ESTiMATION AND TESTS FOR UNKNOWN LINEAR .
RESTRICTIONS IN MULTIVARIATE LINEAR MODELS

by

John Douglas Healy
Purdue University

Department of Statistics
Division of Mathematical Scienceés

Mimeograph Series #471

December 1976

* o :
Research supported in part by the Air Force Office of Scientific Research,

Air Force Systems Command, USAF, under Grant AFOSR-72-2350B at Purdue

University. The United States Govermment i$ authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding any copyright
violation hereon.



%@

INTRODUCTION

Almost every statistician has used simple linear regression

many times; it probably is the most well-used statistical procedure.

If there is more than one dependent variable present, we enter into
the realm of multivariate regression. In both-univariate and
multivariate regression, we can estimate regression coefficients,
find confidence intervals for the regression coefficients, and test
whether the regression coefficients are equal to a known matrix.
However another kind of problem exists in multivariate regression,
but does not exist in univariate regression. In multivariate
regression, the regression coefficient matrix may not be of full
row rank, i.e., there may exist unknown linear restrictions on the
regression coefficient matrix. We may want to estimate the
regression coefficient matrix and the unknown linear restrictions
under the hypothesis that the linear restrictions do exist. For
instance, when we estimate one linear restriction, we usually are
trying to find the linear combination of the elements of each |
column of the regression coefficient métrix which equal some
unknown quantity.

We now define precisely the model and hypothesis to which we

have been referring:
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X. = Efi+ei’ i=1,2,...,N,
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where X; is a p-dimensional vector of observations, = is the unknown
pxk (k > p) regression coefficient matrix, f is a k-dimensiona1
vector.of dependént variables, e; is a p-dimensional error vector,

B is a rxp(r<p) matrix of linear nestrictions, a is an unknown rxs(s<r)
matrix which provides a basis for thé space spanned by the columns

of B=, and a is a known sxk matrix. The matrix form of the above

equations is '

‘(0.0.1) X .= =F+E,

(0.0.2) B= = oa,

where
X = (x],xz,...,nN),
F= (f1afpsefy)s

E = (e],ez,...,eN).

T. W. Anderson [1951a] found the maximum likelihood estimators

(MLE's) of the parameters B, =, and Z when a is the zero matrix.

Later, Villegas [1961] found the MLE's of B, =, £, and o in the

above model when F is the design matrix associated with the MANOVA
model and when B is a Ixp matrix. Villegas's model can be called
the single linear functional relationship model with replications
(Moran [1971], Madansky [1959]). When F is the design matrix

aséociated with the MANOVA model, each column of = is the mean




vector for a group of observations. 1In many cases the number ofl
groups increases when the sample size increases. This situation
is‘itse1f-a special case of the more general case where the number .
of parameters increases as the sample size increases. Villegas
does discuss the consistency of his estimators when the number of
groups increases with the sample size.

In Chapter 1, We estimate the parameters in the model and
'hypothesis specified by (0.0.1) and (0.0.2). We also give several
special cases of our model, including several models which resembie
a model discussed by Gleser and Watson [1973]. Our discussion of
the consistency of the estimators is directed mainly to cases when
the number of parameters does not stay fixed as the sample size
increases.

One of the biggest advantages of getting maximum 1ikelihood
estimators is that we can usually use these estimators in deriving
likelihood ratio tests. For many multivariate problems, the exact
distribution of the likelihood ratio test statistic is exceedingly
complicated. However the asymptotfc distribution of -2 log A, where
A is the likelihood ratio test statistic islus&a]]y a chi-square
distribution. In Chapter 2, we use the estimators we derived in

Chapter 1 to get the Tikelihood ratio test statistic for testing
HO: Bz = aa versus H]: B= # aa.
Since the exact distribution of this statistic is intractable, we

find its asymptotic distribution. Our results show that the

asymptotic distribution of the test statistic depends on how the




number of parameters increases with the sample size. It is noteworthy
that in several cases, -2 log A,where A is the likelihood ratio test
statistic,does not have an asymptotic chi-square distribution.

The basic model discussed in the first two chapters is commonly
called the classical multivariate linear regression model. Another
“type of linear model, which has been discussed in the Titerature,
is the "growth curves" model (Cochran and Bliss [1948], Shrikhande
[1954], and Gleser and Olkin [1964, 1969]). In this model we observe

N independent px1 column vectors x.: i = 1,2,...,N, which satisfy

1-.
. = F=te.
x1 F e

where F is a known pxq matrix, = is an unknown g-dimensional
vector and e; is a p-dimensional error vector. This model has
been generalized by Gleser and Olkin [1966] in their discussion
of k sample growth curves.

A1l these models, the classical multivariate linear model
and the growth curves models, can be generalized to a model first
discussed by Potthoff and Roy [1964] and later by Rao [1965] and
Gleser and Olkin [1969]. We may write the model which we refer to

as the Potthoff-Roy model in the following way:

(0.0.3) X = F]5F2+E

where X is a cxN métrix-of observations, F] and F2 are known

cxp (p < c) and mxN (m < N) matrices respectively, = is an unknown
pxm matrix, and E is a cxN error matrix. Each column of E is

distributed independently with mean vector O and unknown covariance

matrix E.




Potthoff and Roy [1964] gave ad hoc tests of the hypothésis-

(6.0.4) FyzF, = £,

where F3,F4 and £y are known rxp (r < p), mxk (k < m), and rxk
matrices respectively. F] and F4 are assumed to have full column
rank, and F2 and F3 are assumed to have full row rank. Rao [1965]
found the conditional Tikelihood ratjo test of the hypothesis
stated above, and Gleser and Olkin [1969] showed that Rao's condj-
tional likelihood ratio test is actually the unconditional
likelihood ratio test.

In Chapter 3, we work with the Potthoff-Roy model (0.0.3) and
estimate parameters under a hypothesis similar to (0.0.4). The
hypothesis we discuss is concerned with unknown linear restrictions
on the regression coefficient matrix. This hypothesis can be

written the following way:
(0.0.?) U]EF4 = ab,

where U is an unknown rxp (r < p) matrix, Fy is a known mxk
matrix, o is an unknown rxs matrix, and b is a known sxk matrix.

We assume that the unknown covariance matr{x £ has the form oz-Ic
where 02 is an unknown. In Chapter 3 we reduce the Potthoff-Roy
model and the above hypothesis (0.0.5) to a canonical form. We
also find the MLE's of the parameters in the general model (0.0.3),
{0.0.5) and in the reduced model. As in Chapter 1, we discuss

consistency of the estimators when the number of parameters 1is

allowed to increase with the sample size.




Chapter 4 bears the same relationship tc Chapter 3 that
Chapter 2 bears to Chapter 1. In Chapter 4, we derive the

likelihood ratio test statistic for testing
HO: U]sF4 = ab versus H]: U]EF4 # ab.

We find the asymptotic distributions of the likelihood ratio test
statistic; these depend on how the number of parameters increaées
with the sample size. In several cases, the asymptotic distribution

is not the usual chi-square distribution.




CHAPTER I
ESTIMATION OF UNKNOWN LINEAR RESTRICTIONS

ON THE PARAMETERS OF THE CLASSICAL
MULTIVARIATE LINEAR REGRESSION MODEL

1.0 Introduction

In this chapter, we discuss estimation of the parameters of
the classical multivariate linear regression model (Anderson [1958;
Chapter 8]) when an hypothesis concerned with unknown linear restric-
tions on the parameters is assumed to be true. Section 1.1 contains
derivation of the maximum likelihood estimators (MLE's) of the
parameters; while Section 1.2 derives consistency properties of the
MLE's. We show that some of the estimators are not consistent when
the number of parameters in the model increases with the sample size.
Several special cases of our model are discussed in Section 1.3
including the multivariate linear functiong] model (Madansky [1959],
" Moran [1971], Sprent [1969], Villegas [1961]), and models proposéd
by Kristoff [1973] and Rao [1973]. 1In all of our special cases, the

independent variables in the regression model are dummy variables.

1.1 Maximum Likelihood Estimation

Let our model be:

(1.1.1) Xg = F fi_+ e i=1,2,...,N,



where each X; is a p-dimensional vector of dependent variables, each
fi is a k-dimensional vector of independent variables or covariates
(k > p), = is an unknown pxk parameter matrix of regreésion coeffi-
cients, and tae ei's are p-dimensiona] vectors of errors.

We assume that thé ei's are statistically independent of 6ne
another, and have the same normal distribution with mean vector 0
and unknown covariance matrix . We will be finding the maximum

likelihood estimators (MLE) of £, = and two other matrices B and o

which satisfy,
(1.1.2) B == aqa,

where a is a known sxk matrix (s < k) (k-s > p), B is an unknown rxp
(rjp) matrix and o is an unknown rxs(s<r) matrix. We are concerned with
cases in which either a hés full row rank or a is the zero matrix,
i.e.,we are testing B = = 0. It should be noted that if a is not
the zero matrix and is not full row rank, we can reparametrize so
that our resulting matrix will be full row rank. We derive the
MLE's 6f the parameters when a is full row rank. Since the proof
is similar (actually easier) when a is the‘zero matrix, we will
merely state the results in this case. In all of our special casés
(see Section 1.3), a = (1,1,...,1) or a is the zero matrix.

Anderson [1951a] considered the above problem when a is the
zero matrix. His derivation of the MLE's uses Lagrange multipliers
and differentiation of the 1ikelihood function. A derivation, similar
to the one we give when a hasfull row rank, could be used as an
alternative methdd of obtaining and verifying the MLE's in Anderson's

problem. We believe that that derivation would be simpler and more




intuitive than Anderson's. Since we would not employ diffgrehtiation,
we would not have to worry about saddle points, etc. In his paper,
Anderson [1957a] also gives methods of generating confidence intervals
and likelihood ratio tests of various hypotheses.

Our computations will be simplified greatly if we write (1.1.1)

in the following way:

(1.1.3) =F +E,

>
1]

where

X = (X]’XZ""’XN)’

-
i

= (f],fz’-.- ,fN),

E = (e],ez,...,eN).

We will call X the observation matrix, F the covariate matrix and

E the error matrix. We will assume that F and a have full row rank.
Maximizing the likelihood with respect to many parameters can»be

done in several ways. One way is to: 1) fix one of the parameters

(i.e. treat one of the parameters as fixed or given); 2) maximize

the likelihood with respect to the other parameters (note: the derived

MLE's of the other parameters will be functions of the fixed parameter);

3) substitute the derived MLE's of the other parameters back into the
1ikelihood; and finally 4) maximize the likelihood with respect to
the parameter that had been fixed. We will be following this method,

with B treated as the fixed parameter.
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Part I

B fixed or given

We now transform X into a form in which the proper estimators
of the parameters are easy to see. Let C be a p-rxp matrix which
satisfies CC'= Ip-r and CB' = 0. Let
(1.1.4) = =

Each column of Z is distributed independently with a p-dimensional

normal distribution having covariance matrix

w]] '¢]2 BzB' Bz(C'
q) N - ] ]
The mean of Z is
B=F oaF
E(Z) = =
C=F C=F
Let
Y Y11 Y2 4
_2
Y = = = (F*(FF')"%2,L),

Yo Yor Yoo Z,

where L is a NxN-k matrix which satisfies L'L = I, , and L'F = 0.

Note that

; ,
E(Y) E[(Z;)(F‘(FF')"E,L)],

aaF - o,
( MF'(FF')72,L),
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Since (F'(FF')m%L) is an orthogonal matrix, each column of Y is
independently normally distributed with covariance matrix y.

We now have transformed the data X into a form in which it
is easy to find the estimators. Let us write the joint distribution

of Y in the following way:
(1.1.5) f(Y) = f(Yz]|Y]])f(Y]])-f(YzzlY]Z)f(Y]Z),

where f(YZ]IY]]) indicates the conditional density of Yoy given Yq15
f(Y]]) indicates the marginal density of Y]], etc. Since the
columns of Y are independent normally distributed random variables,
all of the densities in (1.1.5) are normal densities.

The parameters in our transformed model are a,C=, and y. An
equivalent parametrization is

_ — ) -
TR I e e T R Y P ke FAa PL

We note that in (1.1.5) only f(Y21|Y]]) depends on C=, and only
f(Y]]) and f(YZ]IY]]) depend on o in their parameterizations.
Thus, we begin by finding the MLE of C= assuming that

a1¢2](¢{}), V17> and ¥o, ¢ are fixed. We know that

fyY

e ] .
v.) = 1 B vgp 1 (V171 (V1 70p) )
21'' 1N ]lk/2(2w)(p—r)k/2 ;

\2%3

1
k/2(2ﬂ)(p—r)k/2 ?

(1.1.6)

I A

492 11
h = E(Vpq[¥,,) = C2(FFN)E 4 upnu7h(Y L
where U2] = ( 21] 22) = C:(FF ) wz]wl]( ]]"aa(FF ) )~

If we pick C= so that

m?>

2 - . .
(1.1.7) Y1 = C= (FF')® + yyy (471) (Yq-0alFF')®) = fpy,

21

1
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then it is clear that f(Y21|Y22) attains its maximum (1.71.6). We

may rewrite (1.1.5) to get

(1.1.8)  £(Y) < g5z F) (Y Yar) F(Ypy),
|¢22.]| (2“) .

with equality when (1.1.7) holds.
We next maximize the right-hand side of (1.1.8) with respect to
a, treating wz]w;},wl],wzz KE fixed. We know that

f(¥y) 1 -3 tryZ (Y el FF)B) (Y -ea(FF) )]
= e | |
M0 o 1M 2em ™2

Using the theory of multivariate regression, we get

1 3ty (YY),

(1.1.9) f(Yyq) < e
11 |¢]]lk/2(2W)rk/2

2 - 2 ‘
where M = I-(FF')%2 a'(aFF'a") 1 a(FF')2. Equality in (1.1.9) occurs

only when

~

(1.1.10) @ = Ypq(FF)% a' (aFF'a’) 7).
Substituting (1.1.9) into (1.1.8), we get

=1 .
=% trig (Y MYqq)

(1.1.11)  f(y) <& F(Yoo | Yan) - F(Y:,).
]lk/Z(zﬂ)pk/lezz.]lk/Z 221112712

Iw]

" We now maximize the right-hand side of (1.1.11) with respect to
?11 keeping ¥,, and ¢21(¢11)—] fixed. Since
’ _.I .
Bty Yo¥y
l(n-k)/Z(zﬂ)(N-k)r‘/Z i

f(Y,,) =
12
o1y




(1.1.11) can be written

-1 . .
RSP IACPAC PRASRLISTY

fY) < —= - £(Yoo|Yq,),
Iw]]lN/Z(zﬂ)(pk+(N k)r)/2|¢22']|k/2 2? 12

where f(Y22|Y]2) does not depend on w]]. Using Lemma 3.2.2 of
Anderson [1958], we have

Nr
SIAPYIREPY

(1.1.12)  f(Y) < >
lN/Z(Zﬂ)(pk+(N—k)r)/2|¢22.]|k/2

|44

where yqq = (Yy,¥7, + YqqMiqq)/N.
Finally, we maximize the right-hand side of (1.1.12) with

respect to ¢21(¢11)-] and 5 - We know that

‘] “] ‘1 1
trigy 1 (Yoobpq9q7Y12) (Yopmbpq¥q1Yy2)
IN/z(zﬂ)(w-k)(p—r)/z

Wl

F(YoplV¥yp) _
7

A2PR1 l¥20 1

"] ) 1 -1 '
trygs 1 (Yoo (Iy 1 7¥1p(Y15Y12) " Y1) ¥5))

. e b}
(1.1.13) < 7 ]IN/Z(zﬂ)(N-k)(P—r)/z

1
-

with equality only when

-1 _ 1
2 LI AL PILAPACPO
Using Lemma 3.2.2 of Anderson [1958],we have

f(Y 2|Y]2) '; N(p'r)

(].].14) k/2 = N/2 (2n )(N k)(p-r)/2 2

\7%3 1| 199511

13
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where

" = 1 1 1 '] |.
Vo 1 = 1 (Taa(1-Y5(¥5Y1) " Yy2)Y50).

Combining (1.1.12) through (1.1.14), we get

(1.1.18)  £(Y) < ! o B Np,

There will be equality in (1.1.15) if

ch

- ~ ~ A 2
= I, (FF') 2 = (,097)) (¥4q-3a(FF')%) I(FF') 72,
a = Y]](FF')% a'(aFF'a’)™!,

Do (Ba0) " = Y YL (YY)

210911 22Y12(Y12Y12) s
on = L (Yoovt + Yoo (1,-(FF)® a'(aFFra’) "} a(FF)E)Y:,)

1 =7 (M2¥ie + Yl 1>
- = ] 1 1 ‘] 1
V20 1= 1 YoolInoYi2(Y12Y12) Yao)¥ao)-

Now we go backwards and express = and & in terms of X. After a

little simplification, using the facts that

&)1 = (sr(ee)TLen),
e Ip-B'(BB')']B,
LL' = Iy - F(FF')'F,
we obtain
(1.1.16) %= XA - X(I,-AF)X'B' (BK(I,-AF)X'B')"'BX(A-6),
(1.1.17) & = BX(F'a'(aFF'a') "), |
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where
(1.1.18) A = F'(FF')-],

G F'a'(aFF'a')']a.

We can also go backwards and find £. When we do this, we get
5 = N V(X-2F) (X-2F) "

We may summarize our results so far in the following theorem.

Theorem 1.1.1. When B is fixed, the MLE of o, =, and £ in the model

given by (1.1.2) and (1.1.3) are

BXF'a'(aFF'a')—l,

foR ]
i

o>
n

XA-X(IN—AF)XB'(BX(IN—AF)X'B')-1BX(A-G),

o~
1

= N"V(X-2F) (X-2F),

where A and G are given by (1.1.18).

Part II. Substitution of parameters back into the likelihood and
maximization with respect to B.

If we substitute the estimators of a, =, £ given in Theorem 1.1.1
(note: they are functions of B) into the 1ikelihood for X, we find
that
(1.1.19) max Tlog f(X) = - = pN log 2r- 5 N Tog |Z] - 1 pN.

