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Summary

A Lafge Deviation Approach to Asymptotic
Efficiency of Selection Procedures

For i = i,...,k, consider a sample of size n from f(x - ei),'where f
is known. The problem is to select the single population with the largest
location parameter. Assume that the difference between the two largest

parameters is A > 0. For unbiased selection procedures, an optimal value

this optimal value as A - 0. The scale parameter case is similar. Examples
of the computation of the rate of convergence are given for procedures based
on sample means or on sample medians, and also for a nonparametric procedure

introduced by Bechhofer and Sobel.



A LargeiDeviation Approach to Asymptotic_
Efficiency of Selection Procedures®

(Efficiency of Selection Procedures)

by
John A. Gaynor
Purdue University
1. Introduction and summary. Consider k univariate popﬁlations
Tyree Mo whefe for i = 1,...,k, ™ has density g(-lei) with respect.to
Lebesque measure.. Let %= (el,,..,ek) be the unknown ve;tor of real-valued
parameters. Let Xii""’xin be a sample from L i-= 1,..;,k. Consider
selection procedures (o% sample size n) which select one of the k populations.
The selection i; based on the samples, and the goal is to choose the
population corresponding to the largest par#meter.
Two cases will be considered:
'(l) Location parameter case: g(xlei) = f(x - Si), i= l,...,k; and
f is known. Assume that 6, = max {ei} and that min {6

k
i i '
The latter assumption is motivated by the "indifference zone'" approach of

- ei} = A } 0.

Bechhofer (1954). Without loss of generality, assume that the true value

of 3 is
-5
(1.1) 8y = (0, B8ysenus8y 1,4,
where
(1.2) 8, <0 for i = 2,...,k-1.
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(2) Scale parameter case: g(x]ei) = (1/ei)f(x/ei), ei >0, 1=1,...,k,
and f is known. Assume that 8, = max{6.} and that min {ek/ei} = A8 > 1, The
' ’ i i ‘

latter assumption is also motivated by the indifference zone approach.

- . - + -
Without loss of generality, assume that the true value of 8 is

>
(1'3) eo = (1: 62,...,91(_1, A),
where
(1.4) _ ' 0 <9, <1 for i = 2,...,k-1.

1

>

Throughout this paper, 60 will satisfy either (1.1) and (1.2), or (1.3)
and (1.4), depehding on which case is being considered.

Let R be a selection procedure and define P(ilg, R, n) as the probability
that proéedure R selects "i when g holds and the sample size is n. Every -
selection procedure R considered in this.paper is assumed to be eventually

unbiased in the sense that it satisfies the following property:

(1.5) If Gi 2{6j, then P(i|6, R, n) > P(j |8, R, n) for n sufficiently

large, i, j = 1,...,k.

For any selection procedure R, define

_ > -1 >
(1.6) - . ¢(8;, R) = lim sup n " (-log P(Eleo, R, n)),

)
where E denotes ferror", i.e., selection of some T i=1,...,k-1.
Similarly, define é and ¢, if the limit exists;

Let R1 and R2 be selection procedures, and assume:cfgo, Ri) exists,
i = 1;2. The ratio c(go, Rl)/c(gO,Rz) = r, say, can be interpreted as the
limiting ratio of the sample size for R, to that for R1 as the common
probability of error for the two procedures approaches zero. So r is a

: -5
measure of the asymptotic relative efficiency (ARE) at 60 of R1 with respect



to R2. This is essentially the definition of ARE introduced by Dudewicz (1971)
in the location parameter case. It is analagous to the ARE for tests defined
by Hodges and Lehmann (1956, p. 330). Another measure of ARE for selection
procedures is 11m(r), if it exists, where the 11m1t is computed as A - 0 in
the location parameter case, and as A + 1 in the scale parameter case. This
limit may still depend on 62""’6k-1'

For any procedure R, the quantity c(gb, R), if it exists, can be used
to get‘an approximation to the sample size n required for procedure R to
achieve a specified error probability P': n ~ -log;P’/c(gb,R). The ratio
tends to 1 as n > ©, The accuracy of this approximation has been studiéd by
Dudewicz and Zaino (1971) in the location parameter case for normal populations.

