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ABSTRACT

This paper deals with some subset selection procedures for the largest
unknown means of k normal populations with unequal variances. The procedures
are hased on unequal numbers of observations from each of k normal populations.
Some properties of the proposed selection rules are investigated. The problem
of selecting all the normal populations with means better than a standard or
control is also considered. Again, the proposed procedures are based on
unequal number of observations from each of the populations. An application
to testing the equality of k normal means with unequal variances, as in

Behrens-Fisher problem, is described.
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1. Introduction.

Let Mo MoseeesT be k independent normal populations with unknown
. 2 . .
MeAns Uy, Hy,.eesly and variances of, 03""’°k’ respectively. Our goal is

to select a nonempty subset of the k populations containing the population
with the largest mean. In most of the earlier work (see for example Gupta
[8]) it is assumed that either the number of observations from each
population is the same or all the populations have a common variance. Very
little work has been done in the case of unequal Sample sizes and different
variances. Sitek [14] proposed a précedure for the normal means; however,
her result was shown to be in error by Dudewicz [5]. Recently Gupta and

W. T. Huang [10] and Gupta and D. Y. Huang [9] proposed some subset selection
procedures for selecting a subset of the unknown normal means. However, all
the works mentioned above are based on the assumption that the given k
normal populations have a common variance. For the case of unequal variances,
Dudewicz [4] and Dudewicz, E. J. and Dalal, S. R. [¢] proposed a two-sample
- procedure for the normal means problem.Their procedure is based on a linear
combination of the first stage sample mean and the second stage sample.

Chen, Dudewicz and Lee [1] have also made some contributions to this problem.

* This research was supported by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part

is permitted for any purpose of the United States Govermment.
**Now at the University of Malaya, Kuala Lumpur, Malaysia.



In this paper some procedures based on the overall sample means are proposed
and studied. In Section 2, two procedures are proposed and studied under the
assumption that the variances are all known. When the variances are

unknown to the experimenter, the problem is more difficult than the one
above. In this case, another subset selection procedure is proposed and
investigated. In Section 3, selection procedures for treatments better than
a standard or control are discussed. A test of homogeneity isrproposed

which is based on the range of sample means and is given in Section 5.

2. Selecting the Normal Population with the Largeést Mean.

Let Mo MoseeesTy be k independent normal populations with unknown
Means Hy, Moy e,y and variances cf, Gg,...,ci, respectively. The ordered

., are denoted by u < Uppq<e .U . Here we assume that there is no
i YRRy = 2=

prior knowledge of the correct pairing of the ordered and unordered ui's.
Let X.., X..,...,X._ be n, independent observations from population w_,
il i2 in, - 1 i
i=1,2,...,k. Based on these observations, our goal is to select a
nonempty subset of the k populations so as to include the population -
associated with u[k]. A correct selection (CS) is the selection of any
subset containing the population associated with u[k]. The object is to
define a (non-trivial) procedure R so that P(CS|R), the probability of a

correct selection, is at least a preassigned number P*(%-< P* < 1) and which

has some desirable properties. We shall refer to this requirement as

P*-condition. We shall discuss the two cases: (a) oi, og,}

but known, and (b) ci, og,...,ci unequal and unknown.

02 unequal
L q



Case (a): oi, 03""’°i unequal but known.

Let X.., X..5.00,X. be n. independent random samples drawn from

il i2 1ni i n;
population w,, i = 1,2,...,k. Let X, - L Z X.. denote the sample
i i ng j=1 ij _

mean. We define the following rule R1 based on these sample means.

Rlz Select the population ™ if and only if
(2.1) ii > max (X, - ¢y

1<j<k

where c, = cl(k,P*,(Ol,nl),(oz,nz),.,,,(Ok,nk)) is the smallest nonnegative number

chosen so as to satisfy the P*-condition.

Let X( and U%i) be the sample mean, sample size and variance

i)’ (i)

associated with the population “(i) with mean u[i], i=1,2,...,k. It
should be pointed out that X,..,, n ., and 02. are all unknown. For the
(1) (@) (i)
evaluation of the infimum of P(CS|R1),‘we reed the following lemma which
-is proved in [2].
=Y -
Lemma 2.1. If X' = (Xl""’xm) has density |Z| zf(ﬁ'z 15), then for any

two positive definite (symmetric) mxm matrices Fl = (rij) and P2 = (sij)

such that r.. = s,., 1l <i<mandr., >s,., 1 <i < j <m, then
ii ii -7 = ij = 7ij - —

PF {X1 < ay,..