Cz,a,y

Maximizing (1.1.19) with respect to B is equivalent to minimizing |Z|

with respect to B. After simplification we get
| *_ 1 |BTB!
(1.1.20) il = B

where



(1.1.21) W =X(I-F (FF)TR)X",

(1.1.22) T =X(Iy-F'a'(aFF'a') 1aF)X".

Note that in terms of MANOVA concepts, W can be thought of as the

within covariance matrix and T as the total covariance matrix.

2 A
Let U = N 2 BW2. Then (1.1.20) becomes

A
2

u'|

B}
S 1w TW"

For purposes of minimizing (1.1.23), we might as well assume that

16

w' =1_, for if UU' doesn't equal the identity matrix, there exists

r
an invertible matrix H such that U* = HU also minimizes (1.1.23)

and U*U*' = Ir’
If UU' = 1., Theorem 10, page 129 of Bellman [1970] tells us

that the minimum value of 5 is

" 1 '
. 02 = — * )\. e o w’ [y
R B AL RS PRI W

W=

THW

ol

where A is the ith largest eigenvalue of W~ Let T' be a
matfix whose columns are the eigenvectors associated with the r
smallest eigenvalues of W2 T, If we choose U to be T, then
the right-hand side of (1.1.23) achieves the minimum value of |§|

as seen in (1.1.24). Thus, if we let

(1.1.25) B =N

then the likelihood function is maximized. It is easy to show that

the columns of B' are themselves eignevectors of w‘] T corresponding

1

~ to the r smallest eigenvalues of W ' T.
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We summarize our results in the following theorem.

Theorem 1.1.2. The MLE of B, @, =, and £ in the model given by

(1.1.2) and (1.1.3) assuming a and F are full row rank are:

& = BXF'a'(aFF'a’)"",
2 = x(F (FF*) " N)-wB(BuB ")~ (Bx(F* (FF*)1-F'a' (aFF'a’) 'a)),
2= NT(X - SF)(X - 2F)',

where

W =X(Iy-F (FF')TTR)XY,

T =X(I-F'a' (aFF'a’) T'aF)x",

and the columns of B' are the eigenvectors corresponding to the r

1

smallest eigenvalues of W ' T.

Remark I. If we multiply B on the right by any invertible matrix,

the resulting matrix also maximizes the 1ikelihood since if B* = H§,

|[H| # 0, then
|B*TB*'| _ |HBTB'H'| _ |W|-[BTB'|-|H'| _ |BTB'|
|B*wB*'|  |HBWB'H'|  [H|-|BWB'|-|H'|" [BWB'|

Remark II. A1l matrices which maximize the 1ikelihood are of the
form HB for some invertible H. We will not prove this, since a proof

of the assertion is straightforward.

Remark III. We have been assuming that Fhas full row rank. We now

demonstrate how to reparametrize so that the results in Theorem 1.1.2

can be applied when F is notof full row rank. Assume c(c<k) is the




rank of F, and c-s > p. Let

(1.1.26) F = (r]rz)(gg)u.

The right-hand side of (1.1.26) is the Eckart-Young decomposition
where U and (F]PZ) are orthogonal matrices and D is a diagonal

invertible cxc matrix. Now

=F

=(ry7,) (O,

(EP])(DsO)U’

=%(D,0)U = =*F*,

where =* = EP] and F* = (D,0)U. Since F* is full row rank, we may

use Theorem 1.1.2 to get the MLE's of the parameters. If £* is the

MLE of =*, we have

% = =
_I‘],

l-nl
= (2 p)(r;»

1" >

where P is any finite pxk-c matrix. Usually when F is not of full

1154

row rank there are restrictions on =. We can pick P so that
satisfies those restrictions.
We now state a theorem which gives us the MLE's for our model

when a is the zero matrix:

Theorem 1.7.3. The MLE of B, =, and © in the model given by

(1.1.2) and (1.1.3) when a is the zero matrix,i.e.,(1.1.2) becomes

B== 0 are:

18
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e >
n

X(F'(FF')" 1) - wB(BWB" )~V (BX(F' (FF')™ 1)),

z =7N'](X-;F)(X-;F)',
where

W= X(1-F*(FF') )XY,

T = XX',

and the columns of B' are the eigenvectors corresponding to the

11,

r smallest eigenvalues of W~
Let us now consider the model of Theorem 1.1.2 with one change -

vname]y, instead of assuming that each e; is 1ndeﬁendent1y normally

distributed with common covariance matrix I, we now allow the ei's

to be jointly normally distributed with mean vector 0 and

(1.1.27) cov(ei,ej) = kij' I,

where K = (kij) is a known invertible matrix. The maximum Tikelihood
estimators of o, B, =, and £ are easy to compute, using Theorem 1.1.2

and the following lemma:

2
Lemma 1. Let Z = XK™2 (X comes from our new model), then
E(Z) = EFK—% and each column of Z is independent with a p-dimensional

normal distribution having covariance matrix I.

Proof. Since Z is a linear combination of normally distributed

random variables, it is itself normally distributed. Further,

Wi

-1
2-

E(Z) = E(XK'%) = (ECNKE = =FK

-1
2.

Let (mij) = K Then




- 20 -

cov(ZaZé) E(Za—Va)(ZB-VB)'

. af B/, ¢ 1
E(iﬁ(xi ‘fi)m m (xj _fj)
X ma1mBJE(xi-Ef.)(x.-§f.)
L iV
1
- en0i B,
im m kij z

= 6a8-z’

where o, is the Kronecker Delta function. Q.E.D.

B
If we transform X as prescribed in Lemma 1, the resulting
model exactly corresponds to the model in Theorem 1.1.2. We therefore

have the following result.

Theorem 1.1.4. The maximum likelihood estimators in the model

given by (1.1.2) and (1.1.3) with the following change,

cov(ei-ej) = kij'z’

where (kij) = K is known, are:

& = BX(K"TFra') (aFk™TFrat) T,
== xk P (TR - wBe(BWBY) T (BX-
Ve (VPO 1k e (aFkT TR a ) e,
£ = N (X-5F) (x-F) ",
where _
W= X(1-K T (FRTTR) TR X |
T = X(IN-K']F'a'(aFK'1F'a')']aIFK'])X',

the columns of B! are the r eigenvectors associated with the r

1

smallest eigenvalues of W 'T.
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1.2 Consistency of the Estimators

As the number of observations gets large, it is impoftant to
know what our estimators converge to. In most statistical problems
the number of parameters stays fixed as the sample size increases.
However, in this'section we will be finding out what our estimators
from Theorem 1.1.2 converge to when the number k of columns of =
is allowed to increase with the sample size. The elements of
our = matrix are what Neyman and Scott [1948] have called
"incidental parameters". When there are incidental parameters
present, some estimators (as in our case) may turn out to be
jnconsistent. We will not discuss the consistency of the estimators
in Theorem 1.1.3.or Theorem 1.1.4 since it is clear that we have
analagous results. In our discussion, p (the dimension of the
dependent variable), r (the row rank of B) and s (the column rank

of o) are assumed to be fixed. It is evident that

b= i MK
t = Tim N

Nooo

is a measure of how fast the number of parameters increases with the
sampie size, N. We will assume that t is é]ways greater than zero
and less than or equal to one. If the number of parameters stays
fixed, t will equal one. We will be concerned with the consistency
of é, &, and E. We will first discuss the consistency‘of é and &.

In order to make a discussion of the consistency of é,&
meaningful, we will have to place restrictions on B and é which
will make these matrices unique. It should be remembered that if

A A ~

B,a maximize the likelihood, then so do HB, H& where H is an




invertible matrix. In fact all MLE of B,a will be of the form

Hé, H& for some invertible matrix H. Similarly (B,a) satisfy
(1.2.1) B= = aa,

if and only jf HB,Ha satisfy HB= = Ha, where H is an invertible
matrix.

Let B,a be a pair of matrices which satisfy (1.2.1). By
requiring B to satisfy a number of restrictions, (B,a) will be the
unique matrices which satisfy (1.2.1). We will show that if é and o
are MLE of B and o, and if B satisfies the same restrictions as B,
fhen B, éonverge almost surely to B,a. We will be showing the
above for only one particular set of restrictions. However, it is
clear that if one set of MLE (61’&1) converge almost surely to
B],a], where é] and B] satisfy one group of restrictions, then
any other set of MLE éZ’&Z will converge almost surely to 82’“2’

" where éz and 82 satisfy another group of restrictions, provided
the respective restrictions make B] and 82 unique.

Let B,o be a set of matrices which satisfy (1.2.1) and let

-1

_ g R
B* = (B;'B;,1.) = B (By,B,)= B; (B),

i
—~~
[os)

a* -]

82 o,

where B = (B1,Bz), B]: rxp-r, and BZ: rxr. B* is the only matrix
with its last r columns being the identity which satisfies (1.2.1).
Similarly, if é],&are maximum ]ikelihdod estimators, we can generate
another set of maximum Tikelihood estimators é*,&* where B* has thei

jdentity matrix as its last r columns:

22
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[v o)
%
\]

A—] A~ ~ _ A_'IA
82 (BVBZ)— 82 B,

~ A]A
-

= Bz a.

Q
*
|

Hence, é* is the only MLE of B which has the identity for its
Tast r columns. We will show that é*,&* converge almost surely

to B*,a*.
Lemma 1. If N-K - « then (N-k)']w gbes almost surely to I.

Proof. Recall that

W

X(I-F' (FF*)TTE)X",

(=F+E) (I, -F' (FF*) T TF)(=F + E),

E(IN-F'(FF')']F)E’.

Each column of E has an independent normal distribution with mean
vector 0 and covariance matrix £. By Theorem 4.3.2 in Anderson
[1958], W is distributed the same way as
| N-k
R
where u; are independent N(0,z) random var;ables. We can conclude

that M=Kk
(N-k) iZ] ui Ui
converges almost surely to . Therefore (N-k)'1(W) goes almost

surely to . ' ' Q.E.D.

Lemma 2. Let ZyZgpe - be independent identically distributed random

variables with means 0 and common finite variances. Let bn m be any
3
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array of real numbers m <n n = 1,2,...' safisfying

LU
Tim z bnm'—'V, 0<V<co’

N m=1
.2 nh
2
then n mz1 bnmzm goes to O almost surely.
Proof. The proof is in Chow [1966]. Q.E.D.

Lemma 3. Assume that

R = Tim NV sF(R

y-Fla'(aFFra) laF)F !
oo |

exists and is finite, then

(1.2.2) N E(IN-F'a'(aFF'a')']aF)F‘E'
goes almost surely to zero.

Proof. Consider the i,jth element of (1.2.2). That element is the

X
product of the ith row of N 2 £ and the jth column of

(1.2.3)  NE(I.-F'a'(aFF'a') TaF)F'=".

N

Each element in the ith row of E is independent with mean O and
common variance. .The sum of the squares of the elements in the

jth column of (1.2.3) 1is ‘the j,ith element of
'] — 141 [ -1 [
N :F(IN-F a'(aFF'a') 'aF)F'='.

By our hypothesis, this element Converges to something finite as N
goes to infinity: By Lemma 2, the i,jth element of (1.2.2) goes

almost surely to zero. - Q.E.D.
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Lemma 4. Assume that R (as defined in Lemma 3) exists and is finite, then

N7 goes almost surely to R+z.

Proof. Recall that

NI = NTIX(I-Frat (aFFrat) e X,

N

N"T(=F+E) (I -F'a’ (aFF'a") "TaF) (sF+E) ',

NP (1, -F'a’ (aFF'a’) TTaF)Fr= N TE(T-F 2’ (aFF'a’) T aF )F ="+

(1.2.4) N

NVeF(1-F'a’ (aFF'a ) TTaF)E N TE(Ty-F'a’ (aFF'a’) TTaF)E".

By our hypotheéis the first term in (1.2.4) converges to R. By
Lemma 3, the second and third terms go almost sdre]y to zero. If
we use Thebrem 4.3.2 in Anderson [1958], we find that the fourth term
in {1.2.4) ﬁas the same distribution as
N-s
iZ] i Y
where us has a normal distribution with mean vector 0 and covariance‘

matrix . us and s are independent if i # J. We know that
N-s '
(N-s)'] X uau& goes almost surely to Z. Since s is fixed as N
i=1
goes to infinity we have that‘N']E(IN-F'a'(aFF'a‘)']aF)E' a.s. s,
Using all of the above arguments, we have N'TT goes almost surely

to Rtz. _ Q.E.D.

Lemma 5. The columns of B*' are eigenvectors of Ip-z']R corresponding

to eigenvalue one.

Proof. We know that for every N
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N']EF(IN'F'a'(aFF'a')_]aF)F'E'B*"=

N“sF(IN-F'a'(aFF'a')']aF)F'a'a*' =

l
o

Because of the-above RB*' = 0. We therefore have

(Ip—z']R)B*' = B!,  Q.E.D.

Theorem 1.2.1. Under the assumptions of Lemma 4 and assuming R is

of rank p-r, é* is a strongly consistent estimator of ﬁ*.

Proof. By Lemma 1, we have (N-k)']w asS. y. By Lemma 4,

NIT 35 Rer. Combining these statements we get
(kW) T 1T) 250 27T (a) = Ip+z']R.

Since lim Nﬁ£—= t > 0, we have

N->

wl(T) 2sS- (1/t)(1p+>:"-R).

Since the eigenvalues of a matrix are continuous functions of the
elements of that matrix, the eigenvalues of w_](T) coverge almost
surely to the eigenvalues of 1/t(Ip+z’1R).~ Since R is positive
semidefinite of rank p-r and I is positive definite, the smallest
eigenva]ue of 1/t(Ip+Z']R) is 1/t. It has multiplicity r. The

r smallest eigenvalues of w'](T) must go almost surely to 1/t.

Let éﬁ be the estimator of B* if we have N observations. Let éN be
the estimator given in Theorem 1.1.2 (éN satisfies N-1éNHéﬁ = Ir)

used to generate éﬁ, i.e.,

e o e T
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o S TR
g = 8(2) 81,1 ) = 8% 3{Vs{®) - 8{2) (B,

1

where éN = (éé]),éﬁz)). Because N™ 1B MB, ' = I.and N"'W converges

NN
almost surely to t-z, BN js bounded almost surely. Let us pick
any subsequence of éN' Since éN is almost surely bounded, there
must exist a subsequence of this subsequence which converges. Let

A

BTr denote the convergent subsequence. Let C be defined by
N

:112 B'"N = C.
Every column of C“is the 1imit of a sequence of eigenvectors of
w'](T) associated with an eigenvalue which goes almost surely to 1/t.
Since W"](T) converges almost surely to 1/t (I+2']R),each column of
C must equal some eigenvector of 1/t(I+z']R) associated with
eigenvalue 1/t. Since

s _]A Al — I -
Tim (ﬂN) B“N(W)B"N = texC' = I,

Mo

C is of full row rank. C must span the space of eigenvectors of
(1/t)(I+z']R) associated with 1/t. By Lemma 5, B* also spans this

space. Therefore there exists an invertible matrix V such that
(2715 ()
B* = (B B\'/,I) = VC.
If C = (C(]),C(Z)),V must equal (C(Z))'1 and

p = (c(2)) ¢,
Let |]A]| denote the largest value of any element in A. We

know that
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8% -g+ || = [](88)18 (¢l Ty,
N N N

[1Bx 8#11 < 11EEYT8, )8, 11+ 18 )Ty,
N N N N N

(1.2:5) ) ) )
8% B[] < [1(B 1] EE @) T+ ey s, ol
N N N | N

The first term on the right-hand side of (1.2.5) is arbitrarily small
since IléﬂNll is almost surely bounded and é“N differs from C by an
-arbitrarily small amount when N is large. The second term yanishes
since (C(z))'] is bounded'and'é1T goes almost surely to C. We

- N :
therefore have that B; goes almost surely to B*. We have shown that

N,
for any subsequence of B¥, there exists a subsequence of that
subsequence which converges to B* almost surely. §* must converge

almost surely to B*. Q.E.D.

Theorem 1.2.2. If N(aFF'a')'l converges to a matrix with all

elements finite then a* is a strongly consistent estimate of a*.

Proof. Note that |

>

*
n

B*XF'a’ (aFF'a’)"],

é*(zF+E)(F'a'(aFF'a')—]);

(1.2.6) é*zFF'a'(aFF'a')'1+§*E(F'a'(aFF’a')'1.

Since B* goes almost surely to B*, the first term on the right of

(1.2.6) goes almost surely to

B* = FF'a'(aFF'a’)”) = o*aFF'a’(afF'a')”] = o*.




By applying Lemma 2 in a way similar to what we did in Lemma 3,
we know that N™'(aFF'a')™! converging to a finite matrix implies
that E F'a'(aFF'a')'] goes almost surely to zero. We can conclude

that é*EF'a'(aFF'a')'] converges almost surely to zero. Q.E.D.

-We now must discuss the consistency of E. It should be noted
that the MLE's of = and Z are unique; they do not depend on the
choice of MLE of B and o. Because df this, we will use é* as the

MLE of B and &* as the MLE of «. We have seen that

= NV (X-2F) (X-2F)

™~
|

N"V(X=XF* (FF') " TF+ug* (B*ug*" ) ™1 (B*X(F' (FF*)"!
F'a'(aFF'a')']aF)-
(X-XF* (FF*) T F+uB*(B*uB**) "1 (BX(F' (FF')7TF -
| F‘a'(aFF‘a')']aF)'.

After a Tittle simplification which uses the definjtions of Wand T,

- we get

-1

2 = N N+N-]NB*(B*WB*') ]B*(T W)B*'(B*WB*') B*'

From our previous lemmas and theorems we know that

_q,, 2.5. ~ a.S.
N W > t-z, B* - B¥*,

_1. a-s.
N'T » 4R, RB*' = 0.

Using the above we have

~d.S.
T > t- Z+ZB*'(B*ZB*') Tg#(n+R-t2)B*" (B*zB*' )" Ip*'y

B*ZB*' (B*(z+R)B*') ™ 1B*'z

= t-z+(1-t) (sB*{B*zB*" )" Tp*'x).