Section 2 of this paper contains some Preliminary results and definitions.
In Section 3, an upper bound is obtained for E(go, R) iﬁ the location
parameter case.. A def1n1t10n of asymptotic eff1c1ency of a selection
procedure is given, and it is shown that if an estimator is efficient in the
Bahadur (large deviation) sense, then the selection procedure based on that
estimator is also efficient. In Section 4, the results of Section 3 are
shown to hold for the scale parameter case also. S¢ction 5 contains examples
of the computation of ¢ for selection procedures based on sample means or ou

sample medians,_and also for a nonparametric procedure introduced by Bechhofer

and Sobel (1958).

2. Preliminary results and definitions. The following well-known
lemma will be needed.
LEMMA 2.1. For n = 1,2,..., let Pn denote a probability measure on
. v

(R, Bm), where R" is m-dimensional Euclidean space, and B" is the u-field

of Borel subsets. If A£n) € 8" for i=1,...,s and n = 1,2,..., then



s v
. Agn)) = max{lim sup n~! log Pn(Agn))}.

lim sup nl log P_(
©i=1 1 N0

n-o
A similar identity holds for "1im inf" under the additional assumption that
for some fixed j, max{Pn(Agn))} = Pn(A§n)) for n sufficiently large.

1
The proof is based on the fact that

s
max P (Agn)) <P (y Agn))< k max{P (Agn))} forn = 1,2,....
. o noi — 'n-, i 7— . oni
i i=1 i : :
Since E is the union of the events {ni is selected}, i = 1,...,k-1, it
follows from (1.5), (1.6), and Lemma 2.1 that
| - . -1 + ,
(2.1) c(eo, R) = lim sup n “(-log P(1]6,, R, n)),
. v _ s .
with similar results for E_and c.
Now consider a selection procedure R based on k independent statistics
T. (XiyreeesX. ), i = 1,...,k, which selects 7, if T. = max{T. }. If there
in*il in . 1 in 3 jn
is a tie for the maximum, one of the tied populations‘is,selected at random.
- >
To compute c(eo, R) for such procedures, only ™ and T need to be considered.
To see thls, let q, = P(Tln > Tkn) + (1/2)P(Tln =T

kn)'
probability for procedure R if ™ and ™ are the only populations. Then

So qn is the error

-
PL[8,, R, n) < q, < P(E[6), R, n). It follows from (1.6) and (2.1) that
> S , - >
c(®,, R) = lim sup n 1(-log qn). In particular, c(8,, R) is independent of
0 e 0 .
k. Similar conclusions hold for ¢ and c.
Define I(a,B) = [g(x|a) log[g(x|a)/g(x|B)]dx and J(a,8) = I(a,B) + I7,a).
I and J are measures of information defined by Kullback énd Leibler (1951).

Note that in the location parameter case, I(x,8) = I1(0,B-a), and in the scale

parameter case, I(a,B) = I(1,B/a).



3. Locétion parameter case. Assume g(xlei) = f{x - ei), i=1,...,k,
and f is known. Let 36 be fixed and satisfy (1.1) and (1.2), with 4 > 0.
THEOREM 3.1.: For any evéntually unbiased selection procedure R,
(8 R) < J(0, 4/2). |

&> s
PROOF. Consider a test of the hypothesis HO: 0 ='60 against the

1
on the n observations (le,...,xkj), j=1,...,n.

> >
alternative H,: 6 = (4/2, 92,...,9k_1, A/2) = 01, say. "The test is based

Under HO'the density function of the observatidns is
k-1

>
density function is gl(ij = £(x; - A/DE(x, - 8/2)

-
f(xi - ei), where x = (xli

:i.,xk). Under Hl the
122 f(xi - ei)., Lemma 6.1
of Bahadur (1971) implies that for any B, 0 < B <1, if for each n, an(B)

is the infimum of all sizes of tests with power 1-8 against H., then

Lin 0"} log a,(8) = -fg, B logle, (3)/g, (1% = 30,8/2).

n-+e

1’

Now consider any selection procedure R satisfying (1.5). R can be
viewed as a test of H0 versus H1 by rejecting HO if ni’is selected, and
accepting HO otherwise. The power of this test agaiﬁst H1 is P(llgl,R,n) > 1/k,
for n sufficiently large, by (1.5). Therefore, taking 8 = 1 - 1/k, it follaws
fhat P(llgb,R,n) > an(B), for n sufficiently large, since P(IIEO,R,n) isithe
size of the test based on R. Therefore, lim inf n"1 log P(llgO,R,n) > =J(0,4/2),
which implies,E(gb,R).i J(0,4/2). This com;;:tes the proof.

