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Q, Abstract

A general method of constructing procedures which are both admissible and
asymptotically optimal in finite $tate sequence compound deéision problems is
suggested and applied to the situation of a two state classification component.
When used in an empirical Baye§ setting, procedures so constructed are seen to

be both admissible and asymptotically optimal.



1: - Introduction

We consider a situation in which independenﬁ structurally identical
decision problems are to be faced serially. Numerous authors have produced
procedures for various types of coﬁponent problems satisfying the classical
compound optimality criterion but there has been little study of the finite N
properties of such asymptotically optimal rules. Indeed it is‘possiblé that
in some cases procedures exist with better N problem average risk functions
for each N,

In this paper we give a natural notion of admissibility for sequence
compound rules and in the case of a finite state component proﬁlem, suggest
a method of producing procedufes which satisfy both the admissibility criterion
and the classical asymptotlc optimality criterion. The method is applied to
the situation where the component problem is a two state classification problem.
The proof of the asymptotic optimality of the resulting admissible sequence
compound rule is carried out under a smoothness condition on the two possible
distributions of the component problem likelihood ratio statistic and depends
upon an éstimation result of Gilliland, Hannan and Huang (1974), developed in
their study of Bayes procedures in non-sequential versions of the compound
problem. Finally we note that the suggested method of constructing good -
Sequence compound rules can also produce admissible, asymptotically optimal

empirical Bayes procedures.

2. Notation and Generalities

"We consider a component decision problem with states 8 €0 indexing
distributions Pe on a sample space (4,3 ), possible actions a€l, loss function‘
L(-,*) and decision rules d(+), measurable functions on A into G. The risk of

a rule d(-) when state 6 holds will be denoted by R(68,d) = fL(e,d(x))dPe(x)



and for a sigﬁed measure G on O,R(G,d) will abbreviate fR(e,d)dG(e). dG(-)
will stand for a Bayes rule versus G in the component problem (that is a d°(-)
such that R(G,d°) = ihf R(G,d)) and R(G) will denote the minimum Bayes risk
against G, R(G,dG). ‘

The problem addressed here is "What are good proéedures when one is'fo
face a sequence of independent decision problems, all with the above structure?"
Decision rules in such a situation are sequences S = (61,62,...) of measurable
functions, Gi(') mapping the fi?st i observations §i =_(X1,...,Xi) into an
action a; to be taken in the ith problem. For a sequence of states 6 =

(61,82,...) and a sequence compound decision rule 8, we will denote the average

risk of § through the first N problems when g_holds as

N .
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Ry(8:8) = § I EL(8,8,(X))
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where 6. denotes (0.,...,8.) and P,/ = P_ x...xP , the distribution of X..
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RN(EJE) clearly depends on 6 only through QN' For EN a signed measure on CN

N

let G, denote the marginal of EN on the first i coordinates of & . In notation
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similar to that in the component problem, take as the N problem Bayes risk of

- the rule § against Sy
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The classical optimality criterion for a sequence compound procedure is
that its N problem risk be asymptotically no larger than the minimuﬁ that
could be obtained if before facing any decisions one was fﬁrnished with EN,
the empiric distribution of states 61 through GN, and determined to choose a

fixed d(°) and in the ith problem take action d(Xi). That is,

Definition 2.1 A sequence compound procedure § is called s.c. optimal

provided

Tim (R (8,8 )-R(E) < 0.
N S

As indicated before, taken alone such a definition of optimality is open
to criticism on the basis that when considered as a function of QN’ the N
problem risk function of an s.c. optimal rule 8, RN(99§) may well be

inadmissible for each N. Hence

Definition 2.2 A sequence compound procedure § will bé_called s.c.

~admissible provided when considered as a function of EN’ RN(93§-) is
admigsible for each N.

S.c. admissibility does not imply s.c. optimality. The main result of
this paper is the demdnstration of sequence compound rules for a two state

_ classification problem component which satisfy both definitions 2.1 and 2.2.

3. Considerations for Finite ©

For ® = {1,2,...,m} a method of showing the s.c. admissibility of a
procedure §° would be to for each N produce a distribution EN on & such that
. o P . O.
QN(QN) > 0 for each QNGCN and such that &° minimizes RN(EN, ). For 8° to R
minimize RN(G »*) it is necessary and sufficient that 6; minimize

) L J Ly 0x0dP, (x,)64(y)
0. €@ ot
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for each i=1,2,...,N over choices of measurable maps 6. from Z' to G. (In
the termlnology of Gilliland and Hannan (1969) such a 6° would be Bayes versus

g; in a F dec151on problem.) Notice that for u a sigma f1n1te measure
dp

1,...,Pm and £ = o subject to measurability considerations,

the choice of Gi as

dominating P

an a which minimizes
(2) 8.(x:) =
X 6,,2) (ﬂ)ﬂf(X)
giéﬁ} §N =1 J

will minimize (1). It is informative to rewrite (2) as

an a which minimizes

(3) 8, (x;) =

m . i-1
£ (x.)L(k,a)( . t0.) 1 £ (x.))
kzl k™1 e.ze_@)l 36,k NG =1 85

—

(interpreting the empty product as 1 in the case i=1), because abbreviating
i=1
2 . (9 ) 9 f (x ) to Wy (G }, it is then apparent that for fixed
6.€6" Do =k j=1
—i i
Ei-l’dicfi) is a compbnent problem Bayes rule against a measure giving
mass wk,i(EN) to each state k=1,...,m.