) .,Xm < am} 3_Pr2{X1 < a

17" m m

for any real numbers a »a

1200y,

Let ¢ and ¢ denote the cdf and pdf of a standard normal variate. Now
we prove the following theorem regarding the infimum of P(CSIRI).
Theorem 2.1. For the rule R1 defined in (2.1),

o k-1 Cp0LX
(2.2) min inf P(CSIR)) = [ b (———)do (x)

(01 ’n].) PEL L] (Gk’nk) Ql - i=1 V].—U.?L



where Ql = {u: y = (ul,uz,...,uk), - < <o, i=1,...,k} and
02
(=) s 3
(2.3) a, = {1 +-—%%iiill} 2, i=1,...,k-1;
g
o o2 Oi
where (wﬁ)[l] ff"f-(_ﬁa[k] denote the ordered values of H;'
Proof.
02 02
P(CS|R1) + P{X(k) > max (R(.) - o HLEl + (J))}
1<j<k-1 "G
X.. X
= P () (k) < Cys j=1,2,...,k-1}
2 2
o o
() , (k)
"Gy "
H - M.
(2.4) p{z.. <c o+ KL D5 212,00 k1)
jk="1 " =
® -, G
O B¢ ))

where for j = 1,2,...,k-1, ij is given by

X,... - X - R
(2.5) Y ) Wliar ¢ S Mt ) Bl £
.5 ik - .
g. o]
G, 2
"Gy M
Thus (Zlk’ZZR""’Zk—l k) is a (k-1)-variate normal random vector with zero

. . . .- k
mean vector, unit variances and correlation matrix (pgj)) where

2 2
g, n 0. n
, k k K. -2
(2.6) o) =g L By ) Sy
o g j
o @ o )
i,j =1,2,...,k-1, i # j.
We see from (2.4) that for fixed (Gl,nl),...,(ak,nk), the infimum of
P(CS|R1) will be attained when u[l] =.,.7 u[k]. Thus the infimum we seek

in (2.2) is reduced to



min P{Z.
(Ol,nl),..

c,, J = 1,.
jk — 71

. ',(ok’nk)

where ij are defined by (2.5). For 1

A

., k-1}

< 2 <k, if we let

2 2
cA AT
K_iif) - {(1 +' Izl [1])(1 + 121 [J])}':'d
o g
(2.8) i, =1,2,...,k; i,j # % i # 3,
NS i=1,2,...,k, i# 2,
ii
O2 OZ
it follows from the fact that (_Eo[l] 5-(_5)[2] for all & = 2,3,...,k, we
have
(%) ) (1) i = -
(2.9) KlJ Ki j+1 > KlJ for all 1,] 1,2, .,k 1,
i # 2,k. By Lemma 2.1, this implies that
(2.10) min P{Z;k < <5 j=1,...,k-1}
(6,,0,)seeey (0, ,1) IR
1’ 1 -1 > kJ k
= P{Yj <c¢y, Jo= 1,...,k-1}
where (Yl,Yz,.

"Yk-l) represents a (k-1)-rariate normal random vector

with zero mean vector, unit variances and correlation matrix (Cij), where

2 2
g g
(=) s Vi1 1
(2.11) £y = tQ —%—Llll-]—)(l + T}[—Jiﬂ-)} 2,
) <)
n’ [1] n’ [1]
i,j = 1’2)- )k'l, i # J
Let i
52
(G I 2
(2.12) a; = (1 + ‘2‘ [“1])‘2, i=1,...,k-1
(9}
It is well-known that Yl’Y2""’Yk—1

can be generated from k independent



standard normal variates Z ..,Z, by the transformation

1’727 k
2.7 '
(2.13) Y. = (1-0))*Z; +oy 2, i=1,...,k1

Hence the right hand side of (2.10) can be rewritten as follows:

o k-1 c,-0.X

(2.14) [ 1 e(t2dex).
- 1=l //1—a2
i

This completes the proof of the theorem.

It should be pointed out that when 0[1] = 0[2] == o[k] = 0,
say, the cxpression (2.14) is independent of ¢. This reduces to the
result obtained by Gupta and Huang [9].

