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INTRODUCT ION

The shortcomings of the classical tests of homogeneity, i.e.,
testing the hypothesis of equality of parameters, have long been known.
The only question answered by such a test is whether theré is any
difference at‘all among the available populations. Bahadur [2],
Mosteller [58] and Paulson [61] were among the earliest research
workers to recognize this and to formulate the problem as a multiple
decision problem concerned with the selection and ordering of k
populations.

In the two decades since these early papers, ranking and selection
problems have become an active area of statistical research. There have.
been two approaches to these problems, the 'indifference zone' approach
and the 'subset selection' approach. In the firstvapproach, a single
population (or a fixed number of populations) is chosen and is guaranteed
to be the one of interest with a fixed probability P* whenever the
unknown parameters lie outside some subset, or zone of indifference, of
the entire parameter space. This formulation is due to Bechhofer [11].

Other contributions to this problem are Bechhofer and Sobel [16],

Bechhofer, Dunnett and Sobel [14], Sobel and Huyett [75], Chambers and
Jarratt [20], Barr and Rizvi [7], Eaton [26], and Mahamunulu [56]1. A
quite adequate bibliography may be found in Santner [69] and Bechhofer,

Kiefer and Sobel [15].



The second approach assumes no a priori information about the
parameter spéce. A single population is not necessarily chosen; rather
a subset of the given k populations is selected depending on the out-
come of the experiment. It is guaranteed to contéin the population of
interest with probability P*, the basic probability requirement in these
procedures. This 'subset selection' formulation is due to Gupta [38],
[41]. Some recent contributions to this aspect of the problem are
Gnanadesikan [30], Gnanadesikan and Gupta [3]],'Gupta and McDonald [44],
McDonald [57], Panchapakesan [60], Gupta and Panchapakasan [45], Gupta
and Studden [46], Santner [69], Huang [50], Huang [49], Gupta and
Huang [42].

The sequential and multistage.aspects of the ranking and selection
problems have been explored by Bechhéfer; Dunnett and Sobel [14],
Bechhofer [12], Bechhofer and Bluﬁenthal [13], and Paulson [62], [63],
[64], [65]. Nearly all of this work in sequential and multistage
procedures is based on the indifference zone approach. Barron and
Gupta [9] and Huang [50] consider sequential procedures using the
subset selection approach.

An obtimum theory was developed for the first approach by
Bahadur [2], Bahadur and Goodman [3], Lehmann [55] and Eaton [26].
Contributions toward optimum properties of subset selection approach
have also been made by Goel and Rubin [33], Govindarajulu and
Harvey [36], Gupta [39], Deely and Gupta [25], Lehmann [54], Robbins
(681, seal [70], [71], [72] and Studden [77].

The main purpose of this thesis is to study some problems using

the subset selection approach and make some contributions.



Chapter | deals with some selection and ranking procedures for
the smallest unknowﬁ parameter of k Poisson populations. In Section 1.2,
a procedure is derived to select a subset containing the best of
several Poisson populations. In Section 1.3, a procedure conditioned on
the total sum of the observations is proposed. A different selection
procedure of the type suggested by Seal is considered in Section 1.4.
In Section 1.5, selection of populations better than a standard is
discussed. An application to a test of homogeneity is described in
Section 1.6. Tables related to the selection procedures are given at
the end of this chapter. These tables give the necessary constants
to carry out the procedure and also evaluate the efficiency of the
procedure in terms of the probability of a correct selection and the
expected proportion in the selected subset under specified configura-
tions of parameters. |

Chapter Il discusses some results on subset selection procedures
for double exponential (Laplace) distributions. Seﬁtion 2.1 deals
with some characteristics and use of this distribution as a model. In
Section 2.2, a selection procedure for the location paraméters is
proposed and studied using the subset selection approach. Also
selection with respect to largest location parameter using the
indifference zone approach is considered in Section 2.3. Section 2.4
gives a discussion of selecting the t-best populations. In Section 2.5
a procedure is proposed for subset selection with respect to the scale
parameter. In Section 2.6, a test of homogeneity is given which is based
on the sample.median range. The distribution of a statistic associated

with the procedure in Section 2.2 is considered in Section 2.7. Tables



of the upper percentage points of Y = max (X, - Xo) where
I<i<p

Xo’xl""’xp are indePendent and identically distributed Laplace random
variables with scale parameter unity are given at the end of this
chapter.

In Chapter 111, the subset selection approa;h is used to the
problem of classification of k univariate normal populations. In
Section 3.2, two classification rules with respect to thé mean are
proposed according as the k populations have (i) common known variance
02 and (ii) common unknown variance 02. In Section 3.3, a classifica-
tion rule with respect to the variance is given. These rules might
not classify T, @s any one of the k populations. ‘Hence different class-
ification procedures, with respect to the mean and the reciprocal of the
coefficient of variation, which cI;Ssify T, as at least one of the k
populations are proposed and studied in Section 3.4 and Section 3.5,
respectively.

Chapter IV deals with some selection procedures for the negative
binomial populations. A statistic of type ¢ max X. - X. is used

1<j<k :
in Section 4.2 where Xi denotes the number of failures before the rith
success from‘ihe ith negative binomial population. In Section 4.3,
a rule based on the same statistic as in Section 4.2 but conditioned on
ZXi, the total number of observations, is investigated. The problem of
selecting all populations better than a standard is considered in
Section 4.4, An application is given in Section 4.5. For k = 2 and
various values of r, t and P*, the tables of the constants CIS(t)

required .for the procedure in Section 4.3 are given at the end of the

chapter.



CHAPTER |

ON SUBSET SELECTION PROCEDURES FOR PO1SSON POPULATIONS

1.1 Introduction

Poisson distribution has been used as a model in several statistical
problems. As early as 1898, Bortkiewicz [18] used it to fit the data
pertaining to the deaths by kicks from horses in é regiment. Poisson
process is used as a model in many applied probability problems, for
example, for the waiting time, for arrivals of calls at a telephone
exchange, for arrivals of radioactive particles at a Geiger counter,
etc.

In this chapter our object is to study the problem of comparing k
Poisson distributions. Not much work has been done on this problem,
More specifically, we consider the problem of selecting a subset of k
Poisson populations including the best which is associated with the
smallest value of the parameter. Gupta and Huang [43] have considered
the selection problem according to the largest value of the parameter.
However, a procedure of the type proposed by them does not work for the
problem of selection with respect to the smallest parameter. Goel [32]
has shown that the usual type of selection procedures do not exist for
some values of the probability P* of a correct selection. In this chapter,
we propose a procedure different from that of Gupta and Huang [43] for
subset selection which exists for all P*. The rule is based on a result

of Chapman [21] who showed that there is no unbiased estimator of the



A
ratio 7§-with finite variance, where A], AZ are expected values of two

independent ran;om variables XI’ X2 with Poisson distributions, but that
1
x2+l
Let Ts MosesesT be k independent Poisson populations, i.e. . has

the estimator is "almost unbiased'.

a Poisson distribution with unknown paramefer Ai’ i=1,2,...,k. Suppose
that we take n independént observations Xi],...,Xinvfrom each pooulation

Moy i=l,...,k. A sufficieﬁt statistic for Ai is inj’ hence without loss of
generality we will assume the sample size to be one. Let

A[]]_i A[z]'i cen f-A[k] be the ordered values of the parameters; it is
assumed that there is no a priori information available about the correct
pairing of the ordered A[i] and the k given populations from which
observations are taken.

Given any P*(&-< Px < 1), we wish to select a non-empty (small)
subset of these k populations such that the subset contains the
population corresponding to the parameter A[]] with probability at least
P*, no matter what the configuration of A], AZ""’Ak is. We use the
notation CS for correct selectién where CS means that the selected
subset includes the best popu]ation; Therefore we are interested in
defining a sélectioﬁ procedures R such that

inf P, (CS[R) > Px o (T.r.1)
Al =

where Q is the set of all k-tuples A = (KI,AZ,...,Ak), A >0,
i=1,2,...,k.
Let X], X2,...,Xk denote the independent observations from

populations ﬂ], ﬂz,...,ﬂk, respectively. Let X(i) be that value of

X],...,Xk which is associated with A[i]; of course X(i) is unknown.



In Section 1.2, we discuss a subset selection rule so as to satisfy
the basic probability requirement (1.1.1), and to find an upper bound
for the expected subset size. In Section 1.3, we consider a conditional
selection procedure conditioned on the total sum of the observations; a
method for constructing the constants (conservative) and an upper bound
for the expected subset size are derived for this conditional rule.
Section 1.4 deals with a different selection pro;edure of.the type
suggested by Seal for the normal means problem. We also discuss the
Seal type procedure conditioning on the total sum of the observation,
in which case the selection cqnstanf can be determined precisely so as
to satisfy the basic probability requirement. An exact expression for
the expected subset size of the conditional Seal type procedure is
stated in Theorem 1.4.5., Selection procedures for selecting a subset
which contains all populations better than a standard are considered
in Section 1.5. An application to a test of homogeneity is mentioned in
Section 1.6. Tables related to the selection procedures are given at the

end of this chapter.

1.2 The Unconditional Selection Procedure R]

(A) The Rule RI and the Probability of Correct Selection

Rl: Select the population up in the subset if and only if

X. < c: min X. + ¢

i 1 1<j<k 1

where <, > 1 is to be chosen so as to satisfy the basic probability

requirement (1.1.1).



For i = 1,2,..5,k, let ?l(i) =Py (select population ﬂ(i)IRl)'

Theorem 1.2.1. Pk(i) is a decreasing function in A[i] when all other

A's are fixed and pA(i) is an increasing function in A[j]’ j # i, when

.all other A's are fixed.

p (se!ect population e |R )

Proof. px(i)
= ﬁi(x(i) min X(.

+c.)
' 1<j<k i) !

Pl(x(i) iclx(j) + < j = l,zf...,k, j#EI)

° My My ke -
= e U0 op{n o 2 —d—}
x=0 i=1 2_(__|>
J#i c;
where < o > is the smallest integer > a.
Ar. <X o1sa
x=0 =10 T« X- )y Y
j#i |
[+ ] "'A )\x
= . 2 (il 7]
xio 'F(X, }\[]],...,A[i],...,}\[k])e X!
= El[i] f(x; }\[]],...,}\[i],.o-,k[k]) - ' (]-2-])
‘ | < ’E‘—-|>-1
where f{x;A,, ,...,X (reeerip ) = I f [i] -—-——l———-—-y ] " e Ydy
» (1] (il (k] i=1 o I(< 2= -51)
| it -

and a denote that a is delected. From (1.2.1), it is obvious that pk(l)
is increasing in A[ L j # i, when all other A's are fixed. On the other
hand, for fixed A[j],_j# i, f is a decreasing fgn;tion in x and
Poisson distfibution belongs to the S!(Stochastically increasing)

family, so by a lemma on P. 112 Lehmann [53],



gi(i) = EA[;] f(x; )[l],...,x[i],...,l[k]) is a decreasing function in

A[i] when other A's are fixed. Hence, the Theorem is proved.

Let QO = {A = (A],Az,...,kk), A] = AZ = L., = Ak = A, A >0},

Corollary 1.2.1, inf PA(CSIR]) = inf PA(CSIR]) i

Al - AER - :

Z ="

o X o -1 32 k=il
= inf I e A %:T { z e A %T'} .
A > 0 x=0 =<x—~-]>
.c]

Proof. The proof follows directly from Theorem 1.2.1.

It should be pointed out that the infimum depends on the common
unknown X, 0 < A, In Section 1.7, we discuss numerical methods to
determine this infimum and the constant for the selection rule.

Under the parameter space , the joint distribution of x],xz,...,xk,_

k _
iven I X, = t, is a multinomial distribution with parameters t;
g i :

i A,
8s++246,, where eJ. = 7:-){— J=1,00a,k, P.e.
: J
P(X, = X = I';X-t)- t g 6.k (1.2.2)
1 - Xpeeesf T X P ST X T e Y cée

1 1
Lemma 1.2.1. For any t, t > 0, cl(t) > 1 and for A € e

' k
P, (X, <c,(t) min X, +c,(t) | Z X, =1t¢)
AT =T g 3T L

S g STy
Xt oeee Xy k

where the summation is over all x"s such that x, f;c](t) min x, + c](t),

K 2%jsk
X; >0, for i =1,2,...,k, I X; = t.
t! 1, ¢
Let A(k,t,cl(t)) = T = = (T<')
x]<c|(t) min xJ+c](t) |

2<j<k

x; 20, Ix =t ' (1.2.3)
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Theorem 1.2.2. For given P*, any t, t > 0, let cl(t) be the smallest

non-negative number such that A(k,t,c](t)) > Px, If c, = sup'{c,(t):

t > 0}, then

inf P (cs|R ) > P%,

AeQ
Proof. For A € QO’ ﬁl(CSIR]) = Ei(x(]) <c IT}:k X(.) + é])
> P, (X < ¢,y (t) mln X +C (t))
ZOOM™m 24
AM() 1<j<k ()
o k .
= tE , (X X (1)2C (t)zrjgkx(J)+c](t)|¥ X;=t)
‘ =)<
P (Z X, = t)
_.] :
k
= Z Alk,t,cy(t)) P (z X, = t)
—0 —-l
et

Thus, the Theorem follows from Corollary 1.2.1.

(B) An Upper Bound on the Expected Subset Size Associated with Rl

Let S denote the size of the selected subset, then S is a random
variable taking values 1,2,...,k. Let us consider the special case

= ) < = = =
A[I] Sr, § <1, A[Z] . A[k] A, A > AO > 0, and denote the space
of all slippage configurations of this type by QI’ We discuss the

expected subset size as follows.

Theorem 1.2.3. EQ](SIR]) <k- [; inf g(t)+(k=1)  inf h(t):]

>[cy 1+ t2[c, 1+

(l+6)ko I [c]] -y
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where
t-c
]
+c|

zQ (p° (1.2.4)
S=V

g(t)

and

t"c.I
-
() 3 G O (.2.9)

s=0

h(t)

Proof. For Ae QI N

EA(SIR]) = Pl(x(])f'clzl‘}:kx(j)klh(k-])Pl(x(k)ic]|T}:k.|x(j)+c‘)

= k=P (X in X, . tc;)-(k=1)P - _
,ﬁ( (171 223_2_k (rer) = DBy (Ko ‘S.IJP;" X))

Sk PRy 2o Xigy *op) = oD By 2o Xy )

(-]

=k = IR (X > CXgyrey | Xy (g) = 1P (X)X (5)=t)

t=0 &
- (k-l) °Z° P, (X > €, K o e, X oy X, v =t)PL (X HX =)
(kD) 2 P > eXayrer Xy E g =P % 0y )
..} t-c] .
k= IR <Tm X = 0 R ae) =

*® t-c
1



t-c]
. T RIS YW (IE PN
=k- : () (o t=s o~ (+6)x [(148)A]
t=[c,;]+1  s=0 () (TTS') (“') t!
Vt'Cl
. e
S . 2 () 650° (pts e (O Ll

t=[c]]+] s=0 T-NS e t

where [a] ‘is the greatest integer < a.

<k - inf g(t) ; o~ (146)2 [(+8)A1"
T el t=[c, 1+l t!
® t
- (k-1)  inf h(t) = -(148)x [(148)A]
t.i['lir;]ﬂ t=le;1+1 : t!

K [ Cinf o g(e) + (1) Inf h(e) f(l+6)>\ L tald oy
= - in t) + - n t d
t2[c, I+ ’ t2le, 1+ ] TenrYy &

‘ (1+8)A
k[ f gD it ne ][ ey
< k- inf g(t)+(k- n t :] y e 'dy
t>[c,1+1 t2[c, 141 0 (Te, T
This completes the proof.
1.3 The Conditional Procedure R,
R2= Select the population ™ in the subset if and only if
k ‘
X, < cz(t) min X, + cz(t), given I X; =t (1.3.1)
1<j<k J 1

where t > 0 and c2(t) > 1 is the smallest non-negéfi;e number chosen to
satisfy the basic probability requirement (1.1.1).

For this rule R2 we obtain an exact result for k = 2 in Theorem
1.3.1. For k > 3, we have a lower bound for the probability of a correct

selection in Theorem 1.3.4.
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(A) Property of the Rule R,

A monotonicity property of the rule R2 is discussed in the follow-
ing theorem. As before, let px(i) denote the probability of selecting

population ﬂ(i) using rule RZ'

Theorem 1.3.1. For I < j, we have px(i) 3_pl(j).

Proof. Since

Rl(i) = Px(seléct population ﬂ(i))

2 %
= P‘l(x(i) < e, (t) mln X(ﬁ) +c,(t) | 221 Xy = t)
= | by z
l,...,x',.. ,§J,...,xk ) cz(t)(xi+xj)+c2(t)
x; <€, (t) min x, + c, (t) *i = l+c2(t)
x .
() -—L—p L ——-'-]——pi I
*i Pm ;] Pm Pl
( ~ t A )

Xl,-..,xi,...,xj,.-.,xk, Xi"'xj

X X, X,

X5 A5 " (br.tpr.) |
POT oo POt Pl Ik PLITPL)

A

where p[i] = -igll-- and ;i denote that X is deleted. Note that

I A
= -
when Xq and xj are interchanged, the second part in the above summand

remains unchanged, and Binomial distribution belongs to the Si family,

Pr.
hence pA(i) is decreasing in — Li] . So, if i <j, we have

PLiTYPE)
p_,\_(i) > pA(J').



14

(B) The Probability of a Correct Selection for R,

Theorem 1.3.2. For a given P%, &-< P# <1, k=2and any t >0, let

c2(t) be the smallest value such that
cz(t) (1+t)
Po, %1 ST | X + %, = t) > P, (1.3.2)
2
Then, inf P, (CS|R,)) = inf P,(CS|R,) > P,
ae 2T e 2TE S

Proof. For A € Q,

PACSIRY) = Py (X(g) < &y (DK g ey (D)X gy + X(g = 1)

c, () (1+t) |
= PA(X(]) TTET G | X1y * X2y = 8

cz(t)(1+t)

[l + czlts ] A _ X .' A t-x
x=0 x (1] [2] (1] [2]

For fixed A[Z]’ --T%Ejr increases with A[]] to %-, and since Binomial
1 +

j:[l] _

distribution belongs to the SI family, so the right hand side of the
A

) [1]

increases to the value %-.

above expression decreases as +
- ‘a1t A o
Hence, inf P, (CS|R,) = inf P,(CS|R,). Thus complete the proof.
i 2 A\CSIRy
Aer = AFQO -

For k > 3, we need the following definitions in order to discuss
the least favorable configuration of the probability of a correct

selection of the conditional rule.

Definition 1.3.1. If a, 3a2 Zeee> a s bI sz > el 2 bm’
r r m m
I a, > 1L bi for r=1,2,...,m~1, and I a_ = Z bi’ then

i=1 i=1 i=1 ! i=l
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as= (a‘, a2,...,am) is said to majorize b = (b], b2""’bm)’ written

5_} b or equivalently P_< a.

Definition 1.3.2. If a function ¥ satisfies the property that

Plx) <Ply) (9(x) > (y)) whenever 5_} Y, then § is called a Schur-con-
cave (Schur-convex) function. |
We need the following lemma, due to Rinott [67], which is stated

below without proof.

Lemma 1.3.1. Let X = (X],...,Xk) have the multinomial distribution

N

K
) 9,
x]’..., k =

P(X = x) =(

k
where X = (Xy,0005%.), % x, =N, and I 0, =1,

Let ¢(x],...,xk) be a Schur function. Then Eed)(L) is a Schur

function.