It should be noted that the upper bound in Theorém'3.1 is independgnt

of 62""’ek—1’ and so the bound in uniform for all values of 6 satisfving.

0
(1.1) and (1.2).

In view of Theorem 3.1, if J(0, 4/2) is finite, define the (asymptotic)

>
efficiency at 90 of a location parameter selection procedure R as



(3.1) e(eo, R) = 1im inf c(eo, R)/J(0, A/2).
. A+0

Then 0 < e(eo, R) <1 for all R and e Note that e(eo, R) may depend on
the values of 92,..., k-1° When this is not the case, then e(gb, R} will
be written more'simply as e(R).

Now con51der selection procedures based on estimators T = Tin of 8,5
where T T(x "'?Xin)’ i=1,...,k, for\some‘estlmator T = Tn' As shown
in Section 2, for such procedures it is sufficient tovcbnsider the case of
two populations. The efficiency as defined in (3.1) is 1ndependent of
62,...,9k 1 So let 6 = (0,A). Then the estlmators are T, and T

1
In the f0110w1ng theorem, T is assumed to be translation equivariant,

i.e., if b is a constant, then T(X 1tbs X ln + b) = T( 11,,,,,x1n) + b.
) N ->
THEOREM 3.2. Let P = p(-lao). Assume that for a > 0,

lim sup 1lim sup (azn)-llog P{T1 > a} = K,

o0 n->e

. . 2 .-1 _
lim sup 1lim sup (a“n) "log P{Tl.i -a} = K,,

a0 niee
~® < K1 + K2 < 0; and T is translation equivariant. Then
lim sup 1lim sup (A n) log P{T1 > T2}

A0 N0

= lim sup 1lim sup (Azn)‘llog P{T1 > T,} = KIKZ/(Kl + K.

A+O N+
PROOF. Define H{A} lim sup 1lim sup (A n) log P{A}, for any event

A0 N0
- A. It is sufficient to show

-_(3;2) ' H{T > Ty} > KK /(K + K

2)
and
(3.3) H(T, > T,) < KK/ (K + K.



- Let S = {(tl,tz): tl.i tz}, and let S0 denote the interior of S. Let 8 < 0

be arbitrary, and define

Hy = Lttt 2 RypB)o/ (KpKy), t, < (Ky-B)/ (K sk} 8O,

™

Then H{T, > T,} > H{(T,,T,) € wB}

H{T1 > (K2+‘B)A/(K1+K2)} + H{T2 < (KZ-B)A/(K'1+K2)} |

HIT) > (Ky*8)8/ (K +K))} + HIT,-8 < - (K, +8)8/ (K, +K,))
[(K*8)/ (K KT K, + [(K;+8)/ (K +K )] 2K,

KlKZ/(K1+K2) + 0(1) as B + 0.

Since B is arbitrary, (3.2) is proved.

To prove (3.3), define S1 =SSN Ktl,tz): t, < 0},

S - Sl_— SZ' Since S = S1 U 32 U SS’

S, =8n {(tl,tz): t, > A}, and S,

2

it follows from Lemma 2.1 that

. -1,
>T, max lim sup n log‘P{(Tl,Tz) € Si}’

n-rw 1 n»o

lim supvn_1 log P{T, > T}
Therefore, it is sufficient to show
(3.4) : H{(TI,TZ) ESi} i_Kle/(K1+K2) for 1 = 1,2,3.

For S;, H{(T),T,) € S} < HIT, < 0} = H{T < -4} = K, < K, K,/ (K #K,) .

2)'

It remains to prove (3.4) for i = 3. Let M be an arbitrary positive

Similarly, H{(TI’TZ) € SZ} j_H{T1 > A} = Kl j_Kle/(K1+K

integer greater than 1. Consider the M quadrants Vl,...,VM,>where

. ’ - M M
VJ. = {(t,t,): 'ty 2 (G-1)a/M, t, < ja/M}. Then S, = j[il(vj N s c J_[ilvj..
So H{(TI’TZ) € 83} i_maxH{(Tl,Tz) € Vj}. Therefore, to prove (3.4) for

t = 3, it is enough to show that for cevery € > 0, there exists a positive

integer M = M(x), such that



I A

(3.5) H{(TI’TZ) G_Vj} Kz/(K1+K2) + e for j =.1,...,M.

