}, then for large |e|,pe(e ¢ G*(X)) > (1-a) providing
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(1) 0< k(a) x 1,212 (i.e. 0 < (l-a) < .25) when p =3,

(11) 0 < k(a) < 4.8 (i.e. 0 < (l-a) < .69) when p-= 4,
(iii) 0 < k(a) < 25.45 (i.e. 0 < (l-a) < .9999) when p = 5,

(iv) 0 < k(a) <= (i.e. 0 < (1-a) < 1) when p > 6.

Proof:: " The conditions on k(a) are simply those for which {4p(p-2) +
k(u)[2(p+2)]'1[p3+2p2-32§-48]} > 0. Theorem 3,3.4 thus gives the

desired result.ll

.For P 3;6 ( and virtually always for’p = 5), the coverage probability
of C* is thus greater than (1-q) for large enough |9|. To determine the
: behavior fbr small |e|, numerical studies were conducted for (1) = ,90,

P=4,6, and 12, and C = 2 } (which would result, say, if A = }). The

results are given in Table § for various values of (Gtt'le)l/z. The coverage

probability is never much worse than .90, and for small (et#~19j1/2 wa§ con-
siderably betfer. Note that as predicted by Corollary 3.3.5, the coverage
probability fell below .90 for P = 4 and large IGT, but was aboye +90 fo;_
P = 6 and 12 and large |6]|. The dip below .90 at (ett-le)l/z = 8 and p = 12

is somewhat surprising. The O(|9|-4) term of Theorem 3.3.4 is apparently

not yet dominant at this point. (The probabilities were computed by simulation,

using 60,000 generations of X.)

Table 5. Probabilities of Coverage of C*(X)

(6t¢_10)1/2

0 1 2 3 4 5 6 8 10 15
4 971,965  .945  .918  ,902  .897  .898  .898 - .898  .898
6 993 .989  .976  ,946  .916  .902  .900  .901  .901  .901
12 1,000 .999  .998  .988  ,958  .921  .900  .895  .898  .900
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3.4. Comparison With Other Confidence Procedures
As mentioned at the beginning of Section 3, several other multivariate
confidence procedures have been proposed. For the most paft they have been
presented and studied only in the symmetric situation (Q, 1, and A multiples
of I), so the comparisons in this section will be restricted to that case,

Along with C°(X) and C*(X), we will consider
¢ = o: Jo-520[? < k(@)
and

M = (o: [e-c*(x_)]t%l[e-s*(xn < k(@)},

where tMCX) consists of the diagonal elements of I*(X). CB-J(X) is simply
the usual confidence region centered at the improved estimator §* (im

the spirit of the Brown (1966) and Joshi (1967) confidence sets). CM(X)

is related to the-région suggested by Morrié (1977) in fhé symmetric situation.
One difference is that his éhoice of C in the prior g, was C=1, not C = p*I
as proposed‘here. (Some comments about both choices will be made.) The major
difference is that confidence intervals, not confidence ellipsoids, are;considered
in Morris (1977). Hence overall probability of coverage is not the goal he
pursues. To make meaningful comparisons,‘therefore,'an ellipsoid uSing the
variances in Morris (1977) is considered. |

The other major proposed confidence iegions, those of Stein (1963) _
and (1974) and Faith (1976), will not be discussed; Stein's regidns are
developed heuristically for large p and without modification are probably
not suitable for small p. Faith's regions will not be considered for two
reasons. First, as they are developed in a Bayesian fashion (though in the
symmetfic c#se), their performance is quite likely very similar to C*(X).
On the other hand, they have a complicated shape and are hard to work with or
evaluate., The relative simplicity of the other procedures makes them

attractive,.
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vIn Eompéfiﬁg sizes, only volume will be discussed,_though similar
conclusions hold for other measures of size. Since CO(X) and CB_J(X)
have the same size, the results of Section 3.2 hold fof both. (See in par-.
ticular Corollary 3.2.5 and Table 2.) C*(X) clearly achieves a very significant

B-J

reduction in size over CO(X) or C (X). The following theorem also shows

that C*(X) has smaller volume than CM(X).

Theorem 3.4.1. Assume C and t are diagonal, and let ir(X)'denote the matrix

1/2

of diagonal elements of in(X). Then det[in(X)] f.det[tg(X)]l/z.