Let 0, = {A = (pseensds Ay = oee = Agyy = A

=27, 0 <X <A’}
A[k] }
Theorem 1.3.3. inf PA(CS|R2)=inf PA(CSIRz)
AeQ — Xeﬂz -
- - k
Proof. P,(CS|R,) = P, (X,,y < c (t) min X,y +c (t)] £ X, =t)
t . Y t-y, t-y, k py V]
=T () P (l-pl) < Z( ) I (-1—_Jp—)
y]=0 Y YoreoosVy j=2 "
il
where P; = - > i=1,...,k and the summation is over all those
T A
jor U
Yy - cz(t) ) . ‘;:
yz,uo-,yk SUCh that YJ z—'-c'-z-(-t-’—— ’ J = 2,-.0,"( an j=2 yj = t-y‘.

Let



16

R, Yy -y (t)
| T T ()
e = { <i<k 2
0, (¥yreeeny,) .
Yy
0 otherwise

then ﬁl(CSIRZ) can be written as EYI[E[¢yl(Y2,...;Yk)| Y, = y]]] where
the joint distribution of YI""’Yk is a multinomial distribution with

parameters t; PysesssPpe It is easy to see that for a fixed Yis

(yz,...,yk) is a Schur-concave function. By Lemma 1.3.1.,
. .. P Pk
E[¢y](Y2,...,Yk)| Y, = v,1 is a Schur-concave function in T:;?,...,T:;;;.
Now, since pj > p], J = 2,es.5k and Py + ... *+ P = 1 - Py we have
1= (k=
( . ) < ( . PI (k I)P]
1= p l-p, -p] 1=p,*  1=p,

). Hence PA(CSIRZ) is minimized

when p, = p2 = eee =P and P = 1 - (k=1) Py» OF when

= A, A[ =27 >_X. Thus the proof is completed.

X[l] = o o0 % A[k-]] k]
Under the parameter space 92,'the joint distribution of XI""’xk

k

given I X, =t, is a multinomial distribution with parameters t;
i=l. ~ ~ _ A ~

pl,-n.’pk’ Where p] = esee T pk-] - k-l + - p,

L .

_ A = .
Pk = k=1 +)r- g, P <q, l.e., k1

K L x
i [
P, (X,=x X,=x | Z X,=1¢)= -—-£4--———-p ] q k
A ] ]’.'.’ k k l_ i x ! [ I 2 x ! °
- i=1 1 k
Theorem 1.3.4.
x
t - k
inf P (CS|R2) = inf z % !t! — | ] 5] (%TJ
AeQ = 0<A<A” x, ¢, (t)mlnxJ+c (t) Kk k-1 + 5
j#1 '

x, >0, 2x =t
i - i
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Proof. For'A

£ QZ’ |
' : k
- S J# i=1
k=1
. z X X
i 4 - >
X12¢, (t)mlnxJ+c2(t) ! Xt (k=1)A+M7 (k=T)AF A
J#

X, >0, Zx. = t
i — i

The Theorem follows from Theorem 1.3.3.after éimplification.

-p*
Theorem 1.3.5. For k > 3, and for any P*, let P; =1 - %:%—-. 0<r<e,

let cz(r) be the smallest value such that

_ *
PQO(X] <ey(r) Xy + e (r) | X + X, =) > P
If cz(t) = ‘max {cz(r): 0 < r < t}, then
inf P, (CS|R,) > p*
Ae) -~

Proof. For A € Q,

PAKCSIRZ)‘= P (x(]) < c,(t) Zszk Xijy * cz(t) | igl X; = t)
k , k
217 B Ry 2t Xy F e E K =)
k k
=1 - jzz - ﬁﬁ(x(l) 5_c2(t)x(j) + ¢, (t) |i£l X; = t)
k k
=2=-k+ Jzz P (x(]) <c (t)X( 0 +c ,(t)] 'El X, = t)

now, we note that for fixed j (J = 2,...,k),
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k
() < X G)re (0] 2

t
Xi=t) = I
i r=

P—)‘_(x(])'icz(t) X(5)

1 0

+ Cz(t)IX(‘)+X(j)= r) . PA(X(])+X(j)= r)

t cz(t)(l+r)
= rzo PA(X(I) A N () e | Xy gy = r) PA(X(I) * X5y = r)

cz(t)(l+r)

e N L
t Telt "y ( P s . P r=s
= I z 7 ( ) P (X + X,y = r)
r=0 <=0 s PytPyT PR ATm T TG)
A
where Py = —E—izi-y but Binomial distribution belongs to the S| family,

z X[.]

j=1 t!

so infimumn of the expression

¢, (t) (1+r)

: I+ c2[t1] P s p r-s
L (0) ) (——)
<=0 Py + Py Py + Py

takes place when Py = pj, i.e., when A[I] = A[j]' Hence,

‘ k
inf f&(x(]) f_cz(t)x(j)+c2(t)‘.£

1 AFQO'—
k
+ ¢, (t) | iE] X, =t)

and for A_s QO’
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k
Pl(x“) f_-cz(t) x(j) + cz(t) | :: X, = t)

t
z
r=0

P_A—(X] < e, (t) X, + cz(t)IX] + X, = r)-PA(X] + X, =r)

t
z
r=0

ﬁl(xl_i c2(r) X, *+ cz(r)l X, + Xy = r)-P(X] + X, =)

|v

*
>

Thus, we have the result.

Hence, for each k and P*, Theroem 1.3.5. guarantees the existence
k

of cz(t) and gives a method to find cz(t) for given I X; = t such that
B
PA(CS|R2) > Px for any A e @ . '

(C) An Upper Bound on the Expected Subset Size for R,

For fhe'procedure R2’ the subsét size S of the selected subset is
a random variable which can take on only integer,?alues from 1 to k,
inclusively. For any fixed values of k and P*, fhé expected size of
the selected subset is a function of the true configuration

A= (l],...,kk). Now, consider the special case, A[]j =6, § <1,

A[Z] = L. = X[k] = A, A > 0. Let us denote the space of all slippage
configuration of the type discussed here by 93. We investigate the B
expected subset size as follows:
r=c, (t)
["nz—m']"
t 2
o r r=s S
Theorem 1.3.6. Eo (S[R)) <k - = z () 8~ + (k-1)8"} -
3 r=0 s=0
t-r
k=2
&) -
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Proof.

~

EQ3(SIR2) = P-A—(TT(]) is sel‘ected) +.E Pl(ﬂ(j)‘ is selected)

j=2
= EA(X(') <, (t) ZQEEK Xy * c, (t) Iiik:].xi = t)
+ (k=1) Px X (k) < € (0) 15?;:-1 X(j) * p(t) | igl X; = t)
=k - fl(x(]) > ¢, (t) Zgjgk-x(j) * ¢, (t) I;E; X, =t)
- (k-1) pA(x(k) > ¢, (t) 153?;2-1 x(j,)+c‘,z(t:)|i‘§l X;=t)
<k- Pl(x“) > cz(t)x(z) + ¢, ()] ; X; = t)

1
k
- (k-1) Pi(x(k) > cz(t) Xy ¥ cz(t)l IZ X; = t)

. k
=k - -—-Ffl——-—-f&(x(]) > cz(t) X(z) + cz(t), ? X, = t)
‘ PA(E X; =t)
-1
- k-1 P (x > ( ) . k -
n A Xy > et x“) +vc2(t), L X, = t)
Pl(f X, =t - ' '

Now, we note that

k
P_A_(X(l) > cz(t) Xz(t) + cz(t), ? X; = t)

t .
= I P,(X > e ()X avte, (), X, i #X =r, I X = t-r)
o A1) T2 N(2)™2 M) ", T T

¢ .
= rzo P?;(x(l) > cz(t)X(2)+c2(t),
X(

)+X( =r I z x(i)=t-r).PA( z x(i) = t-r)

N2 Ly Aig,2

rt

_ X , X X =. P X X .\=t= )
2o % > 2@yt Xy Rl L YT
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since the event { I X(i) = t-r} is independent of the event
i#1,2

{X(') > Cz(t) X(Z) + Cz(t), X(I) + X(z) = r}.

(g

= I

Py (X > e ()X, vte, (£) | Xy 4X o y=r) <P (X +X )
,.o_m € (€)X (9 *e, (€D [X () #X (2)=r) Py (X (q) ¥ ()=

'Pk(i¢§ 2 ¥

and a similar expression for Pk(x(k) > cz(t)X(l)fcz(t), iEl X, = t). So,

£, (SIR,) <k - T b X1y > € ()X gy re, (£) [X (1) ¥X (5y=r)

3 C (T x=t) r=0 =
- i=1 o :
] fa(x(1)+x(2)=')'f§(i¢f ) X(iy=e=r)
- —L zo PAX (k) > S (00X (gy*e, (&) 1X (1 gy =r)
PA( I X, -t)
= i=l
| t r-c, (t)
Tk TR e o RN
P (EX.st) 7O T
Aj=r !
¢ Py (X)X (py=r) Py (T X(py=ter)
k=1 r-c, (t) _
- 20 PAqy < —_(-T+c | Xy Xgo=")-
PA( T X, =t)

= i=l

. Pl(x(] )+X (k)=|") .Pi(i#?’k X(i)=t-r)
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[r-c (t)]
IENGN ]
| t! £ T s r-
=k - ’ z : () () ()
[k-1+8)a1te” KT+OIA 0 o s/ T Y
[(1+8)7]" &~ (1+6)2 L= 2AIET o (k=2
ri ” ‘ (t-r)'
[r c (t)]
Tre, (o]
t T s r-s
(k l)t! z ( )(__6_) ( 1 )
[k=-1+8 2] te™ k- '*57’\ <=0 s/ 18! 3%

r e‘('+6))\ ] [(k_z)A]t't‘ e-(k-Z)A
r! (t-r)1
After simplifying, we have the result.

LQ+8)A]

1.4 A Different Selection Procedure

- (A) The Selection Procedure R3 and Its Expected Subset Size

In this section we consider a selection procedure of the type

suggested by Seal [70].

R,: Select population "i if and only if

3
c
K Set gy DX
J#i
where ¢ > 1 is the smallest constant determined from P(CS|R3) > P*,
Theorem 1.4.1. inf PA(CS|R3) inf P (CSIR)
A = Al —

Proof. For A e @,

. c3 k
PA(CS|R3) P {x“) <oyt T °§2 X5}
. k k
® =Apiq Al oo “EAGY (s oAt
- 01 20l o J=2 Y [J]
= 3 -1 ) j=2
=0 o g (k- 1)(--1)> T

3
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k

R L A,

)\' j=2 [J]
-3 e DRIy 1

0 0 r(<(k-1) (= -1)>)

_ 3
<(k=1) (== =1)>-1
| 3 -y
Y e ' dy .

The proof follows by observing that the expression in the Square brackets
k
is a monotone increasing function of I A..,.
| j=2 Ul
By using an analogous argument as in the proof of Theorem 1.2.2.,

we have the following theorem.

Theorem 1.4.2. For any P*, any t, t >0, let c3(t) be the smallest value

such that_
(k-l)c3(t)+tc3(t)
k=1 + c,(t)
3 . .
I Gy kT e
i=0 i’k ke =
If c5 = Sup {c3(t): t > 0}, then inf PA(CS|R3) > Px,

AeQl —
Consider the special configuration A[I] =38\, § < 13

l[Z] = = A[k]

Section 1.2, the space of all such slippage configuration is denoted by

= A, A > Ao > 0. Using the same notation as in

Q In the following theorem, we give an upper bound for the expected

I.
subset size S.
-(k-l+6)ho

Theorem 1.4.3. Eq (S|R3) < sup g(r) + (k-sup g(r»(l+(k-|+6)lo)e
] r>2 r>2

where



( S35 xR 3
= PUX(qy Scq ¥ I Xy {k-1)P{X <, z Xiay3
(1) =73 7 k1,70 (k)= '—1' ()
c. k k -k '
s P{X . \<C. + -3- % X,.y] ZX,=r}P{ T X,=r}
o (D737 K I j=2 (J)I'- TS T
) c k-l | k ot k
+ (k-1 Z P{X <c + e Z X;=r P{ =
r=0 (k) k J=] (J) |_|‘
o { c (r+k-l) | k }_{k
z P{X e | 3 X. =r}P{Z X, =7
mo ) =TT T =1 |
) { c3(r+k-l) | k ot k
+ (k-1 ZPX -—————ZX.=rPZX.
R U R i=1
c3(r+k-|)
v |
> 3 r é s ) s
z Zo {(s) (m) (1 'm)
r=0 g=

IA

c3(r+k-])
T
- re. 8 S 8 r=s
20 Q) ) O - )
s=

r=s

+ (k-l)(;) (ﬁg)s(l - "'(—_-:Tg) }

r 1S 1 S
+ (k'l)(s) (m) (l-m) 1

~(k-148)A  [(k=1+8)A1"
e =

klem (K=1+OA | = (=148)X (L 1u6)2) + sup g(r)

Qz?

o o~ (k148 [(k=1+8)N]"
*

r=2

k~1

X. —r}

24

ri



25

= sup g(r) + (k-sup g(r)) {e” kTN Ue1+8)h g 600y

r>2 r>2
< sup g(r) + (k-sup g(r)) [1 + (k=1+8)A ] e - (k=1+8)2,
r>2 r>2
The proof is completed.
(B) A Conditional Procedure R4
We also consider a conditional rules as follows.
Rh: Select the population U if and only if
Ch(t) k
X; Cy (t) + v z X given I X, =1t.
i
j#i i=1
k
We know that X!""’Xk given I Xi = t is distributed as mul tinomial
i=1
A] Ak
k ' k :
with parameters t; ZX.yeaey L A,, and the marginal distribution of Xi
j=1 J j=1 J ki
k K
given I Xi = t is binomial with parameters t and I Aj.
=T 7 Cj=1

Theorem 1.4.4. inf P, (CS|R,) = inf P A (CSIR,)
Ae = XeQ =

Proof. For A e §,

<y (t) k k
k
= PAfX(I)_f_D(t) | izl X, =t}
ch(t)(t+k-l) k

Since X(]) given I Xi =t is distributed
i=1

where D(t) = g, (T

xEl]

as B(t, I -Atj]) which belongs to the S| family, hence
jz] -
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[o(t)] e e
inf P (CS|R ) = inf _Pl(cslkh) = I (')(E) &
e 2 deq = i=0 !

Note that the infimum of the probability of a correct selection is
independent of the common value A and ch(t) is the smallest constant

determined from the following inequality

[o(t)] -
z ()(k) ( ) > P¥,
i=0
[D(t)] " t 6 S k"l t-s
Theorem 1.4.5. EQ] (S|Rl|) = zo {(s)(k—_m) (S
, o= ;
+ k1) (8 (o) ("'2“5) }
<y k k
Proof. (slah) =P {X(l) <cy + —-I-Jz2 x(j)l ifl X; =t}
' ch(t) k- k
+ (k=1) P{X(k) <y (t) + e - J=| ( )| = t}

k | k
=Py < D(t)lif_,xi = t}+(k-l)P{X(k)_§D(t)IIE‘Xi=t}

The theorem follows easily.

1.5 Selecting a Subset which Contalns All Populations

Better Than a Standard

In this section, we discuss a related problem.
Llet m_, MyseessT be k+1 independent Poisson populations.with

parameters Ao‘ AI,...,Ak respectively. We use the same notation and

definitions as in Section 1.2. Population m Is said to be better than

the standard if Ai :_Ao. The procedure described in this section control
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the probablllty that the selected subset contalns all those populations
better than the standard and guarantees this probability of such a
correct decision to be at least P*, et Xi denote the observation from
T (i =1,2,...,k). Let ry and r, denote the number of populations

|
with A f-Ao and A > Ao respectively. We discuss the following cases:

Case (i): Known Standard

We assume Ao is known, and propose a procedure as follows:
Rd]: Retain in the selected subset those and onfy those populations L
for which |

X, 5_d,(A° 1) (1.5.1)

where d] > 1 is the smallest number to be determined below.

The probability-PI of a correct decision is given by

-
] .
P] =i£l P{X(i) f_d](ko + 1)}
"
> 1 P {x < d, (A + 1)}
Timp Yo (1) =
[d) O +1)] _, N
> pX e © T?- (1.5.2)

j=0

Remark 1.5.1. By solving for the smallest value dI satisfying

| k
QDI A L
T e o o] 2z
T

j=0

we obtain the procedure.
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Case (ii?:lko unknown.

Let Xo be an observation from LI Then we propose the following
procedure.
Rd : Retain in the selected subset those and only those populations L

2
for which

X; < dy(X  +1) . (1.5.3)

where d2 > 1 is the smallest value to be determined below.

Then the probability P2 of a correct decision s giVen by

P = P{x(i) f_d (x + 1), i=1,...,r, }

2
w T [d, (x+l)] X

- Y A
) X-EO {JE] "0 _J-r } © xT
>z { I e e -
~ x=0 y=0 T x:

S B SR A WP W
> {xgo ( yio e -\7-!-) e =}

w  [dy ()] Sy A Ay Nk
>{z ( £ e 5T ) e =} (1.5.4)

{P(x, < dy(x + 1)1

where Xo, XI are 1iid Poisson with paramei:er >‘o'

8

Sz PO < dy(K F 1) | X+ X =) s PO+ Xy = )

™

r=0
For any fixed r > 0, let dz(r) be the smallest number such that

A, r, dy(r) > R/PF
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where A(2, r, dz(rn is defined in (1.2.3). Let d, = sup{dz(r): r >0},

we have P2 E,P*°

1.6 Applications to a Test of Homogeneity

for A] = AZ = oie. = Ak

In some practical situations one wishes to know whether Ai are
significantly different or not. This is the problem of the test of
homogeneity of the Poisson populations. In order to test the homogeneity
of k experiments, i.e. to test H: A] = XZ = L., = Xk = Xo against the

Hy: not H, we proposed the following rules ¢, and ¢2(T),

(1) The procedure ¢,: H is accepted if, and only if,
X -cX < ¢, where ¢ is some constant depend-
max min —
ing on k, Ao’ and the level of significance a.

(2) The procedure ¢2(T): H.is accepted if anz only if

X - c(t) X i

max in < c(t), given that T = .E X, = t.

i=1
For the procedure ¢,, if we choose ¢ = sup{c(t): t > 0}, where for

any t, t > 0, c(t) is the smallest constant such that
o
Alk, t, c(t)) 21 =+ »
then, for A € Qo’ i.e., when H is true

PA{ max X. - ¢ min Xj < c}
Sigk T gk

1 - PA{ max Xj >c¢ min X, + ¢}
= 12j<k 1<j<k

k
>0 - ZP)\{xi>c min X, + c}

i=1 — 1<j<k
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k
=]1-k+ I P A X: <c min X +c}
= A I_J<k
v k = k k
=1-k+ Z I P{X;<c min X;+c| I X, =t}P(Z X =t)
=1 t=0 = 1<j<k i=1 i=1 !
J#i
k o k k
21k + I I P{x; <c(t) min X, + c(t)| T Xx,=t} P( T X,=t)
i 1 t=0 — 1<j<k =l i=l
J#i

Z_l -o .
by Lemma 1.2.1. Hence fAFQO[ReJect H] < a.