Let € > 0 be arbitrary. For M sufficiently large,

HU(T|,T,) € V,} < KT, < a/M} = H{T, < (1-M)a/M}

=-[(1—M)/M]2-K2 f_K + e <K Kz/(K +K2) + €.

A similar result holds for VM' For j = 2,...,M-1,

H{(Tl,TZ) € vj} = H{T, > (5-1)A/M} + HIT, - & < (j-M)a/M} =
_ . 2 o 2
(3.6) [G-1)/M]° K + [(G-M)/M]

Since max {(x-l/M)2 K, + (x-l)2 K,} occurs for x = (K /M + K.)/(K +’K2),

il 1 2 | 1 2/ ,
(3.6) is Iess than or equal to [K2(1-1/M)/(K1+K2)]2°K1 + (K, (1/M-1)/ (K +K,)]
which goes to'Klkz/(K1+K2) as M > =, Therefore, for M sufficiently large,
HI(T,,T,) € Vil < KK/ (K#K)) + € for j = 2,081, This completes the
proof of (3.5) and of the theorem.

Assume now that
(3.7) I(0,0) = Ioa /2 + 0(a”) as @ + 0 for some constant IO > 0.
. p . 2 2
This implies that I(«,0) = I(0, -a) = IO a”/2 + o(a®) and so

(3.8) _ J(0,0) =1 a2 + o(az) as o + Q,

0

It follows from the proof of Theorem 6.1 of Bahadur (1971) that if T is a

con51stent estlmator, then for o« > 0 and P =

(3.9) lim inf lim inf (a’n) llog P(T, > o} > -1 /2
a0 n--e
“and
.. .. 2 .-1 .
- (3.10) lim inf 1lim inf (a"n) "log P{T1 < -al > -10/2.

a0 N



This implies that
(3.11) m1n{K1,K2} 3_-10/2,

where K1 and K_2 are defined in Theorem 3.2.

In view.of (3.9) and (3.10), define the Bahadur (asymptofic)'efficiehcy
of a consistént estimator T as ‘
(3.12) eO(T) = 1lim inf 1lim inf [—2/(Ioa2n)]19g.P{lT1, > al.

o0 nie . '

We then have'the'following theorem.

THEOREM 3.3. Assume that T is a consistent estimator and that (3.7)
holds. Let R be the selection procedure based on T. Then under the

assumptions of Theorem 3.2, the following five statements hold:
(1)_ eO(T) = -2 max{Kl,Kz}/IO.

(ii) e(R) = ¥4/IO[K1K2/(K1+K2)].

(iii) o j_eo(T) < e(R) <1.

(iv) ey (T)

() eO(T)'

e(R) iff K1 = K2 or KlK2 = 0.

1 iff e(R) =1 iff‘K1 = K2 = —10/2.

PROOF. (i) follows from (3.12) and Lemma 2.1. Since
Pir, > T,} f_P(ElgO,R,n) < P{T, > T,}, (ii) follows from (3.1) and (3.8)-
(iii) and (iv) are proved easily from (i) and (ii). It remains to prove
(v). Clearly, K, = K, = -I /2 implies eo(T) = 1, whiéh'implies e(R) = !.
So it is enough to show that if e(R) = 1, then K =.K

1 2

K1 = ~aIO and K2 = -bIO. By (ii) and (3.11), 1/2 > a, b > 0. Then

—10/2. Let

| v

1 = o(R) = 4ab/ (a+h), which implies that a = h(4a-1) < h_und b = a(4b-1) < a.

Therefore, a = b = 1/2. This completes the proof. -
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4. Scale parameter case. Assume g(xlei) = (l/ei)f(x/ei), ei > 0,
i= 1,...,k,vand f is known. Let gb be fixed and satisfy (1.3) and (1.4,
with 4 > 1,

THEOREM 4.1. For any eventually unbiased selection procedure R,
E(EO,R) < J(1,4%,

The proof is analagous to that of Theorem 3.1 with

L
162,°-f:ek_1’A2)°

o 3
6, = (4

>

N ,
If J(1,4% is finite, define the (asymptotic) efficiency at 60 of a

scale parameter selection procedure R as

4.1y | e(?;o,R) = lim inf ¢(6,,R)/J(1,8%).
. A1 |

> - ->
Then 0 < e(GO;R) < 1 for all R and 60._ If e(eo,R)-does not depend on the
“values of 62,...,6k_1, then the efficiency will be written as e(R).

