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CHI-SQUARE TESTS*

David S. Moore
Purdue University

1. INTRODUCTION
Statistics is the science of collecting, describing and interpreting

data. The most common mathematical model underlying statistical interpre-

tation of data assumes that the values of measured variables in the
population of interest are described by a probability distribution. If
several variables are measured (say the length and weight of a cockroach),
thé population is described by a multivariate probability distribution.
When the forces of good prevail, the fortunate statistician has data
consisting of observéd values of independent random variables, each having
the population probability distribution. The statistical design of sahpling
and experimentation is intended to produce this happy state of affairs or
some moderate complication of it. We will assume that, whether by design
or (this is risky) by good fortune, the data collection process yields
independent random v;riables Xl""’xn having a common probability distri-
bution. This distribution is unknown - that's the distinction between
statistics and probability theory. Let F denote the unknown‘distribution
function (df) of any single Xj.

It is clear that a classical statistical problem is "Which probability
models adequately describe the data?" This question can be asked for

descriptive purposes or as a preliminary to formal inference from the data.

*Preparation of this paper was supported by the Air Force Office of

Scientific Research under Grant AFOSR-72-2350.



Particularly in the latter case, the statistician may have in mind a
specific family of probability distributions (such as the normal family)
and the more exact question "Do the data support or impugn the hypothesis
that the population distribution is a member of this family?" Most common
families of distributions have df's of specified functional form indexed

by a (real or vec£or) param;ter. For example, an individual member of the
,unlvarlate normal family of distributions is specified by the values of the
mean u and standard deviation o. If G(- |6) is a family of df's 1ndexed by
a2 parameter 6 runnlng over a parameter space Q, we have now formulated the
f0110w1ng problem.

Given independent random variables X e X having common unknown

10"
df F, Zfest the hypothesis _
Hy: F(-) = G(-|8) for some 6 in 0

This is the problem of goodness 0f §it. Notice that ip practice the
observations Xj will often be multivariate, and that the null hypothesis
will usually be composite (that is, the family G(-,e) will contain more
thén one member). Notice also that although we have stated the problem in
terms of hypothesis testing, it will rarely be sensible to simply accept
or reject at the usual significance levels such as o = .05. In particular;
if we test fit to (say) the univariate normal family as a preliminary to a
further analysis which assumes normality, we should surely not cling to the
assumption of normality until the evidence against it is significant at the
five percent level. Many applied statisticians favor using an o of .20 or
.25 for such preliminary tests. The real difficulty is that the HO in the
problem of fit does not have the status ("The statement we hope to find
evidence against™) ascribed to null hypotheses in standard tests of

significance. Nonetheless, the attained significance level of a test of

fit is at least a descriptive measure of the distance of the data



from the hypothesized family of distributions. We will therefore study the
theory of some tests of fit without further ventures into the wilderness of

philosophies of inference.

The oldest family of tests of fit was fathered by Karl Pearson in
1900. During the preceding decade, Pearson had developed families of -
probabllity distrlbutions in the course of his work on Mathematical
Contrnibutions to the Theory of Evolution. He now wished to see which of"
these fit his data, rather than simply assuming that all biological .
variables are normally diétfibﬁted. Statistics as a discipline was iﬁ its
infancy in 1900, Many results and methods which would fqrﬁ_part of the
new science were scattered through the work of'Gauss, Laplace, Lagrange and
others, but these fesults were not collected and unified, and were often
unknown to statisticians such as Pearson. The binomial distributions and
their approximation by normal distributions were’'well known; the chi-square
distributions were known as the distributions of sums of squares of inde-
pendent normal random variables; and the multivafiate normal distributions
had only recently become familiar. These last distributions will play a
major role in our ‘study. Pearson knew the p-variate normal distribution
with mean Vector ¥ and nomnsingular covariance matrix I as the distribution

having density function of the form

(1) f(yl) = c'e-%()’-uv)'E—ICY-UJ

Here y!' = (yl,..;,yp) is the p-variate argument of the density function.
IfY = (Yl;...,Yb)' is a random variable having this distribution, we will

write Y ~ Np(u,E) to express this fact.



Pearson sought first to test the simple null hypothesis that univariate
observations Xl,...,Xn have-a given df G. He partitioned the line into cells

El""’EM and based his test on the frequencies N ,NM of observations

120"
falling in these cells. If the hypothesis is true and

" p, = Po[Xin E.] = [ do(x),
i
E.
i

: then~np is the expected frequency for E and the quantities N - mp. measure
the lack of fit between data and model. Pearson then argued:
() If Y~ NP(O,Z), then the quadratic form which appears in the exponent
of the density function (1) has the same distribution as the sum of squares
of p independent standard normal random variables. This is the chi-square
distribution with p degrees of freedom, and we write Y'Z-lY v xz(p).
{(b) By the DeMoivre-Laplace normal approximation to the binomial distfibutions,
each Ni—npi is approximately normal when the number of observations n is
large.
(c) Computing variances and covariances for Y = (Nl - npl;...,NM_1 - npy, l)'
and inverting the covariance matrix shows that

and this statistic therefore has approximately the xz(M—l)‘distribution
when the null hypothesis is true and n is large. Large values of this
statistic (i.e., values in the upper tail of the)<2(M—1) distribution) are
evidence of lack of fit.

This argument contains some minor mathematical gaps: it ignores the
distinction between approximate normality of each Ni - np, and approximate
multivariate normality of the vector Y, and does not show how (a) implies

, -1, . )
that when Y is approximately NM_I(O,Z), then Y'E Y is approximately xz(M—l).



But the argument is in the best spirit of pre-Weierstrass mathematics,
needing only a few technicalities to become rigorous. Pearson's proof
shows, for example, why his famous chi-square statistic does not have
the variance npi(l-pi) of Ni in the denominator of the ith summand. More
important, the idea of reducing the general problem of fit to a combinatorial
setting (counting‘numbers of observations in each of M cells) was of
lasting significance. Chi-square tests remain among the most common tests
of fit, largely because of the flexibility of Pearson's idea. I1f, for
example, the observations Xj and the cells Ei are multidimensional, the
diétribution of the cell frequencies Ni and the form and theory of the
Pearson chi-square statistic are unchanged.

‘Now of course the null hypothesis in a problem of fit is generally
that the df of the observations falls in a family {G(-le): & in Q} of

»

df's. 1In this case, the cell probabilities depend on the unknown parameter ©

p;(8) = [ dG(x]e).
E.
1

Pearson proposed to estimate the unknown parameter from the data by some
function en = en(xl,,..,xn). In testing fit to the univariate normal

family, for example, the parameter is 0 = (u,0) and the.bopulation mean p
and standard deviation o are commonly estimated by thevmean and standard

deviation of the sample. The Pearson statistic now becomes

M [Nl - npi (en)]z

" That is, we test the fit of the data to the df G(-len) having the

estimated parameter value.



Unfortunately, as mathematicians learned before statisticians,
pre-Weierstrass mathematics has its limitations. Even when the estimatof'-
en approaches the true value of 8 as the sample size n increases, the
statistic (2) does not then have approximately the xz(M-l) distribution,
as Pearson believed it did. Since statistical methods are actually used iﬁ
the real world, observant users began to suspect thﬁf something was amiss.
Some even did extensive simulations (quite a chore in those pre-computer
days) to'compare Pearson's theoretical distribution with the observed
distribution of his statistic. It was not until 1924 that R. A. Fisher
showed that the statistic (2) does not have approximately the xz(M-l)
distribution in laigé samples, and that the distribution it does have depends
on how the unknown parameter is estimated. If e is the value of 6 which
minimizes the statistic (2) for given N (so that G(. IB ) .is the closest df in
the hypothesized famlly to the data by this measure of dlstance) Fisher chowed
that the approximate distribution is X (M-m-l) when 6 is m-dimensional. When
other methods of estimation are used, this conclusion is faise. It is false,.
for example, when the sample mean and standard deviation are used in testing
fit to the univariate normal family. Only since the 1950's has a rigorous study
of chi-square statlstlcs with general estimators 6 been made, and solutidns
obtained to many practical and mathemat1ca1 problems concernlng these
statistics.