29




30

Since the above expression is valid regardless of which B in the
class of B's which satisfy Bz = aa we take, we have the following

theorem:

Theorem 1.2.3. If we assume the conditions given in Lemmas 3 and 4

and in Theorem 2.2.2, then z goes almost surely to

(1.2.7) t.z + (l—t)zB'szB')']B'z.

The most startling thing about the above is not that 7 is not
a consistent estimate; when the number of parameters gets large, the
estimate of the covariance matrix is usually inconsistent. What |
makes the above unusual is the fact that the matrix L goes to is a
function of B. The second term in (1.2.7) is very unusual.

We can not discuss the consistency of ;, since it is not a

fixed matrix of parameters. It is interesting to consider to what

i >

N"VZF(1-F'a'(aFF'a’) " 1aF)F"
converges almost surely. We might expect it to converge almost

surely to R as

N"V=F(1-F'a’ (aFF'a") TaF)F'=

does. However, if we went through a proof, we would find it actually

goes almost surely to

R+(1-t)z +-(1-t)zB'(BzB')']B'z.
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1.3. Special Cases

Special cases of the models we discussed have come up many times
in the Titerature. We will be discussing cases when the F matrix has

the following form:

(1.3.1) F =

O -
A o
O —
—0
e —O
o

'.OO
e OO

If the F matrix has the above form, our additional information
consists of knowing some of the observations come from the same
mean, i.e.,we have replications at each mean. The model could be

written this way:

(1.3.2)  x.: =g, +e;:3 0=1,2,...,ks § = 1,2,...5n53

iJ i ij’? i
== (B128seresfy)s
E = (e]],g]z,...,ein] - eknk).
Note: In all of our special cases,
k ) k g k "y _ 1 N
N = iZ}ni, X = (12 ni) (.Z] jz]xij), X5 = (ni) _Z] X33

1 i= J
We will need the MLE's in the following two cases. The first

case specifies that the set of mean vectors is in a lower (p-r)

dimensional space passing through the origin:

(1.3.3) BEi =0, V.

The second case specifies that the set of mean vectors is in a

T T A T A o
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9 Tower dimensional space which can pass throughiany point:
(1.3.4) Bg.i =0, Ve

For the first case, we will apply Theorem 1.1.3 with F as

defined by (1.3.1). Our result is:

Application 1. When our model is

X;5 = &tey i=1,2,...,ks J =1,2,...,n;3

| j?
B, = 0;
then the MLE of B, gi and ¢ are

A A A

. =‘ii-wBTBWB')"]§ii,

_ n.
A0 k 1( . e
? =N .izl jZ] xij-gi)(xij-gi) 5
where
kM ) )
W= 121 jZ1 (x55-%3) (x4 5-%3)",

kM .
T= 'iZ'I JZ'I (xij)(xij)’

and the columns of B are the eigenvectors corresponding to the

1T

r smallest eigenvalues of W~
For the second case we can apply Theorem 1.1.2 with a = (1,1,...1)

and F as defined by (1.3.1) to get:

Application 2. When our model is

ij £i+eij; 1= ],2,...,k; J = 1,2,...,“-5

- Bg

ped
n

as




then the MLE of B, a, Ei’ and Iz are

i i
"y
~ _ _-I ) -A \
=N 1‘21 jZ](Xij g'i)(x'ij Ei) s
where

kK ™ ) )

k M ) i
T= 'iZ] jz.](x.l\]_X)(x]J-X) s

ahd the columns of é' are the eigenvectors corresponding to the r
smallest eigenvalues of W']T.

The model in Application 2 is the same model Rao [1973]
considers when he talks about a test for dimensionality. His test
of dimensiona]ity is a test of the hypothesis that BEi = o Versus
the hypothesis Bgi # a. His test statistic turns out to be similar
to the likelihood ratio test statistic although he neither mentions
nor proves this. He does find the 1ikelihood ratio test when I is
known.

Villegas [1961] considers both Application 1 and 2 - the first
of which he calls a homogeneous linear functional relationship. All
of Villegas's results are only valid when we are talking about a
single functional relationship, i.e., B is a row vector. Through
geometrical arguments similar to the techniques used by Max Van Uven

[1930] who derived estimates of B and = when £ is known, Villegas

3

TR T R T T e



derived maximum Tikelihood estimatorswhich agree with Anderson's
and ours. é turns out to be the eigenvector associated with

the smallest eigenvalue of WlT, Villegas also talks about cases
in which Theorem 1.1.4 applies,i.e.,when K # IN' He shows that
the covariance matrix has the form needed in Theorem 1.1.4 when

it arises from certain experimental designs (mainly incomplete
block designs.) Since our results are valid when B is any rank
(< p-1), our results can be thought of as extensions of Villegas's
results for a single functional relationship.

We can give another app]itation which fits directly into a

one-way analysis of variance. Let our model be

Xes = u+g_i+e

1] ij?

where u is the unknown grand mean. We will make the common
k
assumption that ) gin; = 0. HWe will be fitting parameters under
: i=1
the hypothesis that,

’ BEi = 0.

It should be noted that Bgi can not equal anything but zero when
ZEini = 0. The MLE of u is

po= X,

If we substitute ﬁ into the 1ikelihood we have exactly the same
maximization problem that is solved in Theorem 1.1.3 except that

we will use

. X* = X")-Z(-l,],...,]) = (X-l'l-)_(, X-Iz_)-(,--.,xkn "X),
k
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instead of X. If we use X* ‘and F as defined by (1.3.1) in

Theorem 1.1.3,we get the following application:

Application 3. When our model is

Bgi = 0;

p+gi+eij; i=1,2,...,ks J =1,2,...,n;3

then the MLE's of p, B, gi and ¢ are’

U= X,
- = = e I Y I
£5 = X;-X - WB (gws )7 'B(%;-%),
~ o kT . .
r = N iZ] jZ] (Xij‘gi)(xij‘gi) 1)
where
k" ) )
k" ) )
T= 121 jZ] (xij-x)(xij_x) s

and the columns of B' are the r eigenvectors corresponding to the

1.

r smallest eigenvalues of W~
The model considered in Application 3 is a generalization of

the model given by Kristoff [1973]. Kristoff gives an ad hoc goodness

of fit test for his model which is actually equivalent to 1ikelihood

ratio test statistic.

In all applications so far, the estimate of B which was given

and which maximizes the likelihood was unique only up to multiplication

OST e g




on the left by a nonsingular matrix. By picking a unique member
from the class of maximum 1ikelihood estimators as we did in our
section on the consistency of theeétimators,we will show another
class of models can be handled with our method.

Consider the following model:

(1.3.5) Yij = Vi+mij; i= 1,2,...?k; j= 1,2,...,n1,
Zjj = Hvy + 9443
where yij and Zij are p-r and r dimensional vectors of observations

respectively, vi is a p-r dimensional parameter vector, H is a

36

m. .
unknown rxp-r parameter matrix, and ( 1J) is the error term. We will

iJ
be trying tolestimate Vs and H. The most reasonable assumption
(according to Acton [1959])about the distribution of the errors
is that each (m?i) have a joint normal distribution with mean 0
and unknown cov;iiance matrix . Errors drising_from different
observat{ons are independent of each other. We will now show that
our new model (1.3.5) is just another application of the model in
Theorem 1.1.3.

If we let

1) 1] ij 1 i

Ve m. . .
- 1) = 13 -
X--—( )9 e"_( )s E'_(

Zij _ g. . H
our new model (1.3.5) can be rewritten as

. = E.+€, .,
*iJ 5t iJ

We also have a side condition that
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(H: I)E.i = 09 VT.'

This formulation of (1.3.5) is very similar to Application 1, the
only difference being that now we want the last columns of B to
form the identity matrix as we did in the section on the consistency

of the estimators. If we let
B* = (82'B,,1) = B3V (BB.,) = B,(B)
2 °1° 2 VT2 2V

where é = (é],éz) is the estimate of B from Application 1, then ﬁ*

is the only matrix with the correct form which maximizes the
likelihood. éz will be invertible with probability one;however-

if it is c]qse to being singular (one of its eignevalues is very
small),our results will be misleading. It would indicate that there
is a strong internal relationship between the p-r variables composing

y Since é* is the only matrix of the correct form which is a

ij’ .
maximum likelihood estimate, - (é(z))']é(]) must -be the maximum

- likelihood estimate of H. From App]ication.1 we can also get the
MLE of Ei and . Since v is the top p-r rows of Ei, we have the
MLE of Vie If we‘summarize the preceding statements, we have:

Application 4: If our model is given by

.y.ij = V,i'l"m.ij; 1 = ],2,...,k; J = ]’2’...’”1
. +g..;
%43 Hvi 943
where y;ss Vis Mygs 25> Hoand gy arve defined in the paragraph

following (1.3.5), then the MLE of H, v; and I are given by
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H - (6(2))—]é(])3

=i
i

>

= A| o A| ']A yi
V. = yi-w B (BWB ) B(z-),
o 1

N 4 k " _y..-\’;. y..-;.
p=n Y P CNEIGN A,
i=1 j=1 743 "1 i
where n _ _
W= 1 poH T Ty
REI IR E B F A B IS
n,
k i . Yo
T= 31 1G9GY,
i=1 j=1 %ij “ij

and the columns of é' = (6(1),5(2))' are the eigenvectors associated

1

with the r smallest eigenvalues of W'T.

Remark: Appliication 4 is very similar to a model discussed by
G]eser and Watson [1973]. 1In Chapter 3, we will be discussing
models which are generalizations of Gleser and Watson's model.

We could make minor a]teraﬁions on the model we just discussed.

For instance, we could estimate parameters in the following model:

Yiz = Vithise

ij = Hvyrotgs s,

Z

where all the terms (except a) are defined in the previous app]itation.

The maximum Tikelihood estimates can be derived from Application 2 in
a manner analagous tb the way we derived the estimates for Application
4 from App]ication 1.

Similarly Application 3 could be extended to cover the following

" model:
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) Yiz = wptvytmygs
235 = HotHV Y45,
where all the terms (except My and “2) are the same as in Application
1.

|
]
!
f
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CHAPTER 2

TESTING THE EXISTENCE OF UNKNOWN LINEAR RESTRICTIGNS
IN THE CLASSICAL MULTIVARIATE LINEAR REGRESSION MODEL

2.0 Introduction

Let our model be the same model we considered in Chapter 1:

(2.0.1) X=:=F+E,

where X is a pxN matrix of observations, = is an unknown pxk(p<k<N)
parameter matrix, F is a known kxN matrix of covariates, and E is
a pxN matrix of errors. We assume that each column of E is
independent of any other column. We also assume that each column
of E has a normal distribution with mean vector 0 and unknown

covariance matrix £. In this chapter we are concerned with testing

(2.0.2) HO: B= = aa against H]: Bz # aa,

where B is an unknown rxp matrix, ¢ is an unknown rxs(s<r<p) matrix, a
is a known sxk matrix. We wi11‘der1ve results when a is of full row
rank. For the case a is the zero matrix, i.e., when we fest

B= = 0 versus B= # 0, we will mereiy state our results since in this

éase all results can be derived in a way analagous to the case When a

is of full row rank.
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5 In Section 2.1 we will find the likelihood ratio test statistic
of H0 versus H], and mention similarities to test statistics of
Rao [1965] and Kristoff [1973]. Section 2.2 will contain a discussion
of the asymptotic distribution of the roots of which Tikelihood
ratio statistic is a function. We will be concerned with cases
when the number of parameters increases with the sample size. In
Section 2.3, we will use the results of the preceding section to
get the asymptotic distributions of the likelihood ratio test
statistic and therefore asymptotic tests of HO VS. H]. Section 2.4
will contain a proof that the tests described in Section 2.3. are

consistent.

2.1. Likelihood Ratio Test Statistic

In this section we will be finding the likelihood ratio test

of HO: Bz = aa versus H]: B= # «a when our model is
(2.1.1.) X==F +E.

A1l variables are defined in the introduction of this chapter.
In Chapter 1 we derived the maximum 1iké11hood estimators of
the parameters under HO' If we substitute those estimators into the

likelihood function (see (1.1.24) and (1.1.19)), we have

- X 2 X N
(2.1.2) mﬁx L(X,B,=,a,z) = (2n) % PNe-3 lew] 2 N(Ap'lp—1""xp-r+]) 2 N,
0 | '
where
(2.1.3) W= X(I-F*(FE") TR)x',
(2.1.4) T = X(I-F'a'(aFF'a')"laF)x',
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and A is the ith largest eigenvalue of w']T. We may use standard
multivariate regression procedukes to get the maximum value of the

1ikelihood function when H] is true:

(2.1.5) max L(X,B,=,a,%) = (Zﬂ)—% pNe-% pN|w|'% N,
H
1
where W is defined above. If we combine (2.1.2) and (2.1.5) we

wi]] be able to get the 1ikelihood ratio test statistic of H0

versus H]. Our result is summarized in the following theorem.

Theorem 2.1.1. If our model is given by (2.1.1) and we wish

to test the hypothesis HO: B==o0a versus H]: B=foa (a has full row rank),

then the likelihood ratio test statistic is
max L(X,B,=,a,%)
H
0 = ()\ Y . o)
max L(X,B,=,a,2) p p=1""""pertl
H
1

)72 N

A:

where Ai is the ith largest eigenvalue of W'lT and W and T are

defined by (2.1.3) and (2.1.4) respectively.

Remark: When a is the zero métrix, the likelihood ratio test
statistic is identical to that given in Theorem 2.1.1 except that.
T is equal to XX'.

We also have the following corollary:

Corollary 2.1.1. Let our model be

Xij = gi + eij; i=1,2,....k; J = 1,2,...,ni;

where X js a p-dimensional vector of observed values, gi is the

is a p-dimensional

mean of the ith group of observations and eij
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error vector. We assume that the errors are independently distributed
with a normal distribution having mean vector 0 and unknown covariance
matrix £. The likelihood ratio test statistic of the hypothesis

HO: Bai = a versus H]: Bgi # a,where B is an unknown rxp matrix and

a is an unknown rxs vector,is

- .. -z N
A= (Ap-xp_] )\p_rﬂ) 5
where A, is the ith eigenvalue of W'T and §
Kk N
R R
kK My ) i
T = iZ] jz](xij—x)(xij-x) , ;
= 0§ et 5 !
X: = \N. X:s2e X = X ’ |
L i=1 j=1
lz< 1
N = n..
i=1 !

Corollary 2.1.1 follows from Theorem 2.1.1 just as Application 2
followed from Theorem 1.1.2 in Chapter 1.

The réason we mentioned Corollary 2.1.1 is that the hypothesis
we are testing in that corollary is exactly the hypothesis of
dimensionality in Rao [1973]. Rao derives the likelihood ratio test
statistic When » is known. He does not derive the likelihood ratio
test when £ is unknown however he does give an alternative test

]T. He gives an

which is also based on the smallest roots of W~
asymptotic test based on his test statistic which is valid only

when k the number of groups is fixed. If we use the model in
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gp Corollary 2.1.1 we may believe that the number of groups should
increase when the sample size increases. The asymptotic test in
this case would not be the same as when k is fixed (see Section 2.3).

Kristoff [1973] considered testing an unspecified Tinear

relationship in several models. In the basic model (his case 1),
we measure a person's scores on two tests. We assume there is an
equivalent form of each test available. A person's scores are equal
to that person's abilities (true scores) plus an error term. MWe

summarize this model with the following equation:

Xij = “+€i+eij; i=1,2,...,ks J=1,2; N= 2k;

where xij is a 2-dimensional vector whose elements are the ith

person's scores on the jth form of the two tests, u is the average

person's true scores on the two tests (it is the same for either form

of the two tests), &5 is the difference between the ith person's

true scores and the average person’s true scores, and eij is the error
term. The error terms are all pairwisebindependent. Each has a
normal distribution with mean vector 0 and unknown covariance

matrix . We wish to test the hypothesis that a single unspecified
linear relation exists against the hypothesis that none exists, i.e.,

we test

HO: Bgi =0, V; versus H]: Bgi # 0, for some i,

where B is an unknown 2-dimensional row vector. We found the maximum

Tikelihood estimators of the parameters when H0 is true in Application 3
' k
of Chapter 1 under the assumption that .X

& = 0. We could also get
i=1
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the MLE's when H] is true using the usual theory of multivariate
linear regression. If we put these together we would get the likeli-
hood ratio test statistic which turns out to be a function of the

1

smallest eignevalue of W 'T; W and T are given in Application 3.

1

The smallest eigenvalue of W 'T is the same statistic Kristoff

recommends. If we were to increase our sample size in this
example, we would probably increase the number of people in our
sample and not the number of equivalent forms of each test, that is,

we would assume that k increases as N does and that

. N-k _ 7. 2k-k _
Tim = = lim T 1/2.

]
N> N k-

This example, therefore, provides us with a situation in which the
number of parameters does not stay fixed as the sample size increases.
"In case 2 of Kristoff, we have exactly thé same model as the
above with one minor change - the difference between the score on one

form of the two tests and the score on the other form of the two

tests need not have expectation 0. Our model is

.. = E.to0.te,
X 51 OJ e

i 1j; i=1,2,...,ks J=1,2;

where Xij’ Ei’ and e;; are defined as before and Oj is the expected
true score on the jth form of the two tests. Again we will test
HO: Bai = 0, V; versus H]: Bgi # 0, for some i, where B is an
unknown 2-dimensional vector. If we estimate o first, we can find
the MLE's of the parameters when the hypothesis is true. (See

Application 3 of Chapter 1 for the type of argument needed. )
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When the hypothesis is false, it is also easy to get the MLE's.

The 1ikelihood ratio test statistic is a function of the smallest

1

eigenvalue of W 'T, where

k 2 o _
) (xij-xi.-x.j+x)(x1j-x-

W= -';(..'i';()l:
i=1 j=1 v
K 2 ) i
T = iZ] jZ](xij-x.j)(xij-x.j) ,
- - .1 K
Xi' = (]/2)(X1]+X12), X-j =k iZ] X.ij3
i 4k 2
x = (2k) YooY X
if =1 M

The smaliest eigenvalue of w']T is also the statistic Kristoff

recommends.

