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I. Introduction.

An interesting open problem in the theory of transport processes is to prove
rigorously the diffusion approximation in the presence of general homogeneous
boundafy conditions. 1In this paper it will _be shoWn that for the class of
processes considered by Pinsky [Pi], Kurtz [Ku], Watanabe [W1,W2], and others, the
~ diffusion approximation is valid on a éompact_intérval with a general class of
local homogeneous boundary conditions provided one can establish the a priori
bounds (2.23). The bounds refer to the initial-boundary value problem (2.1)-

(2.3) and (2.16)-(2.18) for a first order hyperbolic system of partial differential
equations, a problem of independent mathematical interest [Kr]. On the whole
real line, where no boundary conditions are present, such estimates are easily
obtained (see Section V). We are tHereby led to a very easy proof of Pinsky'é
theorem [Pi] and its generalizations to certain position-dependent velocities
[Ku] and higher dimensions [WW]. However, on a finite interval, where boundary
conditions are imposed, we are able to pro?e these estimates only for certain
special cases (see Section V). We consider as one of our contributions the
derivation of direct proofs for the diffusion approximation given that the
a priori bounds are known. In general,»the-a Briori estimates hold only if the
initial data satisfy'certain "compatibility condition;" associated in a
natural way with the boundary conditions. See [RM], wﬁe¥e this has been notéd in
~a related context.

, {

The transport processes considered in this paper differ in several ways from
the more general class of transport processes studied by such authors as Habetler-
Matkowsky [HM], Larsen-Keller[LK], Bensoussan-Lions-Papanicolaou [BLP], Williams
[Wi], and Wing [Win]. 1In the works of these authors it is assumed that the possible
velocities of the transport particle form a continuum (here the possiblebvelocities

are discrete). This leads to an integro-differential equation for which explicit



solutions are difficult to obtain. One can then resort to numerical methods;
e.g., one can discretize the Qelocity space (discrete ordinate method in

neutron transport theory [RiMo]). The result of this discretization is the

first order hyperbolic system (2.1)-(2.3) with this important difference:

the transport equation in [LK], [HM], and [Win] is the adjoint of our system
(2.1)-(2.3). The latter is the Kolmogorov backward differential equation of the

' tranéport process, for which the initiai data are functions; the authors referred
to above consider the Kolmogorov forward (or Fokker-Plénck) equation, for which
the initial data are measures. (This observation may help to explain why the
traditional approachés to the neutron transport equation via Lp spaces for

p >1 so often lead to technical difficulties [L; Introduction].) One of the
advantages in studying the system (2.1)-(2.3) instead of its adjoint is the presence
of a maximum principle (Lemma 3.1), which yields a Eriori bounds on the solution
and its derivatives. Such estimates are alsé of great importance in establishing’
the stability and consistency of various finite difference schemes for the
numerical solution of the neutroﬁ transport equation [D].

Our derivation of the diffusion approximation differs markedly from that in
[HM], [LK], [Pa}, and [Wi]. All of the latter authors use thé method of matched
asymptotic expansions, the rigorous justification of which entails non-trivial,
ergodic-type questions. ' : b

Our main reason for treating‘only the discfete, one-dimehsional case is to
keep hypothese§ to a minimum. Indeed, our methods carry over to a wide class
of continuous transport processes, to homogeneous boundary value problems [W2; p. 220]
more complicated than (2.3), and to certainvhigher dimensional problems.

The usual tool fdr studying the initial-boundary value problems we consider
has been the L2—theory [LP,R]. Nevertheless, allvthe analysis in this paper is

done in a setting more familiar to probabilists; namely, in a space of continuous functions



endowed with the supremum norm. This has its advantages. For example, we show
the existence of a nice contraction semigroup on this space solving system (2.1)-
(2.3) given any choice of boundary parameters satisfying the natural conditions
(2.5); This is not true in the Lz-case; extra éonditions hust be met in order to
obtain an L2-contraction. On the other hand, it is conceivable that one might
be able to prove Lz'a priori bounds corresponding to (2.23) in a wider class of
cases than we have been able to do. This is of some interest because provided one
can obtain such L2 bounds, then all of our work goes over to the L2 setting without
change (see Remark at end of part II). |
In Section II, we state our main results: Theorem 2.1, on the existence of
a Markovian semigroup (i.e., a strongly continuous, positivity-preserving
contraction semigroup) corresponding to the discrete, one-dimensional transport
process in a compact interval or on the whqle real line; Theorem 2.2, on the
diffusion approximation for this process. Sections III and IV prove Theorems 2.1
and 2.2, réspectively. Section V proves the a Eriori'bounds in special qasés.
Notation. All terms 0(1), 0(e), (1), o(€), etc. are meant as € +»0-ahd, if
no norm is present, are uniform over x in the interval. The eﬁd of a proof is

Signalled by a l.