Consistent with the basic probability requirement, we would like the
size of the selected subset to be small. Now, S, the size of the sele;ted
subset is a random variable which takes values 1,2,...,k. Hence one can use,

as a criterion of the efficiency of the procedure R,, the expected value of

1’
the size of the selected subset.
Theorem 2.2. For the rule R1 defined in (2.1)
(2.15) max sup Ep(isl) <k @(cl).
(Ol,nl)’ . -:(Ok)nk) EGQ]_ - :
Proof.
k
(2.16) EH(SIRl) = izl P(ﬂ(i) is selectelel)
k X .. -X,.
= Z P{ max (___(J_)_.(iL. _<_ Cl)
i=1 1<j<k 2 02
it Gg) , (1)
R € ) B ¢ ) i
k-1 X -X.. X -X
< p{__M_<c}+p{_(_M__<c}
Tis1 /2 7 = 1 2 7~
(k) , “(1) /// (k-1) . “(k)
T M@ "x-1 M)



k-2 Mrir - Mrj M - M
_<— Z CD(CI _ [k] [1] ) + q)(cl _ [k] [k'l])

i=1 62 02 02 02
), C(@) k) , (k-1
T ") Y M Mk-1)
u -

+ (D(cl + [k] u[k‘l])-

/2 52
/0m) , T(k-1)
") -1

It is casy to verify that if Z is a standard normal random variate, then for

any nonncgative real numbers a and b,
(2.17) P{a < Z < a + b} <Pla-b < Z < al.

It follows from (2.17) that the right hand member of (2.16) is less than

k @(cl).

Remark 2.1. For k = 2,

®©  Cy-04X

f (——1——12——)d<1>(x) = 9(c,).
 -a
1

It follows that the constant ¢, obtained to satisfy the P*-condition is
given by ®(c1) = P*, Thus in this case the upper bound of E(SIRl) is 2P*,
which is the exact upper bound in the case of equal sample size and equal
known variance.

Let pj(ElRl) denote the probability that the population me is included

in the sclected subset.

pi(g|R1) = P{X. > max (X;-c

il
ja~]
~=
P93
—
1
<l
e
A2
e
o H
—
.
:SI Q
[ TN NS
i
+
=| Q
o e DN [=]
™
.
i
-

Lk, §# i}



‘where

Thus (Y k ) is a (k-1) -variate normal random vector

"Yl 1 1,Y1+1 i,”

with zero mecan vector, unit variances and correlation matrix (E ) where

i Gi ! 9 Mi -3
= . = 2 . _y1Te ., 3
>rs {Qa 2 n )L+ 2 n )} r#s, r,sfd
o’ T o s
i i
=1 r =S5
2
%
1t follows that pi(EIRl) is increasing in Ui when s % =1,..., and all other
2

components of p are kept fixed; also p. (u|R,) is decreasing in u.(G # i) when
- P it=tl j

H&" 2 =1,...,k and all other components of u are kept fixed. In particular,
L2 2 2 2

oy oj o1 Oy
if H;'= H;and Uy E'uj then pi(E|R1) f.pj(ElRl)' Moreover, if EI =,..= ﬁ; , 1t

follows from Theorem 1 of {8] that sup E(S|R1) = sup E(S|R1) = kP*, where
Q Q
1 0

= lus = (.0, - @ <u<eh

We define below an invariance or symmetry property used by Gupta and Studden

J117]. .

Let Xl""’xk be a set of independent observations from k populations
Moo respectively, and let R be a procedure which selects T, with probability
di(Xl,..,Xk). Then the procedure R is said to be invariant or symmetric if

Gi(Xl,...,Xi,...,Xj,...,Xk) = Gj(xl,...,Xj,...,Xi,...,Xk)

for all 1 and j.



It follows from the result of Gupta and Studden [11] that when

- =...= —, the procedure R1 is minimax in the class of invariant rules
1 k \

in the sense that for any other procedure R' in the class such that

inf PI(CSIR') > P*, we have
ue szl -

sup E (S|R') > sup E (S|R ).

ue Ql - e f

Next we consider another selection procedure as follows:

R!': Sclect the population ™ if and only if

1
02 02
3 1 3 i 1 j
(2.18) X-_>_-—-§ X. - c! ——+_———z__
i~ k-1 jAi j 1/ n, (k—l)z 331 nj
where Ci = ci(P*) is the smallest nonnegative number chosen so as to satisfy

the P*-condition.
As is clear from the following derivations the constant ci associated

with Ri does not depend on k, nor does it depend on (cl,nl),...,(ck,nk).

) L kel /%k) K c’%j)
(2.19)  P(eSIR) = PRy 2 1 2 Kgyoi Ny (kD)2 ] E (J)}

I}
v
—~
™~
A
(]
ot
+
N
|
—
—

C fmeonne

Ty (k-1 (J

where Z denote the standard normal variate. It follows from (2.19) that

e t = = .= f
the infimum of P(CS|R1) takes place when u[ll u[Z] .. “[k] and for any
preassigned number P*, %—< p* < 1, the selection constant ci is given by
1(P*). Thus we have shown the following theorem.

cf =
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Theorem 2.3. For the rule R:,