Our study of #he-modern theory of chi-square tests of fit will touch
on several other topics in statistics which are important in their own
right. We must first acquaint ourselves with the multivariate normal
fhmily of distributions. And since chi-square tests are large-sample tests,
based on the limiting multivariate normal distribution of the cell frequencies,
some of the basic techniques of statistical large sample theory must be

mentioned. Finally, Pearson's construction of the proper quadratic form



in the cell frequengies is the genesis of some familiar Statistical
procedures other than tests of fit. In all of this, we hope not to entirely
lose sight of the interplay between theory and practice which gives

statlstlcs its vitality.

2. THE MULTIVARIATE NORMAL DISTRIBUTIONS

. The multivariate normal family plays a role in the study of multi-
dimensional data analogous to that played by theyunivariate normal family-
in one dimension. These distributions are not only important probability
models in their own right, but because of the central limit theorem serve
as large sample apprbximations to other models. We will not define these
distributions by the density function (1) for two reasons. First, that
definition is awkward due to the complexity of the density function. More
important, a dlstrlbutlon in Euclidean p- space RP does not have a density
function in RP if 1t assigns probability one to a set of measure zero. Such
>44ngu£a& distributions - other than the discrete dlstrlbutlons supported on
a countable set - ‘are somewhat pathological in one dimension, and prlay
11tt1e role in probability modeling there. But in higher dimensions it is
quite common for random variables to be dependent in such a way that with
probability 1 their values fall in a lower-dimensional hyperplane and their
joint distribqtiop is thus singular. The cell frequencies Nl""’NM in a
chi-square. test, for example, satisfy Z?=1Ni = n and So take values only
in this (M-1)-dimensional hyperplane. In Secfion 1 we followed Pearson in

working with the nonsingular distribution of (Nl,...,NM_l)', but this mode

of escape is more awkward in other settings.




To statisticians, the most useful definition of a pfobability
distribution is often a fepresentational definition - a statement of
what ;andom variable has the distribution. For example, the xz(p)
distribution is that of z§=lzf where Zl’
random variables. ' In this spirit, the Np(u,Z) distrnibution 45 defined as

...,Zp are indépendent N(0,1)

the distribution of the random variable

(3) Y =AZ +

where 7 = (zl,...,zm)' and Z; ~ N(0,1) and are Lndependent{ u o= tul,...,up)'
46 the vectorn of means, and A is any pxm matrix 5aiié£ging AA' = . That is,
the multivariate normal distributions are the distributions of affine
transformations of a set of independent standard normal randcm variables.

It is easy to check that u and AA' = I are in fact the méan vector
and covariance matrix of the p-variate random vector defined in (3). To
~ justify this deflnlt*on of N (#,Z), we must show that Y so defined has the
Same dlstrlbutlon for any m and any pxm matrix A satlsfylng AA’ = I, To
justify the notation Np(u,Z), we must show that this family is parameterized
by (u,Z) alone. Bch of these facts follow from a computation of the
characteristic function (Fourier trahsform) of the distribution of Y. This
computation also illustrates the convenience of the representational
definition.

The characteristic function of Y is the function of p real variables

t' = (t,...,t ) defined by
ity

E[e ]

i(t'AZ+t'u]

Py (t')
= Efe
eit’uE[eit'AZ]

Now since the characteristic function of any Zj v N(0,1) is easily computed

to be
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That the random variable Y has density function of the form (1) when I is
nonsingular can be deduced by a change of variables in the known density
function of Z.

The joint distribution of a set of independent univariate normal random
variables is a multivariate normal distribution with a diagonal covariance
matrix . (Because N(ui,oi) is the distribution of Yi = cizi + i for
Zi ~ N(0,1), so that (3) fits Y = (Yl,...,Yp)'.) Since Np(u,z) is
determined by u and Z, it follows that xandom variables having a muﬂtéuaaiaie_
normal fodint diétnébutionlane Andependent 4if and only if they are uncoaneﬂated.
Independence in a multivariate normal setting can therefore be established
by simply compﬁting covariances. If IP denotes the pxp identity matrix,
Np(O,IP) now denotes the distribution of a set of p independent N(0,1)
random variables, If Zn NP(O,IP) and P is a pxp orthogonal matrix, it

-follows that PZ ~ NP(O,IP) once again.

For our study of chi-squared tests, we are particulérly interested in
quadratic forms in multivariate normal random variables. The representational
approach reduces this to the study of quadratic forms in independent N(0,1)
randpm variables. _We know one fact about such forms: if Znv Np(O,Ip) then
the sum of squares ZfZ = Z€=1 Zi has the xz(p) distribufion. Two potential
generalizations of this fact come to mind at once. When Y ~ Np(O,Z) we can
ask (1) What quadratic forms Y'CY have chi-square distributions? (2) What
is the distribution of the sum of squares Y'Y? Since partial sums of
squares in the NP(O,IP) cése have xz(k) distributions for k < p, the first
question might be specialized to: What quadratic forms Y'CY have the xz(r)

distribution for r as large as possible?
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It is convenient for the study of quadratic forms to use a particular
representation of Y ~ N (0,Z) based on the fact that any nonnegative
definite symmetric maﬂz,cx (such as an arbitrany covariance matrix L) has
a unique nonnegative deginite symmetric dquare root. To see this, note

i . L
first that any square root I commutes with its square Z, so that if £2 js

L
Symmetric, I? and £ can be simultaneously diagonalized by some orthogonal

matrix P. From .

] 1
(4) PIP' = . =D

1
2

i
and (22)2 = X it follows that u = ol and hence that all symmetric

nonnegative def1n1te square roots have the form

" L
for P and D satlsfylng (4) and nonnegative square roots c:

This also
shows that such a E exists. The P and D in (4) are not unique, but are
determined Up to permutations of the o and of the corresponding rows of

P. It is easy to see that Z is unchanged by such permutations and is

hence unique.

e

We can thus represent Y ~ NP(O,E) as Y = £°Z. The distribution of

quadratic forms in Y is completely described by the following result.

fﬁ«e
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THEOREM 1. Suppose that Y ~ Np(O,z) and that C 4{s any pxp symmetric

matrix. Thenvthe quadratic form Y'CY has the distribution of z?=1 A, Z2

iTi’

where the Z, are independent N(0,1) random variables and the A; arne the
L L
characteristic noots of I CIe.

L
PROOF. Since Y = £°Z,
L.
Y'CY = 2'5%s%z = 2'QZ.

1 1 .
Because Q = Tr? is symmetric, there is an orthogonal matrix P such that
- PQP' = D, where D is diagonal with the Ai as diagonal elements. So Q = P'DP
and

Y'CY = 2'QZ = (PZ)'D(PZ)

The right side above is Z§~1 Ai(Z;)Z where Z; is the ith component of PZ.

Since PZ ~ Np(O,Ip), this is a representation of the desired form.