II. Main results

Let Q = (qij) denote the infinitestimal generator of an N state Markov
chain V(t) with state space ¥ = {Vl,...,VN} and invariant probability measure
T = (nl,...,nN); It is assumed that Vl""’vk <0 <-Vk+1""’VN’ k > 1 and in
addition the v.'s are all distinct. X(t) denotes the'pqsition of a particle moving
in the interval J = [ro,rl] with random velocity V(t). If Ty = -® and r, =
then it is easily shown that (X(t), V(t)) is a Markov processrwhose_K01m0g0T°V
backward differential equation is given by the system (2.1), (2.2) (cf. [Pi]).
if, however, one or both of the boundary points T, T; are finite then boundary
~conditions must be imposed which we do in the following way. If the particle
hits, say, the left hand boundary T, with velocity vy < 0 (i=1,2,...,k) then with
probability bij it is reflec;ed to the right with velocity Vj> 0 (J=k+1,...,N)
and with probability 1 - z bij it disappéars. A similar boundary condition

j=k+1

is imposed at r,- In this case the corresponding Kolmogorov backward differential

equation is an initial-boundary value problem for the vector function

F(t,x) = (Fl(t,x),-(-,FN(t,X))=

N
OF - OF .
(2.1) 5= V5 3¢t .Z qijFi , 1=1,...,N
: i=1
(2.2) lin  F.(t,x) = £,(x), x€J , i=l,...,N
t>0 :
N
(a) F.(t,r,) = ) b..F.(t,r.)). , i=1,...,k
i 0 j=k+1 ij j 0

(2.3

|
0~ 1

(b) Fi(t,rl) = biij(t’rl) v i=k+1,...,N.

j=1

Precise conditions under which solutions to the first order hyperbolic system

(2.1)-(2.3) exist will be given in Theorem 2.1. In ’'the meantime for future



reference we mention various properties of v, Q, T and bij that we shall need.

1

v, <0 <v Vs vi all distinct, k > 1.

(2.4) Vis-- K Kel?* "
N k :
Y b.. <1, for i=1,...,k, ) b.. <1 for i=k+l,...,N
. ij — Lo iy —
j=k+1 j=1
(2.5) 5 20 for i=1,...,k, j=k+1,...,N and i=k+1,...,N, j=1,...,k
bij = 0 for all other i, j.
.(2.6) | qij‘:JO, i#j; z qij = 0, i=1,...,N; dimension of nullspace
’ j=1
of Q is 1,
(2.7) Q*m = 0, each L >0, w,o= 1. Since Q is a generator of a

i

— il 1 Z

Markov chain we also have }exp(x,Q)|| <1 all x > 0. We formuiafe
each of our results first for motion in a compact interval J, then
note modifications necessary to treat motion on the whole real
line. We omit the case of motion in semi-bounded intervals.

Our first result concerns the existence of a Markovian semi-
group solving (2.1)-(2.3) for compact J, (2.1)-(2.2) for J = |
(-*,). Given J compact let & denote the subset of functions in

C(Jxr) (all N-tuples f = (f -+»fy) of bounded continuous functions

1°°
fi(x), X € J) which satisfy the boundary condition (2.3). Thus we

define

(2.8) d = C(I¥) N BO N ﬁl where



&
N -
By = {f: | kg& fk(ro)nik = <f, ny ?(ro) =0, i=1,...,k}
(2.9) ' N - ,
ﬁl = {f: kg; fk(rl)nik = <f, n, > (rl) = 0, i=k+1,...,N}

(0,...0,.1,0...0,-b -b —biN), i=1,...,k

i,k+1’ “Pjk+2
(2.10) n; =

i P o
(-bi,l ---bi’2 e - bi’k,O,...O, 1,0...0), 1—k+1,...,N,

with 1 in the ith slot. & is a Banach spaée with the norm

(2.11) €]l = sup £, .
1 <i<n, x€J
We define
(2.12) " =30 c"WI¥), n=0,1,... _ where

@) = (fe€c@): £, € "W). Of course 50 = 4.

We say f > 0 if each fi'z.O on J.
Modifications necessary for J = (-«,%): In this case

g = {f(x): fi(x) € CO(-W,“O}and

& = {f(x): fi(x) € Con(-w,“ﬂ], i=1,2,...,n. & is a Banach space

with the norm 2.11. Let A be defined via the formula

N
(2.13). Af, (x) = v.£.'(x) + jzlqijfj(x), i:l,...,N or in vector

formf

Af(x) = VDf(x) + Qf(x) where Df(x) = (fl'(x),...,fN'(x))
(in general D = 3/3x and D* = 3%/ax* , £ =1,2,..). V denotes

the N>xN matrix (viéij). In order to solve (2.1)-(2.2) via semi-

I T



group methods we must define the domain 8(A) of A. We set

(2.14) 8(A) = {(£: £ 4, Af¢$). Inpart ITI we show that S(A) is

dense in &.

Theorem 2.1. The linear operator A with domain S(A) as in (2.14) is the infinitesimal
generator of a Markovian semi group T(t) = ‘exp(tA): & » &. The function
F(t,x) = T(t)f(x), £ G,SCA) is the unique bounded solution to the first order
hyperbolic system (2.1)-(2.3) for compact J, (2.1)-(2.2) for J = (-=,=).

We now turn our attention to the diffusion approximation or equivalently the
central 1imit theorem for x + ¢ X(t/ez) as € + 0. Physically this corresponds
to shrinking the order of magnitude of the fime- between jumps of V(t) to €2 and
speeding up the veloqities by a factor of e_l. If the associated position' process
XE(t) is to have a nice limit as ¢ + 0, then the velocities must be appropriatély

centered. This is expressed by the condition

N .
(2.15) z LA <% , v >=0which we shall always assume throughout the
=1

. remainder of this paper.