The probability of the error of the first kind for ¢2(T) is then

given by

. k
E(¢2(T)|H,t) = P(max X, - c{t) min X, > c(t)| = X, = t)
< 1<j<k 2 1<k 4 i=1
k
P(Xi-c(t) min x > c(t) for some i | £ X =t)
l<J<k . i=1

k
P(X; > c(t) min X, +c(t)]| I X, =t)
1 1<j<k J i=]

A
it Mx

i

k
k P(X; >c(t) min X, +c(t)| Z X, =1
1<j<k J i=1 !

k[] - A(k’ t, C(t)]

by Lemma 1.2.1. Hence, for given significance level o, we can find c(t)

such that E(¢2(T)|H,a) <a-

1.7 Explanations of the Tables

(1) Tables |, Il and i1l Vist the Infimum of the probability of a

correct selection (approximate value) for the rules R], R3 and



(2)

P

1

is the selection procedure for selecting a subset to include

R;. R] and R3 are proposed and studied in this paper and R

the population associated with A[k] discussed:in Gupta and
Huang [43]. It should be pointed out that the probability
of a correct selection for all these rules is decreasing
with A when X is small and then it is increasing again with
A. Hence, the approximate infimum can be determined numerically
by computing the probability as a function of A, for fixed
values of c. For given k and P*, the selection constants
(approximately) can Be found from these tables. For example,
for P* = .8504, and k = L4, the approximate value of ¢
associatéd with Ry is 2.4,

in Tables IVA, IVB, IVC and IVD, the first entry denotes the
probability of selecting the best population, the second
entry denotes the probability of selecting a nbh-best
population and the third entry is the expected proportion,
all under the slippage configuration A[]] =6\, § < 1;

A[Z] = ... = A[k] = A, when the rule Ry is used. The three
entries in Table VA, VB, VC, VD define the same quantities
for the rule R3. For example, from Table IVC, we find that A
for the rule Ry if A = 2,50 and ¢ = 1.50, (k=5_and 6=.3, the
probability of a correct selection is .946l,>the.probabi1ity
of selecting a non-best population is 4879 ana the expected

proportion of populations in the selected subset is .5796.

31
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1.8 Some Remarks on the Comparison of R, and R

] 3

We define a rule R to be better than another rule R” if the
expected proportion for R is smaller than the expected proportion for
R”. We compare the performance of the rules R] and R3 in the aspect.
For example, when k = 5, P* = 0,92, we obtain the approximate values of
selection constants for R] and R3 as ¢, = 3.0, 3 = f.55 from Table |
and Table Il respectively. For these constants Tables IV, V show that
if § is kept fixed R3 seems to be better than Ry when A is small, while

RI performs better than R3 for large values of A.
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Table VA
Using the rule‘R] and under the configuration (SX,A,...,1), this
table gives in order the triple (a) the probability of selecting a best
population, (b) the probability of selecting any ﬁon-best population and

(c) the expected proportion of the selected populations

([(a)+(k-1) (b)1/K).

A 1.5 1.75 ] 2.0 2.5 3.0 3.5 k.o 4.5 5.0

0.50 | 0.9913{0.9913}0.9995]0.99950.9999 0.99990.9999 |0.9999 0.9999
0.9146/0.914610.986310.9864 [0.9983 0.998310.9998]0.9998(0.9999
0.9402)0.9402{0.990710.9307 {0.9988 [0.9988 |0. 9388 [0.9998 |0. 9999
0.75 | 0.9842{0.98420.9988 [0.9988 [0.9999 {0.9999 [0.9999 |0 9999 0.9999
0.8443/0.844310.9636 |0.9637 [0.9934 |0.9934 |0.9990 [0.9990 |0 9998
0.8909(0.890910.9754 |0.9754 [0.9956 {0.9956 {0.9993 |0.9993 0.9999
1.00 1 0.9777{0.9777(0.9978{0.9978{0.9998 0.9998(0.999910.9999(0.9999
1o.7761]0.7761 0.9322[0.9327]0.9841 {0.9841 [0.9969 ]0.9969 [0.9995
0.8433}0.8433]0.9541 10.9544 |0.98930.9893 0.9979 [0.9979 [0.9996
1.50 } 0.9695/0.9696 {0.9956 [0.9956 0.9995 |0.9995 ]0.9999 }0.9999 |0.9999
0.66540.665810.8580 {0.8615 [0.9526 |0.9527 |0.9866 [0.9866 0.9967
0.7668]0.767110.903810.9062 0.9682 [0.9683 [0.99100.99100.9978
2.00 1 0.9678f0.9679]0.9940[0.9941 ]0.99910.9991 |0.9999 |0.9999 |0. 9999
0.5889/0.591210.7857]0.7974 [0.91140.9125 {0.9678 |0.9678 |0.9898
0.7152}0.716810.8551 {0.8630 {0.9406 [0.9413 {0.9785 |0.9785 [0.9932
2.50 1 0.969910.97020.993210.9935 {0.99880.9988 ]0.9998 {0.9998 {0.9999
0.5333]0.54050.72390.7491 [0.8698{0.8734 J0. 9434 |0.9437|0.9783

0.678810.683710.813710.830610.9128 0.915210.962210.962410.9855



Table IVA (continued)

=3, 8 = 0.3
C1
A 1.5 1.75 1 2.0 | 2.5 3.0 |3.5 |40 |45 |50
3.00] 0.9736{0.9742{0.9932{0.9938{0.9986 0.99860.9997{0.9997{0.9999
-488010.503410.672910.71460.8332}0.8415[0.9179}0.9190]0.9632
.649910.660410.7797:0.8077{0.8883 0.893910.9452(0.9459(0.9755
3.501 0.9775{0.97860.993710.9945]0.9986{0.9986 0.9997(0.999710.9999
-hh7810.474110.630410.6890]0.8029{0.81820.8947{0.89720.9469
-62440.642310.7515(0.7908{0.8681{0.8783]0.9297 .9314 L9646
L.50] 0.9811}0.982740.9944}{0.9954 -9987{0.9987]0.9997}0.9997]0.9999
411110.449510.5945]0.6680{0.7783]0.8020]0.8752 .8803|0.9314
.601110.6272{0.7278{0.7771 {0.851810.8676 [0.9167 .9201{0.9542
5.00) 0.9866]0.9890/0.9960{0.9971 .;9990 0.9991 0.9997]0.9997]0.9999
-348110.40830.536010.6307{0.74110.7822]0.84800.86090.9075
-560910.60180.689310.752810.8271 |0.85450.8986 [0.9072{0.9383
6.00{ 0.99040.9931{0.9973{0.9983{0.9993 0.999410.9998]0.9998}0.9999
-298010.37220.48920.596110.7134{0.76790.83130.85370.8940
.528810.5791 10.6586 |0.7302 .8087]0.8451 {0.8874}0.9024 .9293
8.00] 0.9952]0.997310.99880.9994 {0.9997{0.9998 0.9999(0.9999 .9999‘
+225210.3052,0.416810.5400{0.6723]0.7400]0.8108 |0.8466 |0.8837
-481810.5359 .0.61080.69310.78150.8266 {0.8739]0.8977]0.9225
10.00} 0.997710.998870.99950.9998]0.99990.99990.9999 .999910.9999
-173870.247910.3616}0.4996 }0.6421}0.7186 {0.7984 {0.8382 [0.8797
-448510.498210.57420.6663 0.7614 0.8124 0.8655|0.8921 }0.9198
15.00f 0.9996}0.99980.9999}0.99990.9999 {0.9999 |0.9999 +999910.9999
.0955/0.16140.2647]0.4257}0.5901 }0.8920§0.7838}0.8337|0.8810
-396910.440910.5098i0.617110.7267[0.7947]0.8559|0.8891 |0.9206




Table IVB

Using the rule R, and under the configuration (8),2,...

,A), this

38

table gives in order the triple (a) the probability of selecting a best

population, (b) the probability of selecting any non-best population

and (c) the expected proportion of the selected populations

([(a)+(k-1) (b)1/K).

=3, 8 =0.5
“
A 1.5 1.75 | 2.0 2.5 3.0 3.5 bo | 4.5 5.0
0.50f 0.9775]0.9775[0.998110.99810.9998{0.9998]0.9999 0. 9999 9999
0.917410.917410.98680.98680.9984 0.9984 {0.9998 [0.9998 0. 9999
0.337510.937510.9906 {0.9906 |0.9988 |0.9988 {0.9998 |0.9998] 0.9999
0.75] 0.9601 [0.9601 0.9951 0.9952 0.9995 0. 9995 {0. 9999 |0. 9995 0. 999
0.854110.8541 0.9660 [0.9661 10.9939 ]0.9939 |0.9991 0.9991{ 0. 9998
0.8894 |0.8894 [0.9757 0.975810.995710.9957{0.999310.9993} 0.9999
1.00} 0.945210.9452{0.991310.9913]0.9989 {0.9989 |0.9998 [0.9998 .9999
0.78710.7971 10.9388 ]0.939510.9857 {0.98570.9972 [0.9972| 0.9995
0.846510.8465 10.9563 10.9568 |0.9901 [0.9901 {0.9981 {0.9981{0.9996
1.50| 0.928110.92820.983510.9838 10.9971 {0.9971 [0.9995 [0.9995{ 0.9999
0.715910.716810.8809 10.8857 10.9609 [0.9612 {0.9890 {0.9890]0.9973,
0.7866 10.787310.9151 10,9184 }0.9730 {0.9731 ]0.9925 [0.9925 0. 9982
2.00] 0.9249 10.9256 |0.9782 [0.9794 {0.9951 [0.9952 |0.9990 |0.9990] 0. 9998
0.6679]0.6728 |0.8322 0.8467 .933410.9347{0.9760 10.9761{0.9924
0.7536 ]0.7570 |0.8809 |0. 8910 .954010.9549 0.9837 |0.9837}0.9949
2.5010.928410.9306 [0.9761 10.9786 {0.9938 [0.9939 |0.9985 [0.9985]0.9997
0.634910.6483 [0.7960 |0.8248 [0.9105 [0.9146 §0.9619 {0.96230.9854
0.7327 0;7424 0.856010.876110.9383 0.9410 10,9741 {0.9744 0. 9902




Table IVB (continued)

1.5 1.75 1 2.0 2.5 3.0

3.5

k.o

4.5

5.0

3.00{ 0.9339}0.9384;0.9762}0.9802]0.9933
0.6066vo.6332 0.7695¢0.8138{0.8945
0.7157{0.735010.8384{0.8692{0.9274
3.50| 0.939410.946640.977710.9828{0.9935
0.5805{0.622710.749510.8076]0.8841
0.700110.7307{0.8255{0.8660]0.9206
4k.00] 0.9443

o

.9542{0.9798}0.9857{0.994]
0.557010.6146{0.7338{0.8028;0.8777
0.6861(0.727810.815810.8638{0.9165

o

5.001 0.9534
0.518710.600410.7108{0.7940{0.8714

.966710.984210.99040.9957

0.6636{0.7225{0.8019{0.8594{0.9128
6.00( 0.9617]0.9756{0.9881,0.99360.9971
0.489710.584510.694310.787110.8695
0.647010.7149]0.7923{0.855940.9120
8.00} 0.9750{0.9861{0.9936{0.9970 0.9988
0.445410.548210.671910.7827{0.8713
0.621910.694240.7791{0.854210.9138
10.00| 0.9839{0.9917{0.9966{0.9986}0.9995
0.4110§0.52210.6568{0.78370.8761
0.6020]0.678610.770010.855410.9172
15.00} 0.994710.997910.999310.9998 10.9999
0.347410.48490.6325{0.79090.8911

0.5631(0.655910.854810.8605}0.9274

0.9935
0.9029
0.9331
0.9939
0.8982
0.9301
0.9946
0.8977
0.9300
0.9964
0.9007
0.9326
0.9978
0.9037
0.9351
0.9992
0.9084
0.9386
0.9997
0.9158
0.9438
0.9999
0.9347
0.9564

0.9981
0.9501
0.9661
0.9980
0.9419
0.9606
0.9980
0.9372
0.9574
0.9984
0.9345
0.9558
0.9989
0.9359
0.9569
0.9996
0.9417
0.9610
0.9998
0.9484
0.9655
0.9999
0.9634
0.9756

0

0

0

.9981
9512
9668
9980
<9hh2
-9621
-9980
9413
.9602
-9985
9431
.9616
-9990
. 9483
.9652
9997
.9563
.9708
-9999
.9621

.9747

-9999
-9759
.9839

39

0.9995

0.9779
0.9851
0.9994
0.9713
0.9807
0.9993
0.9666

0.9775

0.9994
0.9629
0.9751
0.9995
0.9641

0.9759

0.9998

0.9696 -

0.9797
0.9999
0.9750
0.9833
0.9999
0.9853

0.9902
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Table IVC
Using the rule.R] and under the configuration (8A,X,...,\), this
table gives in order the triple (a) the probability of selecting a best .
population, (b) the probability of selecting any non-best populaffon and

(c) the expected proportion of the selected populations

([(a)+(k-1) (b)1/k).

1.50 | 1.75 | 2.00 { 2.50 | 3.00 | 3.50 | 4.00 | .50 | 5.00

0.50 | 0.9900}0.9900]0.9995{0.9995{0.9999 }0.9999{0.9999{0.9999 |0. 9999
0.910510.910510.985710.985710.998210.9982 {0.9998{0.9998 [0.9999
| 0.9264 0.9264 J0. 9884 10.9884 {0.9986 |0.9986 |0.9998 |0.9998{0.9999
0.7510.979810.97980.9985 |0.9985{0.9999 {0.9999 }0.9999 |0.9999 {0.9999
0.8315]0.831510.9606 {0.9606 {0.9929 |0.9929 0;9989 0.9989{0.9998
0.861210.8612{0.96820.9682]0.99430.9943{0.9991]0.9991 }0.9998
1.00 | 0.96890.9689(0.9969 |0.9969 |0.9997 [0.9997 |0.9999 |0.9999 |0.9999
0.75180.75180.9247 |0.9249 |0.9822 0.98220.9965]0.9965 [0.9994
0.795210.7952{0.9391{0.9393}0.98570.9857]0.9972{0.9972{0.9995
1.50 | 0.9516 6.9516 0.9930 0.9930 0.999210.9992}0.9999}0.9999 {0.9999
10.622110.6221{0.8382{0.8406 |{0.9453 ]0.9454{0.9845|0.98450.9963
0.6880{0.6880 |0.869210.8711{0.9561 {0.9562{0.9876 |0.9876 {0.9970-
2.00 { 0.9447(0.944710.9896 {0.9897|0.9985 [0.99850.9998 }0.9998 [0.9999
0.53990.5408 {0.7568]0.7665{0.8975]0.8985{0.9626 |0.9627{0.9882
0.620810.6216{0.8034|0.81120.9177{0.9185{0.9700{0.9701 |0.9906
2.50 {'0.9461)0.9463]0.987710.988210.99780.9978{0.9996 {0.9996 {0.9999
0.48790.4919]0.69150.7152]0.8515|0.8550 [0.9352 0.93540.9751
0.57960.5828{0.75080.7698 {0.8808 |0.8836 0.9481 |0.9483 [0.9800




Table IVC (continued)

=5, 8 =0.3
3 1 .50 [ 1.75 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 4.50 | 5.00
3.00 {0.9518 0.3524 0.9874 10.9882[0.997510.9975{0.9995 [0.9995 0.9999
-448710.4595|0.6408 |0.68270.81350.8221{0.9078 |0.9088 0.9587
.549310.5581/0.7101 0.74380.8503 |0.8572(0.9261 J0.92700. 9669
3.50 0.9585(0.9598]0.9881 [0.9893[0.9974 [0.9974|0.9994 o.9§9h 0.9999
-4139]0.4353/0.6004 [0.6609 [0.7840 |0.8002{0.8841 |0.8868|0.9416
.5228 (0.5402{0.6780 |0.7266 {0.8267 [0.8396|0.9072 |0.9094]0.9532
4.00 10.964810.9670{0.9894 (0.99100.9975 [0.9975]0.9994 [0.9994]0.9998
-38120.415410.5671 [0.6437]0.7612 {0.7865/0.8654 |0.8708(0.9260
-498010.5257/0.6516 {0.7132[0.8084 [0.8287{0.8922 |0.8966|0.9408
5.00 |0.9748 0.9787 0.992310.994310.9981 {0.99820.9995 |0.9998/0.9998
-324210.3825/0.513910.6122{0.7278|0.7715(0.8406 |0.8643{0.9032
.454210.5017/0.6096 [0.6886{0.7819(0.8168{0.8724 |0.9321}0.9225
6.00 10.981810.98660.9948 [0.9966{0.9987{0.9988{0.9996 {0.9996|0.9998
-2794}0.3530{0.4718)0.5817]0.7034|0.7603|0.8261 |0.8496(0.8912
-419910.4797/0.5764 ]0.664710.762410.8080]0.8608 |0.8796(0.9129
8.00 10.9908(0.9946|0.9978 ]0.9988]0.9995|0.99960.9998 0.99980.9999
.214110.2940/0.4062 [0.5315{0.6668 |0.7360]0.8084 [0.8448|0.8825 -
.369410.434110.52450.6250[0.7334}0.7888{0.8467 [0.8758{0.9060
10.00 [0.9955 Q.9977 0.999110.9996 {0.9998|0.9999]0.9999 [0.9999|0.9999
.1673]0.2408] 0.3552 (0.4948{0.6392[0.7166 |0.7972 [0.8374|0.8792
-3329(0.3922| 0.48400.5957(0.7113{0.773310.8377 |0.8699|0.9034
15.00 {0.9992{0.9997}0.9999/0.99990.9999{0.9999|0.9999 |0.9999{0.9999
.093710.1594] 0.26280.4244|0.5859{0.6917{0.7837 {0.83360.8809
27481 0.3274) 0.4102]0.53950.6716]0. 7533 0. 8269 |0. 8669 0.9047

i
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Table IVD
Using the vrule‘RI and under the configuration (8,A,...,A), this
table gives in order the triple (a) the probability of selecting a best
population, (b) thé,probability of selecting any non-best population and
(c) the expected proportion of the selected populations
(L@)+ (k1) (b) 1/K).
k =5, § = 0.5

1 1s s 20 f2.5 |3.0 |35 |40 | s |50

0.50 0.974170.9741 0.997810.9978]0.99980.9998 {0.9999] 0. 9999 0.9999
0.9109 [0.9109 {0.9858 10.9858 [0.9982 |0.9982 {0.9998] 0.9998] 0. 9999
0.9236 10.9236 [0.9882 {0.9982 {0.9985 {0.9985 {0.9998} 0.9998 0.9999
0.75 1 0.949210.9492 10.9938 0.9938 {0.9994 b.999h 0.999910.9999}0.9999 |
0.834210.83420.96130.9613 |0.9930 {0.9930 |0.9989|0.9989]0.9998
0.857210.85720.9678 ]0.9678 [0.9943 |0.9943 {0.9991]0.9991]0.9998
1.00 1 0.9239]0.9239 ]0.9878 |0.9878 {0.9985 [0.9985 |0.9998]0.9998(0.9999
0.7601 10.7601 |0.9273 ]0.9276 10.9829 [0.9828 {0.9967}0.9967]0.9994
0.7929 {0.7929 |0. 9394 [0.9396 [0.9860 [0.9860 J0.9973]0.9973]0.9995
1.50 10.88730.887410.9739[0.9742 }0.9953 }0.9953 0.9993]0.9993}0.9999
0.6516]0.6519]0.8518 10.8551 |0.9503 |0.9505 }0.9860]0.9860}0.9966
0.6988 10.6989 10.8762 10.8789 [0.9593 [0.9595 [0.9886{0.98860.9973
2.00 | 0.874810.8751[0.9629|0.9643 }0.9915 {0.9916 0.9983 0.9983|0.9997
0.5954]0.5973]0.7899}0.8029]0.9139{0.9151 |0.9687]0.9688{0.9902
0.651310.6529 [0.8245|0.8351 {0.9294 [0.9304 {0.9747]0.9747]0.9921
2.50 1 0.877610.879210.9576 |0.9610 {0.9887 {0.9888 }0.9973}0.9973 0.9994
0.56510.5730]0.74780.7772 |0.8853 j0.8895 |0.9507}0.9511]0.9811