2.2. Asymptotic Distributions of the Roots

In this section, we find the asymptotic distribution of the

roots needed in the likelihood ratio tests under the null hypothesis,

HO: B= = aa. The roots in which we are interested are the smallest
roots of

(2.2.1) |T-ANW| =0,

where

(2.2.2) T = X(Iy-Fra'(afF'at) TaF)X,

(2.2.3) W= X(I-F' (FF')TTF)X

Throughout this section, certain variables are subscripted with an

“N" indicating that those variables are connected with a sample of
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size N. We will let AN be the ith root of (2.2.1) when our sample
is of size N.

It is helpful to find the distribution of the smallest roots
of

| T-H-¢\] = 0.

Nofe that if 3N is the ith largest root of the above expression,
then ¢%N 1= Ay where 2., is the ith largest root of (2.2.1).
A11 our theorems are results in terms of $in- We will assume that
a is of full row rank. '

In this section, we discuss cases When the number of parameters
increases with the sample size. We already mentioned that the
~ models of Kristoff [1973] provide us with examples where it is

reasonable to assume that the number of parameters increases with

the sample size. A measure of now fast the number of parameters

increases will be

Nk o K )
1im il 1-Tim N 1-(1-t) = t. ;

N-soo N |

There are three possible cases:
Case 1: k is fixed;
Case 2: t # 1;

Case 3: k goes to infinity as N does; t = 1.

We will always assume that r (the number of rows of B), p (the
number of rows of X) and s (the row rank of a)-are fixed.
When k is fixed, the asymptotic distribution of the r smallest

roots (from Anderson [1951b] and from Hsu [1941]) is the following:
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Theorem 2.2.1. Let pyy = N-¢1N;'1 = p-r+l,...,p; where ¢, is the

~ith largest root of lT—w-¢NW|= 0. Then the Timiting distribution

of (pp_r+],N,pp_r+2’N,...,ppN) when k is fixed is
P S
o3 r(k-s- p+r)(ﬂ)%(r) 1 p?&k-s-p-])e i=p-r+l
i=p-r+l
. 1
.n] r(ﬁ(k-s—p+r-1-i))P(?(r+1-i))_
'|=
p p
I 1 (piN'ij)-

j=p-r+l j=i+l

The above distribution is the same as the joint distribution

of P; where ¥ is the ith largest root of
|J—pI| = 0,

and J is defined by

k-s-ptr

J = U.us;,

=1 1

where the u; are independently distributed with a normal distribution

with mean 0 and covariance matrix I ..

Remark. Theorem 2.2.1 can also be used when a is the zero matrix.by
letting s = O.

We now derive the asymptotic distribution of the roots in
Case 2 and Case 3. The asymptotic distribution of the smallest
roots in these cases is markedly different than the distribution of
the roots given in Theorem 2.2.1. Before we state and prove several

theorems which give the asymptotic distribution of the roots in

Cases 2 and 3, we need to derive several lemmas.




Lemma 1. Let our model and hypothesis be given by

X = =F +E,

B=F = oa,

where X, =, F, E, B, a, and a are defined in the introduction

to this chapter. The roots of

| T-H-¢, M| = 0,

where T,W are given by (2.2.2) and (2.2.3), have the same

distribution as the roots of

(2.2.4) |(N-k)7 URU** + NE(N-K)"TC-gy (N-K) 72 74D, | = O,
where

?11 “p-r,1 Fi
¢ | Cor1ees Compper Ebor]
E, £y O
Chh" Moy Upon * Aoy Ve
En = M/ Voo
?ﬁ,p—r+2
i
RE Yoy O 0
o, =f ° Nk Y2n~*N ol
0 0 ~4y 1




and YiN is the ith largest eigenvalue of
-] - 141 [ | '1 | - '1
N"'(=F(I-F'a'(aFF'a') 'aF)F's)z ™',

and finally U*, V are pxk-s and pxN-k respectively whose'c01umns
have independent normal distributions with mean vector O and

covariance matrix Ip.
Proof. For any invertible pxp matrix 6 we know that

le(T-W)e'-ooWe'| = |T-W-¢W| = 03

the roots ¢ are the séme whether we observe X or 8X. Since

we may pick 6 so that 6ze' = Ip, we may assume, without Toss of

50

generality, that the columns of X have p-variate normal distributions

with mean vectors equal to the respective columns of 6=F and with
common covariance matrix Ip.

Next we will let V],V v

osVg be column orthogonal matrices such
that '
Vy V1 = Fla'(aFF'a’) " aF,
v, vy = 1-F'(FF)TF, |
V3 V3 = F'(FF')"TF-F'a’ (aFF'a") TaF.

It is easy to see that such matrices exist. Let

Y = (Y]sYZ,Y3) = (XV]’XVZ’XV3) = X(V]sVZaVB)s
where Y, is pxs, Y, is pxk-s, and Yq is pxN-k. Since (V],VZ,V3)
is an orthogonal matrix, each column of Y has an independent normal

distribution with covariance matrix Ip.




51

The roots for which we are getting the asymptotic_distributibn

are functions of Y, and Y5. Since Y, is independent of (Y2,Y3), we may’

eliminate it from our considerations. The distribution of Y2, Y3 is
constant - exp --%[tr(Yz—eszz)(Yz-eszz)' + (Y3-eEFV3)(Y3—ezFV3)‘] =
constant . exp --%[tr Y, é - (Y3-65FV3)(Y3—eEFV3)'].

We want the distribution of the roots (¢]N’¢2N""’¢pN) of

| T-W-g M| = |Yg¥5-0,Yo¥5 ]

We know that Y2Yé has a central Wishart distribution and that Y3Yé
has a noncentral Wishart distribution.

We now let

(2.2.5) G = @EFV3.

We can write the noncentrality parameter in the distribution of
Y3Y3 in terms of GG':

(2.2.6) GG

eéFVSVéE'e'=esF(F'(FF')']F-F'a'(aFF'a')-1aF)F'E'6',

6=F(I-F'a’ (aFF'a') " aF)F'='e".

Let (Y1N’Y2N""’YpN) be the ordered eigenvalues of N']GG'. Under the

hypothesis that Bz = ca, the r smallest eigenvalues of N—]GG' will

equal zero.
Next, we transform Y2 and Y, in such a way that only a few
elements of the resulting matric:s are dependent on the non zero

]

eigenvalues of N 'GG'. Consider

U= P]Y3P2, and V = T Y2’

ol .1




where T and r, are orthogonal matrices which make

VY'IN 0 0 ... O

o ...
[

rr,= Ny 0 0 ... fyp_r’NO ... 0
0 0 0 0 0
0 0 0 0 0

Since Iy and r2 are both orthogonal matrices, the distribution of

U and V is

(2.2.7) constant-exp- —{t (Uu+vy! )+ Z Noy iy YsitN Z Yin) >

where Uy is the i,ith element of U.

We want the distribution of the roots of
(2.2.8) |uu'-¢ VV |= IP]Y Y! r] ¢NP1 Yéri|=]Y3Yé oY Y [ 0.
We should mention that U is pxk-s and that V is pxN-k.

Finally, we will make several substitutions which will give us

our lemma. Let

U* = U—r]GPZ.
The joint distribution of U* and V is
(2.2.9) constant-exp[- %—tr(U*U*'+VV')],

j.e., the columns of U*, which is pxk-s, and the columns of V,

which is pxN-k, are independently distributed with covariance matrix

Ip and mean vector 0. We therefore have
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(2.2.10) UU' = U*U*' + N C + N(D]+¢N~Ip),

where C and D] are given in the statement of this lemma. Our final

substitution is

(2.2.11) 12 (N—k)'%(VV'-(N-k)Ip),

(N-K) "E(W" )= (N-k) 2 1.

The lemma now follows through a substitution of (2.2.10) and (2.2.11)

into (2.2.8). Q.E.D.
Leima 2: If P is a pxk matrix and each column of P has a normal
distribution with mean 0 and covariance matrix Ib, then each

element of the matrix (k)'%(PP'-kIp) asymptotically has a normal
distribution with mean 0, variance 1 for diagonal elements and
variance 2 for off-diagonal elements. All elements are asymptotically

independent. We will call this asymptotic distribution the

p-dimensional matrix normal distribution.

Proof. Use Theorem 4.2.4 in Anderson [1958].

Remark. If we let (PP')22 be the rxr matrix which comprises the

Tower right hand corner of PP', then
-3 .
k™ 2((PP )22-k1r)
has an r dimensional matrix normal distributibn.

We now state several assumptions which we will make when we

discuss the asymptotic distribution of the roots for Cases 2 and 3.
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1

Assumption 1. The matrix N 'GG' defined by (2.2.6) converges to a

finite matrix R which has rank p-r.

Assumption 2. iy = v + o(/N), where v; is the ith Targest

eigenvalue of R and YiN is the ith largest eigenvalue of N']GG'.

Assumption 3. The non zerc roots of R have multiplicity one.

Assumption 3 is not necessary; the proof given below would
have to be altered to apply when the non zero roots of R do not
have multiplicity one. Since the alterations only complicate matters,
and since they do not affect the distribution of the smallest roots,

we will omit them.

Part 1. Case 2: 11'mﬂﬁ—k—= t#1.
N

In the following theorem, we give the asymptotic distribution

of the roots when 1im Eﬁk =t £ 1.
N->co
Theorem 2.2.2. Assume that 1im ﬂﬁ5'= t < 1, and that Assumptions

Nooo

1, 2 and 3 hold. Let

. N .
Vp-l"'l'i,N: (N'k)2(¢p_r+iaN'(k/N'k)); 1= ]’29---sr;

1

where 3N is the ith largest root of TW~ -Ip. The 1limiting distribu-

tion of (\b "\bN) is the same as the distribution

-r+ LN p-r+2,NT
of the r roots from

| (1/6-1)% 0,=(1/8-1)g,-v1, | = 0,

where Q] and Q2 have the r-dimensional matrix normal distribution

(see Lemma 2).
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%’ Proof. By Lemma 1, we only have to consider the distribution of the

r smallest roots (¢1N§ i = p-r+l,p-r+2,...,p) of
-1 1 - 2
(2.2.12) |(N-k) "U*U*'-NZ(N-k) C—¢N(N-k)22+D]| =0,

where C, Z, and D] are defined in Lemma 1, and the columns of U*, V
have independent normal distributions with mean vector 0 and

covariance matrix Ip.

Consider the following matrix:

A = k"%(U*U*'—kIp).

If we substitute A into (2.2.12), we get the following equation:

1

(2.2.13) [ (K)® (N-k) TTANE(N-K) T gy (N-k) 224D k(M=) 1T | = 0.

ol
By Lemma 2, A and Z have p-dimensional matrix normal distribu-

tions. It is easy to see that C is asymptotically independent of

A and Z. The elements of C are functions of the first p columns of
U*.» Since A is the same asymptotically if we delete the first p
columns of U*, C and A can be thought of as functions of different
variables asymptotically. The asymptotic distribution of C can be
obtained by using the definition of C.

Consider the following variable:

(k/N-k)+v / /N-K.

p-r+i
We can substitute the above expression into (2.2.13) for N and

try to find out what v must be distributed as when N - «. OQOur

p-r+i
result is

Trand n 1y -1 1 -3 )
ANE(N-K) ™' e+ (k(N-k) ™ +(N-k) 72 )Z+D,|=0,

: A
(2.2.14) |k2(N-k) Vp-r+i

where




56

N Pporti
3 N"k Y-IN = N_k 0 \ o e 0
0 N You - -ri 0
N-k 2N

D, = N-k :

“Vp-r+i

0 0 _p-r+i .Ir
/N-k

Let us write
A A 4231 |4

' Z.. 1
An A]Z)’ (1)2), Z=(211 12),

A= =
21 A2 % 21 Lo

where A]], 2%], Z77 are all p-rxp-r; A;,, 5512 and Z;, are all
p-rxr, etc. We now discuss the upper left hand block of p-rxp-r
elements inside (2.2.14). When N is 1arge,k%(N—k)']A]],N%(N-k)'].2%1

-1
and (N-k) 2211 all are arbitrarily small. The only matrix which

remains is
N_ 0 0 1/t 0 0
N"k Y'IN o e o Y] . o
0 PRI I 0 Vtvyy,... 0O
(') (') N 0 0 ...1/t«y

N-kK Yp-r,N p-r

The elements in the last r rows and columns all go to 0 when N
i
gets large. If we multiply the last r rows and columns by (N-k)#,
we will be able to find the terms that dominate. First of all,

1.2 -1 a.s. i a2 -1 a.s.
(N-K)*[KZ(N-K)"'A; 5] > 0, (N-k)*[(N)=(N-k)™" %7,]1 > 0 and

1 _a a.s.
(N-k)=[(N-k) QjZ]ZJ » 0.

a.s.
Almost sure convergence is indicated by -
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- PP .
~ When we multiply the r rows and columns by (N-k)*#,.we multiply the

lower right-hand corner by (N-k)%. By Lemma 2 we know that

Wl

T " a b arenta,

where 5 indicates convergence in distribution and Q] has.a'

r-dimensional matrix normal distribution. Similarly

K
Wk L2 © (/1100

where Q, has-a r-dimensional matrix normal distribﬁtﬁbﬁ:4tA11 other
terms go to zero.
If we combine the above statements, we get that when N is large

(2.2.14) becomes

]/t Y] 0 cee
0 1/t Yo oee- 0
0 | 0 Q3
where

Qg = (1/-1)% Q-(1/6-1)0p-v, 451

Therefore v is a root of |Q3| = 0. The distribution_of

p-r+i -
(vp-r+]’ vp-r+2""’ vp) is the distribution of th€ r°9tS of

| (1/6-1)% Q= (1/8-1)g,-v1, | = 0,

where QT and 02 have r-dimensional matrix normal distributions.

Consider

OiN T N§E iy /M=K 5 1= pertlLp-re2,. .. ,p;




where v, is picked so that we have equality in.the above expression,

T.e.5 Vi is defined by L

- Ky &N =
v N (¢.iN - NTk—) N-k = f_iN(A,Z,C).

We now.show that the distribution of viy 9oes to the‘distribution
of Vi-

Our preceding discussion shows that when

1im A22 = Q], Tim 222 Q2
N-soo ‘N

and A, Z and C all converge to finite matrices,
M ViN T VT f3(Qq,0,).
_)m .

We have mentioned the 1imiting distributions of A, Z, C. The set

of discontinuities of

(VP-Y""] an_r.{_zs---an) ( p- lf.+'|(Q'l 902) -p(Q] ’QZ))

occur only when one or more of the roots (Vp-r+1’vp—r+2""’vp) are

equal; the set of discontinuities has measure 0 since the probability

any of the roots are equal is zero. By .applying Rubin's théorem

(see Anderson [1951b]), we have that the asymptotic distribution of

(Vp-r+1,NNp-r+2JP""va) is the same as the distribution of

(Vp—r‘+'| svp_r+29"°svp)- 'Q.E.D.
Using Theorem 2 in Anderson [1951b] and the above theorem,

Theorem 2.2.2, we conclude the following:

T T o I Ty




Theorem 2.2.3. »Assume that Tim N-k t < 1 and that Assumptions

N-voo N

1, 2 and 3 hold. Let
' N K )
pin = (¢:y-k/N-k) ——— 35 i = p-r+l,p-r+2,...,p;
LR K

where iN is the largest root of Tw']-Ip. The limiting distribution
of (p

P—r+LN’pp—r+2,N""ppN) 1;
' - p.
r Lo iN p r
Z-F/Z{ T (F%{T+]"i))]—1e 1=p r+1 I I (piN—Q_N)‘
i=1 j=p-r+l j=i+l J
"Part 2: Case 3: k >~ as N » « but lim ﬂﬁk.: 1.

The following theorem will contain the asymptotic distribution

of the roots when k goes to infinity as N does and 1im(N-k)/N = 1.

N-oo

Theorem 2.2.4. Assume that k - » as N » «, that 1im N-k . 1 and

N N

that Assumptions 1, 2 and 3 hold. Let

viN = (¢1N - N:E)Nk 5 i= p-r+], p_r+2’_._,p;

1

where ¢iN is the ith largest root of TW~ -Ip. Then the Timiting

distribution of (Vp—r+LN’vp—r+2ﬁ""’va) is the same as the

“distribution of the r roots of

IQ-v Irl =0

‘where Q has an r-dimensional matrix normal distribution (see

Lemma 2).

Proof. Becausé the proof of this theorem is' very similar to the

~proof of Theorem 2.2.2, we will only give an outline of the proof.
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? By Lemma 1, we only have to consider the distribution of the

r smallest roots (¢1N; i = p-r+l, p-r+2,...,p) of

(2.2.15) | (k) TURUR4NE(N-K) T C-gy (N-K) "B2eD, | = O,

where C, Z and D] are defined in Lemma 1 and the columns of
U*, V have independent normal distribution with mean vector 0 and
covariance matrix I.. |

p
Consider the following matrix:

A = k'%(u*u*'-klp).

Substituting A into (2.2.15) yields

K . :
(2.2.16) |/k/N-k A + VﬁYN-k C-¢N - +D] + N:E'Ipl = 0.
%@ We now consider the following variable,
K/N=k vy /NETE,
Substituting the above into (2.2.16), we obtain
| /K /N kK . Vp-r+i _
(2.2.17) Iy A+ © - Gt e )Z/N-K + D,| =0,
where
N Vp-rti
T - 0 0
N-K TIN T T -3 .
- N p-rti
D, = 0 N-K YoN T T, 3 0
. . -V .
0 0 S e By
Nz T

If we multiply the last r rows and columns of the matrix inside the

2 1
determinant of (2.2.17) by N® k™ %*, and Tet N go to infinity, we get
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) vy O 0
0 12 0 - o,
0 0 Q
where _
= Qvporei e &iﬂ A2 Vp-rei T
G = m Ay

and A22 is the lower rxr right-hand corner of A. Therefore,
Voot is a root of |Q] = 0. By Lemma 2, the distribution of

(vp-r+1’vp—r+2""’vp) is the distribution of the roots of

IQ.I-\)Ir_l =0

where Q] has the r dimensional matrix normal distribution.

which gives us

A1l that we have to show is thét the Vp-rtiN

equality in

_ K vp—r+i,N
Pp-rein T WK T T3

goes in law to v The demonstration of this fact for Case 3

p-r+i’
is the same as for Case 2. We therefore have our theorem. Q.E.D.

