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by
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A result for constructing an 'optimal' selection rule for selecting
a subset of k(> 2) populations is given. Attention is restricted to the
class of rules for which the infim#m of the probability of. a correct
selection, over a subset of the parameter space, is guaranteed to be a
specified number. In this class a rule is derived which minimizes the

supremum of the expected size of the selected subset.
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Let Ty W Ty represent k(> 2) independent populations

IR

(treatments) and let Xi ., X, be n, independent random obser-

1" in,
i

vations from . The quality of the ith population ™. is charac-
terized by a real-valued parameter ei, usually unknown. Let

= t = =
0 {Q|Q (61?...,9k)} denote the parameter space. Let Tij Tij(Q)

be a measure of separation between ™ and ﬂj' We assume that there

exists a monotonically nonincreasing function h such that Tji = h(Tij).

Let Q. = {Qirij 2 T9s V] $ i}, 1 <i <k, and 2, = 9-9, where

) k
o= U a..

i For this problem, we assume T, and T,; as known with
i=1

0

Ty > Tis for all i. Let 7, =min T,.,, 1 < i < k. We define t = max

0 i j+i ij 1<2<k L

The population associated with 1* will be called the best population. It

should be pointed out that if © EEQi, then TS E.Tj for all j, since for

= h(Tij) f_h(To) E_h(Tii) =T,, < T,.

some j, J + i, ii 0

T., Thus if 6 € Q. ,
Jj1 i
then ™ is the best population. A selection of a subset containing the
best population is called a correct selection (CS). In case of tie of

the populations corresponding to T* any one of them is '"tagged" as the

best population.
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To illustrate the above notation, we assume that independent observa-
tions are drawn from T which has a noraml distribution with unknown mean

ei (i =1,...,k) and known variance 02. We define Tij = ei-ej; then
T. = 0.-6
i i

if ei < 0 and T, = ei-e[k_l] if ei = e[k], where

(k]

<6

(k]

6[1] < .. k] In this case, Tiy = 0 for all i and the population with

the largest mean, e[ , is the best. If, instead, Tij = ej-ei then the

k]
population with the smallest mean, 6[1], would be the best. In the above
example, h(t) = -t, which is a decreasing function.

Let the observed sample vector be denoted by X' = (X',...,Xﬂ) where

1,...,Xini, i=1,...,k. Let ¢§ = (61,...,6k) be a

Xi has components Xi

selection procedure where Si(g) is the probability of selecting T (1 <i<k)
based on the observed vector X = x. As measures of goodness of a selection

rule, consider two quantities (cf. Lehmann [5]) R(6,8) and S(8,8). We define

k. .
S(6,8) = pe(csla) and R(8,8) = ) R(l)(g,si), where R(l)(g,ai) =
2 i=1

-P{Selecting wilﬁ}. Thus R(6,8) is the expected size of the selected subset.
For a specified vy, (0 < y < 1), we restrict attention to the class Zfof all

§ such that
(1) S(6,8) > y for ¢ € Q.

. . . . 0. & . T
We are interested in constructing an optimal procedure 8 in % which minimizes

the supremum of R(Q,S) over Q for all §E¥, i.e.,

(2) sup R(8,80) = min sup R(9,8).
0EQ - segeen

Remark: For some basic results and the motivation of the subset selection

approach, reference can be made to Gupta [4]. Some (different) optimality



results assuming a slippage configuration are given by Studden [7] for
the exponential family. Recently Bjgrnstad [2] has obtained some results
on the minimaxity aspects of the procedures of Gupta [4], Seal [6] and
Studden [7]. |
We Testrict attention to those selection procedures which depend on
 the observations only through a sufficient statistic for 6.
Let the statistic Zij be based on the n. and nj independent obser-

vations from TS and ﬂj (i,j = 1,2,...,k), respectively, and suppose that

1

for any i, the statistic Z; (Z ...,Zik) is invariant sufficient under

il’
! =

a transformation group G and let T; (Til,..

.,Tik) be a maximal invariant
under the induced group G. It is well known (see Ferguson [3]) that the

distribution of %i depends only on T - For any i, let the joint density
of Zij’v j # i, be Pg(gi). Let pg(gi) be denoted by po(gi) when Tiy T

ce= Top ST T constant and~by pi(gi) when Tig =eo® Ty T T

ik ik = T 121k

In the normal means example, a choice of Zij might be ii - ij’ where

J k-1

e~ 3

n
~ - _ 1
Z X. and X. = o

X.. . Let v be a o-finite measure on R
11 J 7 2 2

1‘
Now we state and proVe a theorem which provides a solution to the

restricted minimax problem as stated in (1) and (2) (cf. Lehmann [5D).