0.627610.6342]0.7898 |0.8140J0.9060 |0.9094 {0.9600]0.9603 0.9848




Table IVD (continued)

k=5, 8 =0.5
NURE: 751 2.0 | 2.5 [ 3.0 | 3.5 |40 |45 |5.0
3.00| 0.8861]0.8904] 0.9569} 0.962810.987510.987810.9965]0.9965]/0.9991
.5415}0.5615/0.7199}0.7684{0.8674]0.8770]0.9367{0.9379{0.9718
-6104}0.6273]0.7673| 0.8073]0.8914{0.8992]0.94860.9496{0.9773
3.50 | 0.8950/0.9035{0.9589|0.9673]0.98760.9882{0.99610.9962]0.9989
.5186{0.5554] 0.7008| 0.7664{0.8577|0.87440.9282}0.93090.9645
.5939}0.625110.7524] 0.8065]0.88370.8971|0.9418]0.94400.9713
4.00 | 0.9030/0.9163{0.9623(0.9724]0.9886 |0.9895{0.9961 [0.9962 |0.9988
.497110.5520{0.6869| 0.76540.8531{0.8769{0.9244{0.9294|0.9598
.5783{0.6249| 0.7420{ 0.8068]0.8802{0.8995(0.9387{0.9427{0.9676
5.00 | 0.9171}0.9381{0.9701}0.98140.9916 {0.9929 {0.9969 {0.99700.9988
.463410.5474{0.6687{0.7622 0.8512 0.8856 0.9247 0.9349]0.9576
.554110.62560.7289[0.8060]0.87930.9071]0.9391 [0.94730.9659
6.00 | 0.9306}0.9543|0.9772{0.9875]0.9944 |0.9957{0.9979{0.9981 {0.9991
4402} 0.5395]/0.6573]0.7599]0.8534 {0.8923 {0.9288 {0.9429{0.9605
.5383] 0.6225{0.8213}0.80550.8816 {0.9130]0.9426 |0.9539|0.9682
8.00) 0.9536}0.9737(0.9875{0.9942{0.9976 {0.9985 }0.9992 |{0.9994 |0.9996
.406110.5123}0.6439}0.7644]0.8614{0.90190.9381}0.9538 [0.9681
.5156|0.6045]0.7126{0.8103}0.8886 |0.92120.9503|0.9629 [0.9744
10.00 | 0.9696{0.9839}0.9933}0.9973{0.9990}0.9994|0.9997{0.9998 {0.9999
.3799] 0.4934|0.6358}0.771410.870110.91230.9466 |0.9609 {0.9743
.4979] 0.5915] 0.7073] 0.81660.8959 [0. 9298 |0. 9573 [0. 9687 |0. 9798
15.00 | 0.9897|0.9959{0.9986{0.9996]0.9999 |0.9999 |0.9999 {0.9999 [0.9999
.3298|0.4700}0.6224} 0.7864 {0.8895]0.9340]0.9631 [0.9758 |0.9852
4618} 0.5752] 0.6977]0.8291 |0.9116 [0.9472 0. 9705 |0. 9806 J0. 9882
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Table VA

Using the rule R3 and under the configuration (GA,A,...,A), this

Il

table gives in order the triple (a) the probability of selecting a best

population, (b) the probability of selecting any non-best population

and (c) the expected proportion of the selected populations

([(a)+(k=1) (b)1/k).

1.75

2.00

2.50

3.00

3-50

4.o0

l“-so

5.00

.50

.75

2.00

2.50

.9960

-9477
.9638
9945
9179
-9434
-9939
-8931
.9267
.9940
.8530
.9000
.9948
8176

.8766

.9956

.7855
.8555

.9962
.9521
.9668
.9950
.9305
.9520
.9948
.9165
.9426
.9957
8974
.9302
.9969
8782
.9178
.9977
.8583
.9048

.9998
.9918
.9945
.9996
.9817
.9877
.9994
.9701
.9799
.9992
L9461
.9638
.9991
.9227
.9482
.9992

.9010

9337

.9998
.9924
.9948
.9996
.9843
.9894
.9995
.9766
.9842
-9994
.9662
.9773
.9995
.9605
.9735

9996
.9559
.9705

.9999
.9990
.9993
.9999
.9971

.9981

-9999
9945
9963
-9999
.9891
.9927
-9999
.9848
.9898
-9999
.9814
.9875

-9999
-9990
9993
-9999
<9972
.9981
-9999
9947
9965
-9999
-9903
.9935
-9999
.9881
.9921
.9999
9876
<9917

-9999
-9999
+9999
-9999
<9995
-9997
-9999
9989
<9993
-9999
.9973
.9981
-9999
9958
.9972
-9999
9949
9966

-9999
+9999
-9999
-3999

.9995

.9997
.9999
.9990
.9993
.9999
.9973
.9982
.9999
.9960
.9973
.9999
.9955
.9970

<9999
+9999
-9999
-3999
-9999
<3999
-9999
-9998
9998
<9999
.9993
-9995
-9999
-9987
-9991
<9999
9983
.9988



Table VA (continued)

k=13, 6 =0.3
3
A 1.501 1.75{ 2.00{ 2.50 3.00 3.50 4,00 L.5o 5.00
3.00 1 .9363].9983| .9993} .9997[ .9999| .9999| .9999( .9999| .9999
+7590} .84121 .8828| .9511} .9784| .9875| .9945| .9957 .g98
-8381) .89361.9216] .9673( .9856| .9916| .9963| .9971] .9987
3.50 1 .9969.9987].9994] .9998( .9999| .9999| .9999| .9999| .9999
.7387| 8279|8692 .ou63| .o758| .9871] .9941] ss62 .9982
8218 .8845] .9126 9641 -9839) .9914{ .9961| .9974] .9988
4.00 1 .99751.9990] .9995].9999f .9999| .9999| .9999] .9999] .9999
+7235| 81751 .8599 .9419[ .9739] .9865] .9937| .9966| .9983
-8149] 8780 .90641.9612| .9826| .9910] .9958] .9977| .9988
5.00 1 .99851.9995(.9997].9999| .9999] .9999| .9999| .9999| .9999
-70061.7996|.8503(.9365| .9724] .9857] .9931| .9970| .9985
-7999( .8663].9001.9577] .9816) .9905| .9954] .9980] .9990
6.00 |.99911.9997(.9998].9999( .9999| .9999| .9999| .9999| .9999
.68181.7826 .84711.9363] .9734| .9864| .9933 .9972| .9986
-7876{.8550(.8980{.9575] .9822] .9909] .9955| .9981| .9990
8.00 1.9997/.9999(.99991.9999] .9999] .9999] .9999| .9999| .9999
-65371.7637}.8475).9426{ .9780| .9900| .9951] .9979| .9990
-7690}.84251.8983(.9617] .9853] .9933| .9967| .9986] .9993
10.00 1.9999[.9999{.9999}.9999 .9999| .9999 .99991.0000}1.0000
-6336].76411.8514).949h{ 9827 .9930{ .9969] .9987| .9994
-7557(.84271.9009.9662| .9884| .9953] .9979] .9991| .9996
15.00 .9999 -99991.9999].9999{1.0000|1.0000]1.0000 1.0000]1.0000
.6003}.7607{.8658.9647] .9909] .9973| .9991| .9997] .9999
.7335] .8404}.9105 -9939( .9982| .9994| .9998] .9999

.9764



Table VB

Using the rule R3 and under the configuration (6A,A,...,A), this

L6

table gives in order the triple (a) the probability of selecting a best

population, (b) the probability of selecting any non-best population

and (c) the expected proportion of the selected populations

([(@)+(k-1) (b)1/k).

3
A

1.50

2.00

2.50

3.00

3.50

k.00

L.50

5.00

0.50

0.75

1.00

1.50

2.00

2.50

.9894
.9520
.9644
.9852
.9268
.9463
.9830
.9068
.9322
-.9818
.8750
.9106
.9819
8472
.8921
.9825
.8235
.8765

.9901
.9565
.9677
.9873
9394
9554
.9868
.9294
9485
.9883
.9160
.9401
.9901
.9019
9313
L9914
.8884
}9227

.9991
.9925
9947
.9982
.9838
.9886
.9975
9743
.9820
.9964
.9554
.9691
.9958
.9377
.9571
.9956
.9224
.9468

9992
9931
-9951
-9984
.9864
.9904
.9980
.9806
.9864
-9977
.9740
.9819
.9981
9711
.9801
.9985
9687
.9787

9999
-9991
9994
9998
.9975
9983
-9997
.9955
9969
9996
.9917
.9943
.9995
.9891
.9926
.9996
.9873
L9914

<9999
9991
9994
.9998
+9976
9983
.9997
.9957
.9970
-9996
.9928
.9950
9996
.9919
.9944
-9997
. 9920
.9946

-9999
-9999

-9399]

-9999
9996
9997
.9999
.9991
<9994
.9999
<9979
.9986
-9999
.9971
.9980
.9999
9968
9978

.9999
.9999
.9999
.9999

-9996

.9997
+9999
.9991
.9994
-9999
.9980
.9986
-9999
.9973
.9981
.9999
.9972
.9981

.9999
.9999
.9999
-9999

9999
.9999
.9999
.9998
-9999
.9999
.9995
.9996
-9999
.9991
-9994
.9999
.9989

.9993



Table VB (continued)

k=3, 8 =0.5
C3 )
3 {1 1.50] 1.75] 2.00] 2.50{ 3.00] 3.50 4,00 4,50 5.00
3.00 | .9837}.9925{.9957|.9989|.9997).9998| .9999] .9999] .9999
.80591.8782].9111].9663{.9858{.9923| .9967] .9976! .9989
.8652{.9163].9393|.9771|.9904|.9948] .9978] .9983] .9993
3.50 | .9854|.9936/.9961].9991|.9997|.9998| .9999| .9999| .9999
.7941(.8713|.9040}.9639].9847].9924| .9966| .9980] .9990
.84791.9121.9347|.9756|.9897.9948| .9977| .9986| .9993
4.00 | .9873].9946|.9966].9993}.9998(.9999| .9999| .9999] .9999
.7860].8662{.9005}].9622].9942].9923} .9965 .9983 <9991
.8531{.9090{.9325].9746|.9894].9948| .9977| .9988| .9994
5.00 | .9908.9963{.9978|.9995{.9998{.9999{ .9999] .9999| .9999
.77431.8568].8996].9617{.9849{.9926{ .9966 .9986 .9993
.8464.9033].9323{.9743|.9899].9950f .9977| .9990{ .9995
6.00 | .9934].9974].9986].9997(.9999.9999{ .9999] .9999] .9999
.7655].8489{.9023].9645].9867}.9937] .9970| .9988] .9994
.8414].89841.9344).9762].9911].9958| .9980] .9992| .9996
8.00 | .9965(.9987.9995|.9999{.9999].9999| .9999| .9999| .9999
.7554].8491].9107].9719].9907|.9962| .9983| .9993] .9997
.8358|.8989(.9403{.9812{.9938].9975| .9988| .9995| .9998
10.00 | .9982].9994].9998|.9999|.9999{.9999| .9999] .9999| .9999
.7507|.8588].9198].9781{.9937|.9978{ .9991| .9996] .9998
.8332|.9057|.9465{.9853] 9958 .9985| .9991| .9997| .9999
15.00f .9996}.9999}.9999].9999}.9999{.9999}1.0000{1.0000{1.0000
8488|8742 .9402].9886|.9977|.9994 | .9998| .9999] .9999
.83241.9161}.9601|.9924}.9985[.9996] .9999| .9999| .9999
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Table VC
Using the rule R3 and under the configuration (8\,A,....,A), this
table gives in order the triple (a).the probability of selecting a beét
population, (b) the probability of selecting any non-best population and -

(c) the expected proportion of the selected populations

([(@)+(k-1) (b)1/Kk).

N &3 1.501 1.75] 2.00{ 2.50] 3.00] 3.50{ 4.00| 4.50] 5.00

0.50 | .9982}.9983|.9996].9999].9999{ .9999| .9999 -9999/ 1.0000
.9721(.9739.9886] .9961].9995] .9996 +9999].9999| .9999
-9773{.9788(.9908] .9969].9996{ .9997] .9999} .9999] .9999
0.75| .9979(.9982}.9992}.9998f.9999].9999] .9999] .9999| .9999
.95621.9635{.9759| .99291 .9988] .9993| .9998} .9999] .9999
-9646).9704] .9805( .99431 .9990] .9994| .9998 .9999] .9999
1.00{ .9977].9983].9990{ .9998].9999( .9999{ .9999] .9999| .9999
-93941.9540f .9655) .9899] .9979} .9990] .9996] .9998] .9999
-9510§.9629(.9722].9919] .9983 .9992| .9997} .9998} .9999
1.50 .99761.9986f.9991].9998{ .9999| .9999 .9999_;9999 .9999
-90971.9359] .9561} . 9861 .9962| .9987] .9991}.9997[ .9999
-9272] .9485] .9647| .9889] .9970{ .9990] .9993] .9997| .9999
2.00| .9979].9989} .9994| .9999| . 9999} .9999] .9999] .9999| .9999
.88711.9218f .9526| .9849 .9953 .9985| .9989] .9996{ .9999
-9092} .9372| . 9620} .9879| .9962| .9988| .9991 .9997| .9999
2.501 .99831.9992 .9996| .9999] .9999} .9999] .9999{ .9999| .9999
-870k} .9150} .9505) . 9845} . 9950 .9983| .9989| .9996] .9999

.8960 .931Q .9603} . 9875 .9960f .9987] .9991{ .9997 .9999



Table VC (continued)

=5, 6 =0.3
A < 1.50 1.75 2.00 2.50 3.00 3.50 L.o0 k.50 5.00
3.00 | .9987| .9994| .9998| .9999 | .9999| .9999 |.9999'|.9999| .9999
-8597) .91k0] .9k99) .9845 | .9953| .9983 |.9991 [.9997) .9999
.8875) .9311| .9599| .9876| .9962| .9986 |.9993 | .9998] .9999
3.50 | .9990| .9996] .9998| .9999] .9999| .9999 | .9999 | .9999] .0000
-8539] .9154 .9506) .9853] .9957| .9984 | .9993 | .9998] .9999
.8829| .9322| .9604| .9882| .9966| .9987 | .9994 | .9998] .9999
4.00 | .9993| .9998| .9999| .9999] .9995| .9999 [ .9999 | .9999|1 .0000
-8508] .9167| .9519] .9865] .9963| .9987 | .9994 | .9998] .9999
.8805[ .9333{ .9615| .9892| .9970] .9989 | .9995 | .9999| .9999
5.00 | .9997| .9999| .9999] .9999 .9999| .9999 | .9999 |i.0000]1.0000
8462 .9176| 9555 .9892] .9973| .9992] .9997| .9999| 999

-8769| 9341 | .9644( 9914 .9979| .9993 .9997| .9999| .9999
6.00 |.9998[ .9999 .9999] .9999| .9999]1.0000 {1.0000 |1.0000]1.0000
.8437] .9193] .9596| .9914] .9981] .9995|..9998| .9999] .9999

.8750] .9355| .9677] .9931| .9985| .9996] .9998] .9999| .9999
8.00 | .9999] .9999 .9999] .9999]1.0000 'I.OOOO .0000 ].0'000 1.0000.
-84k6| .9265] .9676] .99k6] .9991| .9998 .9999f .9999| .9999
-8757| .9M12f 9741} .9957) .9993| .9998| .9999| .9999| .9999
10.00 }.9999] .9999} .9999}1.0000} 1.0000]1.0000{1.0000]1.0000 1.0006
84841 .9357 | .974h| .9967 .9996| .9993] .9999( .9999| .9999
.8787| .9486 | .9974] .9996[ .9999] .9999] .9999] .9999) .9999
15.00 |.9999]1.0000 {1.0000]|1.0000] 1.0000}1.0000}1.0000{1.000011.0000
-862L4| .9534 | .9861| .9990| .9999) .9999] .9999f .9999}1.0000
.8899| .96271 .9889] .9992 .9999] .9999] .9999] .999911.0000
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Téble VD
Using the rule R3 and under the cohfiguration (8,2, ...,1), fhis
table glves in order the triple (a) the probability of selectlng a best
populatnon, (b) the probability of selectlng any non-best populatlon and

(c) the expected proportion of the selected populatlon _

([(@)+(k-1) (b)1/K).

N S31 1.50 1.75| 2.00] 2.50| 3.00| 3.50| 4.00| 4.50] 5.00

0.50 | .9948 | .9952 | .9985 | .9996 | .9999 | .9999 | .9999 | .9999 | .9999
-9737 | .9756 | .9890 | .9964 | .9995 | .9996 | .9999 | .9999 | .9999

.9779 | .9795 | .9909 | .9971 | .9996 | .9997 .9999 | 9999 | .9999
0.75 .9930 | .9944 | .9970 | .9994 | .9999 | .9999 | .9999 | .9999 | .9999
.9589 | .9663 | .9773 | .9935 | .9989 | .9994 | .9998 | .9999 | .9999
19657 | .9720 | .9813 | .9947 | .9991 | .9995 | .9998 | .9999 | .9999
1.00 | .9915 | .9941 [ .9961 | .9993 | .9999 |..9999 | .9999 | .9999 | .9999
.9435 | .9580 | .9686 | .9910 | .9982 | .9992 | .9996 | .9998 | .9999
.9531 | .9652 | .9741 | .9927 | .9985 | .9993 | .9997 | .9998 | .9999
1.50 | .9898 | .9940 | .9963 | .9993 | .9999 | .9999 | .9999 | .9999 | .9999
.9175 | .9u2k | .9617 | .9883 | .9968 | .9990 | .9993 | .9997 | .9999 -
.9320 | .9527 | .9687 | .9905 | .9974 | .9992 | .9994 | .9998 | .9999
2.00 | .9898 | .9943 | .9972 | .9995 | .9999 | .9999 | .9999 | .9999 | .999
8985 | .9313 | .9596 | .9876 | .9962 | .9988 | .9991 [ .9997 | .9999
.9168 | .9439 | .9672 | .9900 | .9970 | .9990 | .9993 | .9998 | .9999
2.50 | .9905 | .9952 | .9979 | .9996 | .9999 | .9999 | .9999 | .9999 | . 9999
-8854 | .927h | .9587 | .9876 | .9962 | .9987 | .9992 | .9997 | .9999

9064 | .9410 | .9665 | .9900 | .9969 | .9990 | .9994 | .9998 | .9999



Table VD (continued)

k=5,d8=0.5
) <3 1.501 1.75| 2.00| 2.50] 3.00 3.50] L4.00{ 4.50] 5.00
3.001.9917] .9963 | .9985 | .9997| .9999] .9999] .9999| .9999] 9999
8781 | .9284 | .9502 | .9881( .9965( .9988| .9994] .9998| .9999
+9009 | 9420 | .9671 | .9904f .9972| .9990| .9995] .9995| .9999
3.50 | .9931 ] .9973 [ .9989 | .9998| .9999| .9999] .9999| .9999] .9999
87521 .9307 | .9606 | .9891| .9970| .9989| .9995| .9998| .9999
+8988 | 9440 | .9683 [ .9912| .9976] .9991| .9996| 9995 .9999
4.00 | .9945 | .9980 | .9992 | .9999| .9999] .9999| .9999| .9999] .9599
+8740 | .9326 | .9625 | .9903| .9975| .9991| .9996 .9999] .9999
8981 | 9457 | .9698 | .9922| .9980| .9993| .9997( .9999] .9999
5.00 | .9964 | 9989 | .9996 | .9999f .9999| .9999| .9999| .9999] .9999
8726 | 9350 | .9666 | .9927| .9983| .9995| .9998| .9995] .9999
8974 | 9478 .9732 | .9941| .9986| .9996| .9998| .9999] .9999
6.00 | .9976 | .9993 | .9998 [ .9999| 9999 .9999| .9999|1.0000(1.0000
8733 | .9382 | .9708 | .9944| .9989] .9997| .9999| .9999| .9999
8982 { 9504 | .9766 | .9955| .9991| .9998] .9999| .9999] .9999
8.00 | .9990 | .9998 | .9999 | .9999| .9993] .9999|1.00001.00001.0000
8787 | .9470 | .9783 [ .9969] .9995| .9999| .9999| .9993| .9999
+9028 | .9576 | .9826 | .9975 .9996| .9999| .9999| .9999| .9999
10.00 ) .9996 | .9999 [ .9999 | .9999| .9999/1.0000]1.0000}1.0000|1.0000
8858 | .9560 | .9840 [ .9983| .9998| .9999| .9999| .9999] .9999
-9086 | .9648 | .9872 | .9986| .9998| .9999| .9999| .9999] .9999
15.00 { .9999 | .9999 | .9999 [1.0000{1.0000}1.0000}1.0000}1.0000!1.0000
.9046 | .9720 | .9927 | .9996| .9999| .9999| 9999 |1.0000 1 .0000
.9237 | .9776 | .9941 | .9997| .9999| .9999| 9999 |1.0000 10000
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CHAPTER 1]
SOME RESULTS ON SUBSET SELECTION

PROCEDURES FOR DOUBLE EXPONENTIAL POPULATIONS

2.1 Introduction

In this chapter we study the selection problems and some other
related statistical inference problems for the k double exponential
(Laplace) populations. Before we do this, we give some discussion of
the Lap]acé distribution, its characteristics (vs. normal, logistic and
Cauchy) and its use as a model in statistics and probability.