The Kolmogorov backward differential equation for the process (V(t/ez), Xe(t)) is

now given by the system. -

o, (&), -2 N (e)
oF 5 - € -2 € ._
(2.16) ” = e:.vi DFi | + € 1j‘§1. qiij , 1-»1,...,N
(2.17) 1in. F, (D (e,x) = £x)
' t+0 .t
2.18) 0 @axmes, v o0

Define the operator A(g) via the formula




(2.19) A()f = ¢ IvDF + ¢"%Qf with the understanding that A(1) = A
and set 8(A(e)) = 8(A). Then (2.16)-(2.18) can be rewritten as

an evolution equation in the Banach space &:

dF(E)

- a(e)E () (1)
FE(0) = £

(2.20)
FE(t) €3 allt >0

Theorem 2.1 can now be applied to (2.16)-(2.18) since all we've done is replace
v; by e_lvi and 9 by e-zqij. In probabilistic language the diffusion
approximation corresponds to the weak convergence of the stochastic process Xe(t)

to b(t) where b(t) is Brownian motion on J subject to certain boundary conditions

if J is compact. Analytically this is expressed by showing

(2.21) ' lim Fi(e)(t,x) = G(t,x) where the limit G(t,x) is independent
e>0 , .
of i, F (0,x) is such that fl(x) = fz(x) = ...fN(x) and

G(t,x) satisfies the heat equation

BZG » X € J subject to appropriate boundary conditions

8x2

given in Theorem 2.2 below. For the definition of a see (2.31).

G _
(2.22) raT— a

Our main result is that the diffusion approximation is valid
provided the vector function U(e)(k,x) = (UI(E)(A,X)..,UN(E?(A,x))

satisfies the a priori estimate

(2.23) PP 0| = 0),e = 1,2,3, a11 £ 3%, 250

where

Ui(e)(l,x)

[ exp(-At) Fi(e)(t;x)dt,i=1,...,n.
0

Remark: In the course of proving theorem 2.1 we shall show that f € &" implies



U(E)(A,x) = (A—A(a))_lf € Jn+l. If instead of (2.23) one could prove the stronger
estimate ||DZU(€)(A,X1|| = 0(1), & = 1,2,3, some A > O then all the 0(1) error
terms in section IV would be replaced by 0(e). For the special cases in section V
we actually verify this stronger estimate.

Theorem 2.2 yields the diffusion approximation under a wide.variety of boundary
conditions, the specifications of which depend on certain constants ai(i=1,...,N),n(r2),'

e(rz)(l=0,1) defined as follows:

N
1 - z EH 1=19 ,k’
: j=k+1 tJ
(2.24) , o, = k
. 1- J b,., i=k+l,...,N;
i T
(2.2 n(r,) = <@) y(z),v >,
(2.26) 8(r,) = <@) V@) T (v ),y > GE n(r) = 0,

where y(rz) = (Ym(rz); m=1,...,N) are given by

Y, (T4) k ‘
m= 0 - Y b, , for m=k+l,...,N,

b. , for m=1,.,.,k,

Yo ()
1, for r=k+1,...,N.

For the definition of (Q*)_1 in (2.25), (2.26), see (4.10). In terms of these

numbers, we define the following three cases at L (with a similar definition at

rl):
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Case 1: at least one ay >0, i=1,...,k;

(2.27) Case 2: oy 0, i=1l,...,k, and n(rO) # 0;

Case 3: oa.
i

0, i=1,.--,k: n(ro) = 0’ e(ro) # 0'

We show that in Case 1 the limiting diffusion b(t) is absorbed at ry, in Case 2
b(t) is reflected at r, back into J, and in Case 3 b(t) adheres at Ty (similarly
at rl). To see, for example, the absorption note that if Case 1 holds at Ty then
the transport particle has a positivé probability of being absorbed at Ty each

~ time it hits Ty Since in any fixed time interval theinumber of such hits should
tend to infinity és e > 0, it is plausible that b(t) will be absorbed at Ty with
probability one.

Given g € €°(J), we define (%=0,1)

g(r%) if Case 1 holds at Tos
(2.28) Hzg = Dg(rz) if Case 2 holds at T)s
ng(rzj if Case 3 holds at T,
We set
(2.29) 4={geg’MHg =0, 2=0,1}

G = # (which is @(J) if either Case 2 or Case 3 holds at both Ty and rl); Qn =
£ D0 on=1,2,. |

Modifications necessary for J = (-»,): We define G =_g%(-m,w), Qn =

n, .
_%0 (_or.’oo), n=1,2:---
For J compact or J = (-«,»), we assume that the Velocities are centered as in

(2.15) and define the operator
(2.30) @ = ap®,

(2.31) a=-<@) !, vo.



(2
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where <-,-> denote the %5 innér product and (Q*)_1 is defined in (4.10). Provided
(2.15).holds, the positivity of a is known [P1] , Q is the infinitesimal generator
of a Markov1an semi group exp(t ) on G corresponding to a Brownian notion with
variance 2a (which sat1sf1es the appropriate boundary conditions at Ty and at T

for J compact), see [Ma].

‘Theorem 2.2. Assume the a pr10r1 bounds (2 23) and the centering (2.15).

Define the map P: G - &by Pg (g5-..,8). Then for each g €G, 0 < T < o,

(2.32) sup  ||exp(tA(e))Pg - Pexp(tQ)g||= o(1).
0 <t <T
The a priori bounds (2.23) are proved in the following cases:
(1) (2.1)-(2.2), J = (-=,w) (see [Pi]);

(11) (2.1)-(2.3), N=2, k=1, pb.. satisfy (2.5),

.33 13

the centering (2.15) holds;

(iii) (2.1)—(2.3), arbitrafy N even, k = N/2,

= N/2 +1,...,N,

@) vi= v d
(b) bi,N+i—i =1, i=1,...,N, all other bij = 0,
(c) QR = RqQ,

where R is the NxN matrix (6 N+1 1) =

1 0...0 o
L J

Conditions (2. 33) (iii) (a)- (b) imply that the scatterlng rule at T, and T is

’ vy > vy If Q = Q* in addition to (2.33) (iii) (c), then Q is symmetric about

both 1ts diagonals (alone) (c) says that Q is symmetric about its midpoint); thus
for any 1 <1i, j < N the transitions V. > Vv,, v, »> v V. > -V., -v. +> -v. in
i J j 1 J J 1

the interior of J would all have equal probability. (See [E1], [E2; Note] for
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such matrices Q.) In the course of treating (iii), we reduce the problem of
obtaining the a priori estimafes in the general case of (2.1)-(2.3) to a matrix
problem.