Now a standard method of producing s.c. optimal rules in finite state

settings is to at problem i estimate Ei-l in some consistent fashion, say by

N

Ei-l and to take action d“ (X ) (see for example Hannan (1956),(1957),

1 1
Van Ryz1n (1966) or Vardeman (1975).) This suggests that to produce a
procedure satisfying definitions 2.1 and 2.2 one might search for a sequence

of distributions (G 2,...) such that



a) gi’is.a distribution on @ such that gi(gd) > 0 for all giEC},

~b) gi-l is the marginal of 91 on the first i-1 coordinates of Cﬁ,

and c¢) when normalized the weights w. .(G.),...w_ .(G.) give a consistent -
1,i 4 m,i—i

estimate of E, _.
i-1

One might then take Gi to be of form (3) with Ei replacing g; and attempt to
prove s.c. optimality for the resulting rule. We proceed to carry out such a

program for a two state classification component problem,

4. Admissible, Asymptotically Optimal Two State Classification Rules

For this section we specialize to the case where © = {0,1} and P, and P

0" 1
dP0 '
are distinct probability measures on (X,3). Let P0+P1, 0 :-fO = < 1,
dPl f1
0 < fl = Em < 1 and note that the extended real valued p = ?—-is well defined
. 0

{(i.e. not ga a.e. p. Take G =" @ and assume the loss structure

0 for 6=a
t

L(6,a) = LO for 6=0 and a=1

L1 for 6=1 and a=0
L

where Lo and L1 are positive real numbers. L will abbreviate the ratio IQ-.
: 1
‘At intuirively appealing sequence of distributions on GLCQ,...; for which

there is available the kind of consistency result for the weights wk i(Gi)
i T

éiluded to in %3, was suggested by Robbins (1951) in his original treatment of

the non-sequential compound decision problem. Denote by H. the probability on

>;§% which is qymmetr1c and_places__gual mass on the subsets of

gt defined by Zl Bj =k, k=0,1,...,i (that is for which H, ({(81, ..,5 )}) =
J=

is

) i
((i+1)(;))"1 where a = } ei); It is a simple exercise to show that Ei-l

the marginal distribution of H on the first i-1 coordlnates of G}

1 .
‘H ({e }) > 0 for each e EGF Further, with P; denoting %- 2 0. A

j=1 3’



| i-1
«.i Standing for ] . H,(8,) 1 £, (x )
»

abbreviating ff d(P,-P.)
! 2@136"](_1 Jl J

17Pp)» and w

for k=0 and 1, Gilliland, Hannan, and Huang (1974) prove the following.

Proposition 4.1. For Zi- distributed as Pe

1 —-i-1
Wa Wy - 1/7—-5-
E W '2;1 -(l-pi-l) = E W 1;: - pi-l hd (4A 2:+i : +1
0,i "1,i 0,i "1,i

_ 1
for any gi—l €@,

Thus with Ei-l = wl,i(wo,i + wl,i)_l’ the sequence compound procedufe :
¢ = (¢;,4,,...) defined by L
0,(8) = T[p(L) > L —2izhy
Pia

is at least s.c. admissible and the estimation result lends hopé of proving
uniform s.c. optimality at a good rate. Adding a condition ‘on the possible
distributions of p(X) we can prove, | |

Theorem 4.2. For k=0,1 let vk denote the distribution of L(L+p(X))'1 for X
with distribution Pk' If there exists a y€(0,1] and real number C such that
for any two real numbers 0 <a<hb :_l,vk([a,b]) f_C(b—a)Y, then there exists

a-real number X" depending only on A, max(Lo,Ll), and C such ;hat
X

Ry(8,8)-R(E) <X N 2.
Proof. It is standard 1n proofs of s.c. optlmallty (see for example Vardeman

- (1975)) to note that 2 R(8,,dy ) < R(Ey) so that
i=1-

Z -
Il ~2Z

) Ry(8,9)-R(E) < ECL8;09; (00109, (X))

i=1

The function dE (x) = I[p(x) Z_L(l—pi)pil] is component Bayes versus Ei
' i

so that the right side of (4) may be bounded by



(5) L, EI[L(1-p, )p; D Se0y) < L(-p)plY)

1
i39.=0

L 2

e

'EI[L(l-pi)p;I p(Xy) < (l-r;i_l)l;;fl]}-

But ncw consider a typical summand above.