Now consider selection procedures based on an estimator T = Tn' As

in the location parameter case, it is sufficient to consider the case of two

>

populations. So let 90 = (1,4), and let T, = T. and Tév= T

1 In n be def;ned

2
by Ti = T(xil”"’xin)’ 1 =1,2.

In the foilowing theorem, T is assumed to be scale equivariant, i.e.,

if b is a positive constant, then T(bxll,...,bxln) = beT(X X, ).

117"
o . ,
THEOREM 4.2. Let P = p(-]eo). Assume that for a > 0,

in

lim sup lim sup (azn)—llog P{Tl-l >a} =K
o0 ne

A
1
Q
—
!
~

lim sup lim sup (a2n)-l1og P{Tl-l <

o0 _ n-reo

-® < K; + K, <0, and T is scale equivariant. Then

lim sup lim sup [(A—l)zn]_llog P{T, > T,}
A1 n-w . 2 -1 :
= lim sup 1lim sup [(4-1)"n] "log P{T1 3_T2} = Kle/(K1+K2).
A] n->e
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The prbof is analagous to that of Theorem 3.2.
Assume now that
b 2 2 |
(4.2) I(1,a) = Io(a—l) /2 + 0(a-1)° as a + 1, for some constant
Io > 0. Then I(a,1) = I(1,1/0) = I (a-1)%/2 + o(a-1)2 as @+ 1. So

(4.3) I,a) = Iy(e-1)% + o(@-1)% as o + 1.

It follows from the results of Bahadur (1971) that if T is a consistent

>
estimator, then for @ > 0 and P = P(-Ieo),

(4.4) lim inf lim inf (a?n)”! 1og P(T,-1 > a} > -1 /2
a0 oo

and

(4.5) lim inf 1lim inf (a’n) llog P(T)-1 < -a} > -I /2.
a>0 n->e

This implies that
(4.6) -'min{Kl,KZ} 3_-10/2,

where K1 and K2 are defined in Theorem 4.2. |

Define the Bahadur (asymptotic) efficiency of a consistent estimator
T as | |

-éO(T) = lim inf lim inf [—2/(Ioa2n)]10g P{lTl—ll > al.

a>0 n-

We then have.thé:following theorem.

THEOREM 4.3. Assume that T is a'consistent estimator and thaf (4.?)
rholds. Let R be the selection procedure based on T; Then under the
assumptions- of Theorem 4.2, statements (i)-(v) of Theorem 3.3 hold.
The proof is analagous to that of Theorem 3.3.
“In the‘special case where the support of f is the set of positive real

numbers, all of the theorems of this section follow as corollaries to the
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theorems of Section 3, since, in this case, the scale parameter case

reduces to the location parameter case by taking logarithms.

5. Examples. In this section we will consider three selection
procedures Rl’ Ré, and R3, where R1 is the proceduré based on the sample

is a
3

means, R2 is the procedure based on the sample medians, and R
nonparametric procedure proposed by Bechhofer and Sobel (1958).v R

3 is
defined as follows: For i = 1,...,k, let xil,...;xin be a sample from m. -

For i = 1,...,k; j =1,...,n, define

1 if X,. = max{X,.,...,X .}
(5.1) T.. = i 1) My
1] 0 otherwise,
and
-1 Ti
(5.2) T. =n T...
i j=1 ij

Then R3 selects ™ if Ti = max {Tj}' As usual, in case of ties, one of the
_ j ,

tied populations is selected at random. RS was considered by Dudewicz (1971)

in this context.

. ) > : .
To compute c(eo,Ri) for i = 1, 2, it is sufficient to consider the case

. >
of two populations. However, c(eo, R3) depends on k.

Procedure Rl; Location Parameter Case

Let Xl,...,Xn and Yl,...,Yn be samples from f(x) and f(x-A), where
> . - -
A > 0. So 80 = (0,4). Let X and Y be the sample means. Then

P(X > ¥) = p(n"!
i

o~

1[xi - (¥; - 0] > A} = P{Z > A},

where Z is the mean of n independent random variables, each with the same

tX
distribution as Xl'- X Let m(t) = E(e 1). Then by Chernoff's Theorem

ton
(1952), if T and p satisfy m'(t)/m(t) - m*(-1)/m(-1t) = A and

. . ) -+ . - . '
p= oexp(-At)m(t)m(-v), then c(OO,Rl) = -1im n 1log P{X > Y} = -log .
, f1ovoo ,
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In the special case_where f is symmetric about»O;‘m(t)‘= m(-t) for all
t. So if T and p satisfy m'(1)/m(T) = A/2 and p = exp(-At)mz(t), then
c(go, Rl) = -log p.