We end this section with several remarks about Theorems 2.1-2.2.

Remarks 2.3. (i) 1In Section IV we show tﬁat ntrl) £ 0, g = 0,1, in the

case of isotropic scattering; i.e., for

(2.34) Q=r-1,T=

Hence only Cases 1 or 2 in (2.27) may arrise at Ty and at . We also give
a numerical example to show that Case 3 in (2.27) can arise.(although.we have not
beén_able to verify (2.32) for such a case). We do not know if for all choices of
bij’ Vi and Q one of the three cases in (2.27) must hold. However, we héve not
found a counterexample.

(ii) Theorems 2.1-2.2 can be generalized to the case where the vy and the
qij depend on x and the bij on €, When v, = vi(x) and qij = qij(x), we obtain
limiting (elliptic) operators more complicated than f, Whep bij = bij(E) we
obtain limiting boundary conditions which are linear combinations of those in
(2.29) (even for constant vy and qij)' For example, let N = 2, k = 1, bij =
B..(1+sz..)-1, where

ij ij

1, for i # 3,

B.. =
1) 0, otherwise..

and zij > 0; take vy and qij as at the beginning of this section and satisfying
(2.15). As discovered by Watanabe [W1], this leads to elastic Brownian motion.
The a Eriori bounds in Segtion V cover this choice of bij’ and so we obtain a

simple proof of the result in [W1].
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v(iii) Concerning the L2 theory, one can prove the existence of a smooth
Lz—contraction semigroup solving (2.1)-(2.3) for a subset of the bij satisfying
(2.5). We claim that if in these cases L2 a priori bounds cdrrésponding to
(2.23) can be obtained,_thén all of our results can be proved in an L2 setting.
Indeed, the key interior estimate (4.8) wbuld follow since this depends only on
the a'Efiori bounds while the (pointwise) boundary estimates (4{9) would be a
consequence of Sobolev inequalities. The final step would be the Lz theory of

the limiting diffusion semigroup, which has been studied in [Mc].

Acknowledgements. We thank Alan Gleit for the numerical example at the

end of Section IV.
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Part IIL. Proof of Theorem 2.1
We verify the hypotheées of the Hille-Yosida theorem [Ma; p. 2]:

(1) JS(A(e) is dense in &

(ii) For every f € &, A > 0, the equation

. AF(E) - A(e)F(e) = f has a unique solution
(3.1) () '
F € 8(A(e) such that
111) A[[E] < g
(iv)" if £ > 0 then F(®) > 0.

(v) If £ € & then F(® ¢ 51 n0,1,..
An examination of the proof of (ii)-(v) yields the fact (needed later) that

(3.2) equation (3.1(ii)) has a unique solution F(e) € Jl such that (iii), (iv),
~(v) hold provided only f € C(Jx/). In proving (i)-(v) we may take ¢ = 1,
writing F for F(l) (not to be,confused with DF!}), A for A(1). We first take

| J compact then J = (-w»,®). - .
Proof ofr(i)-(y) for J compact.

(i) 1t suffices to prove 8(A) dense in Jl since the latter is dense
in &. This will follow-from the observation, proved below,
that given any ¢ > 0 and any vectors B = (Bl,.;.,BN), 8§ =
(61,...,6Nj we can construct a function g € # with the
properties (i) glr;) = £(r;), i=0,1 (ii) ||f-g|]|= 0(e) and (iii)
Dg(rq)‘= 8, Dg(rl) = 6. Assuming this to be the case let us apply
it to the problem at hand. In particular we‘choose B and § so

that the boundary conditions

<Ag, n> (rg) = 0 i=1,...k

(3.3)

<Ag, n,> (rl) 0 i=k+1,...,N are satisfied.
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This will be so if

<B ’v-lni> == <f)Q*ni> (1‘0), i=l,...,k
(3.4)

<5,V._-l'ni> - <f,Q*ni> (rl), 1=k+1,...,N.

We are using the hypothesis that f(ri) = g(ri) i=0,1. In the first instanée we
have k equations in N unknowns and in the second we have N-k equations in N
unknowns. These equations are easily solved by choosing Bk+1""’BN arbitrarily -
and then solving explicity for Bys-ee By and a similar statement is:valid for the
vector §, mutatis mutandis. Since g € Jl, Ag € & (by construction) and
||g—f|| = 0(¢) it follows that g € 8(A) and hence 8(A) is dense in Jl. - We
now.sketch the constrﬁctidn of the function g. Given e > 0 set gi(x) = fi(x),
for Tp*te<X<T) - g, gi(ré) = fi(rl)’ 2 = 0,1. Thén interpolate on the
intervals [ro, Tyt g.], [r1 - g,rl] by a continuously differntiable function g
such that Dg(ro) =g, 'Dg(r0+g) = Df(r0+e), Dg(rl) = §, Dg(rl-g) = Df(rl—e).
A straight forward but tedious computation sho&s that one can choose g so that
||f-g|| = ofg) on thersubintervals [rO,r0+¢], [rl-g,rl]. It's perhaps easiest
to just draw a picture. This completes the proof. |

The proofs of (ii)-(v) all depend on the next three lemmask
We say that f € C(Jx/) has a local maximum at (i,x), 1 < i < N, x € J if for some
neighborhood & of x, &6 < J, fi(x) z_fj(y), j=1,...,N, all y € Or(siﬁilarly for .
a locél minimum) '

Lemma 3.1. Assume f € Cl(JxV) has an interior local maximum (resp., minimum)-

at (i,x) (ro < X < rl). Then
(3.5) _ Afi(x) < 0 (resp., > 0). The same conclusion holds even at a

boundary point r_ or r provided f € & i.e., provided f satisfies

0
the boundary conditions (2.9).