If we use Theorem 2 in Anderson [1951b] and Theorem 2.2.5, we

can conclude the following:

Theorem 2.2.5. Assume that.]im Nﬁ£= 1, that k > » as N > =, and

N

that Assumptions 1, 2, 3 hold. Let

, P |
viny = (0 K/N-KINKTZ; i = p-r+l, p-r+2,....p3
1

- where ¢1N is the ith largest root of TW~

-1 .
P




Then the 1imiting distribution of the set (v 1= p-r+1,...,p)
is p
, r | - ViN p p
220 n e ra-iNT e TP 1 1 (vpeva).
i=1 i=p-r+1 j=i+l
Remark: Theorems 2.2.2 through 2.2.5 are valid when a is the zero

matrix.

2.3. Asymptotic Tests of B= = aa Versus Bz # aa

In this section we use the asymptotic distribution given in
the previous section to get asymptotic tests based on the 1ikelihood
ratio test statistic. It should be recalled from Theorem 2.1.1 that

the likelihood ratio test statistic is given by

-

P Np .J;N
A= I (1/A-N) = (1/1+¢1-N)2 s

i=p-r+l i=p-r+]

where AiN is the ith largest eigenvalue of TW'1

1

and oin 18 the ith
largest eigenvalue of TW~ -Ip.

First, let us consider the case when k is a fixed quantity:

Theorem 2.3.1. (Anderson [1951a]) If our model is given by

(2.0.1) and we wish to test the hypothesis that HO: B= = aa versus

B= # oaa, then the asymptotic null distribution of
¥ = -2 log A
is a x2 distribution with r(k-s-(p-r)) degrees of freedom. The

a-level asymptotic test of HO: B= = aa versus H1 = Bz # aa would

be to reject the hypothesis H0 when

074
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Y z_x2(1-a)
r(k-s-p+r)
where XS(B) is the Bth fractile of a x2 distribution with d

degrees of freedom.

Remark: Theorem 2.3.1 holds when a is the zero matrix 1f-we Tet
s = 0.
Let us assume we are actually in Case 2, i.e.,
&1m (N-k)/N = t < 1, and we (mistakenly) try to use the test given
500

in Theorem 2.3.1. We now examine what happens to ¥ under H0 when N

is large. Note that

B3]
!

P 2N
= -2 log A = -2 log T (1774445
i=p-r+]

N E ]Og(]+¢iN)'
i=p-r+] _

Using Theorem 2.2.2 we can show that ]+¢1N goes almost surely to

1/t for i = p-r+l, p-r+2,...,p. MWe therefore know that

E log(1+¢.,) goes almost surely to r log(1/t). Since

i=p-r+] N /

N-r(log 1/t) goes to positive infinity, we ponc]ude that when HO is
true, ¥ gets arbitrarily large in this case as N goes to infinity.
If we were to apply the test given in Theorem 2.3.1 for Case 2,

our probability of rejecting HO’ even when it is true, approaches 1

as N approaches infinity. For Case 3 we have a similar result. We

surnarize the preceding statements in the following theorem:

Theorem 2.3.2.  If our model is given by (2.0.1) and we wish to

test B= = oa versus B= # ca under the assumption that k goes to

S IR R e R S B b e i




infinity as N does, then ¥ = -2 Jog A where A is the likelihood
ratio test statistic goes almost surely to positive infinity. Thé
test given in Theorem 2.3.1 is meaningless in this case; when H0
holds,. we would reject H0 almost surely in Targe samples.

Since ¥ does not have an asymptotic chi square distribution in
either Case 2 or Case 3, we have to derive separate asymptotic tests
for Case 2 and for Case 3.

Assume that we are in Case 2. For this case, we have the

following theorem:

Theorem 2.3.3. If our model is given by (2.0.1) and we wish to

test the hypothesis HO: = = ga versus H]: B= # aa when

Tim (N-k)/N = t < 1 then the asymptotic null distribution of

N->e0

(W) (4-k) F (2rt) (RN - 1),

where A is the likelihood ratio test statistic, is a normal
distribution with mean O and variance 1. The asymptotic test of

HO:‘ = = ga versus H] : B= # «a would be to reject H0 when
hy -2 N \r Z/N
> 2(( N -
-k DE2Ke) F () 2N ) >z

and do not reject otherwise, where Z8 is the g fractile of a

standard normal distribution.

64
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? B _ Proof: Consider the following sequence of statements:

A2/N

p p
I (]/)\'IN) = 1 (]/]"'q’.iN):
i=p-r+l i=p-r+l

vl

p
1 (17(k/ (M=K ) vy (N-K)F)),

i=p-r+l

P N-k Sy=1
= 1 (G (17 (T+(N-K)3N" v, ),
j=p-r+1 N i

P N-k 2.1
i X (1-(N-K)BN" v, + O(N)),
1_,=p_r+]( i) (1-(N-k) iy F 0(N))

Ayraaged § )+ om).

i=p-r+]

The above equality can be written:

3 (TN ek = - F vy v o).
i=p-r+]
The asymptotic distribution of E viy can be easi]y obtained
from Theorem 2.2.2. The ]1m1t1;gpd::lr1but10n of Z Vin is the
distribution of reper]
r 1 1 .
izp-r+1vi = -tr((g -1) Q;-(3 -1)Q,).

The diagonal elements of Q] and Q2 are all independent, each with a
normal distribution with mean 0 and variance 2. Since the trace of a
matrix is the sum of the diagonal elements, we know that Z v,

;
1—p—r+1
is normally d1str1buted with mean 0 and variance 2r(+ )(l 1). We

therefore conclude that




66

[(N-k)/ (2r‘Nk)2] E ViN

i=p-r+l
has an asymptotic normal distribution with mean 0 and variance 1.

Finally we may state that
2 2
C(N(N-K))E(2rk) (R TP )

has an asymptotic normal distribution with mean 0 and variance 1.
Q.E.D.
We now talk about the case where k - » as N + =, but
T1im (N-k)/N = 1. In this case we have the following theorem:

N0

Theorem 2.3.4. If our model is given by (2.0.1) and we wish to test

the hypothesis HO: B= = aa versus Hy: B= # aa when Tim{N-k)/N = t = 1

N+oo
and k ~ = as N » «, then the asymptotic null distribution of

N(2rk) "B (o) a8 N-1)

is a normal distribution with mean 0 and variance 1. The
asymptotic test of HO: B= = 0a versus H1: B= # oa would be to
reject HO when

N(2rk)~E((N/N-k) 2 2/N 1) >z

1-a’

and do not reject otherwise, where ZB is the g8 fractile of a

standard normal distribution.
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Proof: Consider the following sequence of equations:

A2/N

p p
i (1/a5) =« (1/1+¢4))
i=p-r+l i=p-r+l

P -2
I ](1/(1+(k/N—k)+viN/Nk =)

i=p-r+
P N-k 3-2
= 1 (070K )
i=p-r+l
' - p X - -
= (BT 1 (1N ooy * 0N
i=p-r+] !

'y
)T (15N i vi) + 0T
i=p-r+l

The above equality may be written

-2 ! 2
NK 2((N¥E)“(A2/”—1) - § vig + O(NK®).
" i=p-r+1
The asymptotic null distribution of E vy can be obtained
i=p-r+l
using Theorem 2.2.4. The Timiting distribution of E ViN is the

_ i=p-r+l]
distribution of the trace of Q which has a normal distribution with

mean 0 and variance 2r. The theorem now .follows. QiE.D.

Remark: When a is the zero matrix, Theorems 2.2.2 - 2.2.4 are all

still valid.
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2.4. Consistency of the Tests

In this section, we discuss the consistehcy of the tests
from the preceding section, i.e., we show that the power of the
testsgoes to one as the sample size increases when a fixed
alternative is assumed to be true. We will use the following

theorem to show the consistency of the tests.

Theorem 2.4.1. Assume that an a-level asymptotic test rejects

when a test statistic is greater than a constant and does not
reject otherwise. ITF the'test‘statistic goes to infinity almost

surely as N does for a fixed alternative, the test is consistent.

Proof. This theorem follows from the definition of a consistent

test. : _ Q.E.D.

In the next theorem, we discuss the consistency of the test

given in Theorem 2.3.1.

Theorem 2.4.2. If N'1F(IN—F‘a’(aFF'a')—1aF)F' goes to a finite

matrix of full rank, the test given in Theorem 2.3.1 is consistent

Proof. For our fixed alternative, let us consider = = =, where =z
is a matrix whose row rank is greater than p-r. Since we assumed
that N—1F(IN—F'a'(aFF'a')']aF)F' goes to a finite matrix of full
rank, the matrix

N'150F(I-F'a‘(aFF'a')-]aF)F'Eb

goes to a matrix‘RD of rank greater than p-r. We can show (see

N O T T TR

bt
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1

the proof of Theorem 1.2.1) that W 'T converges almost surely to

]T goes

1/t(Ip+z']R0), and that the rth smallest eigenvalue of W~
almost surely to the rth smallest eigenvalue of 1/t(Ip+z'1RO).
In this case, t = 1. Since RO is of rank greater than p-r, the
rth smallest eigenvalue of w']T goes almost surely to a number

greater than 0. We therefore have that

Ap Apa1"r Appa]

goes almost surely to a number greater than one. We can now

state that

Y
-3 N
p p_]'...'Ap_r_l_-l) 8

-2 log A = -2 Tog(x_-2
goes almost surely to positive infinity. The theorem follows

through an application of Theorem 2.4.1. Q.E.D.

For Case 2 and Case 3, we have to change what our fixed alterna-
tive is. In these cases, the number of parameters is assumed to
increase with the sample size. It is fairly evident that the
fixed alternative we picked when k is fixed makes no sense for
Case 2 or Case 3. (

We now describe what our fixed alternative will be. For each

N, Tet us pick = = ZoN SO that the rth smallest eigenvalue of

(2.4.1) N_]EONF(I-F'a'(aFF'a‘)"]aF) e

is fixed at Yo > 0. We are fixing the rth smallest eigenvalue of
the noncentrality parameter of T. Let us also pick == =on SO that
the matrix given by (2.4.1) converges to a finite matrix.
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We now consider the following theorem which is concerned

with the aSymptotic test for Case 2.

Theorem 2.4.3. The asymptotic test given in Theorem 2.3.3

(Case 2) is consistent.

1

Proof. We can show (see the proof of Theorem 1.2.1) that W'T

converges almost surely to 1/t(Ip+Z'1R) and that the rth

smallest eigenvalue of Wl

T goes almost surely to the rth smallest .
eigenvalue of 1/t(1p+2—]R). For our fixed alternative (see
paragraph preceding this theorem), R = R0 and the rth smallest

eigenvalue of 1/t(Ip+Z'1RO) is greater than 1/t. We know that

2N _ L
A = A g1t A

goes almost surely to a quantity greater than ((N-K)/N)T.

2
Therefore, since (N(N-k)}/k)2 goes to infinity as N does,
Py
(N(N=K) / (2rk) ) E( () a2/ M)
goes almost surely to positive infinity. The theorem follows

after we apply Theorem 2.4.1. . Q.E.D.
For Case 3, we have a similar result:

Theorem 2.4.4. The asymptotic test given in Theorem 2.3.5 (Case 3)

is consistent.

Proof. We omit the proof since it is almost identical to the proof

of Theorem 2.4.3.

R T R TR TR T A R D R




CHAPTER 3

ESTIMATION OF UNKNOWN LINEAR RESTRICTIONS ON
THE PARAMETERS OF A GENERAL LINEAR MODEL

3.0 Introduction

In this chapter, we,discuss a very general linear model called
the Potthoff-Roy modei. This model can be formulated in the following

matrix equation:

(3.0.1) ' X=F = F2 + E,

1

where X is a cxN matrix of observed values, F] is a known cxp
(¢ > p) matrix, = is an unknown pxm matm‘x,-F2 is a known mxN (N>m)
matrix, and E is a cxN matrix of errors. The columns of E are indepen-
dent with the same normal distribution having mean vector 0 and covari-
ance matrix Z. We require that F] and F2 are of full column rank and
full row rank respectively.

The classical multivariate linearlregression model can be seen
to be a special case of the Potthoff-Roy mode] by letting F] = IC.
If we let F2 = (1,1,...,1) then the Potthoff-Roy model reduces to a
simple "growth curves" model (Gleser and Olkin [1964]). Estimation
of the parameters in the Potthoff-Roy model under various hypothese’s
has been discuséed by Potthoff-Roy [1964], Rao [1965], and Gleser
and 0lkin [1969].
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We want to find the MLE of =, and of twb other matrices U]

and o which satisfy

(3.0.2) U, = F, = ab,

where U] is an unknown rxp (r < p) matrix, F3 is a known mxk (m > k)
matrix, o is a unknown rxs(s<r) matrix, and b is a known sxk matrix.

Throughout this chapter, we assume that

(370.3) =0 -IC,

where 02 is an unknown constant.

In Section 3.1, we reduce our model (3.0.1) and hypothesis
(3.0.2) to a canonical form. Section 3.2 contains a derivation
of the MLE's for the reduced model, and also gives the MLE's for
the general model. Section 3.3 discusses several special cases
of our reduced model. In Section 3.4, we consider consistency of

the estimators in our models.

3.1. Reduction of the Model to a Canonical Form

Consider the following model and hypothesis:
(3.1.1) X = Fy = Fy +E, |
(3.1.2) Uy = Fy = ab,
where X]F],E,FZ,E,U],F3,a, and b are defined in the introduction

to this chapter. In this section, we reduce (3.1.1) and (3.1.2)

to a simpler, or canonical form.

SR T
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Let us discuss the following transformation:

RN
(FiF) 2

Y
(3.1.3) Y =('

where V] is a cxc-p column orthogonal matrix which satisfies

ViF] = 0. Whenever we write the square root (or negative square
root) of a matrix, we mean the unique, symmetric, positive definite
square root. The columns of Y are independently distributed with a
normal distribution having covariance matrix 02°Ic.
The mean of Y is

(FiF;)7% F! (FIF)2 = F
E(Y) = E[( ‘V} ha=¢ 'Y, 9.
Let
X* X% Y N
o= (1) e (DEFFD TRV,
X2 X4 Y2 .

where V2 is a N-mxN column orthogonal matrix which satisfies
VzFé = 0. By Theorem 3.3.1 of Anderson [1958], the columns of X*

'w111 have independent normal distributions with covariance matrix

02-IC. The mean of X* is
v, . (F{F)% =(FpFp)E 0
* = 1 1 2 —
(3.1.4) E(X*) E(Yz)(FZ(FZFz) Vo) = 0 0
If we let
X 2
(3.1.5) = = (F{F7)® =(FF3)% s
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: 2 L
1 =2 _ 1y~ 2 -
} (3.1.6) U](F]F] -*(F2F2) F3 = ab.

We will now make several substitutions which will make our hypothesis

(3.1.6) simpler.

Let
a2
= 1 -2
(3.1.7) U, = U(FiFq) 5,
Fo= (R E(RU(F ) T
4 2"2 3\f3\fel2/ T3/

Y

1 iy 1 -2
d = b(F(F,F) TRy ™.

With these substitutions our hypothesis becomes:

(3.1.8) =*F, = ad,

Y2
where F4 is a known column orthogonal matrix.

We now write the joint distribution of XT, Xﬁ, X§ and XE:

3 1
-z Np
(3i1-9) f(XTsXE,X§,X3)=(2ﬂ02) _exp(-Zcz[tr(XT-E*)(X?—z*)' +

Ctr X§X§‘+tr X§X§'+tr szz']).

From a quick examination of (3.1.9), we conclude that we could get

the MLE (82) of 62 if we knew the MLE (=%), of =*. Our result would be

(3.1.10) 5 = N%{tr(XT—£*)(XT—£*)'+tr x§x§'+tr x§x§'+tr xzxz'].

From (3.1.9), we also know that Xj is a sufficient statistic
for =*, U2 and o when 02 is treated as a fixed quantity. It is clear
that finding the estimators of U, a, and =*, which satisfy (3.1.8)
and which maximize (3.1.9) is equivalent to finding the estimators k

of Uy, a, =* which satisfy (3.1.8) and which minimize

J R AL e SR LS R o s N XS = i 7 Rt
AT SIRIED S\l G £ e A T O T T TR S T Y R T A o e T e o N TN VR SR BB S U RS
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% : tr(XT - E*)(X] - =*)

Therefore, we need only consider functions of XT when we find MLE's

*I

of U2, a, and’
We have reduced our estimation problem to the following problem.

Let our model be

(3.1.11) X*

=%
j==+Es

where XT is a pxm matrix of observed values, =* is an unknown pxm(p<m)

matrix, and E* is a pxm error matrix. Each column of E* is distributed
as an independent p-dimensional normal distribution with mean vector O

and covariance matrix 02-Ip, where 02 js unknown. We want the MLE's

of =*, and of two other matrices U2 and o which satisfy

(3.1.12) U

*F = ad,

2 4

where U2 is an unknown rxp matrix, F4 is a known mxk column orthogonal
matrix, o is a unknown rxs matrix and d is a known sxk matrix.‘ We
refer to (3.1.11) and (3.1,12) as either the reduced model or the model
in canonical form. Note that s<r<p<k and k-s>p.

In the next section, we will find the MLE's of the parameters in
the reduced model. We will also use the MLE's of =¥, a, and U, in
the reduced model to get the MLE's of =, a, and U] in the general
modeT (3.1.1) and (3.1.2). It should be noted that the MLE of 02
for the reduced model is not the MLE of of for the general model.

2

Equation (3.1.10) gives us the MLE of o~ for the general model.

i

Rl o S R g Sk S e SR S A S e R s L R e e

R T T S T T T R S e L P R B o oo
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3.2. Maximum Likelihood Estimators for the Mode] in Canonical Form

In this section, we will get the MLE for the parameters of the
reduced model described at the end of Section 3.1. We will also give
the MLE for the parameters of the general model (3.1.1), (3.1.2).