(2.20) "~ min inf P(CS|R!) = @(c!).
(0. ,13) (0, ,n) € 1 1
1°he YRk 1

Let Pi(ElRi) denote the probability that the population T, is included

in the sclected subset. Then

R A ey i ;3
(2.21) p; (M|R) = P{X, > = X. —ctf—+ . —
i 1 i = k-1 j#i 3 1 n, (k_l)z nj
1
b ET LY
= (e} + 72 ).
/2 2
o o.
i 1 Z-J
—_ ———— —
n. 2 .5. n.
i (k-1)7 j#1 3
2
: o,
1t follows from (2.15) that pi(u|Ri) is increasing ‘in Wy when sl 9 =1,...,k
- L
and all other components. of U are kept fixed; also pi(uIRi) is decreasing in
5 = =
o

uj (j # 1) when ﬁ&" 2=1,...,k, and all other components of | are kept fixed.

2 2
o o
e . i_ 73 < " < '
In particular, if ﬁ;' E;-and ui __uj, then pi(E|R1) —-pj(ElRl)'

As before, let S denote the subset size of the selected subset, and let

T ]Z( I
kg 2 2 2 2 2

Theorem 2.4. If E£-= El-and u - Eil ci ﬁl-+ —-l——TZ E&'i-ui < U, then
" i i i (k-1)° AL R J

1

—

the rate of change of Eu(SlRi) with respect to uj is smaller than that with

respect to My - Or more precisely,

d 3
5 EE(SlRi) < 51-1— EE(SlRi).

] 1

k
proof. Since E (S|R}) = ) P(m, is selected|R!)
— u 1 551 i 1
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1 |
M, - 77 LM
k-1 ,5:"8

. k i
(2.22) = Z @(ci " L# )
i=1 /02 2
i 1 L
N > y =
M (k-1)7 4™
Differcntiating Eu(isi) with respect to uj, we have
| 1
Myt BT LMy
(2.23) 2B (S|RD) = -] P 1 . elel+ r#8
T 3Uj U 1 2§J k-1 5 > % 1 >
L#1 //ci& R 1 z SE. //§£j+ 1
n 2 n n 2
'3 (k-1)" r#L 2 (k-1)
1
Wit 'T LM
1 ' L#]
+ cp(c1 + )
02 2 2 ' 02
—j- + 1 -—2'— __l. + 1 _2’_
. 2 . 2
M k-DC A ™ Ny k-1)% 245 ™
1
W= o7 L W
I 1 el v — k-lggs *
k-1 5 . > 1 02
i, 1 i) %, 1
N k-1)% A ™ N k-1)? 2E ™

where o represents the pdf of the standard normal variate. Similarly, one

can evaluate —g—-Eu(S|Ri). It follows that

auj 1!
9 v _ 9 '
B EE(SIRl) By EE(S|R1)
1
Wem o1 L, M
ok 1 folc! + Jok-loggs b )
k-1 7 1 2 2
%, 1 i) %, 1 i)
Ny (k-1 IL;J n N k-7 e ™
1
Wi - 7T L M
1 k-1 . R
Cglel + L#1 }
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This completes the proof of the theorem.

Recall that if x = (xl,...,xk) and y = (yl,...,yk) are such that

form=1,...,k-1

I ~3

) X [k-i+1] izl Y [k-i+1]

1

and K

X[k-i+1] © izl Y [k-i+1]

1

N~

1

where X[l] 5:..§'x[k] denotes the ordered values of X5 then we say vector
X majorizes vector y and write X >y or equivalently, y <x. A real-valued

function ¢ defined on the k-dimensional Euclidean space Ek is said to be

Schur-convex (Schur-concave) if

(2.24) $(x) > ()¢ (y) whenever x > y.
We state without proof the following result which is due to Ostrowski [12].

Lemma 2.2. Let ¢ be a differentiable function defined on Ek. ¢ is Schur-

concave if and only if

axi_] o(x) - axa. $(x) < 0 for all i > j, where X = (X ,-+-,X;]
1
and x[l] 5,..§_x[k] represents the ordered values of X -
2 2
- k-1 i 1 %
Let Q' = {p: y = mlp.quﬁ,pafiu-—T—Ci =+ — = 1<i<k}.
_ i (k-1)" 2#1 %
2 2
% %
Corollary 2.1. For the rule Ri, if —=...2 —
1 k

E (S|RY) = kP*.
sup uSIRD

Proof. Combining the results of Theorem 2.4 and Lemma 2.2, it follows

that Eu(SlRi) is a Schur-concave function in y over {'. Thus the supremum

of EU(S|Ri) over R; takes place when My == W = Moreover if
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Hy = (M, ..., (S|Ri) = kP*, Thus Eu (S|Ri) does not depend on the common

E
Yo 0

unknown |l.