Remark: Lemma (3.1) is also valid for the operator A(e).



lo

Proof: At an interior maximum fi'(x) = 0, so that
: N N

where we've used the property (2.6) of the qij's. Now assume a maximum occurs at

x =1, (a similar argument works at r;). Since

N
f(r)) = L b .f.(r,) < Max f.(r.), for m=1,...,k
meoT s MO k+1<j<N 0

we may assume that the max1mum occurs at f, (ro) where k+1<i<N, hence vy > 0.

Thus Af.(r ) = vy f "(r ) + z a; f (ro) < 0, because f '(r ) < 0. The case of a
j=1

minimum is handled similarly.

Lemma 3.2 (Uniquenesé). .F(x) =.(F1(x),...,FN(x)) be a solution to (3.1) such

that F € . Then A||F|| < ||f]]

Proof. There must exist (i,x) 1 < i< N, x€J such that either F. (x) IIF||
or -F.(x) = ||F[| . In the first case a maximum occurs at (i,x) so by (3.5)
A B = M () € Fi(x) - AF () = £500 < |1£]1.

In the second case we consider -F and -f to get the same conclusion.

Lemma 3.3 (existence): To every f € C(JXV), A > 0, there exists a unique
F € ﬂ(A) satisfying the equation (A-A)F = f and the boundéry conditions

<F, n;> (ro) = 0, i=1,...,k; <F,n.>(r;) = 0, i=k+1,...,N.

Proof: Uniqueness is a consequence of lemma 3.2 since the a priori estimate

0. We rewrite the boundary conditions as

implies F = 0 if f
(3.6) AOF(rO)

rj(AO), rj(Al), j=1,...,N of the matrices AO and Al

—'AlF(rl) = 0. where the rows

are given by
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ni j=1l,...,k
r.(A,) = ' ’
1o (0,...,0) j=k+1,...,N
(3.7) 0,...,0) j=1,...,k
rj(Al) B n j=k+1,...,N see [H;pp407-408)

Let Y(x) = exp{xv_l(AI-Q)} denote the fundamental matrix for the first
order'system (A-A)F = f. Then

. : o X
(3.8) FO) =Y fe- [ Ylowlepay) isa

Yo
is a solution. We now choose the vector ¢ so as to satisfy the boundary
condition (3.6). This leads to the condition

b

(3.9) hoY(rp) - MY(rDY e =AY [ Y v leg)ay.
_ . T
We now claim that AOY(rO)_- AlY(rl) is an invertible matrix. If not there

would exist a non zero vector c0 such that

{AbY(ro) - AlY(rl)}c0 = 0.

If we‘set f = 0 this states that F(x) =.Y(x)c0 is a nontrivial solution to the
homogeneous equation (AQA)F =0 satisfying the‘boundafy condition (3.6). But
F = 0 by lemma 3.2. Hence (3.9) can be solved for c to yielé a solu;ion to
(S.I)f |

Since AF = )F-f with F and f satisfying the boundary conditions it follows
that AP satisfies them as well. Hence F € 8(A). We have thus completed the
proof of (i), (ii), (iii) of (3.1). We now show that f >0 implie5 F :.0.
Assume to the contrary that F takes on a strictly negative value at (1,x)

which we may assume to be a negative local minimum. Now‘Fi(x) < 0 and AFi(x) >0
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imply fi(x)_= AFi(x) - Afi(x),< 0, a contradiction to the hypothesis that

fi(xj‘zio. (v) of (3.1) is an immediate consequence of representation (3.8)

Proof of (3.1)(i)-(v) for J = (-»,*):

Since C;(J) is dense in CO(J)_(in the supporm) assertion (i) is trivial.
To prove (ii)-(v) we shall use lemmas 3f1 and 3.2 which apply as stated to J =
(-»,) see:2.12 and the following paragraph for the definitions of & and 31 in.
this case.

We now prove the éxistence of a solution to (A-A)F(x) = f(X), -® < Xx < @
with the property that F, (x) € Co(-=,%) provided £, (x) € Cy(-=,%), i=l,...,N.
Firsﬁ'we make a changé gf vafiables with Ui(x) = Fi(vix), gl(x) = fi(vix).

Let BU,(x) = U,'(x) + X q..U.(x). Now U is a solution to
i i 5=1 ij ]

(3.10) _ - (A- B)U:= g

if and only if (A-A)F = f. Moreover U and g vanish at #» if and only if F and f

do. Let g have compact support. Then it is easy to see that U(x) =

o

exp(x(AI-Q)) f exp(-y(AI-Q))g(y)dy satisfies (3.10). Since g has compact support

x
we see that lim U(x) = 0. In addition 1im exp(x(AI-Q)) = 0. This is because
X+too X->—c0

exp(x(AI-Q)) = exp xAI e*p(-xQ) and for x < 0 ||exp(-xQ)|| < 1 since Q is an
infinitesimal generatorlbf a Markov chain. Thus we've produced a function U(x) =
(A-B)-lg(x) satisfying the equation (3.10) and such that Ui(x) € CO(—w,w),
provided g has compact support. From lemma 3.2 we Qeducé thatxllUIl.j_Ilgll.
Suppése now only that gi(x) € Co(—m,w). Let gn(x) denote a seﬁuénce of continuous
functions with compact support such that lim||gn-g|] =0 and U" = (A-B)-lgn.

n-ro

Then Un S - (A-B)_l(gn - gm) and lemma 3.2 together imply

(3.11) ™ - o™ < a7 g™ - &M,
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- It also follows from the equation (3.10) that

(3.12) [pu™ - 0™} < 2+ [lalD " - g™l
o n m n n
Since lim||g -g" || = 0 we conclude that U™ and DU" form Cauchy sequences and
N .
>0
hence there exists a function U € ' such that lim||u - U"|] = o,
N>
lim||DU - DU"|| = 0, and therefore (A-B)U'= g.- This completes the proof of existence.
n->o

The proof of (iv) and (v) are straight forward and omitted.
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IV. Proof of Theorem 2.2.