~ - -1
EI[EC-p; i1 < p(X) < L(1-p,)p]}]

_ B .
EE[I[p; < L(L+o(X,)) <p; 411X ;1
<EClp; ;-p;|
by the assumption on the distribution of p(Xi). Further for i > 1}
- Y - Y
Elpi-l-pil < E(’pi-l-pi-l |+|pi-pi-1 ’)
.<_ (E»lpi-l-pi-ll;lpi;pi-l I)Y{

So applying proposition 4.2 together with the fact that lpi'pi;ll j.(i-1)°1

for i > 1, we have RN(QJQJ'R(EN) is no larger than

‘ |
Cmax (Lo,Lp) g 1+ 1 (@™ VAETDW D el s oyl
=2
and the result follows. [J

Sevéral comments are in order. The first is that the ¥=1 version of the
condition on the distribution of L(L+p(X))-1 is similar to one used by Hannan
and Van Ryzin (1965) in an 1nvest1gat10n of a non-sequential compound c1a551f1cat10n
problem and can be verified by showing Yo and vl have bounded densities with

respect to Lebesque measure. Such is the case for example for

P0 the normal (0,1) dlstrlbutlon and P the normal (8,1) distribution. The
second is that proof obviously carries over practically verbatim to any -other

sequence of distributions G GZ"" for which the welghts W (G ) are

1’
consistent for Ei-l at an i -3 rate. Gilliland, Hannan and Huang (1974) have .
. i
considered distributions G, defined by §i(8) = [ t%(1-0"" da(t) witha = 0
j=1

for a wide class of probabilities A on (0,1) and proved analogues of



proﬁosition 4.1 for such-gi. Note that since for gi_l_e g1 with
-1 i-1 o i-a a-1
6. ,- 8. = - - - =
321 5 We have G, (8; ) Jeta-01% +« iy G 185 )

such sequences of distributions can be used to produce whole classes of s.c.

admissible, s.c. optimal classification rules.

-
-

5. Admissible Finite State Empirical Bayes Procedures

The attractive sequence compound properties of the kind of procedures
dlscussed in the prev1ous sections carry over to emp1r1ca1 Bayes problems

That is, consider a 51tuat10n where 6 are i1, d accordlng to

2""’ N 1
somé unknown prior G on 6, ava11ab1e are obsgrvatlons (xl""’-N+1) AN+l with
conditional distribution Pe and an action a is to be taken and loss
' —N+1 '

L(6N41,a) suffered. Many authors have éoﬁsideredrprocedures of the form

dG(xN+1) where G is an estimate of G based on EN and proved

1im E L8y, 45 (X, 1)) -R(6) < 0.

Such an asymptotic optimality property again does not guarantee admissibility
/

for a fixed N. That is there may well be 6(§N+1) for which
~ \ - 6
EIL(Oy, 15450y, 1)) L8y ) 8,01 2 0

+1 . . . . ' '
for each 9N+1 € éq with strict inequality for at least one 9N+1' But for

finite © component problems, carrying out the program described in section 3
can produce rules that are not only s.c. admissible and s.c. cptimal but also
both admissible and asymptotically optimal in the émpirical Bayes problem.

That is, if G 92,... are distributions such that

1’
a) of section 3 holds, 6N+1(§N+1) of the form

an a which minimizes

Sne1 Knep) = N

o | B
RO ny L G Cg) TS, (X))



is at least admissible in the empirical Bayes problem. If in addition
. ¢) of secticn 3 holds,subject to measurability considerations the following
lemma can be used to prove asymptotic optimality of 6N+1‘

Lemma 5.1. Let 5N+1 have conditional distribution PgN+1 given 9N+1’ and let

91,...,9N+1 be i.i.d. according to G on @ = {1,2,...,m}. Suppose 0 < L(®,a)
and 4 B < «» such that for each d, fL(O,d(x))dPe(x) < B. Then for a random

vector V(KN) v (§N),--.,V (XN)),
m
E L(eNﬂ,dV%)cxNﬂ))-R(G) =B kZ1 E[G({k)) -V, (X)) | .
Proof. Iterating expectations and abbreviating V(XN) to V,
() E L8y, )»dy(Xy, 1)) -R(GI=EE[L (O, ) ,d, (Xy, 1)) -R(E) | X,].
=E(R(G:dv)‘R(G:dG)) .

But by the minimizing property of a component Bayes rule the right side of (6)
is bounded by

r.h.s.(6) :_E(R(G,dv)-R(G,dG)-(R(V,dv)—R(V,dG))).

m :
kzl E(G({kD-v (X)) (R(k,dy) -R(k,d,)).

n _
iBEkZ IG({k})-vqu)l. D
SN

For example; returning to the two state classification component of
.section 4, ¢N+1(5N 1} is admissible in the empirical Bayes classification
problem, and since for fixed X —N’ ¢N+1( +1) 1s component Bayes versus the

prior giving weights 1- pN and pN to states 0 and 1 respectlvely, by the 1emma

® L1 U)) RO < 2 maxClg, Ly JEIG({11)-py .
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ei, applying proposition 4.1, and the

B2
[ S

But triangulating about Py = %L
i

moment inequality
- -1 _ ’ ) 2
El6({1h-p| < 44 'fl:ﬂ; +1 (G({l})(lNG({l})))

It is typical of results in this area that the empirical Bayes optimality of
¢ follows under less stringent assumptions than the s.c. optimality, that is,

no regularity of the distribution of p(X) is needed.
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