When X ~ Np(u,ﬁ) and % is nonsingular, Y = X - u ~ Np(O,Z) and we
obtain as a corollary of Theorem 1 Pearson's result that the quadratic
form (X-u)’E_l(X—u) appearing in the exponent of the density function has
;he distribution of X§=1Z§’ which is xz(p). This answeré our first question
when I is nonsingular. The answer to the second question, concerning the
distribution of the sum of squares Y'Y, is answered by setting C = I_ in
Theorem 1. The distribution is that of ZE=1 Aizf, where the Ai are now the
characteristic roots of » itself.

We have yet to answer the first question fully by extending Pearson's
recipe to the singular case. Since the rank of Z%CZ15 cannot exceed the rank
(say r) of 5 and z%, it is clear that if YCY xz(k), then k < r. Theorem i
implies that Y'CY y,xz(k) if and only if IJZ‘ECZI/2 is idempotent of rank k, and

a little matrix manipulation shows that a sufficient condition for this is
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.that IC be idempotént of rank k. This general result is not very helpful
in the search for C sﬁch that Y'CY ~ xz(r). Pearson's result involved the
inverse 2_1.- It turns out that an "inverse" for singular matrices neatly
generalizes his recipe.

For an arbitrary nxm real matrix A, a generalized inverse of A can

be defined by any of the follqwing statéments.

(a) A generalized inverse of A is any mxn matrix G such that:
X = Gy solves the equations Y = Ax for any y in the'range
(column space) of A. |

(b} A generalized inverse of A is any mxn matrix G sétisfying
AGA = A.

(¢) A generalized inverse of A is any mxn matrix G such that AG
is a projection onto the range of A.

It is not hard to show that these definitions are equivalent. Definition
(a) justifies thebconcept in terms of solving consistent_séts of linear
equations with matrix A. Definition (b) is convenient for matrix manipulation,
while (c) giﬁes some geometric insight. Note that in (c) ﬁprojection" does
not mean the unique orthogonal projection onto the range of A, but any
idempotent matrix with this range. When A is not a nonsingular square
matrix, it possessés many generalized inverses. Any genéralized inverse of.
A will be denoted by A", Generalized inverses are widely used to provide a
unified notation for linear statistical problems when matriées may be

singular. The following theorem and its proof illustrate the convenience

of this notion.

T

b S E S N S
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THEOREM 2. Suppose that Y ~ Np(O,Z) and I haA rank r. Then
(a) With probability 1, Y':'Y is the same for all choices of % .
(b) Y'I'Y x2 (r)_aﬁd 45 the unique quadratic goam having this
distribution.

PROOF. (a) .If x is any vector in the range of I, so that x Zy‘for
some y, then |
X'Ex = y'27Iy = y'iy
by definition (b) and symmetry of Z. So x'I x is the same‘numbef for all
choices of I~ whenever x is in the range of Z, But Y = Z%Z is in the range
of I(which is the same as that of Z%) with probability 1.
(b) Since Y'I'Y is the same for all choices of £”, we can chose a

convenient generalized inverse. If £ has rank r and positive characteristic

roots dl""’dr’ there is an orthogonal P such that -

PIP' = ~d

-1
d
Z- = p' ) d;l Pl
.0
‘0
Si
1nce d;i
1
i L
2% = pr 'd; P
0
‘0

we obtain
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- } P
Y'ITY = 25T = 1T (202
i=1 "1

where Z* = PZ o NP(O,IP). Thus Y'Z_Y n xz(r).

It remainsrfo show that Y'CY ~ xz(r) implies that C is a generalized
inverse of Z. By Theoren 1, Y'CY ~ xz(r) if and only if i‘.l/zCZZE is idempotent
of rank r. But then X CZL is a projection, and since its range is contained

in the range of Z and has the same dimension r, it is a projection onto the

range of 22. A projection acts as the identity transformation on its range,

SO

L oL 1 1 1 1
ICL = 22(2cr?r? = 552 - 3

and C satisfies definition (b) of z~.

When Y ~ Np(u,Z), the representation Y = £°Z + u can be applied to
the study of quadratic forms in Y. Repeating the argument.of Theorem 1

shows that Y'CY has the distribution of a random variable of the form
‘ 2

(5) E 2250+ 2 § b.Z, + ¢
. iTi . iTi
i=1 =

where Z ~ Np(O,Ip) and the Ai are as in Theorem 1. These distributions have
no neat classification. We W111 make only one foray into this "noncentral
case,'" to look again at Pearson's recipe.

When Z ~ N (0,1 ), Z'Z v oy (p) by definition. When Y ~ N (u I ), the
dlstrlbutlon of Y'Y or equivalently of (Z+u) ! (Z+u), is deflned to be the
noncentral chi-square distribution with p deghees of freedom and noncenthality
parameter § = p'y. '(Since the statistic is the square of the distance of Z
from the point -y in Rp, it follows from the circular symmetry of the
density function of Z that this distribution depends only on the distance of

-u from the origin. Thus parameterizing the distribution by (p,$8) is

TR TR
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justified.) We will use the notation Y'Y ~ xz(p,d).

Suppose now that Y «v Np(u,Z) and I has rank r. What then is the
~distribution of the generalized Pearson statistic Y'I Y? Alas, since
Y = Z%Z + Y, Y is not in the range of I unless u is, so that the quadratic
form Y'Z'Y changes with the choice of £”. If p is in the range of I, we
can write u = Z%v and follow the argument of Theorem 2 to show that Y'Z’Y

is well defined and that

b - %
(Z+V)'Z°L Z°(Z+v)

Y'Z'Y =
T
= T @ ot vaia e,
. i i
i=1 -
where § = Zi;l vi. But by the same argument,

T BRI Y -
) vi = wI%TER) = TRO AT

Thus Y'2'Y ~ xz(r,u't_u). When v is not in the range of I, both the form

and the distribution of Y'ZY vary with the choice of £, Of course, when

1

L is nonsingular these complications do not arise, and Y'2 Y ~ XZ(P,U'Z-lu)

for any mean vector p.

We have concentrated on cases in which the distribution of Y'CY given
by Theorem 1 (or more génerally by (5)) reduces to a chi-square distribution.
There are sound practical reasons for doing so, even though machine compu-
tation makes it feasible to produce tables of critical points for the
distributions of Z§=l Aizi. Tests of fit based on quadratic forms in
(approximately) multivariate normal random variables are the natural
generalization of Pearson's chi-square test. These tests must compete for
the attention of practical statisticians against special-purpose tests for

fit to specific common families, and against general tests of fit based on
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the empiric distribution function (EDF tests). These competitors are
usually much more powerful than chi-square tests, but are also much less
flexible in adapting to unknown parameters and discrete or multivariate
data. In particular, they require separate computation of critical points
for each hypothesized family. (I will not mention - this is a rhetorical
device I learned from Cicero - that the EDF tests break down almost
‘completely when faced with hypothesized distributions which are multi-
dimensional or are not location-scale families.) If a test of chi-square
type also requires a special computation of critical points to be applicable
to a given problem, we would usually be wiser to allot our computer time to
an EDF test instead. Thus generalizations of Pearson's statistic lose much
of their attractiveness if their critical points cannot be found in standard
tables. In the light of Theorem 1, the relevant tables will be those for

the chi-square distributions.