We prove Theorem 2.2 for J compact. For J = (-®,@), the proof follows from
Steps 1, 2, 4 below. We shall use the fact that given g € C(J), the equation

AW-QW:g,l>O,
has a unique solution W = (AI-Q)_lg € G and

(4.1) ' M= :i Hell, [Ma]

To prove (2.32), we show that for all g € G, X > 0,
, -1 -1
- (4.2) [IP(A1-2) “g - (A1-A(e)) Pgll = (D).

A simple extension of the Trotter-Kato theorem [¥; p. 269] gives (2.32) for all
gVE 8(92) = {g: g€ 4, ng € #4l(see [S; Remark, p. 255]). Now (2.32) follows for
all-g € § since S(Qz) is dense in G and all operators in (2.32) are contractions.

| To prove (4.2), we need (AI - A(e))-IPg'G 33, so we first prove (4.2) for

g € Qz (see (3.1(v));'(4.2) easily extends to ail g € G. The proof comes in

four steps. Step 1 shows that to prove (4.2) one may replace_(AI - A(e))-ng by
<m, (AT - A(e))_lpg>; Steps 2 and 3 give the interior and boundary estimates

for the resolvent, respectively. Step 4 completes the proof. Fixing g € Qz, we define

(4.3) W(E) = <m, U(g)> where T is given in (2.6) and U(E) = (AI -A(E))ilpg;i.e.
(4.4) o - Lvp - 1—2Q)U(€) = Pg,
' € C g
: (e) - N () . '
4.5 (a) Ui (ro) = 2j=k+1 bijUj (ro), i=1l,...,k,

k (e _
Z. .U, =
3=1 leUJ (rl), i=k+1,...,N.

® v, P
We set

(4.6) ' W= (AI _Q)'lg,
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§Egp_l:r For each i=1,...,N;

“.7 g8 w(e) = o(1).
§E§51J{. For A > Q,

“.8) - ar- ouwle - 4. 5(1).
.Step 3. (See (2.27) for the definition of Cases 1-3.)

(1) W(e)(ro) = 0(1) if Case 1 holds at r

0,
(4.9) (ii) Dw(e)(ro) = o(1) if Case 2 holds at r,,
‘. 2,.(€) . : :
(iii) DW (ro) = 0(1) if Case 3 holds at LY
with a similar\statement for.rl.

Step 4. w® w0,

which combined with Step 1 gives (4.2).
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We define

e as the éonstant vector (1/N,...,1/N) and note that [Y; p. 205}

R(Q*) = N(Q)', where

N

R(Q*) {s e IRNIIBr e R with Q*r = g},

N(Q)*t

{ce ®R| <c,e> = 0}.

~Given w e N(Q)J', we define the pseudo-inversé (Q*)°1 of Q* by

’

(4.10) @) 7o = =1 " (e -@on) at.

One can shov} that r = (Q*)-lw is well-defined and is the unique
solution of Q*r = w which belongs to N, Given we R(Q*), we
shall say <w,DkU(£)> e R(Q*), k = 0,1,2,... . For the rest of

this section, we write U for U(e). ‘

Lemma 4.1. Assume (2.23)  For_any

c' e Nyt we " have
(4.11) <e',0"™> = 0(1), m = 0,1,2.

Given c ¢ N(Q)J‘, we have

(4.12)  <e,p"u> = -e<(@") e, v™u> +0(e2), m = 0,1,2,
and
(4.13) Moy o = xy =1 Am+l ‘

_ <¢,D'U> = -e<(Q*) “c,v><u,D "U>+o0(e),m = 0,1,

where u is any vector (“1':"'"&) satisfying Zui =1,

Proof. From '(4.'_4), D"U satisfies the equation

. : 1
(A1 - -e—

VD - iz- Q) D"u = p™pg.
€
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Hence, defining ¢ = (Q*)-lc, we have
: m m
(4.14) <¢,D'U> = <y,QD U> _
J = —e<y,vD™ 1u> + ae2<y,p™u> - e2<y,D"Pg>.

Now (4.11) is a consequencé of (4.14) and gz,z's)'. To prove (4.12),
ve note that the term <w,DmU> is 0(1) by «.11) (since yYe R(Q*))

and <y,D"Pg> = ND"g<y,e> = 0. To prove (4.13) , we have by (4.12)

 <c,D"u> = -e<(Q*)-1c,v><u,,Dm+l'U> + ed + o(ez) ¢

- where

1 1

o = <(Q%) “te,v><u,b™ u> - <(Q%) "te,vD™ U,
1f we can show that ¢ ¢ R(Q*), then (4.13) will follow by (4.12)
applied to ™1y, But

d = <<(Q*)—lc,v>u - V(Q*)-lc.Dm+lU?,

and

| N S - | - -
L. <@ c,vau, - [V(QY) lc]i} = <(Q*) 1c,v> - <(Q*)'1c,v> =0.0
- Proof of Step 1. We have

vi(é) - we . <!, V(€)>’

, N
where c'). =68.. - m., j=1,...,N. i
( )J ji 7 Ty ] L,...,N Since E

) _(c'.)j = O, (4.7) follows from
(4.11). =, . J ‘

1

Proof of Step 2. Take the inner product of'both sides of

(4.4) with 7 and use Q*1 = 0 to derive
- (4.15) A<m,U> - 1/e <w,vDU>=g.