Case (b): of,...,oi unknown.

As pointed out earlier, this case presents more difficulty than the

. . 2 2
case in which Oys Ogsees

a selection procedure for this case as des:ribed below. For this protlem

,oi are assumed known. We propose and investigate

it is necessary to require that n, > 2 for all n, where n, is the total
number of independent observations from ™o i=1,2,...,k. We now define
the selection procedure as follows:

Let X.,, X.,,...,X. be n. (> 2) independent random observations drawn
il i2 ing 1—

from population L i=1,2,...,k. Based on these observations, we

‘calculate for i = 1,2,...,k, the sample means and variances

ny
- 1
X; = oo L%y
i j=1
Ny
;e I ij"—(i)z
i j=1

where Xij represents the jth observation from LI For any preassigned P*

1
(;< P* < 1), let c, = c,(k,P*,n

2 .,nk) be the constant determined by

1’

the equation

© k-1 <,
(2.25) [ {n [ $(——"—2)d6 (x;)}G_ () = P*
0 i=2 0 /1 1 “[i] [1]
X: ¥

where Gi(') denotes the cdf of a chi-square random variate with (i-1)
degrees of freedom. By using the fact that for a given integer n and
any ¢ > 0, there exist n(€) > 0 such that
n(€)
f dG_(x) <€,
0
and for a > 0,

lim ®(ac) = 1,
cHro
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it follows that for any P*(%-< P* < 1), there always exist <, such that
(2.25) holds. We propose a subset selection procedure as follows:

R2: Retain the population L in the selected subset if and only if

(2.26) X, > max X. - c, max S..
Tisisk 1<k

To obtain a lower bound for the infimum of P(CSIRZ) we proceed as

follows. Let D = ¢ max S.. Then

2 1<j<k
(2.27) P(CS|R,)) = P {X > X,.. - D}
%, 0 = Geker @)
42 52
=P {Z,, < (D+ Hpq - ¥ (k) el 1)y-%
ik [k] (x) n(i)

i=1,...,k-1},

where Zik is given by (2.5). Let H(-) denote the cdf of D and

52 .
as(t) = (t + Wiy T (k) (i))'%, i=1,...,k, then P(CS]RZ) can
M)
he rewritten as )
w  3p_p(t) a, (t) . -%x'z‘l
P(CSIR,) = [ { oo — Tt ¢ & E-dxl...dxk_l}dﬂ(t).
0 - -® (21r)-———|z|2

where x' = (xl,...,xk_l) and = (pi?J). It follows from (2.27) that

2 2
(x) (1),-% .
(2.28) P(CS[R,)) > P {Z,, < D(=——=+ —=) %, i =1,2,...,k-1}
2 ik n(k) n(i)
2 2
i i
> Pz, < eyl (k% + (1)2)'2, i=1,2,...,k-1}.

" m "
Denote the right hand member of (2.28) by T. Since the entities of the corre-

lation matrix of (Zlk’ZZk""’Zkrl k) are all nonnegative, it follows that for

2 2 . s s
(1), (2)° S(k)’ T ;s m1n1mlzed2when G(k) approaches zero. Or more

precisely

given s

ag
i -
T > Pr{Z* <c ( (k) + (1% ) %, i=1,2,...,k-1}

o) (k) "1)%w)
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Z*

*
where Z LIEEERR

1k’

f S(l)’ S(2)""’S(k)'

Z¢.1 k are iid standard normal variates and are independent

Hence

® k
(2.29) T> [
0

1 fm c2 )
¢ (————)dG (x.) }dG .
1 0 T E Y L

N =

i

Thus we have proved the following theorenm.
Theorem 2.3. If <, is defined by (2.25), then
min inf P(CS[R,) > P*
nl,...,nk Qz

where 92 = {(ul,...,uk; 01,...,ck)|—°° <y <, g5 > 0, i=1,2,...,k}.

Next we consider the expected subset size E(SIRZ). It is given by

E(SIRZ) Z P(W(i) is selectelez)

i=1

Z P { max (X
i=1 1<j<k
Jj#1

Gy ~ X)) 2Pk

1t is easy to see that

i-1 J— i3
@, %W
where H(-) represents the cdf of D, and €., + J , 1, j =1,2, > K,
oMy M)

i # j. Denote the right hand member of (2.30) by k 1 f deH(x), and consider

the configuration ”[1] U[m] =U __U[ +1] < f_u[k], ljmfk 1. Then Q, is given by
| Dol e i 75)
2.31) = o ) o+ O((x + p-pp.q) E.29)
( Q2 i=1  j=1 VE jem+1 [3] 1}
i# Y
k
5T et g0 B 0 T et e £
+ - J ) ((X U[ ] -u ij j=m+1 X U[i] ]—l[j] ij .

j#i
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Keeping all parameters but u fixed and differentiating Qﬁ with respect to

. m
u and interchanging the labels i and j in the sum Z X , we obtain
i=1 j=m+1
(2.32) o ? ; Ho(C ;z :
2.2 —_— = g, Ao ((x+u-p,.1)E. D) - XU q-U)E, 2
W 5 e T [517515) - P(OHupym0E; )
> 0.