3. LARGE SAMPLE THEORY

Since fhe earliest daysjof statistics it has been noti;ed thét
complicated distfibutions often have simple approximations for large
samples. The distribution of Pearson's chi-square statistic is an
example. - The use of chi-square tests, both as tésts of fit and for other
common applicationé, is based on approximating multinomial distributions
by the multivariate normal distributions which are their limits as the
sample size increases. We will therefore review some facts about statistical
large sample theory. There are three major aspects to this theory. The
first simply asks questions 6f convergence: "What happens in the limit?"
The second studies the approach to the limit by providing rates of convergence,

asymptotic expansions, etc. The third considers the usefulness of the




18

asymptotic forms provided by the first two parts of the subject as
approximétions to the fixed sample size truth. Explicit numerical
calculation and simulation play large roles here; Only the first aspect
of large sampie theory will concern us, both for simplicity;s sake and
bécause (to make én appalling generalization) in the field of chi-square
tests the second aspect has had little practical impact and the third has
shown that use of limiting distribution§ is an adequate approximation for
quite moderate sample sizes.

The most useful mode of convergence for statistical use is convergence
in distribution. If xl, XZ,... are RP-valued random variables, Xn having
df F_, we say that the sequence converges in distribution to the distribution
having df F if Fn(x)‘+ F(x) for every continuity point x of F. Abusing
notation to also denote by F, Fn the probability measures on RP generated

by these df's, convergence in distribution is equivalent to
llmnP[Xn in A] = 11mnFn(A) = F(A)

for all Borel sets A in RP whose boundaries have probability zero under F.

Thus P[Xn in A] cén be approximated by F(A) for large n. Convergence in
distribution to the.distfibutipn placing probability 1 on a single point ¢

is equivalent to convergence in probability of X, to c. That is, for any

e >0, P[lxn-c] >e] »0asn -+, (We write this X > c®).) ALl of this

is of course a province of the measure theory which underlies statistical
theory and sometimes invades the conscious thought of the working statistician.

A nice exposition in effortless generality appears in the first chapter of

(1.
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We require only one specific and two general facts about convergence in
distribﬁtion. The specific fact is the multivariate central Limit Ztheonem:
14 X 1> X95... are independent RP-vatued /Landom.ua/z,éabzeA having a common
d&Atﬁ&but&on WLth vector of means w and finite pXp covariance matn&x Z, and

1

A4 )'(n =n Z“ then nz(x - W) convernges Lin distribution to N (0 ).

This is written
5 o 2
nX, - W PN (0,5),
We often abuse notation and write instead
L 9
n*X - w3y

where Y ~ Np(O,Z), even though convergence in distribution makes no statement
. 1
about convergence of values of n/z(xn - u) or about any limiting random

variable.

The essential general fact is the continuity theé&em: 14 Yn %?Y and
h: RP » gK A8 continuous with probability 1 with neépedt Lo the distrnibution
of Y, then h(Yn) -> h(y). The continuity theorem licenses our natural desire
to conclude that when (say) Yn is approximately NP(O,Z),>then YI'ICYn has
-approximately the distribution specified by Theorem 1. The central limit
theorem provides us with a large supply of random variabies which are
approximately multivariate normal. The two together suffice to make rigorous
Pearson's proof outlined in Section 1 above.

The second general fact is needed to still the clamoring voices of the
pedants. 16 X %?X and Y -+ c(P), then (x Y ) g?(x c). That is, convergence

of both marginal distributions of (Xn,Yn) suffices for convergence of the

joint distribution if one sequence of marginal distributions has a degenerate

SR TR
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limit. Convergence of marginal distributions in general gives no information
about the joint distribution. The natural manipulations we wiéh to make
are all licensed by these two general facts. For example, if X %?X and
R + 0(P), then X + R + X, as reason and justice demand. For
(X n? Rn) g? (X,0) by the second fact, and the continuity theorem now applies
with h(x,y) = x+y.

The following section will provide examples in plenty of the way in
which the three facts mentioned here combine with the law of large numbers
and Taylor's theorem to form the elementary arithmetic of statistical large

sample theory.

4. CHI-SQUARE TESTS OF FIT

Returning at last to the problem and notation of Section 1, we wish to
test whether independent random variables Xl""’xn taking values in
Euclidean p-space RP have df G(-le) for some 6 in 2, an open set in R.
Partitioning Rp into M cells El EM, we denote by N the number of
xl,...,x falllng in E and by p (6) the probability that a random variable

with df G(-|6) falls in Eiq The vector of standardized cell frequencies

is the M-vector vn(e) with ith component
Ni = npl ()

—T
[np; ()1

Finally, 6 is gstlmated from xl,...,xn by en = en(x ,Xn), and

100
Cn = Cn(Xl,...,Xn) is a possibly data-dependent non-negative definite
symmetric MxM matrix. Statistics 04 chi-square type are Statistios 04

the fonm

6 ERACREANCRY
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that 48, non-negative definite quadratic gorms in the standardized cell
§requencies. |

1f the.vecter Vn(en) has a limiting NM(O,E(GOJ) distribution when
G(-Ieo) is the true df, and if C, > C(8,)(P), then the continuity theorem
tells us thaf the limiting distributions of statistics of chi-square type
under the null hypothesis are completely described by Theorem i. Establishing
asymptotic normality of Vn(en) is therefore the primary'mathematical hurdle
in the theory of chi-equare statistics. When 8, or more precieely the
vector p(6) = (pl(e),...,pM(G)) » 1s known, this hurdle is low indeed. For
the N have a multinomial distribution with parameters n and p(8). The
_ vector (Nl,..., M) can be expressed as the sum of n independent M-~dimensional
indicator variables 61?""6n where Gj has ith component 1 and all others 0
when Xj falls in cell Ei' It follows from a computation of covariances and

the multivariate central limit theorem that under G(-Ie)

2
7) V(0 SN(0,1, - q(0)q(8) 1),

where Iy is the MxM identity matrix and
a(®) = (py(8)%,...,p, (8% .

This is just the‘muitivariate'normal approximation to a multinomial distribution,
expressed in a notation which will prove convenient for eaey extension to the
Mmore common case when 6 must be estimated.

In that latter case, the asymptotic behavior of V (6 ) will depend on
that of ¢ n° as Fisher recognized. Thus the large sample theory of chi- square
statistics draws on the large sample theory of estimators, a main current of
statistical theory since Fisher's time. Because of the importance of this
subject, and to illustrate the application of the principles stated in

Section 3, there follows an account of the large sample behavior of the
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minimum chi-square estimator used in the classical Pearson test.
For given Nl”"’NM this estimator is any value of 6 which minimizes
the Pearson statistic

[N, -np (8)]°
np, (6)

M
P,(8) =V (8)'V (8) = 121

It is intuitively clear, and not hard to prove, that for such purposes as
‘studying Vn(en), the minimum chi-square estimator is asymptotically
equivalent to the minimum modif{ied chi-square estimaton én which minimizes
the modified chi-square statistic

2
"M [N.-np. (8)]
) = ] 23
% is1 N

Working with Qn(e) is arithmetically simpler and conceptually identical to
working with Pn(ﬁj. We will therefore study én’ which we assume to exist
and be a measureable function of Nl""’NM' The first question concerns
consistency of this estimator - does én approach the true value of 6 as n
increases?
. 3Pi
LEMMA 1. Suppose that M > m, that each YR

0’

. _ 9p. k

and that the Msm matiaix 555(90) has nank m. Then any minimum modigied
k \

Ais continuous at 6 = 9

chi-square estimaton én SaLLs fies én - GO(P) when G(-leo) 45 the twe df
04 the Xj.