The double exponential distribution arises as é model in some
statistical broblems as explained later. This distribution is also
considered in robustness studies, which suggests that it provides a
model with different characteristics than some of the other commonly
used models such as the normal distribution. In particular, the tails
of the double exponential distribution are thicker than the tails of
the normal or logistic, but not as thick as the Cauchy (see p. 43,

Hajek [47]). Yet the double exponential has not been used very ex-
tensively as a model. This could be due in part to the lack of available
statistical techniques for this distribution, although it is likely that
the experimentor has shied away from using the double exponential be-
cause it has a sharp peak in the center. However, many applications

would be primarily concerned with tail probabilities, and it would seem
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that the double exponential would be a useful model if exponential tails
are required.

The double exponential has some applicatién as a model in the area
of Actuarial Science, and it has been suggested as a model for the
distribution of the strength of flaws in materials by Epstein [27].
Using the weakestvlink principle, the strength of the material should
decrease as the number of flaws or volume increases. In pérticular,
from extreme-value theory the double exponential assumption leads to
the result that the mode or most probable strength decreases in pro-
portion to log n, where n represents the size or number of flaws of the
material. In comparison, the assumption of a normal model leads to a

decrease in proportion to (log n)]/2

. For most applications to material
strength, only the minimum flaw strength would ordinarily be observable;
however, Epstein [27] suggests that there may be many other types of
problems, such as a system of components in séries, which might be
similar from a statistical point of view. Other possible applications
of the double‘exponential are suggested by the fact that the difference
of two independent (not necessary identical) two parameter exponential
variables follows the double exponential distribution, and that the
logarithm of the ratios of uniform or Pareto variables follows the
double exponential distributfon.

In classical theory, once having assumed the form of the parent
distribution, we can derive a criterion which is appropriate to this
assumption. For example, under the assumption of normality, for the

comparison of two means we would derive the t-statistic. It is then

" customary to justify the use of such a normal theory criterion In the
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practical circumstance in which normality cannot be guaranteed by
argﬁing that the diétribution of the characteristic is but little
affected by non-normality of the parent distribution - that is, it is
robust under non-normality. However, this argument ignores the fact
that if the parent distribution really differed from the norma]; the
appropriate criterion would no longer be the normal-theory statistic.
Box and Tiao [19] reconsidered the analysis of Darwin's paired data

on the heights of self and cross~fertiljzed plants quoted by Fisher

in "The Design of Experiments (1935)". In this development the parent
distribution is not assumed to be normal, but only.a member of the

following class of symmetric distributions

| 1 iy-8 2/ (1+4B)
p(y|6,0,8) = ] exp {- 5 L= }o(2.1.0)
1 ]+§(|+B)
rhi+s(1+8)12 © o
where - ® <y <o / 0 <g<® -~®<@< @, =1 <B< 1. This class of

distributions includes the normal (B=0) and the double exponential (B=1),
and its kurtosis parameter is B.
If the probability density function of the double exponential is

given by

‘F(X,G,O’)=§]-5-e o ’-oo<x<oo’-oo<e<oo’ ga>0

- x-Gl

(2.1.2)
then the mode of the distribution is x = 6 where it has a sharp peak.
The expected value and standard deviation of (2.1.2) are 6 and V2 o
respectively. Moments of the standardized double exponential order

statistics can be obtained by using the closed-form expressions for the
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moments of the standardized negative exponential order statistics
derived by Epstein énd Sobel [28]. Govindarajulu [34] has given
the expressions for these moments.

Chew [23] gives the graphs of the standardized density functions
of normal, logistic and double exponential distributions, from thCh
it is clear that the tails of the double exponential dlstrlbutlon are "
thicker than that of the normal or logistic, in the sense that the
curve of double exponential is above that of the others to the left
and right of some points. In the case of the normal distribution'thig

point is 2.64.

‘ S '%‘“2 |
If the cumulative distribution functions G](x) = — e du
V2T - ‘
%e@x » X <0
and Gz(x) = of the standardized normal and double
1 -/2x
l - =¢ » X >0

exponential distributions are compared, (also similar comparison between
T ,

= — %

%]

standardized logistic G3(x) =1/(1 +e ) and the double exponential

distribution) the differences Gz(x) - G](x) (as well as Gz(x) - G3(x))

vary in the way shown in the graph below. Since G](x), Gz(x) and

G3(x) are symmetric about x = 0 only the values for x > 0 are shown.
With regard to point estimation, it is well known that the max i mum

likelihood estimates based on the complete sample of size n are given

~

IXi - X|, where X denotes the sample median.

~

by 0= X and O ='%

WM

]

Also best linear estimators (based on order statistics) under symmetric

censoring are given by Govindarajulu [35] for sample sizes up to 20,
and some alternate estimates are suggested by Raghunandanan and

Srinivasan [66]. Interval estimation for the parameters of the
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two-parameter double exponential dfstribution is considered by Bain
and Engelhardt [4].

Now we discuss the problem of comparison of k(z 2) double.
exponential distributions. . First we study the selection problem for

the largest mean (location).

2.2 Selecting a Subset Containing the Best of Several Double

Exponential Populations with Respect to the Location Parameter

(A) Formulation of the Problem

Let Xi’ i=1,2,...,k be k independent random variables from
double exponential population ﬂi, i=1,2,...,k respectively, with

{
probability density function

1
f(X; Gi,o) = 5= exp [-IX-6i|/g], - @<x<w, -~@<fh <o 0>0

where 0 is a common, known constant for eacH of the k populations. We
may, without loss of generality, assume O to be one. The ranked para-
meters are denoted by e[l] 5_6[2] < e 5_e[k]. As before, it is
assumed that there is no a priori information available about the
correct pairing of the ordered e[i] and the k given populations from
which observations are taken. Any population whqse parameter value .
equals e[k] will be defined as a best population. A correct se]ecfion
(cS) is defined as the selection of any subset of the k given popula-
tions which contains at least one best population.

Suppose we take (2n+1) indepehdent observations from Tes

i=1,2,...,k; the sample size‘(2n+l) is assumed to be given in the

primary problem below. Let P*(%-< P* < 1) be a preassigned constant.
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Let P(CS; k, n, 8, R) aenote the probability of a correct selectfon :
when the procedure R is used with the given k, n and when the trQe '
configuration of parameter values is 8 = (6], 62,...,6k); let the space
of all possible Values of 8 be denoted by {.

The problem of primary interest is to define a procedure R which
selects a subset of the k given populations that is small, never |
empty, and large enough so that it contains the best population with
probability at best P*, regardless of the true configurations B in
2, i.e., so that

inf P(CS; k, n, 8, R) > P . (2.2.1)
Q |

After having defined a particular procedure R = R(k, n, P%) for eacH
possible set of values of k, n and P*, we discuss fhe'expected size
E{s; k, n, 8, P*, R} of the selected subset when the procedure R is
used with the given k, n, P* and where 8 is the true parameter con-
figuration in Q.

Let Yi denote the sample median of the (2n+1) observations
xi]""’xi,2n+l; from the ith population, and let Y(i) denote that
unknown variable which is associated with e[i]. The probability density

gﬁ(-) and the cumulative distribution Gn(-) of Yi are given by

1 —IY'eil n+] ( ] -IY'eil n

%W;%)=%%%u%7e ) 1 -5e ) (2.2.2)
n y=0. j y=6. 2n+1-j
1- 1 (2?+])(%-e Y- %-e ") . ¥<O,
j=0
Gh(y; = (y-6.) j (y=0.) 2n+i-j
o ety 10 WO ={y=6;) 2n+1-j
jio ( 5 )(fe ) (I-Ze ) s Y28,

(2.2.3)
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Now, we propose the selection procedure R5 as follows:
Rt Retain in the selected subset only those populations .

5

for which

Yi > max Y, -d S (2.2.4)
15i -

where d = d(k, n, P*) is the smallest non-negative constant to be

determined that will satisfy the basic probability requirement'(Z.Z.I)

for all configurations 8 = (61, 62,...,6k).

(B) Probability of a Correct Selection and lts Infimum

The-folloWing result concerning the rule R_ can be proVed. 

5

Theorem 2.2.1. inf Po(CS|R) = inf Po(CS|RS) = | G:-](y+d)gn(y)dy_
Ot — fefd -~ -0 ,

where Q= {8 = (e],...,ek): 6, =6, =...=0 - 8}, Gn(y), g, (y) are

the cdf and pdf of the sample median of (2n+1) observations from the
standard double exponential distribution.

Proof. For 6 € Q,

P.(cS|R.) = P {Y > max Y,., - d}
8 IRs 6 (k) = 1<j<k (j)

k=1}

= ?Q{Y(k)'e[k] Z_Y(j)-e[j] + e[j]-e[k]-d, j=1,2,...,

S LA S R ST

= [ L f

g,(z) dz ‘gn(y) dy (2.2.5)

Note that 6[ - e[j] >0 for j = 1,...,k=1; thus the result follows.

k]
Hence, if we choose d to be the smallest constant to satisfy

o0}

[ yed) g () dy = ", (2.2.6)

=00
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then we have determined the constant d for which

inf Pe(CSIRS) = Pk (2.2.7)
Q;Q = ‘

(c) Some Properties of R,
P
For 8.¢ Q and § = (em,...,e[k]) define Pg(i) = Py {R select

population ﬂ(i)}, and recall the following definitions (see Santner

[631).

Definition 2.2.1. The rule R is strongly monotone in ﬂ(}) means

4 in G[i] when all other components of § are fixed
pe(i) is {
- ¥ in e[j] (j#i) when all other components of 8 are fixed

Definition 2.2.2. R is a monotone procedure means for every 8 e

and 1 < i <j < Kk, Pg(1) i"_e_(J')- |

Definition 2.2.3. R is an unbiased procedure means for every 0 €

and 1 < j <k,

Pe{R does not select ﬂ(i)} 2_E9fR does not select W(k)}

Of course, if R is monotone it is also unbiased.

Theorem 2.2.2. For any i = 1,2,...,k, the procedure R5 is strongly
in T,,y.
monotone In (l )

Proof. The proof follows easily from the expression

L k
P.e-(i) = f_oo {JEI Gn(y + e[i] - e[J] +d)} gn(Y) dy .
j#i

Corollary 2.2.1. The rule R5 is monotone and unbiased.

Proof. It is known and easy to see that if R is strongly monotone in
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n(i), for all i = I,Z,...,k, then it is monotone.

Now we consider some special configurations of 8 € Q.

8r.7. =0 s 0= 1,2,...,k-1 ,
{ 1] , i : (2.2.8)
e[k]=e+A,A'>o{ - |
em =06+ (i-1)a,A>0, i=1,2,...,k. L (2.2.9‘)
Under (2.2.8),
pgll) = | [Gn(y+d)]k' G, (y+d-4) g,(y) dy for i=1 z,..Q,k ]
(2.2.10)
pe) = [ [a, (ysasn) ¥ g (y) y . o z2any

While under (2.2.9),

pg(i)=f {.'
1

6, (y+d+ (1-1)0)} g_(v) dy, i=1,2,... k.
-0 J ' :
j

i ax

From the above equations we can make the following remarké‘

Remark 2.2.1. For fixed P*, k, n, i (i = ,...,k 1), the probablllty_

of selecting population "(i) decreases from P* to zero as A increases

from zero to infinity.

Remark 2.2.2. For fixed P*, k and n, the probability of selecting ™)

increases from P* to one as A increases from zero to infinity.

‘Remark 2.2.3. For fixed P*, k, i(i=1,...,k-1) and A, the probability
of selecting population “(i) tends to zero as n + «», While the
probability of selecting "(k) tends to one as n > «,

Conclusion: Under either configuration (2.2.8), (2.2.9),
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h~Mmx

FQ(SIRS) = Rg(l) +1as A+» for fixed n and FQ(SIRS) > 1 as

]

n + o for fixed A.

5

It suffices to consider the parameter space Qo. For n large,

(D) Asymptotic Resul ts for the Procedure R

we discuss an asymptotic property of the procedure as follows. Let Y
be the sample median from a sample of size (2n+1) with pdf

f(x;0) = %'e-lx-Gl’ - ©< x <o, Then it is known (see Chu [24]) that

2 _ 1

n_ 2n+l

under Qo, %;g-is asymptotically normally distributed (here o
n

Let Z denote a random variable which has a standard normal distribution,
then gzg-is asymptotically distributed as Z. Hence, under Qo, the

n
probability

Yk > max Y. - d
<<k

is asymptotically, the same as the probability that

Zk > max Z, - v2n+l d _ (2.2.13)
1<j<k ,

 where Zi’ i=1,2,...,k, are iid standard normal variables. Hence,

L2

inf Pe(CSIRs) Pe{z, > max Z. - /2n+1) d
8eq ~ = T <<k
o0

- k=1
f [(D(z + V2n+1 d)] dé(z)

-0

where @(.) is the cdf of the standard normal distribution.

(E) The Monotone Likelihood Ratio Property of the Sample Median

Suppose Y is the sample median of (2n+1) observations from the

: . . . ] -{x-6
population with double exponential density function f(x;8) = 5 e |x-6
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The pdf gn(y;e) and cdf Gn(y;e)’of Y are given by equations (2.2.2) -
and (2.2.3). |

After some algebraic computations, we see that Gn(e;e) = ;— ; also
it is easy to show that gn(y;e) is differentiable at y = 9.

Let gn(y;e) = En_(y-e). It is shown in Lehmann [53, p.330] that a
necessary and suffici;nt condition for En (y-8) to have monotone likeli-

hood ratio in y is that -log En is convex. Our main goal :n this

section is to prove this assertion. Now

T (y) =c (LelYlymtr 0 1 ~lylyn _ (2n+1)1
Qn(Y) = Cn('z-e ) (1 5 e ) where < 'Tn'— » SO,

- log g (y) = - log ¢+ (n+1) log 2 + (n+1)]y|-n log (l-% e Ily,
Let h(y) = (n+1)]y| - n 1og (1 - ;—e-lyl) = { h](y) , Y <0 which is

a continuous function. For y < 0,

hiy) = hl(Y) = =(n+l)y = n.log (1 - ;— e’), we have

n y 1 y
. 7 © 7€
hy(y) = - (n+1) + < 0 since for y < 0, <1
1 ] LRY 1 - =eY
- 2 © p)
and hi“(y) = -~ >0.
] (- -;-ey)2

Hence, for y<0, h] (y) is a decreasing, convex function. ~Similarly, .

fory >0,

/

h(y) = hz(h) = (n+1) y = n log (1 - ;—e-y)

n -y L.y
) 2° ; 2 ° |
hy (y) = n+l -W>O since for y_>_0,T—-—|_-ﬁ<]
7 2
hy”(y) = - >0 -
2 (1 -%—ey)2
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Hence, for y > 0, hz(y) is an increasing, convex function. Note that
h{y) Is continuous atiy = 0, decreasing, convex for y < 0 énd increas~
ing, convex for y > 0. Hence, thiS‘coﬁcludes that h(y) is a convex
function, which implies - log §n(y) is also a convex function.

Theorem 2.2.3. gn(y;e) has monotone likelihood ratio in y.

(F) Expected Size of the Selected Subset

The procedure R satisfies the basic probability requirement
(2.2.1) and is defined by (2.2.4). Consistent with the basic probability
requirement, we would like the size of the selected subset to be‘small.
Now 5, the slze of the selected subset is a random variable which takes
integer values 1,2,...,k. Hence, one criterion of the efficiency of
the procedure R is the expected value of the size of the subset. Now,
we derive an expression for E(SIRS), the expected size of the selected

subset using procedure RS.

|
hmx

E(S|R5) = P{Selecting the population with parameter e[i]}
i=1 ‘

nh~Mx

1<j<k

i
nTm~Mmx

o0 k :
f l: I G(y +d + e[i] - e[j]):l gn(_y) dy (2.2.16)

1 - | j=1 "

J#i

If we set the m smallest parameters Bi (1 <m< k)'equal to a common

value 0(say) and define

Q= E(S | em = ... = e[m] = 9) : (2.2.17)
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then by an analogous argument as in Gupta [hl] one can prove the
following theorem.

Theorem 2.2.4. For given k, P*(%-< P* < 1), the expected size of the

selected subset E(S | 9[]] = 6[2] = .. = G[m] =0, m< k) in using the

procedure R5 is strictly increasing in 6.

n .
Corollary 2.2.2. sup Ee(SlR ) =k [ Gk"(y+d) g (y) dy = k p=,
feR — 5 w N n '

Corollary 2.2.3. In the subset Q(8) = {s: [ ] [k]

i =1,2,...,k=1}, the function Ee(SlR ) takes on its maximum value when

e[i] = e[k] -6, i=1,2,...,k-1, and so
E(s|R) = [ 6"V (y+d+8) g (y) d
5;5(6) o (SIR;) = [ &'ty g, (y) dy
+ (k-1) f Gﬁ 2 (y+d) G, (y+d-8) g (y) dy .

(6) Minimax Property of the Rule R5

Suppose that Yyseeesy are the sample medians from the k populatlons
I""’nk’ respectnvely, and with this set of observations, we select
the ith population with probability ¢i(y],...,yk). Then the selection

rule R is said to be invariant or symmetric if
¢i(YI"“QYE""SYJ""’Yk) = 6j(y1"'°QYJ’°"’Yi""DYk)

for all i and j, i.e. if yj is observed from ™ and Y; from ﬂj; then

we select the jth population with the same probability ¢i(yl”"’yk)'

Notice that the rule R.: Y. > max Y. - d satisfies the equations

5

1<j<k
inf P (cis ) = inf P (CSIR ) = Py (CSIR ) = px (2.2.20)
feQ — 0eQ ) -o

(o]
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and sup Eg (is ) = sup Ee(SIRS) = E, (S|R5) = k P* (2.2.21)
0eQ — e = -0

where Qo = (60,...,90).