" This shows that

kK .
(2.33) . Q, < I 1 e,
i=1 j=1 /E

jAi
and hence
1 X ko= G
EGSIR) <¢=x 1 ) [ [ oC )dG (x)d6. (¥)-
- i=1 j=1 ‘00 /T_ 1 ™ j

j#i Xy

Thus we have shown the following theorem.

Theorem 2.4. For the rule R2,

0 o c
(2.34) max sup E(SIRZ) < 1 ) I ¢(-—2——-DdGn_(X)dGn.(Y)-

Lny 9, (k-1) 1<i<j<k 0 0 i j

Pant

+

b Ll
<]

3. Selecting a Subset Which Contains All Populations Better Than a Standard.

In this section, we discuss a related selection problem.
Let Tyr Mpoeeesmy be k+1 independent normal populations with means
Hps Mpoe ooy and variances og, oi,...,ci, respectively. It is assumed
that Hg» Hys---sHy are unknown. The procedure described in this section
controls the probability that the selected subset contains all those
- populations better than the standard (ui 3_u0), with the probability of a

correct decision to be at least P*., Again, we discuss separately the

following cases:
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2
ceesC

2 2
Case A. Ogs © K. are known.

1’

Let Xi denote the mean based on n, independent observations taken

from population LT i=0,1,...,k. We propose a procedure as follows:

RS: Retain in the selected subset those and only those populations

" (i=1,2,...,k) for which |
g
(3.1) Xi iXO - Cq —I;(; + '{1‘:

Let ry and T, denote the unknown nunber of populations with u 3—“0

u < u, respectively, so that T v T, = k. The probability of a correct

decision (CD) is given by

f) 2
- . "o, ‘@)
(3.2) P(CDIRS) = P {x(i)_z Xy - S5 /5 * 7o 1= Tyl k1
0 (i)
Urz1-M
=P {Z, <cg+ _dl o s i=r,+l, ,k}
1 3 2
/°_°+f.(_il

where (Zr +1,...,Zk) is a rl—variate nornal random vector with zero mean

vector, unit variances and correlation matrix (pij) where

2 2
n [P n Tps _L
S WL €5 £ S Rl SR € D13 S R T BEYP S SO
ij n,. 2 n,, 2 2
1) 99 G 9 .
i# g,
(3.3)
Piy = 1 _ s »i = r2+1,...,k.

By using the transformation (2.15), it follows that the infimum of P(CD|R3)
is

ok Cg-a.X
I o(———)ds(x)

where 1

(3.4) /
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: n. o
(3.5) e = (e ﬁ-‘l—;)‘%, i=1,2,...,k.
io
0
Hence,
Theorem 3.1. For rule RS’
(3.6) ' ok C,=0;X
min inf P(CDIRS) = [ 1 p(=—)dex)
(ol,nl),...,(Ok,nk) 93 - j=1 /l_ai

where Q= {(uo, ul,...,uk): -2 < p, <, i=0,1,...,k}.
Let S3 denote the number of populations with means less than Ho that

are included in the selected subset.

)

E(SSIRS) = izl P ("(i) is selected|R3)

:_r2®(c

%)
< ke(e).

.,0. unknown,

g k

Case B. o

0’ %1°°°

In this ﬁase, the problem is more complicated. We assume that
n; > 2 for 1 = 0,1,...,k, as in case (b) of Section 2. Let ii and Si
denote the sample mean and sample variance based on n, independent
observations from population T i=o0,1,...,k. For any preassigned

number P* (%—< P* < 1), let cy be the number detérmined by the following

equation
Fn [ et
(3.6) {n ¢(——) dG_ (x.)}dG_ (y) = P*.
0 i=1 0 T T ™ Y Mo
v x y
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: S.c
Let D be the random number such that max ; 4. 1. We propose a
0<i<k
sclection procedure as follows:
R4: Include population ™. in the selected subset if and only if
T
(3.7) X; 2 X D

The probability of a correct decision is given by
(3.8) P(CD|R4) =P {X, - X3y <D, i = ry*l,... .k}

where T, denote the number of populations whose means are less than Mo

Now P(CD|R4) can be expressed as follows:

1
%

(3.9) P(cD|R,) =P {Z, < (D + Mgy Tt 1T Tyl k)
where
(3.10) .
o g..
£, = —O— + (1)
1 nO n(i)

llsing the similar argument as in the proof of Theorem 2.2, we obtain that

® k o c
(3.11) p(CD1R4) > { 1 | ¢(—-—5:::§dG (xi)}dy-
C0 i=ry#l 0 /1 T ™)
— e -
X; Y

Hence we have shown the following theorem.