Proof: Define

2 = w( x| |%el/ 1S 1-u(| [X] | HyoZ/e, 21,

where {oi} and {ci} are the diagonal elements of i_and C. A calculation

gives that

(3.26) dett () = [det}] [det{I-u(||X||Hc Y1 (1+2)].
| i

Noting from Lemma 3.2.2 that

(3.27)  det} (X) = [det}] [dettI-u(||X||Dc 1] 1+ E 2.1,
i=1

the conclusion follows from the inequality

1+ E z.) < _5

: (1+z)- ]|

i=1
As an aside, it is interesting to note that (3.26) and Lemma 3.2.3 can

be used to show that det[tx(X)] < det[}] if tr(clf) 3_2chmax(c‘1$). (The
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proof is essentially given in Theorem 3.2.4 starting with (3.22).) Hence
for the symmetric situation (and p > 2), CM(X) has smaller volume than
c®x) or 3. | |

Though Theorem 3.4.1 shows thét C*(X) haé smaller volume tﬁan CM(X), the
difference is much less than that between C*(X) and CO(X). From (3.26) and
(3.27) it is indeed clear that if X lies along one of-the axes; then
det[tg(X)] = det[in(X)]. When X lies en a diagonal, on the other hand, the
difference is greatest (for the symmetric situation). Table 6 gives the
values of [deti*(X)/detiM(x)]l/2 along the diagonals for various values of
X, p, and C when i = I. Morris always chooses C = I, while C = 2I is

more typical of C = p*($+A) suggested here.

Table 6. Volume Ratio of C*(X) and CM(X)

|x]

12(C=21) - 1.000 .999 .995 981 949  .921 ,929 ,970 .996

6(C=2I) 1.000 .997 .986 .971 .970 .980 .989 .996 .999

6(C=I) .990 .912 .848 .900 ,955 .978 <989  .996  .999

To compare probabilities of coverage, numerical studies were conducted,
vTables 7, 8, and 9 give results for $ =I, C=2I, anﬂ p equal 4, 6, and

12 respectively. Both C* and CB_J have probabilities»of coverage which depend
only on lel. CM, on the other hand, does not., Hence results for CM are given

for 6 along the axes (CZ) and for 6 along the diagonals (Cg).
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Table 7. Probabilities of Coverage (p=4).
o]
0 1 2 3 4 5 6 8 10 15
C* ,971  .965 .945 918 .902 .897 .897 .898 .898.  .899
B-J 970 967 .959 .945 .928 .914 .908 .903 ,902 .900
CZ .959  .954 ,940 ,921 .909 .904 .802 .900 .899 .899
cg .959 .954 ,938 .916 .900 .895 .895 .898 .898 .899
Table 8. Probabilities of Coverage (p=6).
6] '
0 1 2 3 4 5 6 8 10 15
c* -993  .989  .976 .946 .916 .902 .900 .901  .901 .901
c™ 990 .989 .985 .976 .962 .944 .930 .917 .912 506
cr | .

a .981  .977  .965 .945 ,927 ,917 .912 .907 .904 .902
cg .981  .977 .964 .939 .912 .898 .895 .899 .90l .961
Table 9, Probabilities of Coverége (p=12).

o]

0 1 2 3 4 5 6 8 10 15
C* 1.000 .999 .998 .988 .958 ,921 .900 .895 -.898 .900
¢ 999 .999 .999 .997 .995 .990 .978 .952  .936 917
CZ» .995  .994 ,991 ,980 .961 .942 ,933 .922 .912 .903
Cg» 995 .994 .991 ,979 .951 .916 .893 .888 894 .898
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Except for small |6], cB-J has better probability of coverage than C*.

On the other hand, C* has significantly smaller volume than CB'J

(Table 2).
In looking at the tradeoffs invoived, the smaller size seems to more than
offset the smaller probability of coverage. From an applications viewpoint,
the confidence procedure, C*, seems more appropriate also. It can be reported
as a (l-a) confidence region and will have a definitely-reportable smaller
size than CO(X);‘,CB'J(X),-on the other hand, has the same size as CO(X)

and can also only be reported as a (1-a) confidence region. The gains in
probability of coverage if the true © happens to be small are hard to report.
CB'J would, in a conservative sense, be more competitive in nonsymmetric
situations, since its probability of coverage would be less likely to drop.
below (1-o) than would the probability of coverage of C*,

C* and CM have very similar probahilities of coverage; (Note that both
are calculated at C = 2I for comparison’purposes; The choice of C = I gives
less attractive results for both regions.) CM is better along the axes, while
C* is better along the diagonals. The smaller size of C*(X) and its greater

simplicity in nonsymmetric situations make it attractive. Both procedures,

however, should do quite well.
Section 4. Incorporation of Prior Information.

As mentioned in Section 1, prior input in the form of a prior mean
vector u and a prior covariance matrix A is envisaged. The use of A in
the development of 6* and C* has already been discussed. To use u, the

estimator and confidence region should be centered at u. Thus

(4.1) _ g*(x) ,= X - r*(lIX_-_.-uJJZ)t(t+A)‘1(x-u)
x-0) E(d+n) " x-m)
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is the recommendéd estimator. The definition of {*(X) is unchangéd‘excppt
that X should Ee replaced by X-u in all expressions. This shift changes none
of the properties or results established in Sections 2 and 3.