Let our model be the model described at the end of Section 3.1.
As in Chapter 1, it is clear that if we find one set of MLE's (02’&)
of U2,a then Aﬁz,A& is also a‘set of MLE's of U2,a where A is any
invertible matrix. Because of this, we will require that U2 be row
orthogonal. ,

The method of finding the MLE's of U2, =*, and o will be similar
to what we did in Chapter 1. We will 1) fix Uy,o%; 2) find the
MLE's of =* and o as functions of the fixed values of U2,02;

3) substitute this estimate of =* back into the Tikelihood; and

4) find the maximum likeiihood estimator of U2,02.

- Part 1. yz,gf fixed or given

We wii] now transform X? into a form in which the estimators

of =* and o are easy to see. Let
( ) (p) (UZ)
3.2.1 P = = X*,
.P2 V4 1

where V4 is a p-rxp row orthogonal matrix which satisfies V4Ué = 0.
Each column of P has an independent p-dimensional normal distribution
with covariance matrix oZ-Ip. The mean of P is

U2 ' U2 U2 =%
(3.2:2) ER) = EGDOP) = (EEON) = (7 2.
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Let
Ry R3
i (P1'F4 Plfvs)
PoFg PoVg

where V5 is a mxm-k column orthogonal matrix that makes (F4,V5)

an orthogonal matrix. By Theorem 3.3.1 in Anderson [1958], the
columns of R have independent p-dimensional normal distributions with
covariance matrix 02-Ip. The mean of R is

R] R2 U2 =* F4 ‘U2 =x ¥

g F v

5 o d U2 =* V5

(3.2.4)  E(R) = E( ) T Wy, v v

R3 R4) - (V

4 4

From the above expression it is easy to get the MLE's. Since all
elements of R are distributed independently, we have that the MLE of
Vg =% Fy is R, of U, =* Vg is R2f and of V, =* Vp is R,. We can
apply a standard theorem in multivariate regression to get the MLE

of a:

(3.2.5) G = Rd'(dd')7.

We now can get the MLE of =*:

~ U, 4 Ryd'(dd')7'd R iy
3.2.6)  =x = (,2)7V(,] 2y (FoVe) s
(3.2.6) D7 ) (V)
R.d'(dd')"'d R, F!
. 1 2. a4
= (UL,V! 5.
(U3:93) (¢! 2 )

If we go backwards, using first (3.2.3) and then (3.2.1), we

get
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A

=% = || 1 l"] 1 i ] 1 [l by | 1
=* = U2U2X*F4d (dd')"'d F4+V4V4XZ’I‘F4F4 + UZUZXTVSVS + V4V4XTV5V5.

Using the fact; that Ip - V&V4 = UéU2 and Ik - V5Vé = F4FA, we get

—_ — ] ] § _.l 1
= = XE-UBU,XAF, (I, ~d' (dd*) " d)F,
5 = U2XTF4d'(dd')'].

It should be noted that neither =* nor o is a function of 02.

We summarize our results so far.

Theorem 3.2.1. If our model is XT = =* + E* where each column of

E is distributed independently with a p-dimensional normal
diétribution having mean véctor 0 and covariance matrix 02-Ip
(02 is a fixed quantity), then the MLE's of =* and a which satisfy
the hypothesis U2 =% F4 = ad, where U2 is a fﬁxed rxp row orthogonal

matrix, F4 is a known mxk column orthogonal matrix and d is a

known sxk matrix are

(3.2.7) =* =

|

><

>

1
[y
[ ey
>

%
-n

] |'] 1
$-UpUpXgF, (1) -d' (dd")""d)Fy,

>

(3.2.8) a-= U2X7F4d'(dd')'].

i

Part 2. Substitution of ouf derived MLE's back into the likelihood
and maximization with respect to UgaEE:

A

In this part, we find the MLE's of U, and o? using =*, o as
defined by (3.2.7) and (3.2.8). We now write the distribution of

X? after substituting S+ for =*,
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(3.2.9)  £(X¥,2%,0°,U,) = (2n0%) 7% MPexp(-20%) tr(Xg-2) (X4-2)*

If we want to maximize (3.2.9), all we have to do is minimize

Q = tr(X5-=%) (X§-2%) ",

(3.2.10) tr(UzX?F4(Ik-d'(dd')-]d)FAXf'Ué).

Minimizing Qsubject to the condition that U3 is row orthogonal
(i.e., UZUé = Ir) is a straight forward application of the Courant-
Fischer Min-Max Theorem (see Bellman [1970]). If we let the columns
of ﬂé be the eigenvectors associated with the r smallest eigenvalues
of | !

(3.2.11) M= X?F4(

‘ 7: ' -1 ] ' )
Ik-d (dd') d)F4XT s
then GZ minimizes Q and therefore is the MLE of U2. The minimum

value of Q is % A; where A is the ith largest eigenvalue of M.
i=p-r+]

At this point we should talk about zero eigenvalues of M. Since
the rank of Ik—d'(dd‘)"1d is k-s, M will have full rank with
probability one if and only if k-s > p, i.e:, M will have zero
eigenvalues with probability one if and only if k-s < p. In all
cases in the succeeding sections, we assume that k-s > p.

The MLE of 02 is easy to get since we-know the minimum value

2

of Q. The MLE (3 ) of ¢ in our reduced model is

2= 1 v
P iZpar+1 !

where 1 is the ith largest eigenvalue of M.

Q-
. RIS o e

B T T B R P R e e N R e ey
SRR ey T P L TR U A s W I e

tr(UéUZXTF4(Ik-d'(dd')—]d)FA)(UéUZXTF4(Ik—d'(dd')_ld)F&)',

T T T T T T P ST AL R



Let us summarize our results in the following theorem:

2

Theorem 3.2.2. The MLE's of UZ’ a, =*, and ¢° in the reduced

model (3.1.11), (3.1.12) are:

N UZXTF4d'(dd')'1,

I

*

]
><

AIA t ] "] 1
T-UZUZXfF4(Ik-d (dd") d)F4,

>
N
{
~—~
|
il ~-TO
>

where A is the ith largest eigenvalue of M, the rows of 62 are
the eigenvectors associated with the r smallest eigenvalues of M,

and

M = XTF4(Ik-d‘(dd')"]d)F4Xff

Remark I. If we multiply 02 and o on the left By any invertible

matrix, the resulting matrices would also be MLE's.

‘Remark II. A1l mqtrices which are MLE's of Uz,u are of the form
Hﬂz, Ha for some invertible matrix H.

| Theorem 3.2.2 gives us the MLE's of the parameters in our
reduced model. If we use the MLE's of =%, U2 and a given in
Theorem 3.2.2 for our reduced model, and also use (3.1.3), (3.1.4),
(3.1.5), and (3.1.7), we can get-the MLE's of =, U;, and « in the
general model. _ |

Reca11 that thé MLE for 02 in the general model is given by

(3.1.10):

80
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) 6% = SlLtr(X3-2¢) (X3-2%) +tr XEX§'+tr X505 +tr XX .

Following (3.2.11), we found that the minimum value of

tr(X*-;*)(X*—;*)' i E
i=p-r+] ‘
e1genva1ue of M which is defined in Theorem 3.2.2. 1If we use the

Ajs where A is the ith largest

def1n1t1ons of X;,X§ and Xz, we get

t 1 [ 1 [ "] 1 1 1 ".I ]
tr XEXE'+tr XEXE'+tr XEXE'=tr(XX'-F) (FF) T F{XFo(FoF5) 7 F X" ).

Combining the preceding arguments, we finally have

5% = 1 ; A.+tr(XX'—F](F Fo) TTRIXES(FoFS) T X)),

i=p-r+l

where A is the ith largest eigenvalue of M.
We now give the MLE's of U], =, a, and 02 for the general

model in the following theorem.

2

Theorem 3.2.3. The MLE's of U2, a, =*, and o in the general

model (3.1.1) (3.1.2) are:

ol

Uy = Uz(F1F1) ,

u,X d (dd* )

Q>
il

Xl

Jo

>
!

= (FIFy) 7% S%(F,F3) %,

-1

o2 = Ly 5 A (XX -FL (FIF;)

-1
FAXFL(F,F5) " F X))
iEoore 17222 T

where A is the ith largest eigenvalue of M, the rows of 62 are

the eigenvectors associated with the r smallest eigenvalues of M,

and

TR T




=
1

— [ 1 ‘] 1 1
% 1 "% 1 ] ] "%
Fu = (FoF5) 72 Fo(FL(F Fy) TF,) 72
g = (FoF3) 2 Fa(F3(FFp) TF3) 7%,
— 1 1 '] -3
d = b(F4(F,FS)™ 'F5) 73,
* =

AIA ! ] _1 1
Xf-UZUZX?F4(Ik-d (dd"') d)F4.

Remark I. If we multiply ﬂ] and o on the left by any invertible

matrix, the resulting matrices are also MLE's.

\

Remark II. A1l MLE's of U] and o are of the form Aﬂ], A& where A

is some invertible matrix.

Remark ITII. The rows of U] are themselves eigenvectors corresponding

to the r smallest eigenvalues of

- 2
(FiF,) 72 M(FIF,)2.

3.3. Special Cases

The models we consider 1in this section are all special cases
of our reduced modeil. It should be noted that our reduced model éan
be considered as a special case of our general model if we take

F, =1 F2 = Im’ and F3 to be a column orthogonal matrix.

1 p’

Consider the following situation:

(3.3.1) Xj = g5tes; i=1,2,...,m

where X is a p-dimensional vector of observations, £5 is an

s s et




unknown p-dimensional mean vector, and e, is a p-dimensional:
error vector. Each e; is distributed independently with a normal
distribution having mean vector 0 and covariance matrix 02-Ip

(02 is unknown). We want to estimate g; under the hypothesis that
(3.3.2) Uzgi = a; i=1,2,...,m

where o, U2 are unknown rx1 and rxp matrices respectively. If we

lTet
X§ = (xpsxgseeosxp)s =% = (£,6,,0.0,81),

E* = (e],ez,...,em),

then (3.3.1) and (3.3.2) can be written
XZ;: E*+ E*’

=XF, = g

U2 4 d,

where F4 = Im and d = (1,1,...,1). In this form our model looks
identical to the model in Theorem 3.2.2. Using Theorem 3.2.2, we

get the following application.

Application 1. Assume our model 1is X; = Ejte, and we want to

estimate U2, gi, and o subje;t to Uzgi = a, where Xis gi’ e;s U2,

and o are defined above. Then the MLE's of UZ’ o, £., and 02 are:

i

A

a=U2X,

& 7 x1-UéU2(x1-x),

2.1,
T j=p-r+1 !
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where A is the ith largest eigenvalue of

M=
i

nNe~13

1(x1-->'<)(x1-->'<)' ;

the rows of ﬁz are eigenvectors corresponding to the r smallest

eigenvalues of M, and

X = Y xi/m.
i=1

Remark I. AGZ and Aa where A is an invertible matrix are also
MLE's of U2 and a. '

In all the theorems and applications discussed so far, we have
remarked that the estimator of the unknown 1ineér restrictions
(ﬂ] or ﬂz) is not unique. In fact any invertible matrix times ﬂ]
or 62 would also be a MLE. In the application we now discuss, we
require that the last r columns of our maximum Tikelihood estimator
of U2 are the identity matrix (seé the beginning of Section 1.2 and
also the discussion preceding Application 4 in Section 1.3).

We will now consider the following model:

1,2,...,m;

-
I

(3.3.3) Yy = vitfas

1

Z,

. Hv1+a+gi; i=1,2,...,m;

where Y5 and z; are p-r and r dimensional vectors of observed

values, V.

3 is an unknown p-rx1 vector, H is an unknown rxp-r

parameter matrix, and fi’ g; are p-r and r dimensional error
vectors which are distributed independently of one another with a
normal distribution having mean vector O and covariance matrix

2

2 .
o 'Ip-r and o 'Ir respectively.

84
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? We will now rewrite the above model in such a way that it
can be easily seen to be a special case of Theorem 3.2.2. Llet

.y'ls )'2,---, ym V-l ,V2,..., Vm

X% = ), == )s
1 Zys Zpseees Zp BV]+a, Bv2+a,...,va+u -
s foseees T

E*___(-I 2 m)

g], Gpseess 9 ?
then (3.3.3) can be formulated-in the following way:

X

= E*+E* R

%
1

(-H,I) =* = a(1,1,...,1).

It is clear tha§ the above model and hypothesis is exactly the
same as in App]icatfon 1 with the exception that U2 must have the

jdentity as its last r columns. If Uy = (U12’U22) - U22 is rxr -

is the estimate of U2 in Application 1, then we can get the MLE

of H from the following expression:

~ A A 'l ~ ~

_ =10 ~ _ o1
(-H,1) = (UpoUpqT) = Unn(UpysUsn) = Upally).

Since (—ﬁ,I) is an invertible matrix times 02, it is also a MLE

of U,. It is clear that when we substitute (-ﬁ,I) into (3.2.10)

2
for U,, that Q is minimized. Since (—ﬁ,I) has the right form
i- ) 6
22 “21°

We summarize our results in the following application:
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% Application 2. Assume that our model is
yi = Vi+fi; i=1,2,...,m
z; = Hvi+a+gi; i=1,2,...,m;

where Yio Zjs Vis O H, fi’ and g; are defined above. Then
the MLE's of H, a, vi, and o are:

A _ A_'I A
H= -U22(U2'l)s
. ~ Y
a = ("HQI)(_)S
Z !

\7. y. a _ | .Y'-y
SO NG IR CTR NI SRIETR T
HV1.+0t 1 i

52 E A;/mp,
i=p-r+l

~

where A is the ith largest eigenvalue of M, the rows of (621,U22)
are the eigenvectors associated with the r smallest eigenvalues of

M, and

Remark I. ﬁ,& are unique. .

Application 2 is a generalization of the model considered
first by Gleser and Watson [1973] and later by Bhargava [1975].
The proof utilized in these papers cannot be generalized to cover
our case. Their model is a special case of Application 2, where

a = 0.
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We will conclude this section with a model which can be con-
sidered a combination of the "error-in-variables" model and the
usual Tinear regression model. In the model we discuss there are
some variables which are measured with error and other variables

which are measured perfectly. -Consider the following model:

Y; Vi+f1; i=1,2,...,m

Z.

; Hvi+adi+gi; i=1,2,...,m;

t

where Yis Vo Zj » H, Vis f and g; are the same as in App11cat10n 2,

i
a is an unknown rxs matrix, and di is a known sx1 matrix. Vs is the
variable which is measured with error and di 1s»the variable which
is measuredlperfect1y. We may apply Theorem 3.2.2 in a manner
similar to what we did for Application 2 to get MLE's of H, Vis and

a. If we do this and use the fact that d = (d],dz, . ,dm), we get

AppTication 3. Let our model be

-
1]

Y4 v1+f1; 1,2,...,m;

—s
]

Z.

j Hvi+adi+gi;

1,2,...,m;

where Yis Vis Zjs H, v., f., and 95 are the same as in Application 2,

i i
a is an unknown rxs matrix, and di is a known sx1 matrix. The MLE of

2
H, o, Vis and ¢ are:

H=-U 22(U21)
s = (DT Chan( ] e
=1 2 1 i=1 i ,

B s o e e R A L A e R i 2 I R S S e e A S T A
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A

Vi Yy ; S v mverTen Py Lo
. ) = () = GHITHDH, D) TLHD () - edid,
Hv1+adi i i

o¥ = E Ay/mp
i=p-r+l

where A; is the ith largest eigenvalue of M, the rows of (02],022)
are eigenvectors associated with the r smallest eigenvalues of M,

and
m

j 1 | -1 y, Y 1 m 1 -1 1
)dj)(jgldjdj) di)((zp'(qu(zg)di)(z djdj) d;)'.

A

Remark I. H, o are unique MLE's.

3.4 Consistency of the Estimators

In this section we discuss the éonsistency of the estimators
from Section 3.2. We first work with our reduced model. A1l the
results for the reduced model are rigorously proved. For the general
model, we merely state our results since they follow from the
results for the reduced model.

Let us conéider 02,& the estimators of Uz,u in our model. In
order to make a discussion of the consistency of 62 and o meaningful,
we have to place restrictions on U2 and 62 which will make them
unique. Our arguments here are the same as in Section 1.2 of
Chapter 1. Let (Uf,a*) be the unique members of the class of
matrices (Uz;a) which satisfy U§ E*F4 = ad, where U§ has the
identity matrix as its last r columns. Let ﬂ§ be the unique MLE

of U

2 which has the identity matrix as its last r columns. In




Application 2 and Application 3 of the previous section, we -
satisfy this requirement. We will show that ﬂg, &* are strongly
consistent estimators of U§, a*. First, we will prove some useful

Temmas.

Lemma 1. Assume that

m™! =*F Ik-d'(dd')_]d)z*'

n

converges to a finite matrix R. Then

m M = m']X*F4(Ik-d'(dd')']d)F'X*'

4 \

goes almost surely to R+(]-t])02-Ip where

ty = Tim (m-(k-s))m'] = 1im (m-k)m'].
Mo Mo

Proof. Consider X? which is a pxm matrix. Each column of X? has an
independent p-dimensional norha] distribution with covariance matrix
cz-Ip. The mean of Xy is =*. XyF, is a pxk matrix. Since F, is a
column orthogonal matrix, each column of X’]*F4 is distributed
independently with a p-dimensional normal distribution with

covariance matrix 02-Ip. The mean of X*F4iis E*F4. We have

m']X*F

4( 4

' 1y~ 1 —%! -1 1 1 -1 P
2 (1, (dd" )T Td)F =% m ™ EXF (1, -d" (dd") ™ d)Fj=¥

om0 (1, -d" (dd*) T ) FpER e TERF

(3.4.1) = m l=xF

1

(Ik—d'(dd')_ d)F&E*'.