For any invariant rule R”, Qo e

k
Eq (s|R") = & Pg {select population “flR‘}
=0 i=l =o
k k . ‘
= k Py (CS|R").
-0

Hence for 6 ¢ Q ,
=0 o

Eq (S|R") - Eg (S|R5) = k [Py (CS[R?) - Py (cis )] (2.2.22)
8 8

% %
If the rule R” satisfies the basic P* condition, it follows from (2.2.20)

that the right hand side of (2.2.22) is non-negative. Thus

g (SIR7) > E (S|R ) =sup E (S|R ) .
-o 6 Q 8

So that  sup Eg (S|R")> sup E (SIR )
: fel Qef

i.e. the rule R5 is minimax among all invariant rules satisfying the

P*~condition.

2.3. Selecting the Population with the Largest Location .

Parameter - Indifference Zone Approach

In this section, we would like to use the indifference zone
approach of Bechhofer [11] to select one population which is guaranteed
to be associated with the largest location parameter with a fixed

probability P* whenever the unknown parameters lie outside some subset,
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or zone of indifference, of the entire parameter space. The goal is
to define a sequence of rules {R6(n)} each of which selects a single

population ﬂ(k) and find the smallest n so that

Po (CS[Rg () > P%, ¥ 0en(s™) = {8: 81kl ~ Orko1] 2 §1 (2.3.1)

where P* and 0* are preassigned numbers.

For the sake of clarity, we will use the notation Y[kjn to denote
the largest of the sample medians each based on (2n+1) observations.
R6(n): Select the population corresponding to Y[k]n'

* * .
6 =6:e =..-=9 =9 - -
Llet @ (§7) = {8 (11 [k-1] k] = 8 }. Then we have the

following theorem.

Theorem 2.3.1. inf P.(CS|R.(n)) = inf P, (CS|R (n))
gea(s®) & © gen (6%) & ® .

Proof. For 6 € Q(G*),

P.(CS|R = P, { Y,.. <Y }
Q( I 6(")) 8 I;_?;k-l (j)n (k)n

PQ{Y(j)n < Y(k)n, j=1,2,...,k=1}

P lY (1300151 < Yion P Py T B2kl

o 0= k-1
f | Gn(y + 6kj)]d Gn(y) : (2.3.2)

-00 j:]

where Gn(y) = Gn(y; 0) is the cdf of the sample median of (2n+1)
indépendent observation from the standard double exponential distribu~
. . . 1o =x| ‘ _ _ ,
tion with density function 7 e , © < x < o , and ij = e[k] 6[j] > 0.
Hence the infimum of the probability of a correct selection occurs when
= = ... = = - §° provi -9 > 5,
11 = Ol-11 7 Oy T © provided O 7 Oy 2

This proves the theorem,
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The minimum sample size required to achieve the P* condition

(2.3. I) is the smallest integer n such that
0o

[ 16y + 691 a6 ) > " (2.3.3)

=00

2.4 Selecting the t-Best Populations - Indifference Zone Approach

Now, we consider the problem of selecting the best t populations,
lfe., the populatnons with location parameters e[k-t+l]’e[k-t+2]""’e[k]’
without regard to order. We are using the indifference zone approach
based on the sample median Yi of 2n+1 independent observations from

population Tes i =1,...,k. Define a sequence of procedures as follows:

R7(n): Select the t populations associated with t largest values of Y..

. : o
Let Q°(8") ={8: e[k-t+l] - e[k_tj 2_6}»and let

“(8¥) = {g: =, ..= la = = = *
Q2(87) = {g: 8] = [mg 0 Okmta1]™e+=0 ] = 048 1.
Theorem 2.4.1. inf Po{CSIR,(n)} = inf . P.{cS|R,(n)}
- e’ (st &7 o

Proof. It was shown in Theorem 2.2.3 that the pdf gn(y; 0) of the
sample median has monotone likelihood ratio in y, which implies that
it is stochastically increasing in 6. Using a theorem of Barr and
Rizvi [8], it follows that, for 8 e Q" (5")

P {CS|R,(n)} =P .{ max Y,.,, < min Yo}

L Scia-e () k-tel<j<k )
is a non-increasing function of 6[]],...,9[k_t] and a non-decreasing
function of G[k t+l]""’ [k]* Thus P {CSIR (n)} attains its infimum

when 6[]],..., [k-t] attain their maximum possible values, while
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e[k-t+l]""’e[k] attain their minimum possible values subject to
6 e Q’(S*). The proof is thus completed.

Using the\same notation as in Section 2.2, let Gn(Y;e;),de"°teS the
cdf of the sample median Yi with parameter Gi. Since Gi is the location
parameter, Gn(y; Gi) = Gn(y -‘Gi; 0) and G is stochastically increasing

continuous in both.y and 0, For e Q7 (5%)

gg{cs|R7(n)} = P.{ max Yy < min Y(Z)}

£ 1<i<k-t k- t+1 <g<k
-k | _
=P, { U {Y, ., = nmin Y.\ and
Ljkmter O g @
Yoy <Y,
Larax Yy <Yt
k ® k-t k

T f T 6 (y;6,,,) I
jeket+l = g=p M Bl e
: o#j

{1 - Gn(y;e[a])} d 6 (y; e[j])

In particular, for 6 € Q;(G*) CQ'(G*),

t-1 .
d@_(y,6+5")

£ &Tyi0) 01 - 6 (y;ees™))

Q0

ngcs|R7(n)}

o o tel
t [ Gh-t(y-e;O) {1-6, (v-0-8"30)}  d6_(y-6-8";0)

=00

>0} .
. k-t * _ ] t-1 .
t] 6 #8750) 01 - 6 (y;001T d6 (y;0)
which is independent of the parameter 8. Hence for specified values of
8* and P* ( ?%;-< P* < 1), we can solve the equation
t

® k-t *, - . t-1 i_ - p¥
tf 6 (y+é8;0) {1 -¢(y;0)} dé (y; 0) = P

-00

for n.
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2.5 Subset Selection with Resbect to the Scale Parameter o

Let Xi’ i =1,2,...,k be k independent random variables from double
exponential population Tos i=1,2,...,k, respectively, with U having

the probability density function

f(x;ei,ci) = Eé?-exp [-Ix-ei'/Gi], "R <X <@, -®< g <o, 0. >0,
Take n independeﬁt observations\from Tes i = l,2,...;k. From these

data one wishes to select a subset contafns the population with the

largest 0. Let 0[]] < een f-o[k] be the ordered parameters. We

consider two different cases. |

Case (i): 6],62,...,6k known.

in this case, the maximum likelihood estimator of o is

Y. =
i

3|—

n
zo|x
J=

i 6i| which is distributed as a gamma variable with
1 C

-y

% | n ooy,
parameters n and —, i.e. Y, has density EﬂT$GTT (Gi) e , ¥y > 0.
Thus the problem reduces to the one considered by Gupta [40]. The |,
selection procedure is

R: Select the population ™ in the subset if and only if
Y. >c max Y..
1<j<k
Case (ii): Gi's are unknown.

When Gi is unknown, it is well known that the maximum 1ikelihood

A n ~ ~
estimate of Ui is given by Gi = %- z Ixij - Xil’ where Xi denotes the
j=1 ‘
sample median from population Moo For this problem, we propose the

following selection procedure.

R8: Select the population . in the subset if and only if

aiz_c8 max 0,
1<j<k
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where 0 < cg < 1 is so determined as to satisfy the basic probability

requirement regirdless of what the unknown Gi's may be.
no.
Let V, ==, i =1,2,...,k. Then

P(CS|R8) P{a(k) > cg  max a(j)}

1<j<k-1

fw [kﬁl Fp (= L ")]’ ‘dF (x) -
o Li=t Yy S8 Vi)

So

inf P(CS[Rg) = inf P(cs|Rg) = [ FETT 1) 4F (x),
geqQ” 8 EFQ; 8 o VY 8 v

where ° = {g = (0',...,ok), o, >0, i =1,...,kl},
2 = {o= (5,...,0), ¢ >0} and FuC)y By (4), § = 1,...,k are the
~ o J
no nO'(.) ‘
cdf's of V=em, V, |\ = 1l » J = 1,.00,k, respectively.
o (J) = o, .
[j]
\
Hence if the distribution FV(') is known, then the constant cg
can be determined by the equation
® k-1 x
[ Ry G dF(x) = PR,
0 8
The exact distribution F of V is worked out for n = 3 by Bain and
Engelhardt [4], and a chi-square approximation is also given by

them which is quite good even for small n. However, it follows from

Chernoff, Gastwirth and Johns [22], that — (V-n) = vi [ g-1]
n

is asymptotically a standard normal variable. When all o, are identical
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P(CS|Rg) = PI5, > cq GJ.,’ jo=1,.00,k-1}

A

Xl : o. : ' : :
PIR(Z - 1) 2 cg VAl = 1) + VRlege1), J = 1,...,k=1}

w k=] x=V/nlcg-1)
0 (—————) do(x),

ne

‘s

2.6 A Test of Homogeneity Based on the Sample Median Range
Let ﬂ],ﬂz,...;ﬂk be k independent double exponential populations

such that the observations xil”"’xi,2n+l from m has density
1 "|X"9i|
¥ e , for 1. =1,2,...,k. As before, let the sample median of

these (2n+1) observatlons be denoted as Y‘, Il =1,...,k. 1In some
practjcal situations one wishes to know whether 6i are significantly
different or not. This prbblem is to test the homogeneity of the double
exponential p0pufati6ns. We are interested in using a test based én the

sample range of Y's and hence we wish to derive the distribution of the

sample median range R = max Y. - min Y., considering all 8, to be
1<j<k 4 1<j<k -

equal to a common unknown 6. When the value of R is large, the
hypothesis of homogeneity is rejected. We wish to find a constant r,
such that P(R > r) < o under the hypothesis H,: 6] = .. = ek = 0. This

will provide an a~level test.

Theorem 2.5.1. For o, 0 <a <1, let r be a constant such that

Po{Y > max Y, -r}>1-%2,
b k= 1<j<k-1 -k

Then Po (R > r) < a,
o

Proof. When Ho is true, i.e., under Qo,
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P(R>r)

P(max Y, - min Y, > r}
1<isk d1gisk

k
<k=- I P{Yi > max Y, - r}
i=1 1<j<k
=k - k P{Yk > max Y, - r}
1<j<k-1
Sk-ke(l -7
= a.

The above theorem establishes a connection between the selection

rule R5 and the above test for equality of 6's.

2.7 On the Distribution of the Statistic Associated with R

5
Let X, (i = 0,1,...,p) be (p+l) independent and identically

distributed random variablesleach»répresenting the»médian in a random

sample of sfze (2n+1) from alpopu1ation with standard double exponential
density function f(x) = %-e-lxl. Consider the differences Y. =X - Xy
(i =1,2,.e.,p). The random variables Y, (i =1,2,...,p) are correlated
and the distribution of the maximum of Yi is of interest in problems of

selection and ranking for double exponential distribution as explained

earlier when discussing R5. In this section, we give a closed form of

the distribution of Y = max Y., for some special cases. We have also
1<i<p
computed tables of the upper percentage points of Y = max Y'
I<i<p

corresponding to the.probability levels o = P* = 0.75, 0.90, 0.95, 0.99
for p=1(1) 9, n=1(1)10.

For the special case P =1 (k=2), n =1 (sample size = 3), straight
forward integration gives the cdf of Y(see formulae (2.2.2), (2.2.3))

as
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o«

[ G(x +y) g(x) dx

2]

P(Y <y)

2y 3y 2y 29 -3y

3 .73 .9 .-
“TgYe T tige " g5 e

Again, for p =1 (k=2), n = 2 (sample size = 5),

1 - %-ye-

P(Y<y)=1- %g-ye-By - Z%% ye ™ - g%g_ye'SY + :33;5 e 3y

_ 5225 -hy 203 -5y
896 © 756 ©

All computations related to and given at the end of this chapter
were made on a CDC 6500 using'Gauss Laguerre quadratue based on
fifteen nodes to perform the numerical integration. Checks on the

accuracy of the program for p = 1, n = 1 showed that these values seem

to be correct to three decimal places.
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CHAPTER 111

’

SOME CLASSIFICATION RULES FOR k UNIVARIATE NORMAL POPULAT IONS

3.1 Introduction
In problems of classiflgétfon, oﬁe'usually assumes. that an

tndlvidua) belonys to one of the k populations, . Based on the observa-:
tions from these populatfons one wléhes to assign it to the correct
population. Such problems of classification often arise in several
brénches of science. -About forty years ago Fisher was consulted by
Barnard [ 6] as to the best method of classifying skeletal femaihs
unearthed by archaeological excavétions. Fisher [29] suggested'the use
of the now well-known discriminant function. A general mathemg;igai"”'ﬁ
theorj of statistical taxonomy was bﬁiit bVIWélch [79]”bh“f6;ndatioﬁshﬂ_
laid by Neyman and Pearson's theory of tests of hypotheses. The
technique of discriminant functions which was devised by Fishef [29]
has proved to be invaluable in tackling ciassification problems. But
the construction of the discriminant function is possip]gtqn1y/WH;h'
we know the values of the‘barameters characterizing the popﬁla£}on§
to be discriminated between. This raises the question as to what is

" to be done when such know]édgg is absent. In this chapter we describe
some classification procedures suited toﬂsuch sifuations.

The problem of classifying an individual into one of two categories,

discriminant function analysis as some prefer to call it in the parametric

- case, has been considered by many authors in the statistical literature.
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For an ektensive bibliography, the reader is referréd to Anderson,
et.al. [1]. The probability of misclassification, inherent in such
classification procedufes is not“hecessarily known to the experimenter.
Several authors have treated the problems dealing with the misclassifi-
cation (e.g., see Smith [74], John [51], [52], Okamoto (591,

Sedransk [73], Hills [48], and Sorum [76]1). It should bé stressed that
the above papers deal with the case of two populations only.

In this chapter, we use the subset selection approach to the
problem of classification where the prbbability of correct classifica-
tion (P(CC)) is guaranteed to be at least a preassigned number P*

_(%-< P* < 1) regardless of Qhat the unknown state of nature might be.
The classification rules proposed here are different from those con-
sidered by Gupta and Govindarajului[37]. .

Let m; denote a normal population with an unknpwn mean ei and
variance 0? (t =0,1,...,k). From pdpulation ™ one observes a random
sample Xij’ Jj = l,...,ni, i =0,1,...,k. Based on the above data we
allocate T to one of the k populations with respect to the mean, variance,
and the reciprocal of the coefficient of variation. In each case it is

assumed that the parameter, for example, the mean 60 of T is equal to

one of the 6', i=1,...,k.

3.2 Classification Rules with Respect to the Mean

Case (i). Common known variance 02.

Without loss of generality 02 will be taken to be unity. Let

I =0,1,...,k. (3.2.1)
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" Then we propose the_following classification rule,

R9: Classify T as. T, if and only if

X, -X | < ¢ Tt — | - - (3.2.2)

~where cg s chosen such that_P(CCIRg) is at least P*'(%:Q'P*'Z“I) which

is a specified number. Then P(CC|R9) is given by

ek ‘
P(CC|R9) = izl (IXi"X |- < Cy ’l‘—i-+ ':—o, 0 9 ) P(G = o) :
k
= I [28eg) -l
- 20(cg) - 1 | (3.2.3)

where ©¢(-) denotes the distribution function of the standard normal
variate and q; is the a priori probability of 6l = 60, I = 1,000,k
Since P(CC|R9) 2_P*, we obtain c9'as the smallest non-negative number

which satisfies the equation
*
2¢(c9) -1=P
or equivalently

e = o (2B | (3.2.8)

9~

Theorem 3.2.1. Let Ai be fhe event ''classify m, as Qﬁéﬁ"eg“¥“63”.

Then P(Ai|R9) + 0 as each of n_, n, + .

1 ]
—+—| 8. #£0)
nI no 1 (o]

Proof. P(Ai|R9) P(|§]-f;| f;cs

6 -0 YI-Y-(G.-B ) 9 -9
-c (o) < o i o . . le 40 |
S 1T a1 =3 [“—'1 1 o
— o —— — o —— i L S and
np o ng n; o n; n, -

>0 as nO’ ni > o (3-205)
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. . . 2
Case (ii). Common unknown variance o°.

n, n
- 1 2 1 K =2
Let Xi = o X Xi., s = v z X (x.. - X.)°.
i =1 ' i=0 j=1 EE
k ) : .
where v = (ni - 1). In this case, we propose the classification
i=0
rule as follows:
Rlo: CIaSS|fy Ty @s M, if and only if
IX; =X | <c,,s AN (3.2.7)
i o' — 10 n, n *ee

I (o]

where, as before, o0 is determined as the smallest non-negative number

*
which satisfies P(CCIRIO) > P, Here, we have

k
. , = Y =Y ]_ L = Q. =
P(CCIRIO) = iz.l P(IX, =X | < o S " + - | 8, =8)) P(6, =o,)
k .
= E P(ITilf_ ) q . | (3.2.8)

i=]
where Ti’ i =1,...,k are identically distributed:z(not independent):as

Student's-t with v degrees of freedom. Hence

P(CCIR o) = PT] < ¢}y)

where T is distributed as Student's-t with v degrees of freedom. It
should be pointed out that the joint distribution of Ti’ i=1,..0.,k

is a multivariate t as studied, for example, in Gupta [39]. The

covariance matrix Is L = (oij) where oij = 02 for i = j and
. -1 ‘
n n 2
o, . =0> |0+ +-=2) for i # j.
i] n; nj

P(cc|Rm)= Frlcyo) = Frl=eqg) = 2F;(c o)-1 (3.2.9)
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.where FT(-) is the cumulative distribution function of T and cIO is

determined to be the smallest non-negative number which satisfies

the equation

" .
= 1 (4P _
C]O = FT (T . (3.2.-]0)

If Ai is the same event as defined in Theorem 3.2.1., then we have a

similar result for the rule RIO’

Theorem 3.2.2. P(Ai|RIO) -+ 0 as each of Ags Mpseessn, > @,

Proof. The proof is straightforward and hence omitted.

3.3 (Classification Rule with Respect to the Variance

It is assumed that the population “i has unknown mean ei and
varianceIO?, i =1,...,k. As before we assume that one of the variances
Q?, i=1,2,...,k is equal to 05. We, then, wish to allocate "o to
one of the k populations,ﬂl,...,ﬁ; with respe;t to the variance. Assume

we take n. > Lk observations from “i’ i =0,l,...,k. We propose the

classification rule:

R]I: Classify T, @S T, if and on]y if
n (n, - 3) 52
. —-1] <c
nifno - 1) s2 ~ "1
i .
n,
2 1 ! =2 . . ,
where sv = — ¥ (X.. - X,)%, i =0,1,...,k and ¢ 1 is the smallest
i n; =1 ij i 1

non-negative number which satisfies the inequality P(CCIR|]).3 P™. We

have
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‘ l di=oo} P{0i=do}

2
k
= ' o 1! Q.
P(CC|R”) = E P{ W 5 1
: i

nosgl[cg(no-l)] -1l n-l

1 nis%/[qf(ni-l)] ) n;=3

‘ ni-l ni-l
. i"ngmT,ng =l —ni-3 “”Cn) - Fno-l,n'i-l -—ni-3 ('fcn) }.

(3.3.2)

°i=do}P{°i=°o}

]

N mx
L0
»
-~
.