It is sometimes desirable to choose C-l to be singular. The only change
which should theﬁ be made in the definitions of & and C" is to‘chbose n =
([rank C-l]-2)/2 instead of n = (p-2)/2. The rank of C~! js the effective
dimensionality of the problem. This can be seen by diagonalizihg t and C,
and then noting that §" and $n are the generalized Bayes estimafor and posterior
covariance matrix for a subproblem of ranka-1 Thus all the results of Section 2
and 3. (with the exceptlon of the admissibility of § ) hold with p replaced by
[rank C~ ]

The reason for choosing C'1 singular would be that in some directions
you have no prior information whatsoever (or alternatively, that A has
infinite characteristic roots in those directions). The corresponding coordinates
are then effeﬁtively excluded from the correction term of the estimator &
and are dealt with by the usual estimator §° and confidence region Co,

An example of the use of singular C—1 is when shrinkage towards the
common mean % = E X. /p is desired. Defining (1) as the matrix of all ones,

1 as the column vzcior of ones, and letting C-l =1 - I-)(1), it is easy to
check that (for § = I)

r_(|X-X1|?) (x-X1)

n

(4.2) §*(X) = X - — ,
| X-XI|

an.estimator which shrinks towards the common mean. Note that C-1 has rank
(p-1), so n = (p-3)/2 is the choice of n in rh above, ‘Choosing C'1 as above
is essentially a statement that the ei are felt to be similar (or their priors

have a common mean or their prior is exchangeable), but that the common value that
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the ei are near is totally unknown. This last assumption seems somewhat
extreme intuitively, and the following Bayesian considerations suggest a
reasonable alternative. |

Assume  that the ei are thought to be a random sémple from a normal
distribution with mean 60 and variance 02.- (It is convenient to develop
u and A through the assumption of normal priors due to their ease of
manipulation.) It is often assumed that 60 also has a normal distribution

with mean ﬁo and variance 02 (This. problem is discussed in Lindley (1972),

0°
where earlier works on the model are also referenced.) As pointed'out in
Lindley (1972),;this two stage prior is equivalent to assuming that 9-ha$ a
p-variate normal distribution with mean p = uOI and covariance matrix A =
(021 + cg(l)). The common Bayesian technique is to use the linear Bayes
estimator, letting og + «, (The prior information at the second stage is
deemed vague, so taking cg to infinity_result§ in a more robust estimator,)
Due to the fact that §* is already quite robust, however, the best guesses
u and A can safely be used directly in 6*.‘ There is no need to let

2

. 2 . '
Ty > = Note that at the two extremes, letting 0y > = in 8* would result

in (4.2) (providing } = I and n = (p-3)/2 were used),'while'choosing 03 =0

-

would simply result in an estimator shrinking towards the believed mean
uol..
As another example of the use of prior information, assume that the

linear restriction
B(e - eo) =0

is thought to hold, where 60 is a p vector and B is a (kxp) matrix (k <p)
of rank k. Suppose a (kxk) positive definite matrix A is also determined,

where A reflects the accuracy with which the linear restrictions are believed
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to hold. ( A can be thought of as the estimated covariance matrix of the prior
distribution of B(6 - 60).) |

The simplest way to proceed is to define Y = B(X - 60), n = B(e-'eo),
and S = Q-lBt(BQ-lBtj-l. (Q is from the loss function.) Theorem 2 of Berger
and Bock (1977) states that the improvement (over 60) in estimating n by
§(X) = X - Sy(B(X - eoj) is equal to the improvement‘(over 60)'in estimating
n by 8(Y) = Y - y(Y) under the quadratic loss (§- n)t{BQ—lBt)-l(é- n).
(The problem decomposes into the estimation of [I-SB]6 by [I—SB]X, and
n by 8(Y).)

The obvious choice for y(Y) is

. r (IY]1%) el
Y(Y) = » 5 )
Lyl

where tY = BtBt, C = p*($Y + A), and n = (k-2)/2. A reasonable choice for

the confidence region is simply the usual confidence ellipsoid for (I-SB)6,
and C*(Y) for n. It is at first sight disturbing to estimate (I-SB)6 by the
usual estimator (I-SB)X, when the dimension (i;e. rank ([f-SB]) =‘p-k)

could be three or more. In choosing a "k-dimensional" linear réStriction,
however, it is essentially being said that there is no prior information
about the remaining dimensions (i.e. about [I-SB]6). If indeed this is the
case, then it is a waste of time trying to adjust the usual estimator
(I-SB)X of (I-SB)®, since the ''chance" of 6 being such that there is

significant improvement is negligible,
Section 5. Unknown Variance.