PROOF. By the law of large numbers,
(8) o Ni/n > pi(eo)(P) i=1,...,M

and therefore by the continuity theorem

2
M- [N./n - p.(6)]
1 iv0
Ni/n -+ 0(P).

Q,(8p)/n =
. i=1
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But by the definition of én’
0<Q,(6 )/n < Q(8))/n

and so Qn(én)/n + 0(P). This can only happen if Ni/n - pi(én) + 0(P) for
i=1,...,M. This with (8) implies that p(8.) + p(8,) (P), which in turn
implies that én > 6,(P) if the function 6 - p(8) from R™ to R has a
-continuous inverse at 6 = eo, using the continuity theorem once again. The
hypothesis of the lemma is sufficient for the existence of a continuous
inverse. (The proof of this analytical fact is similar to that of the
familiar inverse function theorem for the M = m case: The continuous
derivatives make the transformation locally linear, and the rank condition

suffices when the transformation is linear.)

The actual large sample form of én is given by the following theorenm.
The result is Fisher's, but a rigorous proof first appeared in Cramer's
classic book [3] iﬂ 1946. The proof provides as a bonus an expression for
Vn(en) for general estimators On. Denote by B(6) the Mxm matrix with (i,k)th

entry

ap. ()

o -~

p; (87 —5—
- k

In analogy with the common o(1l) notation from’analysis, op(l) denotes any

quantity converging in probability to zero as n increases. From this point,

we shall for brevity omit the argument 6 when 0 = 60. Thus, for example,

B = B(GO) and Vh = Vn(eo) in the statement of the following theorem.

THEOREM 3. Under the conditions of Lemma 1, when G(- IBO) hotds,

1
%

(9 o n (én - 8y) = (B'B)'ls'vn +°p(1)".
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PROOF. Since én is consistent and is assumed to attain the minimum of

Qn over 2, and since GQn/BGk exists near 60, it follows that for sufficiently

large n
) M N.-np. (8. ) op.
- i "5V 1552 -
358, = .Z 2n 55 (8) =0 k=1,...,m
k i=1 i k

with probability-as near 1 as may be desired. Equivalently;

M N.-np.(8.) 1 3D,
i *in? n 0% °Fi - _
(10) j_Zl ‘—;1/2——— (E 'ﬁ;(en) =0 k=1,...,m
i

We will apply the mean value theorem and the continuity theorem separately
to the two factors in each summand of (10), remembering that én > BO(P) by

Lemma 1. First,

Ni = npi(en)

Ni - npi = H(Pi(en) - Pi)

N. - np. - n w5— + 1 6 -0 .
i pl kgl[aek Op( )]( nk Ok)
Combining this with
%‘.
(11) (npi/Ni) =1+ op(l)
- i

establishes that [Ni - npi(en)]/N; is the ith component of the M-vector
12) V- B - o 1n%(5_ - 6

(12) , a - Bn( n” %)t Op( Jn®( n- 9% ¢ op(l)-

The second factor in (10) is similarly found to be

9p. 1 Op,
n. %% - 3Py
& 55, ) = P 5, "op

Equation (10) therefore bécomes, in vector form,

(13) B, - [B'B + opcl)]nLz (B, - 89 =0 (1)



.Now B'B is nonsingular by the rank m assumption, and since the determinant

of a matrix is a continuous function of its elements,
det(B'B + 0, (1)) > det(B'B) # 0(P).

Hence if An is the évent that B'B + op(l) is nonsingular, and X, the
indicator functioﬁ of this event, then the probability of An under G(~l60)
approaches 1, X, > 1(P), and [B'B + op(l)]_lxn > (B'B)°1(P). Applying
[B'B + op(l)]_lxn to both sides of (13) gives

1
2

[B'B + dp(i)]—lan'Vn - n (én - eo)x_n = Op(l)

which in turn implies the result of the theorem.

Theorem 3 yields immediate fruit, and (12) will produce a later harvest

as well. Reviewing the proof, it is easy to see that (12) holds for any

consistent estimator en of 8 in the form
14 V(6) =V -Bn%8 -6 + o (1)n%6 - o ) + 0 (1
(14) ¢ n) =V, - Bn¥( n =~ %0 P( In=( an~ % p( ).

This is the central relation in the theory of chi-square tests, as it
expresses Vh(enj in terms of the standardized multinomial vector Vn and a
seéparate term reflecting the effect of estimating 8. Notice that the third

L
2(en - eo) converges in distribution.

term on the right is op(l) whenever n
We can now provide quick proofs of several important results.

The first of these is Fisher's solution to the question of the behavior
of Pearson's statistic when 6 is estimated by én‘ Substituting (9) into

(14), we see that

V(6 = (1, - B(B'B)—IB')Vh * o ().
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Asymptotic normality for Vn was immediate (see (7)). By the continuity
theorem and the result from Section 2 on linear transformations of

multivariate normal variables, it follows that under G(-]eo),
Vh(en? -+ NM(O,Z)

z

(iM - B(B'B)’IB')(IM - qq') (I - B(B'B)™'B")

I,-aq' - B(B'B)-IB'

The last equality is a consequence of the important relation q'B = 0, which

M

M o e
holds because I, 1P5 = 1 implies that Zi=1

i= api/aek = 0 for each k. The

limiting null distribution of any statistic Vh(én)'c Vh(én) is now given
by Theorem 1. 1In particular, the Pearson statistic Pn(én) = Vn(én)'vn(én)
has the distribution of Z?=1 Aizi where Ai are the characteristic roots of
Z, A bit of matrix multiplication will show that qq' and B(B'B)-IB' are
symmetric idempotent matrices, that is, orthogeonal projections. Moreover,
we just saw thaf they are orthogonal to each other. Because qq' has rank
1 and B(B’B)-IB' Has rank m by assumption, I is an orthogoﬁal projection of
rank M-m-1. So its characteristic roots are M-m-1 1's and m+1 0's, and the
limiting null distribution of Pn(én) is xz(M—m-l). Notice especially that
this is true for any 8, in Q, even though I varies with 8y- This is the
famous "subtract onevdegree of freedom for each parameter estimated" result.
Now én is often not the most convenient available estimator of 6. In

testing fit to the univariate normal family with 6 = (u,0), for example, the

cell probability for a cell Ei = (ai_l,ai] is

ai_lf“

ai-u
Py () = o(=—) - oL,

where ¢ is the standard normal df, The equations (10) have no closed-form

solution, nor do the yet more complicated equations aPnfe)/aek = 0 defining
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the minimum chi-square estimator. A visit to your local computing center
will uncover libréry programs for evaluating ¢ and iteratively solving the
equations (10). Nonetheless, it is hard to ignore the universally used
sample mean and variance, an = (X,s). What will befall us if we use these
estimators in the 'Pearson statistic instead of én? To answer this question,
we must discover the large-sample behavior of an and then consult (14).

This is best done in greater generality. The sampie mean and standard
deviation (taking s2 = 2?=1(Xj-i)2/n) form the maximum Likelihood estimaton

(MLE) of 6 = (u,c)'in the univariate normal family. In general, the MLE

~

. 5n(X1,...,Xn) of 6 is defined as any value of 6 maximizing the joint

density function of the observations considered as a function of 6 for given
xl,...,xn. This-recipe-for a general method of estimatingiparameters is
another cf Fisher's contributions. It is intuitively fofceful, estimating

6 to be the value making the actually observed Xl,...,Xﬁ "most probable."
More satisfying to the perverse theoretician, the MLE is guaranteed to have
good properties in large samples. Specifically, suppose that the leare

| ipdependent with common density function g(-leo); Then under reasonable
smoothness conditions,

L. 1 .y D 93 log £(X.]e.)
(15) n*(8, - 6g) = J(8) 'n '21 1 0, 0, (1).
_ j=

L)

Here 3 log £/96 is the m-vector of partial derivatives with respect to

91,...,6m and J(6) is the mxm matrix with (k,2)th component
19 _log £(x]6) 3 log £(X|e

E, [ g £(X10);
5] aek 062

It follows from (15) by the multivariate central limit theorem that

1 o4 -1
(16) n (en - 85) + N (0, J(y .
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The matrix J(6) is called the Anformation matrnix for the family f(x|e).
The inverse J(eo)"1 is the "'smallest possible'" covariance matrix for the
limiting distribution of an estimator of 6, in several speéific senses
which this is not the pPlace to specify. Thus (16) says rouéhly that the MLE
has the tightestipossible concentration about the true 60 in large samples,
This is called asymptotic efficiency of the MLE.