4

By our assumptions and Lemma 2 of Chapter 1, we have that the 2nd

and 3rd terms on the right-hand side of (3.4.1) go almost surely to

89

Ik-d'(dd');]d)F'X*=m_](E*+E*)F4(Ik-d'(dd')_]d)F4(5*+E*)'

0.

R s ) e s T B T adu Tl L R T T Ry R SERLER A N SR TN R e o S
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% By our assumptions, the 1st term goes to R. If we use Theorem 4.3.2

in Anderson [1958] we find that the last term has the same distribu-

tion as k;s
©ousul,
=1 1
where Uy has a normal distribution independent of ”j (i # J) with
mean vector 0 and covariance matrix 02~Ip. We know that
k-s k-s

-I 2 1 k‘S

— Y u.ul === 7 u.ul/k-s

mozy 1 mooioy i
goes a]most surely to (1—t])02-1p. If we combine all the above
statements, we get

] a.s

L X¥F, (1,-d" (dd") T d)Fpx*' o R+(1—t])021p.

Q.E.D.

Lemma 2. If R is finite of rank p-r, then the only matrix which has
the identity as its last r columns and when multiplied by R yields

0 is UE.

Proof. m'1U§(E*F4(I—d'(dd')-1d)FAz*')=m']aF((I-d'(dd')']d)FAE*')=O.
Since this is true for every m, it is true in the limit, i.e., U§R=O.
Since R has rank p-r, it‘has a unique r-dimensional space of eigen-
vectors associated with eigenvalue 0. Let.us consider a matrix whose
rows form a basis for this eigenspace. If this matrix is to have

the identity matrix as its last r columns, it is clear that this

matrix must be U;. Q.E.D.
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Theorem 3.4.1. Under the assumptions of Lemma 1 and Lemma 2,

3 is a strongly consistent estimate of UE.

Proof. By Lemma 1, we know that m']M goes almost surely to

R+(1-t])021 Since the eigenvalues of a matrix are continuous

D’
functions of that matrix, we are able to conclude that the r

smallest eigenvalues of m"]M converge almost surely to the
smallest eigenvalue of R+(1—t])021 2.

which is (1-t])o By

p
Lemma 2, U§ is the only matrix with the identity as its last r
columns which satisfies U§R = 0. We may conclude that U§ is the
only matrix of the right form whose rows are eigenvectors

2.1 .

associated with (l—t])c2 the smallest eigenvalue of R+(1—t])o
Let Gﬁm be the estimate of U§ if we have m observations.
Let 62m be the estimate given in Theorem 3.2.2 used to generate

Ugm, i.e.,

fe o on(2)y-145(1) 2 1 _ 2
0s = (YT 1) = (0§2)) 1(u‘ 11y = (0 342y (U,

2m Zm ’'r 2m

1 (1)() : T Sy o
where Upy = (U Us ). Since (U2m)-(U2m) = LUy is bounded
almost surely. Let us pick any subsequencé of U2m' Since U2m is
bounded almost surely, there must exist a subsequence of this
subsequence which converges. Let ﬂzﬂ denote the convergent

subsequence. Also let

C = lim 02“
M ST

Every row of C is the 1imit of a sequence of eigenvectors of

m']M associated with one of the r smallest eigenvalues. Since
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m™ 1M converges almost surely to R+(1-t])02-1p=-eaCh row of C must

equal some eigenvector of R+(1—t])02Ip associated with (1-t1)02.

Since

r’
[1gad

Tim U2ﬂm . U21Tm = C? =1
C is of full row rank and therefore its rows must span the spaée
of eigenvectors of R+(1—t])021p associated with (]—t])oz. We

already showed that UE spans that same space. We therefore have

U; - (C(Z))"](C(1),C(2)) - (C(Z))-]C

where C = (C(]),C(z)).
Let ||A|| denote the largest element of A. We will now show

that ||ﬂ§ - U3]| goes to O almost surely.
'le_

105 -U*iI-II(U(Z) G, - (c‘2’>"1C|l
m

i||(u§;°;)>'162 (2! ST AR
m m m
(ct))Te|
(3.4.4) < 10, 11 |i(U£ﬂ;)'1 @)Dy
U, -Cll.
10y, ~cl]

The first term on the right-hand side of (3.4.4),

||ﬁzwm||'||(ﬂ£§;)-1-(C(2))_]||, is arbitrarily small since U21T is

m
bounded almost surely and Uéz) converges to U( ). Since (C(z))'] is
"m
bounded and U21T goes almost surely to C, ||C )|| ]lﬂz1T -C|| goes
; m . ;

almost surely to zero. Combining the above statements, we have that

ﬂ;ﬂ goes almost surely to U§. We have shown that for any subsequence
m

B i R B S G T e e R G i s R i




of UEm there exists a subsequence of that subsequence which
converges to U§ almost surely. ﬂ§ must converge almost surely

to U;. - Q.E.D.

We now discuss the consistency of a* ='G§XfF4d'(dd')_].
; \

Theorem 3.4.2. If (dd')']-m converges to a matrix with all

elements finite, then a* is a strongly consistent estimate of o*

where o* satisfies U’§E*F4 = a*d.

Proof. Note that

~

a* = UgueF,d (ad') 7!,

Ug(=r+E%)F,d" (dd) 7',

U§5*F4d'(dd')']+U§E*F4d'(dd')'].

]

Since ﬁ§ goes almost suke]y to U%, G*:*F goes almost

£ 00")”

surely to

U,=*F,d* (dd')7! = axdd' (dd") 7! = o,
If we apply Lemma 2 of Chapter 1, we get that E*F4d'(dd')"]

goes almost surely to 0. We therefore have that GEE*F4d'(dd')']

goes almost surely to zero. Q.E.D.

We now show that the MLE of 02 in the reduced model is not
consistent. We have already mentioned that the r smallest

eigenvalues of m']M go almost surely to t]cz. Since Ai/k for

i = p-r+l,...,p, are the r smallest eigenvalues of

93
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X*F4 (I -d' (dd') ™ d)FjX* /m, we have

2.1 % -

— ; b m 11-t,)6%.
P i=p-r+1 ! P

i=p-r+l

|~

Straightforward substitution yields the following result:

~ -1 . a.s.
=*F (I, -d' (dd") 7 d)Fp=*"/m >

R+(]-t])oz(Ip—Ué(UzUé)']Uz).
Let us now consider the parameters in the general model. For

the definitions of all terms see Theorem 3.2.3 and the beginning

of Section 3.1. Let'ﬂf be the MLE of U] which has the identity

as its last r columns. Let o* be the corresponding value of a.

Let U?’a* be the parameter matrices in the population which

satisfy U] EF3 = a*b, and UT has the identity matrices as its

Jast r columns. We could prove the following theorem in an

analagous way to what we did for the reduced model.

Theorem 3.4.3. If our model is the model of Theorem 3.2.3 and if

N (T (dd) )R |
NVFIE, ) E=(F )R (1, -d" (dd*) T d)F S (FF L) B=(FiF )2
117750 " Uy AUPUPYREALE L
converges to a finite matrix R of rank p-r, and if t]=11m(N—(k—s))N'],
N~
then
i) N_kx*(F4(Ik-d'(dd')']d)F&)x*')goes almost surely to

2.1 .
R+(1't])(5 ‘Ips -
C oA 2
ii) the rows of UT are eigenvectors of (FiF])zR corresponding to

eigenvalue 0;




iii) 0? is a strongly consistent estimate of Uf;

iv) if N-(dd')—1 converges to a finite matrix, then o* is a

strongly consistent estimate of o*;

v) N%' E

A; goes almost surely to (l-t])czr/c..
i=p-r+l :

Since
(%) e (XK' =F | (F{F;) TVRIXF4(F,Fo) TTFX")
1V 1 2v 22 2
has a chi square distribution with cN-pm degrees of freedom, we

have -
(3.4.6) tP(XX;-F (FiF ) FXFL (R F) TE XY /o2 (copm) o 1
o LASE R R TR AL A ) (CN-p

provided that cN-pm goes to = as N does. If 1im Nﬁm-= t2, we have

N
a.s.

[} - t "] t 1 1 ‘] 1 X

o?(1-s/c(1-t,)).
It we combine the above statement and v) of Theorem 3.4.3, we get
that

o® 85 o®(1 + H(1-ty)r-(1-t,)p)).

k-s

Since p > r, and 1—t2 = im N 1-t; (m > k), 82 under-

estimates 02.
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CHAPTER 4

TESTING THE EXISTENCE OF UNKNOWN LINEAR
RESTRICTIONS IN A GENERAL LINEAR MODEL

4.0. Introduction

Let our model be the Potthoff-Roy model:

]EF2+E

(4.0.1) X-=F

where X is a cxN matrix of observations, F] is a known cxp
matrix, = is an unknown pxm parameter matrix, F2 is a known

mxN (N > m) matrix and E is a cxN error matrix whose columns
are distributed independently with a normal distribution having
mean vector 0 and covariance matrix oZ-IC (02 is unknown). In

this chapter we will be concerned with testing

(4.0.2) Hy: U,=F3=ab versus Hy: UysFg # ab,

where U; is an unknown rxp matrix, Fj is a known mxk (m > k)
matrix, o is an unknown rxs matrix and b is a known sxk métrix.
In Section 4.1, we derive the likelihood ratio test statistic

for H0 versus H]. In Section 4.2, we find the asymptotic
distribution of the roots needed in thé Tikelihood ratio
criterion. In Section 4.3, we use the asymptotic distributions
of the 1ikelihood ratio test statistic to get asymptotic tests of

H0 vVersus H]. In Section 4.4, we show the tests from the preceding

section are consistent.

et e e e e




4.1. Likelihood Ratio Test Statistic

In this section we find the likelihood ratio test of

H .

0 U]_=_F3 = ab versus H]: U1EF3 # ob, wher. our model is given by

(4.1.1) X = F]EF +E.

2
A11 variables are defined in the introduction to this chapter. Our

result can be summarized in the following theorem.

Theorem 4.1.1. If our model is given by (4.1.1) and we wish to

test the hypothesis HO: U]zF3 = ab versus H]: U]zF3 # ab, then the

Tikelihood ratio test statistic is

‘ ol

1 1 e ' iyv—1 I cN
. tr(XX'-F (F{F1) 7T FiXFo(FoF5) T F X))
1 [}
~{ 1 1 -1 t 1 1 -1 i

i=p-r+]

where A5 is ith largest eigenvalue of M, and

|. |-"]
Ik—d (dd') "d)F

M= X?F4( &XT >
* t "% ) 1 1 ":33:
X] = (F]F]) F1XF2(F2F2) s

: = ' -3 1 ] ‘] ';'J—-
Fy = (FoFp) #F5(F3(FoF)) TF3) %,

1 |'-1 3
= b(F4(FoF5) " F4) 72

o
|

Proof. We need the maximum value of the likelihood when HO is true

and when H] is true. In Chapter 3, we derived the MLE's of U], z, o

2

and o when the H, is true (see Theorem 3.2.3). If we substitute

0
these estimators into the likelihood we get:

97 -
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35°[(X-F=F, ) (X-F 2F,) ']

% max L = (270 )2 Nog ,
Ho
= (21_[)"'— CN(&Z)-% CNe-’% ¢cN
= (2n)78 Ngz N1 E A HEP(XAXE ) HEr(XEXY') +
e .2 i A5 343 -
d=p-r+]
tr(xxxt)) 18 N
Ly ,
— -’— cN 1 ' 1 -1 1 1 1 -1
(4.0.2) = (2B ML (F wetero R (FIF)TRIEL(RF)

i=p-r+i
] -2 CN
FoX'))17% Y,

' . ’

where As is the ith largest root of M, and M and the variables which
define it are given in Theorem 4.1.1. For definitions of
XZ’ X3, Xz, see Section 3.1.

We now get the maximum value of the likelihood when the

alternative is true. When the alternative is true, our model 1is
just X = F]EF2+E with no restrictions on =. The columns of E have

the same distribution as under H,. The 11ke11h06d function is

2 -30 (tr(X Fi=F,) (X-F;=F,)")
(8.1.3) L(X,2,0%) = (2no?)73 cNg * 1572 1552 _
If we use standard multivariate regression procedures, we

get that the MLE of =

>

- | "]l ] |']
(4.1.4) = (F]F]) F1XF2(F2F2) .

The MLE of 02 is also easy to get:
-2

1 2 r
(4.1.5) NE—tr(X-F]:FZ)(X-F]:FZ) ,

-l 1 1 '1| 1 1'1 1
NE{tr(XX -F1(F]F]) F1XF2(F2F2) F2X y1.
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§§ ~ When we substitute (4.1.5) (4.1.4) into (4.1.3), we get that the
maximum value of the likelihood when the alternative is true is

Tex)1EN,

-2 ] - i 1 1
(4.1.6) max L = (2me) 2 C.N[WC— tr(XX'-F (FiF;) ]F]XF (EZFZ) )

2
Hy
If we combine (4.1.2) and (4.1.6) we will get the likelihood

ratio test statistic of H0 versus H1:

max L ) y=1p yiyqacN

.. Ho  [erOXX*-Fy (FyFy) T RS (FpFg) ™ k')

1 max L E . | R . e .
Hy [ A FEr (XX -F (F1F) T FXF(FoF5) T F X" )]

i=p-r+l

Q.E.D.

Remark. It is clear that the Tikelihood ratio test statistic is

a function of

[ I t "'1 ' 1 '] vl - '2 \l »
hy = E A/ LEr (XX =F (FIF ) TR XFA(FLF5) T F X ] = A /eN .

i=p-r+l : 2

The numerator and denominator of the above expression are independent

since § A; is a function of Xf, the denominator is a function of
i=p-r+il

* ¥ P X

X%, X§, and Xz, and X% 1s independent X*,’X§, and Xz (see Section

3.1 for definitions of X}, X%, and 'xz).

Remark II. The likelihood function can be made arbitrarily large

= X and 32 = € where ¢ is an

if Fi = Ip and F, = I by taking
arbitrarily small positive number. Because of this, there does not
exist a test of the hypothesis UZE*F4 = ad versus UZE*F # ad in the
reduced model. What causes the problem is that under the alternative

hypothesis, there is nothing Teft to estimate 02 after we fit =. We
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will therefore assume that 1im Nc-mp = « when we test

Nooo

U]EF3 = gb versus U]EF3 # ab.

4.2. Asymptotic Distribution of the Roots

In this section, we find the asymptotic distribution of the
roots needed in the likelihood ratiq tests. We are interested in

the r smallest roots of
M-x = 0,
H-aL ] = 0
where
—_ i |‘] ] 1
(4.2.1) M= XTF4(Ik—d (dd') d)F4Xf .
It is helpful to work with the r smallest roots of

l(ch)']M—¢*Ip[ = 0.

It should be noted that ¢* = (ch)']x.
We now prove a useful lemma which is similar to Lemma 1 of

Chapter 2.

Lemma 1. Let our model and hypothesis be given by
X = F]EF2+E,
U] EFS = (],b,
where X, F], z, F2,>E, U1,,F3, o, and b are defined in the introduction

of this chapter. The roots of

(4.2.2) [(Ne®) M = ¢*1 | = 0,
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where M is given by (4.2.1) have the same distribution as the roots of

a
(4.2.3) [N TururN Eoeng-o*1 | = 0,
where
C]’] . C1,p-r Ei
C = . : .
C]’P'r p-r,p-r *°° Ep-r
E; CEpp 0
Chnt = "Yh Yhen * Vi Yne
UK,P-P+]
By = o | Yhperez |
Uﬁsp
Y'IN 0 . 0
_§ 0 Y 0
Do "2N .
0 0 0

and Yin js the ith largest eigenvalue of

(No?) ™1 (=4F (1-d" (dd*) " Td)Fz=%1),

“and U* is a pxk-s matrix whose columns have independent normal

distributions with mean vector 0 and covariance matrix Ip.

Proof. First, consider

2 .
X§ = (F{F;) 2F{XF5(F,F5) 2,
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When we take the square root (negative square root) of a matrix, it
is always the unique symmetric square root (negative square root).
The columns of XT are independently normally distributed with

covariance matrix 02-Ip. The mean_of Xf is

* e V2 %
=r = (F-IF-I) :(FZFZ) .

Now consider c']XTF4, where
[ "':."2- ' ] "] "'.%
Fy = (FoFy) 2R3 (F4(F,F5) T F3) ™™,

Since F, is a column ortHogon&] matrix, each column of»o—]X’]‘F4

is distributed independently with a normal distribution having

" covariance matrix I_.. Next consider o"]X’fF4V6 where V6 is a

p
matrix such that

[ - [ [ ! '1

(=8
it

1 1 "1 -%
b(FB(FZFZ) F3) .

1

Since V6 is a column orthogonal matrix, each column of o X?F4V6

(which is pxk-s) is distributed with an independent normal distri-

bution having covariance matrix Ip. The mean of o']X?lfFZlV6 is

-1 R
E(G XTF4’V6) =0 :*F4V6-
Consider
U= o~ Ir XEF, VT
1"14°6° 2°

where I8 and r, are orthogonal matrices such that

e b r— e ——— R A AN TR
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o - VY]N 0 . 0
(NG ) 11]E*F4V6P2 = -— 3

0 _/§2N 0

0 0 0

and YiN is the ith largest eigenvalue of

(O'ZN)-']E*F4V6VéF[‘l_E*'=(0’2N)-]E*F4(Ik'dl (ddl )-]d)F;l_E*I .

It should be noted that the r smallest eigenvalues of the above
expression equal 0 by our hypothesis. We may write (4.2.2) the
following way: ' .
|(N%) T - g*1 | = NTW-e¥T | = 0.
Finally, we make the following substitution. Let

= -1s =
U* - U-U I'-I:*F4V51"2.

Then each column of U* has a normal distribution with mean vector

0 and covariance matrix Ip. We also have

UU' = U*U*'+/N C+DO,
where C and D0 are defined in the statement of the lemma. The

lemma now follows. Q.E.D.

At this point we separate into three cases

Case 1: k is fixed;
Case 2: t1 # 13

Case 3: k goes to infinity as N does, t] = 1;




)

where t] = 1im (N-k+s)N'1. We always assume that r (the number of

N->o
rows of UZ)’ p (the number of rows in =), and s (the row rank of

b and d) are fixed quantities.