Theorem 3.2. For procedure R,, if ¢, is determined by (3.6), then

4’ 4
min inf P(CD|R,) > P*.
Npseeenly 8y
where 94 = {(uo, Hyses syl O cl,...,ok): - < My < o, o5 > 0,

i=0,1,...,k}.
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Let S4 be the number of populations with means less than Ho that

are included in the selected subset.

T

2 - -
ES, IR, = .2 P {X3y 2 Xy - D}
i=1
r o
Nl e M £ I M VI
i=1 2 42 /2 2
%0, %W %0, %W
"o D) "o D)
. -
) Z2 o 1 XO—X(') “0+“[ij . 4 ,
=l /2 2 - 2 2
V//fﬁz L, D) V/// %_, _ %)
o M) n s>
00 ") (1)
This implies that if Ty tr, = k,
T
2 ® = €4
B(S,IR) < 1 [ [ e )dG (x;)d6_ ()

k
) f f *(——)dG (x,)d6_ (y).

l__+ 1 0
X5

'*<ll'—'

4. Some comparisons of the procedures.

This section deals with some comparisons between the selection procedures

: ] 3 3 3 . - — —
R1 and Rl' Consider the configuration u: u[l] = u-§ < u[z] =...= u[kfl]
u < “[k] = p+§. Without loss of generality, we may assume that u=20. In

this case, it is easy to show that

1 )

2
////(1) 1 0(i)
(1) (k-1)° n

(1)

(4.1) _EB(isi) = (k-2)P* + o(c] -

Il [ o



+.0(cy + k51 s )
2 k-1 02
R, 1y C@)
k) (k-1% 151 P(d)
On the other hand,
EE(SIRl).i 2+ (k-2)0(c; - - 6 = )
(0] g
g & k-1
Hence if § > ///—_J[k] )[k 1] ¢'1(P* - Egja}, then

EE(S|R1) < EE(SIRi)

Next we consider the equally-spaced configuration:

u[i] - u[l] = §(i-1), i=2,...,k.

Under this configuration,

k
(4.2) EE(SIRi) = Zl o(c! + ).

L, 1
NGy (k-2 PG

It is easy to see that

k-2

(k-1)6 -
E (S|R,) < d(c, - ——22 ) + 2 0(c,).
wCIf —'121 L2 1
® , ‘@)
"o "W

2 2 2
g g -1 k“+k-4 . 2
Hence 6 > //{ﬁﬁa[k] + (E—a[k—l] {c1 -9 (Z(k-:?)2 pP* - ) @(cl)}

then one can verify that Eu(S|R1) < Eu(isi)' In this sense the rule R1

is better than rule Ri.
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Now suppose 6 > 0, then Eu(isi) > k@(ci) = kP*. Whereas it follows

from Section 2 that

P{ﬂ(i) is selected|R1} > inf PU(CSIRI)'
pe £, -
If <, is determined by the equation
min inf P(CS|R;) = P*

(Ol,nl),...,(ok,nk) Ql

[ 1 * > 1 .

and ¢} = ¢ " (P*), then EE(SIRI) E (S|R]) for u €Q,.

F = = = = n and g, = 02 = -6 = 02 where 02 is as ed
or n; =mn, =...=mn = =0, =...= Ok = i sum

reduces to the rule proposed by Gupta [7], [8]; namely

- N I

known, the rule R1

Rlz Select m if and only if

X, > max X, . do

P i<k 1 v
. where d = V2 cy-

Also in this case Ri can be written as

Ri: Select m. if and only if

1 S d'o
X, >« Z X, - 22
i — k-1 jEi j i

— 1)
where d' = Cl i

In his Purdue Ph.D. thesis Deverman [3] computed the efficiencies

of R1 and Ri as defined by the ratio

Pu(CS|R)

EffE(R) = W .

Using the slippage configuration



23

I STRRS S

we give some of these numbers (excerpted fromTable 6 of [3]) in the following

table.

Efficiency of R1 {(top) and Ri(bottom) in the case of equal sample sizes and

a2 common known variance O.