In the light of this pleasing result, it would be very intelligent, if
we wish to estimate 6 from cell frequencies, to apply the MLE recipe to the

indicator variables 61,...,6n indicating into which cells X ..,Xn fall.

12
A bit of work showsvthat the information matrix in this case is B'B, and
that (15) reduces to (9). The ménimum chi-square and minimum modigiod
chi-square and maximum Likelihood estimators are all asymptotically
equivalent ways o4 estimating © from the cell frequencies. That's
aesthetically satisfying.

Having summéd up half a century of hard work on MLE's in one paragraph,
we can now substitute (15) into (14). Here én is the MLE of ¢ from the
ungrouped observations Xl,...,Xn, not the less efficient‘MLE based on the
cell frequencies._'Fortune is with us. The first term in (14), namely Vn, ’
was expressed at the beginning of this section as a sum of n terms, one for
each Xi. The.second term, namely (15), has the same form. And the rest of
(14) is qp(l). So wg obtain from the first two terms a sum which is

asymptotically normal by the multivariate central limit theorem. A

computation of covariances gives specifically that

-9
v, (8) 3 N (0,3)

. -1
= - ' '

e e o e 1 e e T
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. " . M 2
Therefore the limiting null distribution of Pn(en) is that of zi=lxizi’

where Ai are the charactefistic roots of Z. - |

Now BJ_lB' has the same rank m as does B, and therefore has as its
range the range of B. Since qq' is an orthogonal projection of rank 1
orthogonal to B, the characteristic roots of I include M-ﬁ—l 1's (Z acts
as the identity in directions orthogonal to the direct sum of the ranges of
B and qq') and one 0 (2 acts as zero on the range of qq'). The remaining roots
Al,...,km'reflect the fact that I acts as IM-BJ_IB' on the range of B, One version
of the "efficiency" of the MLE is that én is asymptotically preferable to én
in the sense that J-B'B is nonnegative definite. From this it can be shown
by matrix mangling that 0 E-Ai <1, and 0 < Ai <1 except in the unusual
case when J-B'B fails to be positive definite. The Ai of course depend on
8p» as well as on the specific hypothesized family g(-le).

We have now reached the second major consequence of (14). The statistic

Pn(an) has as its limiting null distribution the distribution of

2

2 m
(173 X° (M-m-1) + .Z AZ5

i=1
This is not a chi-square distribution. What is worse, the distribution varies
with 60, so there is no single limiting distribution acfoss‘the composite
null hypothesis. Since 0 < Ai < 1 for all 90, it is at least true that
critical points of (17) lie between those of XZCM-m—l) and xz(M-l). When
there are many cells and few parameters, these bounds are close together.
But we cannot without care follow such natural paths as tﬁe use of X and s
in the Pearsbn statistic to test for normality. »

After Chernoff énd Lehmann [2] obtained the result (17j'in 1954,

sfatistical theory produced a variety of ways of escape. One is suggested

immediately by Theorem 2: Compute a generalized inverse of I and use the )

iy

SECE Gk
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corresponding quadratic form. It is easy to see from our previous study
of £ that ¢ has rank M-1 and

- S T |
I" = (I, - BI'BY)

whenever J - B'B is positive definite. If now

PRSI |
Cp = (Iy - B(8)I(B)™'B(5 ))

" then c, - ™ (P) and

A ~ 2
t g -
INCRRRNCI IR

under G(-IB) for any 6 in Q2. This statistic is not as hard to compute as
may appear, as will be shown by example in Section 7. This statistic was
first studied by Rao and Robson [5], but without the supporting theory.

Rao and Robson present Cn in thé form

_+""‘_“|"‘1"v
Cn = Iy + B(en)[J(en) B(en) B(en)] B(en)

which makes it clear that the new statistic V (e )'Cnvn(énj is the Pearson
Statistic plus a second quadratic form. Challenge: prove that the two
expressions given for C are equivalent.

If P (e ) can be built up to reach y (M 1), it can also be chopped
down to x (M—m 1). Since B(B'B)” B' is the orthogonal projection onto the

range of B, you should be able to show that V (6 )'D(én)vn(én) has the

'x (M-m-1) limiting null distribution, where

D(O) = 1L, - B(o) [3' ()B(5)] L Go.

This result does not even depend on the use of §n ; 6_ and most other
n
estimators of 0 give the same result. But the price of such generality is

inefficiency. Simulations suggest that the D(én) statistic often has low
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power (that is, little ability to detect that the null hypothesis is false).
The Cn statistic, on the other hand, is usually more powcrful than the
Pearson statistic. It deserves consideration as a standard chi-square test

for goodness of fit.

5. CONTINGENCY TABLES

The use of chi-square statistics for testing fit is based on creating
a set of multinomial observations by counting cell frequencies. Because
only cell frequencies are used in the tests, somé information is lost.
There are other.classes of tests of fit which are generally more powerful
than chi-square tests, though none so flexible aﬁd widely applicable. There
are, however, situations in which multinomial observations arise naturally.
In such cases, chi-square tests are the natural large sampie tests. A
common instance ié a contingency table: sample units are categorized
according to two or more variables with the intent of discovering the
relationship between the variables. The data consist of the frequencies
of sample units in all possible cross-classifications. Here is the layout

of a 2xs contingency table, with the notation used for the cell frequencies.

a8 Ma | Ma| e NN
'N21 N22 .o st NZ-
N-lv N-2 N-s

We have used.the-common notation in which a dot Treplaces an index when
the frequencies are summed over the full range of that index. Thus N-j is
the jth column sum,.the total number of units which fell in category j for
the column variable. For simplicity, this 2xs table will be the focus of

our discussion, though the conclusions are generally valid.
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What is the proper probability model for these data? The model must
neflect the way in which the data were coflected. There are several
different sampling procedures which could lead to the table (18). A singlé
random sample of size n might be selected, then categorized in two ways.
For example, a random sample of persons being treated for cancer might be
classified by sex (2 categories) and type of cancer (s categories). Call
this Model A. Undef‘Model A, the cell frequencies Nij have a single
2s-nomial distribution. The marginal frequencies are all random, and

satisfy

(19) N, + N, = j

2
:

i=1 j

Il 10

S
N-j = Zl Nij = n.

1
Table (18) might alsc result from selecting two independent random
samples, of male cancer patients and female cancer patients separately,
then categorizing each patient by type of cancer. Under this Model B,
table (18) contains two independent s-nomial distributions. Although (19)
still holds, Nl- and NZ- are no longer random, for they are the sample
sizes chosen by the experimenter. Model C reverses the roles of the
variables: choose indebendent random samples of patients under treatment
for each of s types of cancer, then categorize each by sex. Here there are

s independent binomials, and the N-j are nonrandom sample sizes.

All three mo&els for table (18) are sets of independent multinomial
observations. Chi-square methods provide tests of hypotheses concerning the
cell probabilities in any such setting. This is a generalization of the
situation arising in tests of fit, where oniy a single multinomial sample

was available, but the theory of chi-square tests follows much the same

line,
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Hypotheses for these models are stated in terms of the cell probabilities
pij for the sampled population. Each model imposes different constraints on

the pij' Model A requires only that
2
(20) )

(and of course that 0 f-Pij <1 for all i and j). Model B states that

P,.