For normal populations (f(x) = (2m) ‘%xp(—x /2)), it can be shown that
c(gb, Rl) = J(O,A/Z) = A /4. (This result for ¢ was obtained by Dudewicz
(1969)). So equality holds in Theorem 3.1 for all A, and, by (3 1),
e(Rl) = 1. The case where the normal populat1ons have common variance
02.# 1 reduces to the standard normal case if 60 is taken to be (0,40).

For double exponential populations (f(x) = exp(-lxl)/Z), it can be -

shown that
c(8,R) = (4482 - 2 - 2 1og[((@+a})% + 2)/4]
and e(R)) = 1/2.

Procedure Rl; Scale Parameter Case

Let Xl,...,Xn and Yl,.;.,Yn be samples from f(x) and-(l/A)f(X/A),

+ - — - -
where A > 1. So 9 = (1,4). Then P(X > Y) = P(Z > 0), where Z is the mean
tX
E(e 1) and

of Z.,...,Z_, with Z =X, -Y, fori=1,...,n. Let n (t)
1 %Y i i 1
mz(t) = E(e 1). So by Chernoff's Theorem (1952), if t and p satisfy
' >
mi(r)/ml(r) m2( r)/mz( 1) 0 and p ml(r)mz( r),.then c(eo,Rl) log o

-X

For exponential populations (f(x) = » X > 0), it can be shown that

c(gO,Rl) = 1og[(A+1)2/(4Aj] and e(R)) =

Procedure R2; Location or Scale Parameter Case

Let X .,Xn be a sample from a continuous distribution with cdf F

1’ 0’
density fO, and median ug- Let Yl""’Yn be a sample from a continuous
distribution with cdf GO’ density go, and median Vo- Assume that G0 is

~ stochastically larger than Fo» So uy < v,.



14

This situation includes the location parameter case with Go(x) = Fo(x—A),'
A > 0, and 36 = (0,A). It also includes the scale parameter case with
Go(x) = Fo(x/A), A > 1, and gO = (1,4), provided G0 15 stochastically larger
than FO. |

Let Fn énd Gn'be.the empirical cdf's of the X-sample and the Y-sample,
respectively, and let T1 and Tz.be the respective sample medians.

- For any cdf's F and G, define T(F,G) = fsgn(F+G-1)dF. Then
(5.3) _ P(T1 > Tz) = P(Tl :_Tz) = P{T(Fn,Gn) :_0}.
By Theorem 1 of Hoadley (1967),

c(85:R,) = -lim n"Mlog P{T(F_,G) > 0}

noo
(5.4) o |
= inf [ff log(£/£))dx + [e log(g/gy)dx]
(F,G)en .
where 2 = {(F,G): [sgn(F+G-1)dF >0; F, G absolutely’;ontinuous}

{(F,G): med F > med G; F, G absolutely continuous},

and where f andig are the densities of F and G, respectively.

By Theorem 6 of Sanov (1957) (or Lemma 3.2 of Hoadley (1967)),

inf | ff log(f/fo)dx = —(1/2)10g[4F0(u)(I-Fo(u))] = H(u),
f: med F=u '
say. ,Simi;arly,
inf  [g log(g/gyldx = -(1/2)10g[4GO(V)(I-GO(V))] = K(v),

g: med G=v

-.say. Therefore, by (5.4), c(gb,RZ) inf [H(u) + K(v)]. It is easy to
' u>»v

show that this infimum occurs for u

=vanduy <cu< vy  So
c(EO,RZ)'= inf  [H(u) + K], or
| UOS_US_VO
(5:5)  c(0g,Ry) = -(1/2) sup  1og[16 F(w) (1-Fy(w))G,(u) (1-6,(w)].
u0_<_u_£v0 .
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Assume now that the following four conditions hqid:
(1) Gb(x) = Fo(x-A); FO has density fo.
(2) fo is symmetric about 0.
3 fo is unimodal. |
(4) fo/FO ié debreésing (i.e. nonincreasing) over {x: x < 0, F (x) > 0}.
Then ug = 0 and Vo = A. It is shown in Gaynor (1976) that cond1t10ns (1)-(4)
1mp1y that the supremum in (5.5) is attalned when u = A/2. Conditions
(2)-(4) are satisfied for standard normal, double exponential, logistic
(f(x)_=,efx(1+e’x)f2), and uniform (over [-1/2, 1/2]) distributions. So