Theorem: Suppose that for any i, pi(gi)/po(gi) is nondecreasing in Zs-
0, . .
If R(0,87) is maximized at Tij = T5i T constant, for all i,j, where 60

is given by



1 if p1(El) > C po(z ) >
§ (zi) = Ai = ,
0 < s

such that c(> 0) and Ai are determined by fdgpi =y, 1 <i<k. Then
60 = (62,...,6g) minimizes sup R(0,8) subject to inf S(6,8) > .
0EQ e

Proof. For any €Y, .

6 € 2 implies 8 € ., for some i, thus

S(9,8) = fa (z, )pe(z )dv(z,) > min inf fa (z, )pe(z )dv(z,).
1<1<k GGQ

We have

inf 5(8,8) = min inf [§. (z, )pe(z Jdv(z,).
6EQ I<izk B€Q,

Hence for any § € ¥, inf fé (z. )pe(z Jdv(z, ) >y, 1 <1i <k, and by the
‘ GEQ

assumption that fdgpi = vy, it follows that
[(8,-85) (p;-cpy) < 0
i 171 P00 —
which implies
0
J6, py < J8.p,-

. 0 . . .
By our assumption, 6i(zi) is nondecreasing in Zss hence

inf 5(6,8 ) min fG iP5
eef 1<i<k



If R(Q,GO) is maximized at Tij = T34 S constant, for all i,j, then
k k 0 ' 0
sup R(0,8) > ] [6.py > ) [8.p, = sup R(8,8),
QEQ i=1 i=1 ?EQ

which completes the proof.

As an application of the preceding result, consider the following
example:

Example: Let TisW be k independent normal populations with

gy

. 2 : :
means 6 .,08, and common known variance ¢ = 1. The ordered ei's are

RS 3

denoted by © <,..< 6 .
Yy =2 V]

of the correct pairing of the ordered and the unordered ei's. Our goal is

It is assumed that there is no prior knowledge

to select a nonempty subset of the k populations so as to include the
population associated with e[k].
Let ii’ 1 < i < k, denote the sample means of independent samples of

size n from these populations. The likelihood function of 8 is then

k
Pg(x) = T Py (x;),
- i=1 i
n - 2
_ - —(X—e)
where Py (x.) = KIE'—-e 2 i » 1 <i<k. Let
i Y Yar

Ty T Tij(g) = ei-ej, 1<i,j<k, ty=24>0,8-= {Qle[k]-e[k_l] > A}
and Z,. = X.-X. 1 <1, j . ! = =
n i i <1, j <k. Let zs _(zil,...,zik), Ii (Til,...,Tik), then

since Zii = 0 and Tis = 0, Vi, the joint density of Zij’ j + i, is given by

k-1

Pe(z) = 2m * [z expt- 2 7 -1,



: 2 1 .

_1” - . . .
Where'z(k—l)x(k—l) =5 (1 . 2) is the covariance matrix of Zij S
Since

p.(z.) :
i-i7 0 e aetl rvl aremlay o nA
Po(gi) exp{giZ B+ AT Tz AT A} exp{k(zil ...t zik)}
is nondecreasing in zij’ j + i, where A' = (A,...,4). And
P, (z;)
zo)  °©
PptZ;
is equivalent to
% >ki %, + d.

k
Since R(Q,GO) = ) P{Xi > E%T } X, + d} is the expected size of the
= j#i

selected subset for Seal's average-type procedure 60 [61, the following

result of Berger [1] and Bjdrnstad [2] applies

sup R(Q,GO) = R(Q,éo) iff inf S(G,GO) Z.Eil .
oeh eeq
Since the right hand side is equivalent to @(#!5%1-/ﬁ'd) E_%u the left

hand side for every fixed A » 0 holds if and.only if

y=1- &(/ Eil-/ﬁ (d -A) >1- 090 —9 - V VP_A),

where @(.) is the cdf of the standard normal. Therefore, if for A > O,
y is the chosen in such a way that the preceding inequality holds, then

the result of the theorem can be applied.
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