By (2.15), <m,vDU> is in R(Q*), so by (4.11) we have

(4.16) A<n,U>-F<(Q*)-1(wv),v?<w,DZU> = g+o0(l).

This is (1.8) . B
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Proof of Step 3. We prove (4.9) (i)-(iii) using
ﬁ(e) £ <e,U> rather than W(E) 2 <w7,U>., Since e-1Te N(Q)J',
wl€) _qte)

= 0(1) by (4.11) . We write y, n, and 6 for y(ro),

n(ro) , and e(ro)_,' respectively.

- (1) Adding (4.5) (a) over i = 1,...,k and inserting

zj=k+lNUj(r0) on both sides of the resulting. equation, we find

-

-1 k

S N N
<e,U>(r = N [£i=1 r’j=k+1 bijuj(ro) +'£j=k+1 Uj(ro)]

o

_J'T.

(111
Z

Hence for any real w,

(4.17) (1-w) <e,U>(rg) = N7 - w<e,U>(x) -

By hypothesis on the a; ‘s, the number

e u |
i=1 Ljege1 Dyg*N-Kkl e [0,1),.

w = N']'[z
and - this w puts the right-hand side of (4.17) in R(Q*). Hence

by (4.11), we conclude .<e,U;(ro) = o0(l1).
(ii) Equations (4.5) (a) imply that

_ s k _ k N -

where y is defined after (2.26) We clgim that v ¢ N(Q)*:

N k

L a k N _ k k
Pi=l Y3 T Ty 1 vy Eppy By < I

by hypothesis on the ai's. Hence by (4.13) , <e,DU>'(ro) = 0(1)
provided n = <(Q*)-ly,v> # 0.
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(iii) From (4.18) , since 1':2(0*), we have using (4.12)

that

1

l4J9) <V(Q*)-77,DU?(ro) = 0(c).

But by hypothesis }:i=1N[V(Q*)-ly]i = n=0, and so by (4.13) and

(4.19)
N -1 -1 -1 2 '
o(e) = <v(Q¥*) Y.DU>(ro) = -€<(Q%*) “(V(Q*) “vy),v><e,D U>(ry) + o(e).

Provided 6 = <(Q*)-1(V(Q*)-ly),v> ¥ 0, we see that <e,DZU>(r0)
= 0(1).

- Proof of Step 4. We denote by s the o0(1l) error in (4.8)
and by ho, hl the 0(l) errors in (4.9) = (at r, and Xy, respectively).

The function x(e) = w(e)_ W satisfies

(1 -9)x{e) = s, Hix(" =h;, i=0,1.

(€)

Let 2 sOlve

(4.20) a1-2z'®) =9, H,2(®) = hy, i=0,1.

We show below that-z(E) exists and that

(4.21) llz(E)ll‘i'const(Ihol + |h .

(e)

(e) _ -z

Hence Y = x(‘)

satisfies
(A1 -0)y € = x, aiy‘e’ =0, i=0,1.

Since s ¢ C(J), the bound- [[¥ V|| < A7L|Is|| is valid (see (4.9)).

This, combined with (4.21) , completes Step 4. Concerning Z(e)'

let u,w be a fundamental set of solutions for (AI-Q)p = 0. Since
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A>0 is in the resolvent set of 2, we have

H,yu H w
det 0 0 # 0
Hyu Hyw
and so we can find constants €y+ ©, so that z(e') = cu+tc,w.

Hence (4.21) holds. @

We end this section by discussing Remark 2.3 (i).

Proposition 4.2. Assume that Q has the form (2.33)(iii). Then

(4227 (-Din(r) >0, i=0,L

Proof. We prove (4.22) for i = 0, the proof for i = 1 beiag

similar. We write y for Y(ro). From (2.34) ’ (Q").1 = = oh
N(Q) "', and since Y e N(Q)* ‘we have .

To show that Case 3 in_,(2.18') can arise, it can be checked that if

— ' =]
~1.6 .1 1.4 .1
q = .1 -1.35 .1 1.15 » Y = (1,1,-.5,-1.5),
1.4 1 -1.6 -1 |
.1 1,15 .1 -1.35

v = (1,4,~4,-1),
then |

o~ ly = (-.875, .125, -.375, 1.125), n =0, o

<Q-1 (vQ-ly) ,v>= 5, 0416.
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V. A Priori Bounds
.We prove the bounds (see remark after (2.23))

.10 10,91 = 9) for A>0, £=1,2,3,

in the three cases mentioned in Section II (see (2.27)). We assume f € Jﬁ and
write U for U(E)(A,f). Note that it suffices to prove (5.1) for say & = 2.4

since we may then interpolate with the ®(1) bound on U derived in Section III

[cs].

Case (2.27)(1)) (i). (2.1) - (2.2), J = (-=,).

Since the vy and Q are independent of x, we have for any % >1
(5.2) (AL - A(e))D™ = ¥,
and so by (3.2)

(5.3) |Io%]] < a7 |p*¢)].

Case (2.27(ii). (2.1)-(2.3), N=2, k=1, bij satisfy (2.5), the

centering (2.15 holds.
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"_'We prove (5.1) inductively for 2 even given £ ¢ Fz. We write

S e ¢ q
Q= [ 1 ﬂ » 937 95 > 0. The centering (2.15) implies
9 9 ' -

‘-(5,4) qQ,vy + qpv, = 0.