For each case, we now present important results about the
asymptotic distribution of the roots. For Case 1, we have the

following theorem:

104

Theorem 4.2.1. Assume that k is fixed. Let v; = A;(c?)71 = g%.N,

i

where ¢% is the jth largest root of [(Noz)-]M—¢*Ip[ = 0.

Then the limiting distribution of (vp-r+]’vp-r+2""’vp) is ,
a a p _-E vi/z
2“§P(k—S-P+Y)H§r( I V‘)%(k-S-P-l)e i=p-r+1

i=p-r+]

r

T r((k-s-ptr-1-1))1(F(r+1-1))

i=]
P P
I I (vi—vn)

i=p-r+1 j=i+l

Proof. By Lemma 1, we only have to consider the distribution of

the r smallest roots (¢? = j=p~r+1,p-r+2,...,p) of

' 2
(4.2.4) IN—]U*U*'+N-2C+D _¢*15| =0,

0

where C, U*, and D0 are defined in Lemma 1.
For Case 1 we can utilize the proof given in Hsu [1940].
Equation (17) in Hsu is identical to our equation (4.2.4) with

the following correspondences:

P T T TS T
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% Hsu (17) (4.2.3.)
U*y*'
C
o
¢*IS-DO
A

N-E

< O < O >

A11 that we have to do is follow the steps in Hsu's proof. Q.E.D.

Remark. The distribution of the roots given in Theorem 4.2.1 is the
same as the joint distribution of Ps where Py is the ith largest root

of
|B - pI|l =0

and B is defined by

k-s-p+r
B= )} uu!
i=1

where the u; are independently distributed with a normal:distribution
with mean vector 0 and covariance matrix Irn

For Case 2 and Case 3, we make the following assumptions.

Assumption 1. The matrix

(4.2.5) (GZN)']E*F4(Ik-d'(dd')‘1d)F&s**

converges to a finite matrix (02)-]R of rank p-r.

Assumption 2. vy = Yi+0(/N) where v, js the ith largest
eigenvalue of (4.2.5) and Y; is the ith largest eigenvalue of

(%) TR.

e ettt R e
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We now state and prove several theorems for Case 2.

Theorem 4.2.2. Assume that 1im (N-k)N'] =t # 1, and that

N-sco

Assumptions 1 and 2 hold. Let

tud

vi = (NgE-K)(N-K) 725 § = por+1,p=rt2,....p3

where ¢% is the ith largest eigenvalue of (Noz)']M. The Timiting
distribution of (vp—r+1’vp-r+2""’vp) is the same as the distribution

of the r roots from

N .
2, —
[(1/t4-1)%Q4- vIrI =0
where Q] has the r-dimensional matrix normal distribution (see

Lemma 2 of Chaptek 2).

Proof. By Lemma 1, we only have to consider the distribution of the

r smallest roots (¢?N; i = p-r+l, p-r+2,...,p) of

—dh® =O,
¢ Ipl

2
(4.2.5)  |[NTUUx'+N"ZCD,

whefe C, U*, and DG are defined in Lemma 1.

If we multiple each matrix inside (4.2.5) by N(N-k)"] and Tet

D, N(N-k)"DO-N(N-k)"¢*I ,

P
N(N-K) T g%,

¢

then (4.2.5) becomes

i
| (N-K)~Tusus 48 (N-k) T Te-Dy | = 0.

The above equation is exactly the same as equation (2.2.12) with Z = 0.




107

e therefore may follow the proof of Theorem 2.2.2 with Z = 0. The
theorem is therefore proved. Q.E.D.

If we use Theorem 2 in Anderson [1951b], we have

Theorem 4.2.3. Assume 1im (N—k)N'] = t] # 1 and Assumptions 1 and_2

N->oo

hold. Let

_-'—N— - M 1 = p- ‘_ .‘
Py = (/E ¢%-/K); 1 = p-rtl, pore2,...,p;

where ¢$ is the jith largest eigenvalue if (Noz)'TM. The Timiting

~

distribution of (o) 1spp pypse--app) 15

r
- Z p .
_ r _ s = p-r+1 p P
2772 1 r((ra1vi)]Te T T T (py-ps)-
i=1 i=p-r+l j=i+ J

We conclude with several theorems for Case 3.

Theorem 4.2.4. Assume that k » » as N » », that 1im (N-k)N-] =1,

Noco

and that Assumptions 1 and 2 hold. Let

N K :
vi = (g oF - Nk ®s 1= pordl, pert2,..ps

-
2.

where ¢$ is the ith largest eigenvalue of (ch)”lM. The Timiting

distribution of (v .,vp) is the distribution of the

p-r+1°Vp-r+2°°"

r roots of
1Q - vIr[ =0

where Q has the r-dimensional matrix normal distribution (see

Lemma 2 of Chapter 2).
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% Proof. By Lemma 1, we only have to consider the distribution of

the r smallest roots (¢§: i = p-r+l,p-r+2,...,p) of

=

)

(4.2.6)  [NTUmUs N D641 | = 0,

where C, U*, and DO are defined in Lemma 1.

If we multiply each matrix inside (4.2.5) by N(N-k)'] and let

- -Tn _nineey-! '
Dy = N(N-K)™ Dg=N(N=k)™'¢*T ,
6 = NON-K) " Tox,
then (4.2.5) becomes ’

2 -
(N-k) ™ Turux +nE(N-k) " Te+D, | = 0.
1

The above equation is identical to equation (2.2.15) with Z = 0.

We may follow the proof of Theorem 2.2.4 with Z = 0 to get the

required result. , Q.E.D.
Using Theorem 2 in Anderson [1951b], we have:

Theorem 4.2.5. Assume that k + = as N -+ =, that 1im (N-K)N"! = 1,

N

and that Assumptions 1 and 2 hold. Let

N k - :
vy = (N-k ¢% - N_k)Nk ;1 = p-r+l, p-r+2,...,p;

ol

where ¢? is the ith largest eigenvalue of (Noz)']M. Then the limiting

distribution of (Vp—r+1’vp4r+2""’vp) is
Y T, v'i p p
272 1 r((r+1-i))1 e TP g T (v;-vs).
i=1 j=p-r+l j=i+l J
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4.3. Asymptotic Tests of U]§F3=ab Versus U]§F3¢ab

In this section, we use the asymptotic distributions of the
smallest roots given in the proceding section to get the asymptotic
tests based on the 1ikelihood ratio statistic derived in Theorem

4.1.1. We also use the following lemma:

Lemma 1. Let

‘ 2\~ 1 ] = | ' )T !

_a : .
Then (Nc-mp)~ 2(e-(Nc-mp)) converges in law to a normal random variable
with mean 0 and variance 2. We also have that (Nc-mp)_]e goes almost

surely to 1.

Proof. We have shown that e has a chi-square distribution with Nc-mp
degrees of freedom (see the end of Section 3.4). The lemma now

follows from standard theorems. _ Q.E.D.

By Theorem 4.1.1, the likelihood ratio test statistic is

_l
Ay = (ay*1) =N

where

A = ) WICEHR
i=p-r+]

A is the ith largest eigenvalue of M, and 6 is defined by (4.3.1).

In terms of the eigenvalues (¢T,¢§,...,¢;) of (Noz)']M we have

Ay = N E ¢3/6.
i=p-r+l




We now break up our discussion of the asymptotic tests into
three parts which correspond to the three cases discussed in the

preceding section.

Part 1. Case 1: k fixed.

When k is fixed, we have the following theorem:

Theorem 4.3.1. If our model is given by (4.0.1), and we wish to

test the hypothesis HO: U]EF3 = ab versus H]: U]5F3 # ab when k is

fixed, then the asymptotic null distribution of

(cN-mp)1, = (ch-mp) (n7%/N-1)

where A, is the likelihood ratio test statistic, is a chi-square
distribution with r(k-s-p+r) degrees of freedom. The o Tevel

asymptotic test of H0 versus H] would be to reject H0 when

@) 7M) 2 gy 1)

and do not reject otherwise, where xg(B) is the Bth fractile of a

chi square distribution with d degrees of freedom.

Proof: When k is fixed, the asymptotic distribution of N E ¢?
' i=p-r+l
can be easily obtained using the remark following Theorem 4.2.1.

The limiting distribution of N E ¢* is the same as the
i=p-r+l
distribution of
k-s-ptr
tr(B) = tr ) u.ul,
=1 "1

where u; are independently distributed with a normal distribution

110
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having mean vector 0 and covariance matrix I . Since each diagonal
k-s-p+r
element of _Z] uiu% has a chi-square distribution with k-s-p+r
1:

degrees of freedom, and since there are r independent diagonal elements,
the distribution of the tr(B) is a chi-square distribution with
r(k-s-p+r) degrees of freedom. We conclude that the Timiting distri-
bution of N.g ¢* (for Case 1) is a chi-square distribution with
r(k-s-p-r) é;g;EZl of freedom.

We know by Lemma 1 that 6/(Nc-mp) goes almost surely to one.

Since 6 and E ¢$ are independent, we get that
i=p-r+l

(Nc-mp)(A]Z'ICN-U =N E ¢%/(8/(Nc-mp))
i=p-r+l

has a 1imiting chi-square distribution with r(k-s-p+r) degrees of
freedom. _ Q.E.D.

Part 2. Case 2: ty = lim (N—k)N'? 1.

N->oo

When the number of parameters increases with the sample size in

such a way that t; = 1im (N~k)N'1 # 1, we use the following theorem

Nooo

which gives us the needed asymptotic test:

Theorem 4.3.2. If our model is given by (4.0.1), and we wish to

test the hypothesis HO: U]EF3 = ab versus H]: U]st # ab when.

t # 1, then the asymptotic null distribution of

Nc-pm
2r(Nc-pm)+2kr

A3
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where A2 =M -1, and A] is the likelihood ratio test statistic,
is a standard normal distribution. The a-level asymptotic test

would be to reject H0 when

> Z

A3, 1-a?

and do not reject otherwise, where ZB is the B fractile of a standard

normal distribution.

Proof. Consider

(5w

_-5'—L i s a ,
g e - SR
o (Ner-k)k EkBr (o/ (Ne-pm))-1]
: _ i=p-r+l
(4.3.2) : = 57 (Nc=pm)

Since o/ (Nc-pm) goes almost surely to one, we have that the
Timiting distribution of

2

k™ 2(Nc pin) A o~ ~-k®r

js the limiting distribution of

(4.3.3) 5 (Nex-k)k EiEr((e/ (Ne-pm)-1).
i=p-r+l

When t] # 1, the asymptotic distribution of

-3 i} ) 3 r S
b 1000 = 0e0r0®

can be easily obtained from Theorem 4.2.2. The Timiting distribution

of E Vs is the same as the distribution of tr(1/t1-1)?Q], where
j=p-r+l
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§ Q] has an r dimensional matrix normal distribution. Since the
: _ 1
distribution of tr(]/t]-])zQ] is a normal distribution with mean
zero and variance 2r(1/t1—1), it follows that the limiting distribution

of

2
E (No*-k)k™*
i=p-r+1 !

is a normal distribution with mean 0 and variance 2r.

We also know from Lemma 1 that
-
(Nc-pm).-Z((6/(Nc-pm))-1)

is asymptotically distributed as a normal random variable with mean 0

and variance 2. MWe therefofe have that
2
kzr{(6/(Nc-pm))-1)

has a limiting normal distribution with mean 0 and variance

Tim 2kr2/(Nc-pm).

N-voo
If we combine the above three paragraphs and recall that &

and E ¢%* are independent, we have that
i=p~-r+l

2 i
k'E(Nc-pm)Az-k2r

has a limiting normal distribution with mean 0 and variance

2r+2r2 Tim k/(Nc-pm)

Nosco

since

[2r+(2r2k/(Nc—pm)]']=(Nc—pm)/(2r(Nc-pm)+2kr2)!‘

We have finally that
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i

N N R
( Ne-pm 2)'(k 2(Nc-pm)Az—k%r)
2r(Nc-pm)+2kr

has a Timiting normal distribution with mean O and variance 1.
Q.E.D.
Part 3. Case 3: k-« as N+ but t; = Tim(N-k)N"" = 1.
N->oo

We conc]dde this section with a theorem which gives the

asymptotic test of H0 versus H] for Case 3.

Theorem 4.3.3. If our model is given by (4.0.1), and we wish to

-

test the hypothesis HO: U15F3=ab versus H]: U]EF3#ab when

Tim (N-k)/N = ty = 1 and k >~ = as N » =, then the asymptotic null

Nooo

distributicn of

Nl

Ay = (Ne-pm) (2kr)“21,- (kr/2)%,

where A2 = A;Z/CN and A] is the 1ikelihood ratio test statistic

is a standard norma1'q15tr1bution. The a-level asymptotic test would
be to reject Hy when A5 > Z(]_a), and do not reject otherwise, where
ZB is the Bth fractile of a standard normal distribution.

Proof. Consider

ol

(Ne-pm) (2kr) Z1,- (kr/2)2,

=
1l

X
-2
N(2kr) E o

i=p-r+] %
0/ (Nc-pm) - (kr/2)%,
W2k T gt Cerr2)R (/2B (o (Ne-pm))-1]
- i=p-r+l

o/ (Nc-pm)
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Since N ((8/(Nc-pm))-1) goes in law (by Lemma 1) to a normal random
variable with mean 0 and finite variance, and since for Case 3,

1im k/N = 0, we have that

N->oo
(K)72((6/ (Nc-pm))-1)

goes in law to a random variable which is constant at zero.
By Leima 1, we may state that 6/(Nc-pm) goes almost surely to 1.
Since ¢ and E ¢? are independent, we know that the asymptotic

i=p-r+]
distribution of Aq is the, same as the asymptotic distribution of

o

2z i .
(4.3.4) N (2kr)™® E ¢% - (kr/2)%.
i=p-r+i
For Case 3, the asymptotic distribution of the above expression
can be easily obtained from Theorem 4.2.4. Since the Timiting

distribution of

. Ry - =y
§ vy = (N/N-K)[NK 2z¢*-rk? ]
. 1
i=p-r+]

is the same as the distribution of tr Q where Q has the r

dimensional matrix normal distribution, _E \z has a limiting
normal distribution with mean 0 and varigagéer. Since

Tim ﬂﬁk = 1, we can conclude that the Timiting distribution of
?Zf3.4) is a standard normal distribution. | Q.E.D.

4.4, Consistency of the Tests

In this section, we discuss the consistency of the tests from *
the preceding section. A test is consistent if the power of a test
goes to one as the sample size increases when a fixed alternative

is assumed to be true.
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We now give a description of what our fixed alternative
will be. For each N, let us pick = = Zgy° SO that the rth

smallest eiganvalue of

= ' l'] I =gt
(4.4.1) N _6NF4(I -d'(dd") ™ d)F=Ey s

is a fixed positive number. F4 and d are defined in Theorem 4.1.1,
and

=y = (FiFy) 5y (FoF3)

This is a very reasonable definition of fixed alternative. We also
assume that the matrix given by (4.4.1) converges to a finite matrix
R.

For Case 1, we have the following theorem:

Theorem 4.4.1. The asymptotic test given in Theorem 4.3.1 (Case 1:

k fixed) is consistent.

Proof. The test statistic given in Theorem 4.3.1 is

(Ne-mp) (1] -2/eN )

(Nc-mp)A2

w5 e3/(/cmp))
i=p-r+l

where o is given by (4.3.1) and ¢$ are the eigenvalues of M (see
Theorem 4.1.1). By Lemma 1 of Section 3.2, 6/(Nc-mp) goes almost
surely to one. By i) of Theorem 3.4.3, we have that

N M= NI (1, (dd') T d)F X
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goes almost surely to R+(1—t])021p, where t; = &im (N—k)N']; Since
k is fixed, t] = 1. Therefore, in this case, M gzes almost surely
to R. Since the eigenvalues of a matrix are continuous functions of
that matrix, the rth smallest eigenvalue of M goes almost surely to
the rth smallest eigenvalue of R. For our fixed alternative (see
the paragraph preceding this theorem), R = R0 and the rth smallest
eigenvalue of RO is some positive number. We can conclude that

N¢E_ '
goes almost surely to positive infinity. If we apply Theorem 2.4.1,

rq 90€S almost surely to positive infinity. Therefore (Nc-mp)'A2

our theorem (Theorem 4.4.1) follows. Q.E.D.

For Case 2, t] # 1, we have a similar result:

Theorem 4.4.2. The asymptotic test given in Theorem 4.3.2 (Case 2)

is consistent.

Proof. Let us consider
- : -
L (Ne%-K)K=-KEr[(0/ (Nc-pm))-1]

i=p-r+}
8/ (Nc-pm)

Wl

k

a
(Nc-pm)AZ-kzr =

which is equation (4.3.2). By Lemma 1, 8/(Nc-pm) goes almost surely

to 1. By i) of Theorem 3.4.3 we have that

N = N_]X*F4(Ik—d'(dd')"]d)FAX*'

goes almost surely to R+(]—t])021p, where t, = Tim (N—k)N']. Since -

N0
the eigenvalues of a matrix are continuous functions of that matrix,

the rth smallest eigenvalues of M goes almost surely to the rth
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smallest eigenvalue of R. For our fixed a]tefﬁative (see the
paragraph preceding Theorem 4.4.1), R = R0 and the rth smallest
eigenvalue of N"]M goes almost surely to a quantity greater than
(1-t])02. We therefore have that ¢;-r+1 goes almost surely to

a quaﬁtity greater than 1-t], and that ¢E'P+1 - %—goes almost surely

to a quantity greater than 0. We conclude that

[ad

E (No¥-K)Kk™*
i=p-r+l

goes almost surely to positive infinity. Ag then goes to positive
jnfinity. We now may apply Theorem 2.4.1 to complete the proof of

this theorem. Q.E.D.
For Case 3, we have the following theorem.

Theorem 4.4.3. The asymptotic test described in Theorem 4.3.3 is

consistent.

Proof. We omit a proof since the proof is similar to the proofs

for Theorem 4.4.1 and Theorem 4.4.2.
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