-
b
.
i
-t

L=
[

(21)

Py, © 1,

o
[N)
e
I}

It~ || 0

.
Pt

since in this case ﬁwo independent s-nomials are observed. Model C assumes
instead that p.j = plj + p2j = 1 for each j. Thg most common hypotheses.
(and the only ones we will consider) formalize the statement that there is

no connection between the two categorizations - in the example, no connection
between the sex of a cancer patient and the type of cancer under treatment.

In Model A, this is the hypothesis of {independence,

(22) Ho: p

" i=1, 2 and ij=1,...,s.

ij T Pi.Pej

In Model B, the hypothesis is that of .{wo {identical s-nomial distributions,

(23) Hy: plj = pzj i=1,...,s.

For Model C, no connection between categorizations is expressed as the

hypothesis of & {dentical binomial distributions,

He: Pyp = Pyp=e--=py,-

In all of this, our concern has been simply to translate the sampling

design and the question to be asked of the data into a mathematical model.

}

T T T oY TP I T
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The probability function in Model B is

=z
=z,
I
Hh3awn
el
Pa
e
2,

P
2 n
o
N

—

To estimate © by the maximum likelihood method, express each P; 3 as pij(e)
and the probablllty function for given N as a function L(8) of 6. Then
solving

3 log L(®) _ Mk MNis . Nk MNag
aek plk P1s  Pix Pis

]
1]
(=]
=
]
—

«es5-1

(recall ek = plk) produces the MLE

i

o Ny r Ny Ny K= 1o sl
/ plk n n e e ey .

This is the '"obvious" estimator of P1x under HB, namely the overall relative
frequency of the kth response in the two samples. Another way to describe
ﬁlk is as the weighted arithmetic mean of the relative frequencies le/N1°
and N2k/N2° of the kth response in the separate samples. The Pearson

chi-square statistic for two independent s-nomials is

[Nlj = nplj (é)]z [sz = np2j (6)]2

Il I~-1t0
H o~

+
j=1 npljcé)‘ j=1 np,; (8)
22: § N5 - N; N /n]? ‘

=1 J =1 N. N.J/n

When the pij are known, this statistic has (s-1) + (s-1) = 25 - 2 degrees
of ffeedom. Here, m = s-1 parameters were estimafed by the multinomial MLE
method, SO since (25 2) - (s-1) = s-1, the limiting null distribution is
x*(s-1). |

If the data of table (18) arose from a single random sample (Model A),

the probability function is
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2 s ] N..
T e p Y,
i=1 j=1 “ij° M

The unknown parameter can be taken to be 6 = (pll, -+sP1g )' since (20)
and (22) then determlne the full set of cell probabllltles Once again
other choices of 6 are possible but all have m = s. Computing the MLE of

8 gives the natural estimator for Model A under HA’ namely .

plk n

(Compare (22) to see why this is the natural estimator.) The Pearson

chi-square statistic for this single 2s-nomial model is

[N;; - NN, /n)

IN, . - npij(é)lz _
Ni°N'j/n

ij
1=13=1 - np;;(®)

l 100
i [ 1]
II [aree 1 ]
Il t~—10

1

and has 2s-m-1 = s-1 degreeé of freedom.
Look closely. The Pearson Chi-square statistics fon Iutmg Hy 4n

Model A and for zesting Hy 4An Model B are Adentical, and have the same

(s -1) Limiting nuet distriibution. And of course the same statistic results
from testing HC in Model C. This serendipitous outcome depends very much on
the fact that maximum iikelihood estimation was used. As Sectlon 4 proclaimed,
asymptotlcally equivalent statistics can be obtained by using either the
minimum chi-square or the minimum modified chi-square method to estimate
8. But only asymptotically equivalent. Let us apply the minimum modified
chi-square method to Model B. We must choose ¢ = (pll’ff

1
"pl,s-l) to

minimize the modified chi-square statistic

2

1 N2j

2
lj - Nl‘plj (6)]

+
1 M j

it 10
I o~10n

j
Differentiation followed by a short, ugly calculation shows that the

minimum modified chi-square estimator of Pix is proportional to the weighted
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harmonic mean of the relative frequencies le/Nl- and NZk/NZ' for the kth
response. While not entirely outrageous, this is surely less appealing

than the MLE result.» In Model A, the situation is worse: the equations
arising from differentiating the modified chi-square statistic are nonlinear,
and have no closed-form solution. The Pearson statistics for Models A and

B when minimum mo&ified chi-square estimators are used are not identical.
The minimum chi-square estimators have no explicit expréssions in either
model, and again the chi-square statistics differ. No wonder the MLE is
always used for contingency tables.

There is a pattern to the use of these latter estimation methods in
hypothesis testiﬁg for independent multinomial observation;. The minimum
modified chi-square method produces a set of Linean equations to be solved
for the estimated parameters whenever the hypéthesis is linear in the §e11
probabilities. This was true of HB but not of HA' In many situations it is
easier to compute minimum modified chi-square estimators than the MLE's.
Minimum chi-square estimators, on the other hand, can rarely be obtained in

closed form and are seldom used.

6.' A FURTHER RANGE

This'survey of chi-square tests has entirely ignored several areas of
considerable interést to users of these tests. Computers make it feasible
to obtain the exacf distribuéions of the test stafistics in small samples,
both for use and for assessment of the accuracy of the chi-équare approximations.
The relative power of the tests can be studied either by calculation and
simulation or, in large sampleé, by various mathematical devices. I have
chosen to restrict this essay to the study of large sample distribution

theory under the null hypothesis.  Even here there is a further range of
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theory which both opens up new possibilities for the user and illustrates
the use of increasingly sophisticated mathematics in statistical theory.

We have been assuming almost without reflection that the mumber of
cells M in a chi-square test of fit remains fixed as the sample size
increases, and that the cells Ei are fixed without regard to the data.
Neither assumption is necessarily realistic as a description of statistical
practice. It is common to use more cells when biessed with a larger sample,
and equally common (though less publicly admitted) to move the cells to the
data. What are the consequences of incorporating these innovations in the
chi-square statistics of Section 47

Increasing the number of cells M as the sample size n increases has
radical consequences. When M grows with n, the Pearson statistic for testing
fit to a completely specified distribution has a normal, not a chi-square,
limiting null distribution when properly standardized. This is in accord
with intuition, éince the XZ(M-l) limiting distribution of the Pearson
statistic approaches normality as M -+ =, (Apply the central limit theorem
to 2?"125.) One expects that the limiting null distribution when parameters
are estimated will also be normal, with a different standardization perhaps
required. No proof of this has been given. The lack of.éttention to this
problem may be due in part to simulations suggesting that replacing M by
M(n) -+ « produces tests which compare favorably with fixed-M chi-square tests
only against very short-tailed alternatives.

The second innovation, use of data-dependent cells; ha§ been better

studied and is finding its way increasingly into practical use. Suppose then
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that the cells Ei are replaced by

Xpsee X)) i=1,...,M

Ein( 1>°°

in the general chi-square statistic (6) of Section 4. For simplicity we

consider only univariate observations Xj and cells Ein-= (a a.n] which

i-1,n’"1i

are intervals with endpoints a._ = a

in in(Xl,...,Xn). "It is only reasonable

to demand that the random cells settle down as the samplé size increases,

2,0 *as, = a,,(8,) (P) under G(-leo).