ViV,

of freedom, and q; is the a priqri probability of 0; = 0 In the

where F is the cdf of an F random variable with Yy and 2 degrees

special case when Ny =Ny, = .. =n =n, (3.3.2) becomes

= el - - ol .
PCCIRyy) = Fo -1,n-1 ]:n-3 (”cn):l Frg-1sn-1 [:n-3 (1 CII)]

(3.3.3)

and 2F is the smallest non-negative constant determined from-the

| n-1 " o _n-l - _ %
Fno-l,n-l [ﬁ “"Cn):‘ 'Fno-l,n-l [n-3 (1 cn):\“ P

In using the rules R,, RIO’ R]l’ we might classify T, as none, one,

equation

two or k of the k populations. \In the following sections, we use the
subset (nonfemptf) selection approach to propose rules that will |
classify m, to be at least one of the k populations. This overcomes
the objection that m, may not be classified as any one of the k

populations.
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3.4 A Subset SelectioniApproach to Classification Rule

with Respect to the Mean

Wi thout loss of generality, we may assume that 02 =1, Again we
assume that there is exactly one population with ei = 90. In this
case, we propose the rollowing classification rule

Rlz: CI§SS|fy T, @s T if and only if

min |X, - X_| - (3.4.1)

X, -X | <c
% - %ol < 1<j<k 4 °

12
where 2P (>1) is the smallest number which satisfies the inequality
P(cc|Rr,,)> P,

The classification rule R12 has the following desirable asymptotic
. Property, i.e., the probability of misclassification approaches
'zero as the sample sizes no,n],...,nk become large. Before we prove

this we need the following lemma.

k ‘ -
] z P(lXi-Xol > ¢y, lxj-xol 6, =6,)
j=1

J#i

where MC denotes misclassification,

l mx

Lemma 3.4.1. P(MCIRIZ)‘ﬁ
i

Proof. Since

1

k .
P(MCIRIZ) = ifl P(1To is not classified as ﬂi|6i=6°)P(6i=60)
S PUR X | X%,
= I P{[{X,~-X [>c,, min |X.-X_|l|6.=6 }.P{0. =6 }
i=1 i o IZIiJ.ik j o i o i o
k — — — —
< izl P{lXi-X°l>c]2|XJ.-X°| for some J#ilei=eo}
k k - - -
< E E P{X;-X 3 > ¢y, |xJ.-xo||ei = 6_} (3.4.2)
#.

j=1
J#i
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thus proved the lemma.

- n.,
Theorem 3.4.1. With the above notation, if -ﬁL» AJ.,'j =0,1,...,k,
‘then

P(MCIRIZ) + 0 as N + @
k
where N= I n,.

Proof. By Lemma 3.4.1,, we have

k k
R 1 — - o
P(MCIRIZ) < Iz P{li. xo| S |xi X, 6, =6}
i=l j=1 12
j#i
k  k, o i
= I I {P[--——(X -x) <Xi=X < =—— (X=X ), X.>X [6.=0 ]
i=1 j=1. c‘2 j "o - <, i o" i "ol’i o
J#i
[ °12 (X l)_~J 12( ), 6, o]}
kK k
= I IplXx- —-(x -x )<x <x+—(x -X ),x >x 8.=06 ]
i=1 j=t  ° ©12 = ey Po
J#i
P[x-E--(x-x)<x<x+-——(x—x),x<x -e]}

12

]
n~mx

{[..Lz--_A/:.Z ,J-'-LZ)+ /g (8, 9)
i=] i
{

J
I#i
<:Vﬁgl L (N/:I.Z N/:; Z )+ /_'(6 6 ),
o] !
z, >J120| 8.=8]
+‘p[/§iz -—(jlz ﬁz)+f(e -0;) £ Z,
<J§£—Z+—( J—j-Z)+n(9 -6)Z<A/_ o|93=0°]}

W ™Mx
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where Zi, i =0,1,...,k, are iid standard normal variates.

k k o 00
=x {f [@(,\/—_;-x+——(,j' Jlx)+F(e -6,))
i=] j=1 = [T, : i
- j#i Elnx
(o]

- o -'Lx-—-(,j‘ Y-[ x)+4/-(9 -0, ):|d¢(y)d¢(><)
For.
+[ o [‘I’('\ﬁLX+—-(J-1x-q/—y)+/_(6-e))

=00 -00

“12

- o ;-oLx - = e —L x- J\ ¥)+/n;16 -6, )] do(y)de(x)}

k

o0y G,0) + ) o (i4J)}
1 j=1

j#i

where I](i,j), Izﬁi,j) are the first and second double integrals inside

]
II ™M X

the double summation signs.

Now, for every € > 0, there exists §(g) such that

f de(x) <€ (3.4.7)
x| > 8() -

Hence, we get
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s(e) 6(e)
l](i,j)if [ [((l-—)J:LX+——,\/-y+/_(9 6))
]

-6(e) -8(g)

- o((1+ —)Jlx- ,j—y+f 8, =6;))]
o 12 l

do(y)do(x) + ¢2

- 8(e) :
< [Q(("?:?J;lx+~Jl6(€)+F(e -6,))
(o]} I

-8 (€)

n,
- ol by e —j- S ()4, (8,78 ))] o (x)+e?
.0

- L "
zo0-= -’-G(e) +-;- -;,*':-6(&) + vhy (8,-6.))

n

- __ - — i - 2

a(-(1+ vl / e 8) o ;;:—6‘(2) + /g (Go_ 8,)) + €,
| (3.4.7)

For every n > 0, there exists an N(e,n) such that for N > N(e,n),

¢((l-—)fa<e> +—-A/§-La<s> +WR; (6.-6,))

-@((1+—)/;Ls()-l- T 6(e) + AR, (6,-8,)) < n
“12. N% 12 N4
(3.4.8)

Now since € and n are arbitrary, ll(i,j) >0 as N+ o, Using an

identical argument one can show that Iz(i,j) +> 0 as N » o, Thus,

P(MCIRIZ) + 0 as N>, This completes the proof of the theorem.
Suppose Ny =M = .0 = N = Ny we have the following.

Theorem 3,4,2, |If 12 is chosen to be the smallest constant such that

*

f o( 2 ) dd(x) < F TT—T _ (3.4.10)
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then

P(CC|R,,) > P™. | (3.4.11)

Proof. Since

P(cclR )=1- P(MCIRIZ)
k k _
21 - 3z Z{P[X-—-—(X x)<x<x+—(x-x) x.>3("ei=e]
i=1 j=1 ©12 12 ! .o °
j#i
+ P[X - (x -x )<x <x + (x -X. ), x <x i=e°]}_
€12 €12
k &k
=1- % z{P[z-——(Z-Z Y+/n (e-e )<z<z+c—(z z)
i=1 = . 12 12
#:
+ /n‘(eo-e.), . >Z o]
+ Plzg c‘; (2,2, )+/(8,-0 )<2 <2, - ? (2,-2,)
A (eo-ej), z; <z 1} (3.h.12)
where Z., i = 0,1,...,k, are iid standard normal variables. But
P[Z +./'(e e )-—(z -Z )<z <z +/"(e -e ) +—(z -2 ) z, =z, > 0]
€12 €12
Z.-2 (z.-2) Z.-2
<pl- V2 ( i o) < 7. < vZ () , L2 5
- ©12 W2 b %2 3 V7
o T
= [ 3(=2 ) - o(- ;/—T-x 1 de(x)
0| “i2 12
oo r . . )
= [ 2<1>(— x) = 1] do(x) . (3.4.13)
oL 12 ,

Similarly,
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P{Z + ——(Z.-Z )+/ - < - ——(Z.=Z W - -
{z ( i o) n(6o 6j) Zj <Z g (Zi Z.M n(6 ej)’ Zi Z <0}

12
0
<[ [20(- -{Lx) = 1] do(x)
R 12
= -[ZQ(EZ;:x) - 11 dé(x). (3.4.14)
0 12 |
So that |
| k k -
P(CCIR ) > 10-2 £ x| [2<1>(cix) =11 dé(x)
. i=1 j=1 "0 12
J#i
-1 A | 2622 ) - 17 a0 (x) (3.4.15)
12

. ;
Hence, for any P, let 2P be the smallest non-negative number such that

oo / ' . *
e <pephy

*
then P(CC[R,,) > P -

- _1 .
Let Xi - n—. .Z Xij’ I = 0,],...,'( (3-50])
i j=1
ni n 52
-2 i -
R LRI CTIRS S L S (3.5.2)
i j=1 2 i
%
% 1 .
o = |=0’]9°-"k (3-5-3)

i = G. |Ccoefficient of variation ’
I .

0
Eg-to be known and further that there exists only
o. :

We assume ao

one population wltha| -0, The classification rule proposed in this

case is
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R'3:' F]ass'ify Ty @s Mo if and only if

X. X

i . 1
—_— -0 |.<ec min — (3.5.4)
si fe 13 ]<.'ik Sj o

where c]3(3l) is chosen to be the smallest nonnegative number such that
*
>
P(cciR,5) > P,
The classification rule R13 has the asymptotic optimum property that
P(CCIRIB) approachés unity as the sampie sizes ni's, i =1,.ee5k,

become large. This result is proved in the following theorem where as

k n. '
before we write N = I n; and -ﬁ'- +7\i, i =1,...,k.

Theorem 3.5.1. P(MC|R ;) >0 as N> «, where N =
- i

n~Mx

n..
1 1
Proof. Using a similar agrument as in Lemma 3.4.1, we have

k k [X X,
-i— J—— =
P(MCIRB)i E E P{-s. aol >c'3 s. % % 0Lo}
i=1 j=1 i j
J#i
k  k ;X fi- X
= I I [Pl -~=——(—=-0a)< <o+ = (—-a),
=1 j=1 o 13 ,Si o 5 °© ¢35 ’5; o
J#I Yi
;'2_ao | % =ao}
1 Yi 5 ] x.i
+ P{o + o= (= =g ) < <O = == (—=a),
°© ¢35 5; o -—sj— o ¢13 $; ©
X

k  k | Z, Vﬁ}ao /E;aJ EA. 1
= % I {p{(1+ Yo, - - - < < (1- =)o
i=1 j=1 Q3 ° C3Yp o3l Uy = Cy3 ©
j#i
Zz n.o I/I'T.(l,
+ j b © ] ,
clBUi CIBUi 'Uj
z n.o
A>g -l 14 =¢q}



90

» ) ) Zi nog ..{E}aj , Zj |
+ P{(1- =) a + + - < == < (14 =)o
cI3 o rc]3Ui c]3Ui Uj —-Uj -_ c13 o
- i 'fn?ag'/ﬁ;aj,i<a _A/n—;ao o, = o _}]
c|3Ui cl3Ui Uj | Ui o Ui i (o}
where
nl(i} - Gi) /ﬁ;si
= o, s U= e ke
i
=5, +5, (say)
Now,
k k ®woo | «t fn".aot
s, =  [[f [2((1- —)a_t+ ==+ c' — - /o)
i=1 j=1 0°0 uov-/r'f;ao 13 13 13 3
j#i o
] ' Xt ','Tiaot
- o((1+ E—)aot_-c v =" /n—faj)]
€13 13 13 J

do(x) dF, (v) aF (8)

where &(+) is the cdf of unite normal variate and Fi(-) represents the
cdf of the square root of a X2 random variable with (ni-l) degrees of
freedom.

For any € > 0, there exists §(g) such that

do(x) < ¢
|x|2§(€). -

and

dFr(x) <e for r = 1,2,...,k.
|x|>6(€)

Hence, we get
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k  k
S. < I I !
V= =1 =1 J.|t|<6(rh:) I|v|<6(e) I|x|<6(e)
j#i ,
vn.o t /;fa t
- Xt i o _ - LR _ t _
[e((1 ]3)a°tf c]3v+ ey /'a ) <I>((l+ '3)0tt "‘3\/ C;B:,
- /E}dj)] do(x) dF, (v) dF;(t) + e3.
k ka_ f |
= I I , .
i=1 j=1 |t|<6(e) |v|<8(e) |[x|<S(e)
j#i
/Ta t
[0((1- ==)a_t+ -0 =) M)
€13 13 13
| et
-@((1+ -—)a t- =2 -(a /ﬂ 2 )/‘)] do(x)dF, (x)dF (t) +.¢.
€13 ¢13Y 3 43y

If t, v and x are bounded, then fof any € > 0, there exists an N(g)

such that whenever N > N(e),

| /Ao
o ((1- -—)a tr 2o (oA - of —2) )
13 13Y A k)

o1 Aja,t
- c| )a t- = -(a Vr_+ )/ﬂ) <g .
13 ]3

‘Since € > 0 is arbitrarily, hence S] + 0 as N+, Similarly, one can
show that 5, + 0 as N »> . Then P(MC|R]3) + 0 as N> o,

Theorem 3.5.2. Suppose Ny = eee =n =n. 1f c]3 is the smallest non-

negative number such that



I U 2<I>(":—-(-ao+
00 a,v=vno 13
y
o _v-vho
TS
- —(-a
-oo 13 ©°

X
-+
v

X
-+
v

Vna

) )at (x)

v°.)t)d<I> (x) + 2@'(aqv-/r?qo)}

: %
1-p

an(V) an(t) : 1 + m-)-

% !
Then P(cc|R]3)_3 P,

Proof.

P(cc|Rl3)=l - P(ﬂCIRls)
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k  k o z Vo Vna., 2 a
>1 -k Z[P{CO- lil- 8+ao--U_J._<_U.Li-_£.
i=1 j=1 13 S3%i ©13Y j j 13
i . o
: Z, not /na, Z, /Eozo
+ - + O - — y > 4 - }.
CIBUi .CI3UI o Uj 'Ui -0 Ui
o . vha vno. z a
+ P{- ==+ lIJ + 3 + o -—-L’U < U-L<—QT
“13 “3% 3% © i i~ %13
Z, vho /no. Z. vna
T » g < 0 - = ]
C13Ui c'3Ui o Uj Ui ) i
k  k o Z, /rTa.o E.L o z, /;1-(7.0
>1'=- & I [P{ - - - < < - + +
- i=1 j=t €13 Szl <3y == e g3y ¢13Y;
j#i Z| /r-!ao
U, —ao - U, }
] [}
o, Z, /h'o:.o E.L ao' z v/n o,
+ P{- + + < e=< - - 2,
%3 o3l oY Uy =<3 3Y; " 3Y;
Zi n OLO
0. < o U. 1
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'EH'EUH fo (2 ——'/'T%'
=1 - (o + X
=1 j=1 00 a v-Vrh c13 a ¥ v e)
J#i _
vno
-@(—( o
_ l3
oo O v-#”do -
+ I I {4»(;:—3-@0-3- —2t)

Vﬁdd ,
~ -)t)}d@(x)drn(v)an(t_)

-9 (.]_(-ao-l- X,
C] 3 v

where Fn(') is the cdf of the square root of a x2 random variable with

(n-1) degrees of freedom.

= 1-k(k-1) [ [ [ {2<I>(--(-a +-+
00 o v-vno 13
© a \"/_(! : ' /I'T .
+[ ] {1 2<I>(—-(-a + o+ —2)t)} do(x) dF_(v) dF (t)
00 -o 13 v n n

°)t)-1} q¢(x) dF_ (v) dF (t)

So if Cy3 is chosen to be the smallest nonnegative number such that

o v-/rd

| - |
20(A(-0 + £ + —2)¢) do(x)-[ 2<I>(-—-(- N
I“IOI“_/_O RS S Tt + 3
Vﬁd

2)t) do(x)

+ 20(0 v=vhor )} dF (v) dF (t) <1+ Tklk 1;*5

then

*
P(CC|R]3) > P,



CHAPTER 1V

SELECTION PROCEDURES FOR NEGATIVE BINOMIAL POPULATIONS

4.1 Introduction
Let Xi, i = l,2,...,k be k fndependent random observations froh
population Wi,.i = 1,2,404,k, respectively, which has a negative binoﬁial
distribution with parameters oo P;e To select a subset of populations
which cbntains the population associated with the largest P; when
F, = 4. = Fe =T Bartlett and Govindarajulu [io] proposed a rule

which is based‘on the statistic b min X, - Xi’ where b is a constant.
1<j<k

However, in many situations one may be interested in small values of P;-
In this chapter, our aim is to select a subset of k negative binomial
populations which contains the population with the smallest P based on

a statistic of the type ¢ max Xj - Xi. It should be pointed out that
1<j<k

although the two problems seem similar, they are not equivalent, i.e.
the procedures proposed here cannot be obtained from the above paper
(10]. In Section 4.2, we present a result which gives a conservative
constant for the unconditional rule we propose, which is based on an
exact computation of the conditional distribution of the statistic
¢ max X. = X.. ,In Section 4.3, we propose a similar rule as in
oy j i

1<j<k
Section 4.2, except that the rule is conditioned on the total number of
observations T = I Xi’ We obtain a lower bound for the infimum of the
=] ,

x
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I , _
probability of a correct selection. It is shown that when k = 2, the
infimum of this procedufe is attained when Py =Py =P, and it is
independent of p. A lethod leading to a conservative solution for the
constant c(t) depending on T =t is also given. An upper bound for
the expected subset size is derived whiéh holds for all values of the
parameters. The problem of selecting all popplations better than a -

standard is also considered in Section 4.4.

4.2 An Unconditional Subset Selection Procedure

‘Let X be a random variable which has the negative binomial
dis;ribution with parameters r, p, i.e. X denotes the number of_fai]ures
 before the rth success is observed, p being the probabiiity of a success
in an independent trial. Then X is distributed with the probability

mass function

P(X = x) = ('*i") pr(1-p)% , x=0,1,2,... (4.2.1) -

It is known that the sum of n independent and idéntically distributed
negative binomial random variables with parameters r, p is again a
negative binomial random variable with parameters nr, p. We may, there-
fore, think of the selection problem as being one of picking a subset
containing the negative binomial populations withvthe smallest p value,
based on a single observation on X from each of the k populations.

Supposé then that Xi’ i = I,Z,...,k are independent observations
from populations Tes i=1,2,...,k, respectively, which have negative
binomial distributions with parameters r, P~ Without loss of generality
and In order.to avoid a more complicated notation, we assume that

Py S Py L ves f_pk. Any population whose parameter value equals Py witl
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be defined as a best population. A correct selectibn (cS) is defined

as a selection of any subset of the k given populations which contalns

at least one best population. Let P{CS; k, B R} denote the probability'
of a correct seléction when the procedure R is used with the given k

and when the true configuration of parameter values in p = (PI""’pk)'
Let Q be the space of all configuration p = (p],...,pk) such tha;

0<p, <1, 1 =10,k

(A) The Rule Rig and its Associated Probability of a Correct Selection

We propose the following selection rule:

th: Retain population ™ in the selected subset if and only if

r o r
T <d min Y ‘ | (4.2.2)

i 1<j<k j
where d > 1 is the smallest number such that the basic probability
requirement

inf P_(CS|R,,) > p* (4.2.3) .
pen B 14 :

"is satisfied.
Letting c;) = %5 the rule in (4.2.2) becomes
th: Retain population ™ in the selected subset if and only if

X. > ¢ max X. = (1 = cy)r ' (4.2.4)
i =14 1<j<k L}

where 0 < iy 2 < 1 is the largest number for which the ba51c probability
requirement (b.2.3) is satisfied for all parameter points p = (p],...,pk)

in Q.



97

Now for any p € Q,

P(CSIRy) = P 0y 2 ey X(j) - (e vy J=2,000,K)

[x+(l-c|h)r
.
- 14 v
5 (r+x-l r x k rey=1y r y
= o ) pyay T z ( )p: ql
x=0 j=2 y= vy
b (4.2.5)

where q; = 1 - Pi» i'= 1,2,...,k and [a] denotes the greatest integer

less than or equal to a.