In applications, it is important to consider the situation where the

covariance matrix of X is unknown. Attention will be restricted to the case
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where the covariance matrix ds of the form GZI,'F known but 02 unknown,
(This is the common situation in regression problems.)
There are two possible appraoches to dealing with this problem. The
first is simply to replace 02 by an estimate in 8* and C* (with'appropriéte
changes to k(a) in C*j. The second is to place a prior upon 02 (in addition
to 6), and try to develop 6* and C* in‘terms of the combined prior information.
The second approach was used by Strawderman (1973) for the case } = I
(in gn)! (M. E. Bock (personal communication) has'been able to explicitely
evaluate the resulting éstimator.) Unfortunately, the resulting estimator
is extremely complex, even in this simple setting. The problems of constructing
such an estimator for the nonsymmetric setting, and then of meaningfully N
analyzing it, seem considerable. Indeed the priors placed on 02 are rather
unintuitive, and whether or not they have a beneficial effect on the estimaor
is unclear. It should be emphasized tHat §* and Cc* werevdeVéloped in a
Bayesian fashion mainly becéuse it appeared necessary to use prior infbrmation
in the choice of a competitor to 6°(X) = X. There is no such compelling reason
to use prior information on 02 in constructing 6*. The approach thét will
be adopted is thus the first approach, merely replacing 62 by an estimate in
o* and C*, (Of course, if significant prior information about 02 were
available, it would be reasonable to use this in the estimation of 02, bﬁf
this could be left up to individual taste. Note that‘the effect upoﬁ §* would.
probably be slight, in the sense that §* would still probably be very robust,
but the effect of wrong prior information about 02 on C* could be considerable.)
When 02 is unknown, assume a random variable 82 is observable, where
82/02 has a cﬁi square distribution with m degrees of freédbm. A suitable

estimate of 02 for use in 8* and C* is Sz/(m+2). Thus [Sz/(m+2)|¢ and
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C = p*{[Sz/(m+2)]$ + A} should be used in §* and C* in place of the previous
i and C. A reason for choosing Sz/(m+2) as the estimétOrﬂof 02 is that it
is the natural‘estimator for certain minimax type results. The following

theorem is an example. For cenvenience, define

(5.1)  G(Q,%,A) = lim tf[(iQt(tt+A)-l] .
20 ch . [fQfettsa) 7]

Note thét if A is nonsingular, thén G(in, A) = tr(iQtA-l)/chmax(tQiA-l).

Theorem 5.1. Assume Q—l, , and A are simultaneouély diagonalizable, with

-1 ,
resulting diagonal elements {ti}, {di}’ and {Ai}, satisfying

(5-2 [/ - (A;/d)1(dq; - dja) 20, 14, jo<p.

_ 2 , .
Let C = p(sz)(TE§§T $ + A}, where p is-nonqecreasing in SZ. Then

r ([x][%)s%c?

s"(x,5%) = (1 - :
| 1] % (me2)

has smaller risk than GO(X) = X, providing n :_G(Q,i,A) - 2.

Proof: Integfating by parts as in Theorem 3.2.9 gives

: 2 2 -2r 8202 1 Z(XtC—thtc-lk)
(5.2) R(0,0%,6M-R(0,0°,6%E , [ —E—— {er(foic) 5}
0,0° ||X|[“m+2) [1x]
a0’z (| |x]1Hs2 Xt ot 1o i r2(xtc Mo
- +
1% [ (me2) 0,0° [[x||* mv2)?

Efron and Morris (1976) proved the identity

(5. ELlehs] = on e ,lgeH] « 207 & L 1s% (5D,
g g

g
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for any differentiable function g for which the expectations exist.

Defining

h(s?) = oxcadc x| (x| |4

(recall C is a function of SZ) and setting
2 2 2,.2 . 2, 2
g(S7) = x (||X]|“)5“h(s%)/ (m+2) %,

it follows from (5.4) that

2.4, .2 2..2, .2
r S h(8%) r (§"h(s™)
(5.5) E[LZ_ ] = sz E[—n—"——z——
(m+2)" (m+2)

, 2rn(-§§;rn(llxllz))Szh(Sz) r?h(s?) r2s%h1 (s2)
n n .
+ 20"E[S“{— 5 — + 5=+ 3 .
(m+2) (m+2) (m+2)

From the definition of C and the assumption that p is nondecreasing in Sz,

it is clear that l,X]I = x%¢” lx is nonincreasing in 82 Hence

(5.6) <5 K% <o

Define Y = TX, where T is a (pxp) matrix such that TQ T TtTt, and

TAT are all diagonal matrices. It is easy to check that

A,
: ——a 11 f vz/cm+2 + 917
. 1

hs?) = [ f vZq,d
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Defining bi = [SZ/(m+2)] + [Ai/di]’ a calculation gives that

h'(s?) = __-2 8 v2q.a. 3¢} Y2rby-( YZq.d. /b3y ¥ v2p2))
me2) (3 ¥p)d sl T T sl 33T g BTG T
m+ ./b.

i=3 1 |
2y - _
= — -2 { E f ; 3 [b?qidi -lbib;qidi]}
) f Y233 1=l =l biby J
(me2) ( L ¥/, i’
2 .
) 2 2
= .q.d.~ b.b.q.d. q.d. - b.b.q.d.]}
f . {151 Jﬁl b | [quld1 bleqld1 + §1quJ blequJ]
(m+2) ( lYi/bi) i3
i=
2,2
(i=1) YY*
- -2 { E

i .
me2)( ) Yip)d il el _3;%'[(bj-bi)(quidi-biqjdj)]}'
m+ Y./b. 1]

i=1 1 1 )