in the location parameter case, we have from (5.5) that

-108[4¢(A/2)(1-¢(A/2))]"for normal populations,

-+ ~-log[2 exp(-A/Z)-exp(-A)] for double exponent1a1 populations,
c(8,,R)) =
072 log[(1+exp(-4/2)) exp(A/Z)/4] for logistic populat1ons,

~log(1- A ), 4 <1, for uniform populatlons.

It can be shown that in the normal population case, e(R,) = 2/m, and that

2)
in the double exponential case, e(R,) = 1.
Note that for normal populations with-unit variance, the efficiency of

the medians procedure relative to the means procedure is
c(eo’Rz)/c(eo’R ) = (-4/8° )log[49(A/2) (1-2(4/2))].

'This is the same as the ARE (as defined by Hodges and Lehmann (1956 equation
(3. 3))) of the 51gn test relative to the t test for testing the hypothesis
~-that the mean of a normal population is zero against the alternatlve ‘that
“the mean is A/Z.

It can be shown that a sufficient condition for conditions t3)'and (45

Cis that f'/f is decreasing, i.e., that fo is strongly un1moda1
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Procedure R;; Location or Scale Parameter Case

For 1 <i <k, 1<j<n, let Tij and Ti be defined by (5.1) and (5.2).

Let p = P{Tkl = 1}, and let q; = P{Til =1}, i =1,...,k-1. Assume fhat

9 = 9, i=1,...,k-1, and that P > q. Then q = (1-p)/(k-1). This situation

-5
applies to the location pParameter case for 60 = (0,...,0,4), A > 0. It also
+ .
applies to the scale parameter case for 60 = (1,...,1,4), A > 1, provided .
<>

P > q. For the remainder of this section,'e0 will be restricted to these

values.

If we take into account the possibility of ties; it follows from (2.1)

that

. -1 > .

-lim sup n “log P{T1 > max T'}.E.E(GO’R3) f_c(OO,R3)

ne j#1

(5.6) 1
X -lim inf n = log P{T, > max T},
n+o j#1 J
- k.
~ Define M = {x = (xl,...,xk): Z Xy =1, X, >0, all i}. For ;, E € M,

k i=1 .
ig x; log(xi/pi), where X, log(xi/pi) = 0 if x; = 0. For
Ac M, define I(A,p) = inf{I(x,p): X € A}. Let A(“)_.= {X € A: nx, is an

<+ o
define I(x,p)

integer, for i = 1,...,k}. Finally, define A1 = (X € M: X, > Xj’ o= 2,0,k

. N _
and A2 = {x € M. X, z_xj, j=2,...,k}.

Since (Tl""’Tk) has a multinomial distribution with parameter

50 = (q,...,q}P), it follows from Theorem 2.1 of Hoeffding (1965) that

lim n-llog P{T; > max T.} = -lim I(Afn),ﬁo)
n4o Jfl J N0 »

and

lim nhllog P{T, > max T,} = -lim I(A(n),ﬁ ).
. ] 2 max T, 2 Py
N> j#l N »

sinco 1im 1AM 3y = 1im 10 3 52 11 ,Po), then by (5.6),
b = lim (A5, by 2Pg)» |

N



(5'7) , c(eO’RS) = I(Az,Po) .
. . ' > > >
It is shown in Gaynor (1976) that I(Az,po) = I(x,po), where for k = 2,

X; = x, = 1/2, and for k > 2,

5.8) X = x = 24 (e2)@/p! =,

say, and X; = (1-2a)/(k-2) for i = 2,...,k-1. So by (5.7),

| . ~log[2(p(1-p)) %] if Kk = 2,
(5.9)  c(6y:Ry) = ) |
2 log[a®/ (pq)]1+(1-22) log[(1-2a)/((k-2)@)] if k > 2,

where.a is defined by (5.8). This result for k = 2 was obtained by Dudewic:z
(1971) by a different method.
. : > :
Dudewicz (1971) conjectured that C(OO’RS) + 0 as k > », This can be

verified with (5.9).
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