Using the well-known identity for the incomplete beta funqtfon

RN s O s+i-1, j
qg L (3 )p'=01(rs)=p" 2z (3 )gqg = (4.2.6)
o K Poyer

. I'(r+s LR s-1 .
where Iq(r,s) = f??éfT;% fo t  (1-t) dt, it follows that

) oo k
P (CSIR ) = 3 (I"'FX'I) pr qX I
pooiw TStk TP
x+(1=c,)r ' x+(1-c,,)r
o(r+ [ 5 14) p, [—
| 14 | sl PO 14 dt
x+(l-clh)r 0
1 T(r) F([-—-ET--J+I)
15

It is immediately evident from the above that PEfCSIR]h) is an increas-
ing function of Jr for j = 2,...k and consequently PB}CSIRIQ) is
. partially minimized as we let each pj approach P from above. Hence

we have the following result.
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Theorem 4.2.1. inf P_(CS|R,,) = inf P_ (CSIR )
peQ P 14 E?Q 14
x+(l-c]h)r
—1
-] - 1 k-
= inf 5 (r+: I)prqx { T ' (r+Y'])pqu}
0<p<| x=0 y=0 y

| (4.2.7)
where Q= {p=1(@p,.c.,p), 0<p <1},

It is difficult to determine analytically and also numerically
where the infimum of the above expression with respect to the'common
p (0 <p < 1) takes place. If we could find the infimum then we can
solve for the constant ¢y to satisfy (4.2.3). In ordér to overcome

this difficulty, we give a method leading a conservative solution for

the constant.

For any fixed non-negative integer t, let

[t+(l;c£t2)r] At

N(t,c(t),r) = 3 (Fly (rremxely (4.2.8)

- =0 x t-x

where [a] is defined as before and a ~ b = min (a,b).
Theorem 4.2.2, For given P* let P (P ) ; and t > 0, let Clh(t)

be the largest value such that

N(E, (), F) > (2r+t e, (4.2:9)
If ¢, = inf {clh(t): t Z.O}, then

inf P_(CS|R,,) > p”.
EFQ E h
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Proof. For pE Qo

nl(cis]h) Pgﬁx(l) > ¢y max X(j) - (l-c]h)r)

2<j<k
[X+(I-c]h)r] : ‘ k-1
(=] l c
+x- - -
T (r X I)prqx (r+yy_ l)prqy

x=0 X

f x+(l-c]h)r

o - L _
{ 5 (r+§ l)prqx v (r+Y l) pqu }

v

x=0

= - (1- k=1
) {PB.(XI 2 1y X2 (1 C”')l")}

oo . k-'
= L2 PRy 2y Xpm(Tmeyy)r | Xp#Xp=t) P, (X #X,=0)}
{z P (X
t=0 £

oo t+(1-c;, (t))r

={Z P (X <
o 22 2 TR

v

12 38 Xpm(mey () e X 4= )P (X 4, =) )

| X]+X2=t)'P2(XI+X2=t) L

N(t c (t) r) :
* 14 ’ k=1
= Z « P + =
{t 0 (El’:t—l) ’ E(X] x2 t)}

ENCORRIEE

From Theorem h.Z.L; the proof is completed.

(8) Some Properties of the Procedure th
We now discuss some properties of the rule th. For p € Q,

define

pﬂ(i) = PE‘.{RM selects‘ ﬂ(i)}
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Theorem h.2.3, pEfi) is { ¥+ in P; when all other components of p are
fixed.
4+ in P; (j#1) when all other components 6F'E

are fixed.

- Proof. ﬂE(r)_ ﬁE(th selects “(i))

| [x+(l-clh)r]
= I (r+x-l)prq§ I'; y' (Tl Pt qY
xX=0 X i j=] y=o b j j
#i
x+(l-c|h)r
K T(r + [ J+1)
- (r+x l) rox » 14
: P 9] T .
x= j=1 xt(1=cpy)r
J#i F(r)P([—'cLl_ﬂ +1)
1
o xf(l-clk)r]
PN 14
f Tt (1-¢) dt .
0

It is obvious that pzfi) is increasing in pj(j#i) when all other

components of p are fixed. On the other hand, pEfi) can be written as

pB_(i) = Epi f(x; Plov--’Pia---’Pk)

X+(]'C]l‘) r

]
R k “14 Fiv-1. r R
where f(x; p],...,pi,...,pk) = I z (Y prqY and P;
J#i

denotes that p; is deleted. Note that f(x; p],...,;i,...;pk) is a
non-decreasing function in x and the cdf Fp(x) of a negative binomial

random variable is stochastically increasing in I1-p. Then for

< e
Pi S Pp»
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. © . '
Epif(x; p]’.'.'pi’....’pk) = xio[f(’(; pl’.."-pii’...’pk)
\ A~ ’
_ - fx+1; pl"‘..’pi’”.’pk)] Fpi(X)
o
> I [f(x; pyoeee PryeeesPy)
<=0 1? sPio Py

- fx+l; p],...,ai,...,pk)] Fp;(x)

= Epi‘f(x; p."- ..’pi ’.o LA ) ’pk) [

Hence pEfi) is non-increasing in P when all other components of p
are fixed.

Corollary 4.2.1. For every pe Qand 1 <i <j <k, pE(i) 3p2(j).

Proof. The proof follows easily from the above theorem hence is
omitted. We also have the following corollary.

Corollary 4.2.2. For every pe Qand 1 < j <k,

| t se <
gEleh does not select “(]))-Pp(th doe§ not select ﬂ(j)).

Remark 4.2.1. It also follows from Theorem 4.2.3. that pefl), the

probability of a correct selection, attains its minimum when PpseessPy

tend to Py from above.

4.3 A Conditional Subset Selection Procedure

In this section, we use the same notation as in Section k.2,

We propose a rule RIS’ similar to the rule th except that this rule

k
is based on the total number of observations T = I Xi, as follows:
i=l
RIS: Selection_'rri if and only if
. ok
X. > cio(t) max X, = (l=c,.(t))r, given I X. =1t
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where t > 0 and 0 j_cls(t) < 1 is chosen to satisfy the basic probability
requirement. For fhis rule R 15° we obtain an exact result for k = 2
in'Theorem L.3.1. For k > 3, we have a lower bound for the probability
of a correct selectlon in Theorem 4.3.2,

Theorem 4.3.1. For a given p* (F'< P* < l) k =2, and any t >0, let

(t) be the largest value such that
€15

N(t, epg(e), 1) > PFPTHET) | C (h3a0)
Then, inf P (CS|R ;) = inf P 5 (CSIR ) > P,
pee B - pEQ
: tcls(t)-(]-cls(t))r
Proof. Let D(t) = < T > , where < a > denote the

smallest integer > a, then for'any pe g

" C5IRi5) = Py X1y 2 €15(8) Xy = oy g(e)r | X o pyee)

| tc'5(t)-(l_-c|5(t))r |
B U R o & [ Xy * X(g) = ©)
t
() 2N T X = )
= t
XEO P (X(l) = X, X(Z) = t‘X).
o rexel r+t;x-
_4x=§(t) ) D) p, q] p2 q2
= t -- i
XEO (r+: I)(r+t i I) p;,q? p; q§ X
t
5 (r+x-l) (r+t:x-l) 2%
= x=[t)(t) - il where A\ = L
3 (TP, (FHEx=ly 2

x=0 X t=x
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D(t)-1 '
5 (r+:-l)(r+:::-l) A X .
= {1+ x:O : b
r+x=1, r+t=x=1, ,x
xég(t) O D0 ) A
=+ o)} ' (4.3.2)

By differentiating ¢(\) with respect to A, we get

¢'(A) = ] , {D(g)-]x(r+x-l)(r+t-x-l)xx-l}
| (o (elyrreeelyxgz | w0 X B
X=D(t) X t=x

t .
i=§(t)(r+:-l)(r+:::-l) Ax}

t
_'{ z.x(r+x-])(r+t-x-l)AX']}

-X=D(t) X t=-x
D(t)-1

. r+x=1, ;r+t=x=1,.x
SRR Ly

< 0.

Hence ¢ (1) is non-increasing in A and the right hand side of (4.3.2) is
non-decreasing in A. Since A > 1, the infimum of ngcisIS) occurs at

A=1i.e. when p, = p,. Thus inf P _(CS|R,.) = inf P _(CS|R,.). Note
| ] 2 pe [} 15 pen, B 15

‘that this infimum probability does not depend on the common value of
P| = Py = P.

For k = 2 and selected values of r and t, tableé of the constants
CIS(t) safisfying (4.3.1) are given at the end of the chapter.

Theorem 4.3.2. For p € Q,
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kKt
P (CSIRIS) > 2-k + Ez {25 P (x(,) > cls(t)x( - Q- cls(t))rlx(|)+x( =
o ko k
. PR(X(I):"X(_J') =2, izl Xi=t)/PE(i£] X, = t)}

Proof. The proof is straightforward and hence omi tted.

*
: * * x -
Theorem 4.3.3. For given P*, 1< P* <1, let Py = 1-d2F g cp <y,

let cls(l) be the largest value such that

oo ' * 2r+f-1
N(g, 615(2), r) > P, ( 2 )

If’_CIS(t) = min'{cls(z): 0 < % < t}l, then

inf P_(CS|R, )Z_P*.
pefd B

Proof. It follows from Theorem 4.3.2. that for pew,

"plCsiiig) 2 2ok gz{é Py Ky 2 €450y~ (0D Ty ot )
k k
. PR(X(|)+X(j)=£, iElxi=t)/|¢'2(-i§I Xi=t)}
k ' t
> 2-k+ Ezfzgo P (x(l) > cIS(z)x(J) (1~ cls(l))r X1 )-2)

k
X.=t)/P (T X.=t)}
i=1 ! =1 !

nhemx

Py gy

and from Theorem h.3.1., for any j, j = 2,...,k,

inf P (X(]) > ¢ 5(2,) X(3) " (l-cIS(l))r | X(1) +X(j) = 2)

pef
= inf P (X, > 2) X, = (=c,())r | X, + X. = 2)
};_29 p%1 2 158 X ‘5 %
N(l c (R.),'I') *
= 15 > P,
(2!'*’2']) -2 '

L
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" we have

k t K '
P (CS|R,.) >2=k+ T I P, = P (X, \#X;.\=%, I X.=t)/P (L X.=t
e = = T N L (D O Bl A

x~

! * *
= 2-k+(k-1) P, = P,

"Thus the proof is completed.
*
Hence, for each k, P, Theorem L4.3.3. guarantees the existence of

cls(t) for the rule Ry5 and gives a method to find CIS(t) for given

I Mmx

' *
X; = t such that PEfCSIRIS) >P foranypeQ.

=1

An Upper Bound on the Expected Subset Size for R

15
For the procedure RIS’ the subset size S of the selected subset is

a random variable which takes on only integer values from 1 to k,
inclusively. For any fixed values of k, and P*, then expected size
ofythe selected subset is a functiqh of the true configuration

B = (Pyseeesp).

t+(l-c]5(t))r1

) t c]5(t)'(l-c]5(t))r
1 + c‘5(t) .

T >, b= [

(t) i

" Lemma 3.3.l. For k=2, a =

15
1

sup E (S|R,.) <1 + ,
peft E 15 Crtx=1y retex-1
D (Tl (el
1+ x=b+1
b
rex=1, r+t=x-1
LT
9

" Proof. For pef, let A o then A 2_1

2
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e (SIRy5) = Py (X(yy 2 cls(t)x(z) (1=e 5 (0))r1X 1)+ (5)=t)

o+ ﬁE(X(Z) 2 ¢5(t) X(])-(l-cls(t))rlx(l)+x(2) = t)

Iy : tcls(t)-(l-cls(t))r
TR 2T I X
o wrl=ep(e))r -
K ST | X% 9
te, (t)=(1=c, o (t))r —t+ (1=, o ()
= : 15 15 ’ 15 .
1+ PP_( 5, (0 Xy £ e X(1)*X(2)=t)
b _
r+x=1, r+t-x-1 ro t-
xza ( X )( t"X ) p] q] p2 qz x
o= ] -+
E o rix=1y rét-x-
O D o] ay ey ay7
; (r+x-l)(r+t-x-l) 2%
x=a X t-x
=1 + - -
.t Fx=1y r+t=x=1, .x
I
= ] + '
a-l Fx=1y r+t=x=1, ,x b rax=ly rétex-1
2 OISR 1 (T ¥
1+ X + X2
b b -
r+éx=1, r+t-x-1 X r+x=1, ;r+trex-1 X -
2O s Thh

(4.3.2)
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t

[+

5 (r : )(r+: : I) 2 5 (r+x I)(r+t-x I)A*
x=0 x=b+l X tx
5 and h(}) =
r+x=1, ,rtt=x-1 X r+x=1, r+t=-x-1,,x
T A Gl T o I

X=a

Then, by differentiating g(X) and h(}) with respect to A, it is easily

seen tha

t g(A) is a non-increasing function of A, h{(X) is a non-

decreasing function of A. Hence, from (4.3.2) the Lemma follows.

2+(l-c]5(2))r

Theorem 4.3.4. For k > 2, 0 <2 <t, let b(2) = [ T CIS(I)
e, (R)-(1-c,.(2))r
_ 15 15
a2) = T ¢, >
k 1 . ,
sup E (SIR ) <z max {1+ T - }
pefe P 0<<t 5 (r+x-l)(r+§:x-l)
| 4 X5b(8)+1 X X
b(2) r+x=1, r+f-x-1
AN Tl
x=a (%) X x
Proof. For pE S
k ’ " k
EE}S|R]5) = izl Paﬁx(i) Z-CIS(t) ?:? X(j)-(l-cls(t))r | iz] X; = t)
L X ) (t)r] > )
<e— I L P (X > e, (t) X,ov=(=c,(t))r| Z X, =t
=%T iy e (1) =715 (J ) 15 (2
] k t
= ” lz‘ Jil zf P (x( )>c]5(t)X( ) -(1- cls(t))r

(k-I)P (T X, -t)
Ei=1
Xy gy™ s¢§,j'x(s)=t'“)
‘ '5 rore o ()X, .\ (1- ( ))rl
X >c t (ol t)ir
k . (i)="15 ()" 15
(k'l) PR( v Xl=t) i=] J*' JLHO

=]

X(')+X(J)-2)°PE(X(')+X(j)"2’. X(S)-t 2.)

s#f j



108

|
) r z{p
(k=1)P ( ; X.=t) i< 2=0 (x( )>c15(t)x( i~ (- C|5(t))r]
Ry 1 |
Xy * X =
F P () 2 o5 Xy (e (e elx gy + x5y = )
k
el X T4 I X

(i) = ¢

1

Z Z { [P (X > X
T (k-1)P_( X x.=t) 1<J 2=0 "2 (i) 2 S15(8) X5y
Bimy | v

- (l-cls(t))rlx(i) + x(j) = )

+ ?P_(x(j) 2 ¢5(t) x(i)-(lfc,5(t))r|x(i)+x(j) = 2)1}
k
TR¥m gy e E Km0
< . ; L ; {1+ % l r+x FHg-x-1
- _ i<i 2=0 ( - =X= .
(k'I)PR(iEI Xi—t) 1<) - X=b(2)+| X )( 2=x )
' b{2) r+x-1, ;r4+f=x-1
L X ) ( L-x )
x=a (L)
. ' k
SR T E Km o)
by Lemma 4.3.1.,
< E%T- : vmax {1+ z ! }
- i<j 0<f<t - (r+x-l r+£-x-l)
- X 2=-x
1+ x=b(2)+1
b{2) r+x=1, ,r+-x~1
(TRl (rHexed,
x=a(g)

The proof is thus completed.
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L. Selection of all Populations Better Than a Standard

Case 1. Knan Standard.

We consider the problem where k negative:binomial populations .
wi;h parameters Fis P; (i =1,...,k) are to be compared with a standard
ﬂo with parameters ror Pg where Po is the known value of the pfobability
of a success in the standard population. Since P; fs-the'probability
of a sucéess, we define ur to be better than L when p; > Po* Let
Xi denote the number of failures before the rith success is observed
in population ﬂi. Then for selecting all populations better than the

standard we define the following procedure:

RD ¢ Retain in the selected subset those and only those populations
] . .

m. (i =1,...,k) for which

X. <P, +D;. (4.4.1)
Let 2] and 22 denote the number of populations with'pi g_po and P; < Pos
respectively, so that 21 + 22 = k. In general, 21 and 22 are unknown,
Then the probability Pl of a correct decision is given by
zl
Py = T PIXp <P, + D)
i=1
. jz'l [po+Dl] ri+x-l 'ri «
=1 { z (', J)pf af}
i=1 x=0 : .

where primes refer to the £, populations with P; > P,e letms= [po+DI]'

Then

2 -1
= | i _e\m
Ve 1 eyl ¢ 0" e
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A lower bound on fhe above probability is obtained by setting P; = p;

(i =1,...,k) and 2]'= k. Hence the inequality determining D, becomes

[p,+0,] Pobxel | - .
A LS | (h.b.2)
X= .

==

and the solution is the smallest value of D, satisfying (4.4.2). If

ro=r (= 1,...,k), then (4.4.2) reduces to

[p *0,] 1
r+x-1 r x *k
oz €% ) pga, ().
x=0
This is easily solved'by consulting a table of cumulative negative

binomial probabilities.

Case 2. Unknown Standard.
The assumptions are the same as in case 1 except that P is not
known. Let Xo be the number of failures before the roth success is

observed in population Ty Consider the following procedure::

RD : Retain in the selected subset those and only those pbbu!ations
2

m (f =1,...,k) for which

) 1 , .
Xi -<—FZ-XO + (-5;- 1) e, (4.4.3)

The prbbability P2 of rétaining all the 2] populations with p,

>.
I—pO

attains a minimum where P; = Po (i=1,...,k) and 2] = k and is given

by

[3= x+ (3= ~1)r. ]
o k. 2 2. ri+y-l r. y r°+x-] r
P,(p,D,) = £ T { z ( e a’H(

2072 x=0 i=] y=0 y o o X
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Then the desired value of D, for the rule defined in (4.4.3) is the

largest number for which

0(:;(121 P,(p» D,) > P . | | (b.h.b)
For vy = 1 (i = 0,1,0.0,k),
i [},—2- x+(-'D-2--|)r1 |
P2 (s (e | I AR b
= {P(x, < =X, + == DN

)
2 1 2
. * * * Kk
For a given P, let P, = (P")" and for any t >0, let Dz(t) be the largest
value such that | |

2r+t=1, g*
N el

N(t, Dz(t), I‘) 2_ ( 1

where N(t, Dz(t), r) is defined in (k.2.8). Let D, = inf {Dz(t): t > 0}.
Then a conservative value of 02 is obtained such that P2 z_P". The
arguments for the above statement are essentially the same as those in

Section 4.2.

k.5 AEElicatidn
If a structure consists of n components it will be called a

structure of order n. The state of all components of such a system

will be described by a vector x (x‘,...,xn) where X, = 1 means

i th component performs'' and X; 0 means “ith’component fails''. In

reliability theory, structures satisfying the following conditions

(i) 8(Q) =1 where ) = (1,...,1)
(i) @) =0 where 0 = (0,...,0)

(iii) g(x) > #(y) whenever x; > vy;, I = 1,..e,n
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are called coherent (see Birnbaum, Esary and Saunders [171) or monotonic
' (seg Barlow and Proschan [5]).

Now consider k independent structures each of thch consists of
n components in parallel. We put each of the components of the
structure on test. Suppose a component might not perform at the first
trial. Let Yij denote the number of failures of the jth.component of
the structure m before it performs, j = 1,2,000,n, i =1,2,...,k.
It is easy to see that Z, = min(Yil,...,Yin) is a geometric random

n
variable with parameter P =1- T (l-pij) where Pij is the
j=1

probability that the jth component of the ith structure will perform.
Hence, the problem of selecting the structure with the smallest
reliability is the same as that of selecting the geometric population

with the smallest parameter as discussed in this chapter when r=1,
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