Using the definition of bi’ a calculation gives that

A, A, &2
- - = (o _ L
(5.7) (bj bi) (quidi biqj dj) (dj di) (qid q d, )(m+2)
A A. A.q. q.d
o R S B S S 179 3
+ (70 -5 T
J 1 ] i

The first term on the right hand side of (5.7) is nonnegative by (5.2).
The second term is nonnegative since (5.2) implies that the two factors of
the second term have the same sign (or one is zero), It can thus be concluded

that h'(Sz) < 0. Together with (5.5) and (5.6), this implies that

ot . [r§s4h(sz) L [rﬁszh(e )I
o : —3—] 20 B )
02 (m+2) = g2 m
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Using (5.3), (5.8) and the facts that x!(||x|[%) > o, r (1[x][%) < 2n, and

¢ Hatc /[ 1x] 12 <ch (dofc™h), it follows that

-2r_ 5242 ch_ ($Q$c )

(5.9)  R(8,0%,6") - R(6,0%,6% <E [

8,0 IIXHZ(m+2)
trctqtc'I'
x{ - (2+n)}].
ch (totc™
Clearly
tr(tQtC-l) ) E {d, 194 /b. )_ . b‘kdlq v
(5.10) = —-——r———-7r- Z ,
ch (tofc™h) s m?x d;45/b p ik D%

where k is the éoordinate'at which the maximum is attained. But if quk/bk >

dlqi/bi for i # k, then for (5.2) to hold it must be true that,bk < bi’

or equivalently that Ak/dk :_Ai/di. Hence

b, S%/(m+2) + AJd

k _
)
b $%/(m+2) + Ai/di
in nondecreasing in Sz. It follows that (5.10) is minimized at 82 =0,

attaining the value G(Q,*,A). Together with (5.9), this establishes that

2r s o ch ($Q¢c ,
R(0,0%,6") - R(0,0%,6%) < -E [T (6(Q,,4) - (2em)}].
- | [1x] |2 (ne2) | v

By the condition on n, the argument of the expectation is positive and the

conclusion follows. ||

Two special cases of interest are given in the following corollaries.
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. . n
Corollary 5.2, If Q = Ti-l, then 8 (chosen as in Theorem 5.1) has smaller

risk than 6° if n < G(Q,f,A) - 2. (If A is nonsingular, G(Q,3,A) =

tr(day/en dah )

max

Proof: Clearly Q"1 = r_li, }, and A are simultaneously diagonalizable., Also,
diqi = 1 for all i, so that (5.2) is satisfied. The conclusion follows

from Théorem 5.1.]1] -

Note that Q = t'l is an often considered choice of Q, as it gives rise to
a loss which is invariant and more importantly is the natural loss for the
prediction problem of linear regression. (Predict the value of a future

observation arising from the same design matrix.)

Corollary 5.3. IfA = rt, then &" (chosen as in Theorem 5.1) has smaller

risk than §° if n < [tr(}Q)/ch . (1Q)] - 2.

Proof: Q_l, }, and A = 7} are all simultaneously diagonalizable and Ai/di =
T for all i. Hence (5.2) is satisfied and Theorem 5.1 can be applied to give

the desired result., ||

The estimator &" is undoubtedly uniformly better than §° in situations
where (5.2) is not satisfied, but a more general proof was not found.. Note,
in any case, from the statement of Theorem 5.1, that m (the degrees of freedom
of Sz) is not part of the condition of the theorem. This is why Sz/(m+2),

seemed the natural estimator of 02 to use in 6%,

Corollary 5.4, If Q-l, t and A are simultaneously diagonalizalle and satisfy

(5.1), then 8* has smaller risk than 6° if p < 2 G(Q,},A) - 2.

Proof: Obvious from Theorem 5.1 since p* as chosen in (2.10) is nondecreasing

in sz.ll
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The estimation of o2 does not affect the robust Bayesian properties
of §* appreciably, so numerical studies (such as Table 1) will not be
presented for this case, |

When estimating 02 by Sz/(m+2), the appropriate definition of the

confidence region c™ is now
c"(x,5%) = to: [0-6"(x,51%_(x,5 7 [0-6" (0,591 < k(w)},

where " and in are defined as earlier with § replaced by [Sz/(m+2)]$ and
k(e) = (m+2)p Fp,m(l—a)/m, Fp’m(l—a) being the 100(1-a)th percentile of the
F distribution with p and m degress of freedom.

In considering the size of Cn(X,Sz), the results in Section 3.2 all hold
with replaced by [Sz/(m+2)]$. The conditions of the theorems then depend
on SZ, however, at least for C*(X,Sz) which chooses C = p*([sz/(m+2)]$ +A).
Global theorems can be developed, if desired, an example of which is the
following. Note that the usual confidence ellipsoid when o2 is unknown is

2
®(x,sY = (o: (-0 00 < GIp E, (-0},

Theorem 5.5, C*(X,Sz) has smaller volume than CO(X,SZ) for all X and_S2

if 6(4™1,5,A) > 2. (6 is defined in (5.1).)