. P* = .90
d9
/n
k .5 1.0 1.5 2.5 5.0
3 .3575 .3849 L4216 .5437 L9523
: L3724 .3778 .3991 .4533 .6909
1 .2680 .2873 .3138 .4107 .9032
.2677 .2809 .2926 .3187 .4334
5 .2143 .2288 .2487 .3258 .8482
: .2142 .2236 L2311 - .2463 .3068
6 .1784 .1900 .2055 .2680 .7918
.1784 .1858 L1911 .2009 .2370
7 .1529 .1623 .1947 .2266 .7368
.1529 .1589 .1663 .1698 - .1934
3 L1337 .1416 .1521 .1957 .6847
.1338 .1388 .1420 L1471 .1636

‘Since a larger value of the efficiency as defined above are desirable,
the table seems to indicate that Ry is more efficient than Ri whenever § or
§g—is large (larger than .5 for P* = ,90), which is the same sort of conclusion
/E .

that we found in the unequal sample sizes case, although there we looked at

cfficiency in terms of the expected size only.
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5. k-Sample Behrens-Fisher Problem.

The Behrens-Fisher problem in its original simple version can be
formulated as follows: Given two samples Xll’xlz""’xlh and

: 1
21,X22,...,X2n2, it is assumed that the first sample comes from a normal

distribution with mean Hy and variance ci and that the second sample has

X

arisen from a normal distribution with mean My and variance og. The true
values of p's and o's are not known and the sample sizes are not equal in

general. The problem consists in describing with the inference about the actual

value of the difference MMy of the means. So far, no entirely satisfactory
test for the Behrens-Fisher problem has been derived. When k = 2, several
solutions to this problem were provided (see Pfanzagl -[13]) . Unfortunately
none of these methods is applicable for the case when k > 3.

In this section, we demonstrate that the procedure given in Section_2
provides a solution for the Behren-Fisher problem when k > 3.

Now let M, Tyyuee,™y be k independent normal populations with means
2 2
S

‘allowed to take ni(i 2) observations from each normal population T

. 2 .
Hyo Hoseeesly and variances o o) respectively. Suppose we are

1’ 230
i=1,2,...,k. Based on these observations, we wish to know whether Hy
are significantly different or not. The problem is to test the homogeneity

of the means of the k normal populations. Let

ny
xi=l——2xi.
nyoj=1 M
n.
s? =L Zl(x %)%, i=1,2 k
iy SR G Tt L bt
i j=1

Then our test rejects the hypothesis

HO: ul = u2=...=uk

when max Xi - 'min i._z D, where D is given by D = max S.c and ¢ is
1<i<k 1<j<k ’ 1<j<k
a constant such that the hypothesis of homogeneity will be rejected at
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level a if the observed value of max i. - min X. is greater than D.

1zizk

1<j<k

Now using Theorem 2.3, we have the following theorem.

Theorem 5.1.

determined by (2.25), then

(5.1) max sup
. §2
np,.eeon 8
where @ ={(n ;o2
0 s oo U307, .

Proof:

sup P(H0 is rejected)
Q0

=sup P { max X, - min X, > D}
1<j<k

Q <i<
0 1<i<k

For any o, 0 < a <1, let P* =1 -

P(H0 is rejected) < a

.,oi)i ~e<u<, 0,30, i

J

o

k

and let c be the constant

= sup P {X, < max X. - D for some 1 < j <k}

2 I 1<i<k

< k sup P {ik < max

% 1<i<k

= k{1 - inf Pr{ik > max - D}}
Q 1<i<k

0

<k - (1-9)
= 0,

Special case k = 2:

Let Z denote the standard normal variate.

P (HO is rejected)

P (|X-X,| > D)

A

P (]z] >

- D}

Since under H

0,
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(5.2) =1 - f [ {20(—% - 1M6_ (x)d6_ (¥)
00 /T, 1 1 2
Xy

= a(c) (say).

Under the alternatives

2 2
) [o}
_ _ 10, %20% 2 2 _
(5.3) Hp = Hge Wy T Mg+ E( n, * nz) > O3 = 9500 1= 12

The power of the test is

1- P{le - x2| < D}

>1- Pz +t] < < )
‘ , 2 2
°10 . %20
y U
SZ 2
151 5y
where Z is a standard normal variate which is independent of S1 and SZ'
Hence the powér under (5.3) exceeds :
(5.4) 1- [ {o(-t + ——) - #(-t - ——)}G_ (x)dG_ (x)
00 1.1 ™M 2
—_ 4 = —_— ¢ -
x Yy X Yy
= a(c,t) (say).
In

It is easy to see that a(c,t) > a(c) for all nonnegative value of t.

other words, the test is unbiased.
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