Say'wé know (5.1) for some even £ (it holds for & = 0). 1If a

maximum of D2+2

242

should'occur in the interior of J, then we would

have ||D 1+2

ul] < l°l||D f|]]. Thus it suffices to show
(5.5) p**2u(ry) = 0(1), i = 0,1,

By the inductive hypothesis on DLU, we know

(5;6) e o) - 0w,

since p**1ly satisfies (from (5.2))

(5.7 oy = - 2 v-1op%u + ev iaptu - evlpte
- %V-]’QD!'U-PO_(E). |

We claim that (5.5) will follow once we have shown

241 L+1
(5.8) D Ul(ri)s-D ‘ Uztri).= 0(e), i =0,1.

Indeed, then

b *lu, (x;)) = 0te),

| 2+1 _" |
.QD U(ri) = (-ql,qz){b 2

L
and so, (5.5) is a consequence of (4.6) and the equation

(r.9) p**%y = - 1yl

= p**1y + eviapt*ly - ev-1lpitie,
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We prove (5.8). From (5.7) we have

2+1 19 a2 L.
- DUy (xy) = 3 G5 (DU (x) = DUU,(x)) (),
" (5.10) q
: L+1 __19% ¢ ot
D", (ry) g 5o (D70 (xp) =070, (x))) +0(e).

We obtain (5.8) from (5.10) and (5.4).

Case (2.33(iii)). N even, k = N/2, Vi bij’ Q satisfy (2.33(iii)
(a)-(c).

We prove that (5.1) holds for any % even provided that f ¢ Pt

satisfies the compatibility conditions
(5.11) bt (r) =0 = d¥f.(r), i = 1,...,N
e i 0 i 1 14 f oo oy .

First, assuming (5.11) we show for general &, N, k, 7 bij'

and Q how to derive boundary conditions for D£U of the form

L - N
(a) D7U, (x,) .zj=k+1 bij
L _r. koo (R) %
(b)  D'U;(ry) = Iy, by D

(l)Dzuj(ro), i=1,...,k,

(5.12)

ij Uj(rl), i=%+1,...,N,

for certain bi.(l); Since DEU satisfies (5.2) on J, a sufficient

j
‘condition for (5.1) is that the bij(z) satisfy (2.3) for & = 2 and
£ = 3 or 4. Under the hypotheses of case (iili), we show that for

any L =1,2,3,...,
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(2) =_(-1)£. i=1,...,N; all other bi.(l) = 0;

(5.13) b j

for-i even the bi.(l) have thé right form. Note that the regquirement
(5111) on f does not affect our proof of Theorem 2.]1 since the set of
g € G such that f = Pg - satisfies (§.11) for & >1 is dense in G.

We derive (9.12) (a). By (5.2) for & =1,2,...

Dzu at ro satisfies

Q. ~-1,.%. 2 - _0.-2 2
(5.14) <[(A--€-§-) V] D"U,n; >(r,) <(li e2) D"£,n;>(xy)

=0, i=1,...,k,

since f satisfies (5.11).

Defining H as the k xN matrix with jth row n, and setting

E= (- vt
: €

we rewrite (5.14) as

k Lo o N L
Doy (HE);D'Us = =Ly .y (HE) 4D

» i = 1 * o9 k L]
3 p R Uy resst

This can be expressed as

2.1 [)
D Ul _ D Uk+
HES : . o= -HES : ,
' ' 2
D U, | D Uy

.

where S is the N xk matrix and S the N x (N-k) matrix with partitioned

forms _ N

wn
n
o
a‘
-
m
: L}
Ba
NS
x
-
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i

(I and 0 are ldentxty and zero matrices, respectlvely, with the

1nd1cated number of rows and columns) Thus, if (HES) -1 exists, we

obtaln (5.12) (a) :

Fl Fz ]
o DUy P %y
(5.15) : = -(ues)~lpES Ka .
_ : L . ,
D Uk -? UN J
This can be.further simplified by writing
k ' k N-k =
BH= [I]|-T]k (i.e. T,, =b, , ).
neic ! 13 T P1,k+
Then (5.15) becomes (provided.(zl-TE3)-1 exists)
N | '
L 2
" | %

We now assume the hypotheses of case (iiz) .

From (2.33(iii) a , we
have'that RVR = -V and thus

(5.18) RER = (-1)%g.

o |

' 0
Writing R in the form R (R an N/2 x N/2 reversal matrix),
we substitute 1nto (5.18) the Form of E from (5.16) and obtain

_ = (1 %3 3 = (<1 5n B
(£:19) E5 = (-1)'RE,R, £, = (-1 'R, R

Since (2.3%iii))(b) states that T = R, the matrix E; - TE; in (5.17)

becomes (as R2 = I)

(5;20) El - TE3 = El + EzR,
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'whe're we take the upper sign for £ even and the lower sign for 2 odd.

Lemma $.1. E, +E,R is invertible.

N

Proof. If not, there exists xe¢ R /2, x # 0, so that

.(Ei; Ezvﬁ)x = 0. But then by (5.19)

. [x] [ | ‘l [fl"”‘zz x ]'._o,
IRx| L I ]L+R:c_| I_ta(zznx+alx)‘|-

This violates the invertibility of E. |

By the lemma and (5.19) - (5.20), (5.17) becomes

F',, 7 ' _2 ]
by, ' | D Un/2 + 1
: = -(E, +E,R) " (E, +E,R) :
otu o )
n/z o - - DUy
= (-1) "R ‘:
e
D Uy

This proves (5.13).
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