Proof: By Corollary 3.2.6, it is only necessary to show that for all

S” >0,

tr[+At~/{s%/ me2) 317
ch . [1eA} ™!/ (s me2) 17"

(5.11) > 2,

Letting {b,} denote the roots of ¢-1/2A¢—1/2, it is clear that (5.11) can

be rewritten .
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' (5.12) Sz/(m+2) + min{bj}

> 2,

I~

i=1 Sz/(m+2) + bi

The expression on the left hand side of (5.12) is clearly minimized as
s? » 0. But the limit as S° + 0 is nothing but G(i_l,I,A), and the

conclusion follows.ll

Tables 2 'and 3 still give typical volume ratios of C*(X,Sz) to Co(x,Sz)
(when S2 =m + 2 for example). | |

No attempt was made tb determine the large 6 approximation to
Pe(e € C*(x,sz)), since the results are likely tq\be similar to those of
Section 3.3. Numerical studieé were performed, however, the results being
‘given in Tablés 10, 11, and 12, Table 10 gives Pe(e e'g*(x,sz)) for p = 6,

f=A=1, o - 1, and m = 10 and 15. (p,, and p,. are the values when

m = 10 and m = 15, respectively.) Tables 11 and 12 give Pe(e € G*(x,SZ)) for

p=6,}=A=1,m= 15, and o2 equal to .2 and 5 respectively. The results
in the tables are all quite satisfactory.
In conclusion, it appears that the estimation of'c2 does not seriously

reduce the benefits of using §* and C*,

Table 10. Probabilities of Coverage, 02 =1,

e

01 2 3 4 5 6 8 10 15

973  .968 .949 .924 ,907 ,901 .900 .900 .900 .900

.962 ,956 ,940 .923 .910 .905 .903 .902 .901 .900
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Table 11, Probabilities of Coverage, 02 = .2,
6]

0.0 .40 1.0 1.5 2.0 3.0 5.0 10.0 15.0

p .941 .941 .938 .933  .926 914  .,906 .902 . .901

1
-
L]

Table 12. Probabilities of Coverage, o2
o]
0 2 4 6 10 15 20 25 30 50
p .978 .974 .960 .930 .904 .904 2903 .902 .901 .901

Section 5, Generalizations and Comments

1. An interesting feature of 6" can be observed using Lemma 2.1.1 ),
namely that

lim §"(X) = (I - tchx.

n-roo

Hence if C = t$+A), the limiting estimator is. the opti&al linear Bayes estimator.
Larger than recommended values of n may, therefore, be useful when accurate
information about the tail of the prior is available. For example, if

it is thought that the prior has a normal tail, so that (I—$($+A)_1)X is

being considered for use, it might pay instead to use Sn_with'a large value

of n. The resulting estimator will behave similarly to the linear estimator
except that it will be more robust with respect to inaccurate prior information.

Of course, the larger n is, the less robust §" will be.
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2. More general classes of priors can be considered. Indeed it can be

checked that (2.1) and (2.4) can be replaced by

1 » .
gx(8) = [ [detB()] Y 2expt-6®B(a)"Lo/2}du(n)
0

1
v/ h(l)(1+p/2)exp{-vh(x)/2}du(A)
0

B =
/2

[ AP “expl-vh(A)/2}du(})

0

where B(A) = [C/h(M)] - % and 0 < h()) <1 for 0 < A_ < 1. For a wide

variety of h and u, r;(v) can be explicitely evaluated. For example,

choosing h(A) = A and du(A) = I . 1)(A)k (n-l-p/2)dx results in a
b4

(
calculable estimator which behaves like 6n(X1 for small and moderate values
of ]IXIIZ (the region depending on e),_but behaves like a linear Bajes'
estimator for large values of IIXIIZ. As another exémple, if u is chosen
to put unit mass at a particulér point, the resulting prior is simply a
normal prior. The general class is clearly very richf (See Efron and
Morris (1973a) and Faith (1976) for related classes of estimators iﬁ the
symmetric situation.) Of the various estimators we considered which arose

from priors in this class, §" seemed the most attractive. Hence attention

was restricted to Gn.

3. Unfortunateiy, a problem does arise with 6* (and wifh other estimators -

of the form (1.1)). The estimator definitely pérforms best when all coordinatés
are similar or can be transformed so they are similar..-(More precisely,

this occurs when [$Q$(¢+A)-1] is close to a multiple df the identity,) -

Thus if, for example, there were two groups of similar coordinates,

the groups being quite different from each other, it



68

would probably pay to separately estimate each group. In terms of a‘prior,
this could Be.interpreted as saying the ei's should not be forced to act
dependently (as in gn), bqt should be sepérated into independent similar
groups, with the resulting prior being say a product of gnlgnz. The
question is - when and how should this separation take place? (Efron and

Morris (1973b) give an interesting discussion of the problem in the symmetric

situation.)

4. All results in the paper have been for quadratic losé, due to the relative
ease of calculation. Numerical studies (such as in Berger (1976b)) have indicated,
however, that estimators like 6* tend to have risks which are quite robust

with respect to the functional form (or more precisely the tail) of the loss.

See Berger (1976b) for further discussion.

5. The well known relationship between confidence sets and testing of
hypothesis, indicates that in some sense the usual multivariate tests of a
point null hypothesis can be improved upon by using as an acceptance region

A(8) = {x: 6¢ G*(x)}. This question will be pursued elsewhere.
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Agpendix

Proof of Theorem 3.3.1: The proof is similar to, though'considerably

more complicated than, the theoretical proof in Brown (1966) of the inadmis-
sibility of the usual confidence sets.

For simplicity, assume that § = I, (This can be assumed without loss
of generality as is seen by considering the linearly transforméd problem
z = ;'l/zx, n = i'l/ze, and C' = $-1/2C$-1/2.) From‘Lemﬁa 3.1.2 and the

fact that C > § = I, it is clear that

[1/m+)]T < 3 (X) < [(2n+1)/ (m+D) ]I,

Hence defining

% =lxe B 0 @G} = tx: [0-8"(01% (07 [0-6" ()] < k(a)},

it is clear that

(A.1) x ¢ 8,3 |0-6"(x)|% < k(a) (2n+1) /(n+1).

Note next that 6n(x) =X - u(llxllz) (see (3.9) for the definition of u),

and that

(A.2) udlxlBx < zlxl/ | xl 1P <k < e

From (A.1) and (A.2) it follows that

(A. 3) if xe @, then |6-x| < K, < =,

8’ 2

where K2 can be chosen independent of 6. Assume in the remaining expressions

that x ¢ Qe, so that (A.3) can be used.
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Note first that

(A.4) [x11? = (e-0e8) Tt (x-040) = | 0] [ %] |x-8] |2e20%c L (x-0)

[l el 1%20%c (x-8)1 2+0(]6] ™))

6] 1%c1+0(|6]™1y).

From (A.4) it is clear that lellz > |I6||2/2 for lel > K3 say, so from

Lemma 2.1.1 (xi) it follows that
' : . 2 ' -4
(A.5) r CHx[1%) = 2n + o(le|™),
It can similarly be shown using Lemma 2,1.1 (ix) and Lemma 3.1.1 (iv) that

(A.6) | e CHxl1%) - 2dlixl 1% = an + oclo]™.

From (A.4) it,also»fbllows that

oto-1
1 1 26°C”" (x-8) -4
(A.7) = - + 0(]e]™.
xI12 Tlell2 le]l?
From (A.5), (A.6), and (A.7) it follows that
' NULIR  anete-lig .
(A.8) u(llxl 1% = 2o s 20 IO C (e8) | g 74,
| [1x| | [le]] [le]4
11241t -1 (tn'ri) -1_t.-1 _4nc leetc™l -3, -
W(llx,l )C xx C =—————4 xx C =—————4——-+ O(IGI )
| |x]] [e]]
a(l1X][Dekx = 2ncle | 2ncl(x-8)  anfetcl(x-6y1c7te . 0(/o

2 2 4
{le]] ]| 1ol

>

175y,
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and
$n(X)-;/2 = (I - uc! + wC"l)(xtC-]")-l/2
-1 =-1..t -1
4 66 : - -
- (I - 2nC 5+ nC : C . O(IGI 3)) 1/2
[le]] [le]]
-1 -1,..t -1 :
2 06 -
=1 + nC > - nC 7 C + O(IGI 3).
[e]] Ile]]
Thus
(A.9) 072087 ) = £ (072 (0-xeuc 1)
. (6o0) + nclce-x)  2ncleotcl(e-x)
= =X 2T 7
[le]] fle]]
,2ce  2nclx-8)  anpetclix-0)c e + ocle]"3
[le]|? e ]]? o4
-1 -1 . t -1 -1
6 O 6 0~ 0 -
= (8-x) + 2nC ° - nC ~( 2x) . 2n[67C “( 4x)]C « o(le| 3).
[fe]l [1e}] el '
Define
-1 -1 t -1 -1
(A.10) y = (8-x) + 2nC "6 nC " (0-x) , 2nf8°C (8-x)]c "8

162 o] |? 1o} ]

Clearly (A.10) defines a linear transformation from x to y. The-Jacobianx

of this transformation is

(A.11) ' J ==I + nC—l - 2nC_109tC-1
[1e] |2 [le]] 2
-1 -1, t,.-1
= - (I _ nC + 2nC “66 C ) + 0('61-4).

1o ]]? lel1?



As in Lemma 3.2.2, it can be shown that

-1,,.t.-1 t =2
(A.12)  det(r +2BE_%0.C 4 _ ( , OC 6

7 Ten?
1ol [Tel 1™

Letting Ai denote the characteristic roots of C'l, it is also clear that

nC_l r na,
(A.13) det(I - 5 = I (1- 12 )
o] | i=1 []e]]
=1. 0B o+ oce]™
[lo][? i=1?
ntr(C-l) -4
- ——=—+ 0([0|™).
|lel] -
Combining (A.11), (A.12), and (A.13), it follows that
-1 ot -2 .
(A.14) |detJ|-1 - [ - ntr(C 2) . 2noC 46 . 0(|6|-4)]-1
| lef] [1el]
-1 t.-2
+ ntr(C 2) . 2n8 C 49+ O(|e|-4‘),
[1e]] [lel]
Note next from (A.9) and (A.10) that
- 2 -
(a.15) (-7 015 07 e-6"001 = |y[? « o]
From (A.10) it also follows that (6-x) =y + 0(|6|—1), 1
-1 -1 t.-1_, -1 ,
(e—X) =y - 2nC "9 + nC Y _ 2n(6 C }’)C 0 + O(IGI-S)

2 2 7
[lell® el el

and

72
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t -1 t.~1
(A.16) expl-[0-x|%/2} = expl-ly|?/2} 11+ 22 C0  my C oy
' 18] [le]]
2,t -2, t.-1 .2 t -1 ’
_2n"6 C4 L 2n(6°C 4y) . %Can_C 26)2 . O(IBI-S)]-
[e]] [le]] [161] |

Thus from (A.14), (A.15), and (A.16) it can be concluded that

(A17)  Py(0e € (X)) = [ (21 P Zexpl-|x-0]%/2}dx
Q
3]

= f(2w)_p/2exp{-|x—0|2/2}|detJ|-1dy |

by Iyl? < ke@+oclo %)

. ) t -1 . -1
= [ @) Zexpl-|y| 3231 + ZTT lee " HTT(T 7
5} ) |

{ly|? < k(a)}

_nllylI? _ (en%ean)(etc - (otc Ly 2

+ 0(|e|‘3)}dy.
[1o]|? 0] |4

Defining

(A.18) h@ = P2 [ yZexpl-|y|%23ay,

lyl% < k(o)

it is easy to check that

[ expi-lyl?/2tytctevay = o,
lyl? < (@)

[ @ Zexpt-|y| %23 [yl 1%y = h@)erch,

ly|? < k(o)
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and

J (2n)fp/2exp{-|y|2/2}(ytc-16)2dy = h(a)etc %,

ly1? < k(a)

It follows from (A.17) that

2

- (2ns2)0%¢"%0

[te]|?

Defining Sp as the surface area of the unit p sphere, a calculation

1+ 0(le] ™).

(A.19) P (0¢ (X)) = (1-a) + Eiizﬁngﬁll {trch
116

gives

ph(a) {5 (2n) P 2|y | Pexpt-|y| %/2}ay
ly]© < k(o) |

: 172

(ZW)_p/ZSp ) r(p+l)exp{—r2/2}dr

0

k1/2

(2“)-P/2 SP[Pkp/zexp{—k/Z} +p r(p—l)exp{-rz/z}dr]
. 0

- (Zn)'p/zspkp/zexp{—k/z} + p(l-a).

Noting that S = (2n)P/2/[2(P"2)/2r(§)], it follows that

kP 2exp(-k/2}

(A.20) h(a) = (1-a) -

Combining (A.19) and CA.ZO) gives the desired result except that the error
term is 0(|6|-3) instead of 0(|6|_4). In essence, the above argument was a
‘Taylors series argument, and it can be checked that due to the symmetry of
the problem the terms which are 0(|8|™™) for m odd must always integrate to

zero (as did the term [2nth—16/||6||2]). Hence the next nonzero term of the
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expansion for P (6 ¢ G"(X)) will be 0(|6|—4).

Proof of Theorem 3.3.4: A very laborious calculation exactly paralleling

the proof of Theorem 3.3.1 (but including all terms up to 0(|6|-4)) gives in

place of (A.19)

(A.21) P (8¢ G'(X)) = (l-a) + ——-12232-——-{4p(p-2)f1-a)-2(p-2)(3p+4)h(a)
0 8ot Loy2

4 [p>+3p®-30p+16]2(0) /3~ (p-1) [p2+2p-32]g(a) },

where h(a) is defined in (A.18),and

@n? | yyexpl-ly|?/2)ay,
¥1% < k@)

XCY

(2m) P/ , [ yiviexpt-ly[%/2)ay.
lyl* < k()

g(a)

These integrals can be explicitely evaluated (h(a) is evaluated in (A.20)),

giving
/2
_ 6 [k/2]P/ “exp{-k/2} k
2(a) = 3(1-a) - D T/ (1 + ETB:ETO’
/2
) 2[k/2]" “exp(-k/2} .. _k .3
gl) = (1) - =556 % [ - 2y

Inserting these expressions in (A.21) and collecting terms gives the desired

result.ll
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