An example of useful data-dependent cell boundaries is a;, = Xn *oeys in

testing fit to the univariate normal family. The sample mean Xn moves the
cells to the data, and the sample standard deviation S, adjusts the cell
widths to the dispersion of the data. Here aio(u,c) =W+ c.oare the
limiting cell boundaries.

if a, denotes the vector of cell boundaries (aon = -0, &n = +w), then

the '"cell probabilities" under the null hypothesis are now -

a.
in

p;(6,a ) = [  dG(x|e) = G(a; 18) - G(

a.
“i-1,n

[6).

a.
i-1,n

The M-vector of standardized cell frequencies becomes Vn(e,an) with ith

component

Ni(an) - npi(e,an)

[np, (6,2 31"

where Ni(an) is the number of Xl""’xn in Einf But the cell grequencies
Ni(an) are no Longer muliinomial, since the cell boundaries are dependent
on the observationslxj being counted. The central mathematical hurdle of
establishing asymptotic normality of Vn(en,an) for estimafors en and random

cell boundaries a, is now much more difficult. Fortunately, there is an
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a multiple of a binomial random variable with success probability G(tleo)
when this is the true df of the Xj. So the empirnde distribution function

process
_ 5 }
W, () =n {6 (x) - G(tleo)

has a normal limiting distribution for each fixed t. Since

by %
. a =
n : l( n) n >

{Gn(ain) - Gn(ai—l n)}

Pi(e:an) = G(ain,e) - G(ai-l,nle)’

there is some hope of expréssing (24) in terms of Wn and using the
convergence properties of that process to achieve our géal.

In Section 3 we saw that convergence in Qistribution for random variables
amounted to describing a random variable Yn by a probability measure Fn on RP
and defining convergence as convergence of the measures Fn(A) of all Borel
sets A having boundaries with measure 0 under the limiting distribution.

This deveiopment extends at once to moré general spaces than RP. Indeed,

such an extension is the primary topic of Billingsley's book [1] which was

cited in Section 3. Now a stochastic process such as W, is a nandom function -
a function of the real variable t which varies with the underlying probability
mechanism generatihg the Xj' gust as a random variable can be identified

with a probability measure on Rp, so a random function can be identified with

a probability measure on a suitable function space. Convérgence in distribution
for processes then has the samé definition as convergence in distribution for
random variables. This viewpoint, adopted from functional analysis, has

become a standard tool of statistical large sample theory. Billingsley's

book is a basic exposition, restricted to metric spaces, Borel o-fields, and
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random functions of a single real variable.

- It turns out. that Wh(t)‘does converge in distribution to a process
Wo(t) which 'is a variation of .Brownian motion, one of the most familiar
stochastic processes. This is an analog of the central limit theorem. Of
this powerful result we need only two details: wo(t) is continuous with
probability 1, and the function space on which Wn and W, are probability
measures has the prdperty that convergence to a continuous limit function
is always uniform.

The machinery to crush (24) is now assembled. ‘Arithmetic shows that

(24) is

{wn(ain) B Wh(aio)} - {wn(ai-l,n) - wn(ai-l,O)}
(25) |

i 1 '
+ nz{pi(an,eo) - pi(an)en)} - nz{pi(aoleo) - pi(aoien)}

Applying the mean value theorem to the last two terms in (25) gives

api * api & & ' %
P7ﬁ; (en’an) - -33'(9n »a5)]'n (en-eo)

* **%
for en, en between en and 6. This is op(l) whenever the m-vector of.

. . L . b . . . .
derivatives api/ae is continuous and nZ(en-eO) converges in distribution.

‘The first two terms in (25) héve the form

W e) - W, ()

where c, c(P). Now the two general facts of Section 3 apply to convergence

~in distribution of processes as well. So

C(e) 2 (Wy» )
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by the second general fact. The function

p(f,t) = £(t) - £(c)

is continuous with probability 1 with respect to the distribution of (wo,c).
(Check that: if fn -+ f uniformly and tn + ¢, then ¢(fn,tn) + o(f,c) = 0.

That implies continuity with probability 1 because wo(t) is continuous, and
convergence to a continuous limit function is uniform in the function space

at hand.) So by the continuity theorem
. = ) ? ' =0
wn(Cn) - wn(c) = CP(wn, Cn) (P(WO:C) = VY.

Convergence in distribution to a constant is convergence in probability, so
we have shown‘that (25) is op(l).

This essentially simple argument can be generalized to multivariate
observations and.alternative hypotheses. A full treatment appears in [4].
The examples in the next secticn illustrate the advant;ges of being free to

use data-dependent cells.

7. SOME EXAMPLES
In this section the results of Sections 4 and 6 will be applied to

produce several chi-square tests of fit to the family of exponential densities

g(xle) =}‘ -x/8 0 <X < =

(26) °

={6: 0 <8 < o},
There are many tests of fit for so standard a family which exceed the
chi-square tests in power. Chi-square tests bf fit have their greatest
potential usefulness in situations where other tests of fit cannot be used

(discrete or multivariate data), or where the work of computing critical

points for a non-tabled distribution is not justified. But restricting
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ourselves to a single, simple hypothesized family has obvious expository
advantages.

Suppose then that X ..,Xn are independent random variables having a

1’

common unknown distribution which is hypothesized to belong to the family
(26). .
The Pearson statistic. Choose M fixed cells Ei = (ai_l,ai] partitioning

(0,*). The cell probabilities under the null hypothesis are
a, :
i -a, ./6 -a./6
_ 1 -~-x/6, i-1" 7 i
pi(e) = af 5 € dx = a; e a;e
i-1-

We will estimate 6 by the grouped data MLE én' The equation resulting from
differentiating the logarithm of the multinomial probability function of
Nl""’NM with respect to 6 is

_ai?'l/e 'ai/e
€ - aie

i-1
(27) ] N, 2 .
i ai_l/e ai/e

€ - €

= 0.

This has no closed-form solution, but is easily solved iteratively to obtain

en. Substituting this numerical value into the Pearson statistic

i=1 npi(én) |
gives a test statistic with approximately the XZ(M-Z) null distribution.
Using the naw data MLE. The maximum likelihood estimator of ¢ from
Xl,...,Xn is the sample mean, 5n = Xn' Who would wish to solve (27) when
ih will do our estimating? Ifi)_(n is used in the Pearson statistic, a
O-dependent limiting null distribution results. But a nice feature of
random cells now appears: in testing fit to location-parameter and scale-

parameter families, random cells can eliminate the 6-dependence of the null

distribution. In this case, we use cells
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Ei(xn) = (cirlxn’ can]

where the c, are constants. In the notation of Section 6, a; . = cix and

c. X - -
i -¢c. ,X/6 -c.X/9
(28) p;(8,a) = /- e le®/0gx 2 ¢ 1177 o . .
c. X . ~
i-1 .
-C. -C

The estimated celi probabilities pi(i,an) = e =1 o1 45 not depend on
the sample! The Peafson,statistic for random cells of this form is
algebraically unchanged by the transformation Xj > xj/e because the cell
boundaries move in such a way as to keep the cell frequencies as well as
thaAest%mated cell probabilities fixed. Since xj/e has the g(-ll) density
fﬁnction,when.xj haszthe—g(-16) density function, the distribution of the
statistic does not.dépend on 6. If in particular c; = -log(l - %), we
thain.M.equiprobablé cells, p; = 1/M.

The use of random cells thus produces a 9-free null distribution. Not
only that, the choice of equiprobable cells simplifies the computation of the
statistic and has been shown to have good power prbperties when fit to a

single distribution is being tested. But the limiting distribution is not

chi-square. It is the distribution of

xZ(M-2) + Az,

and: requires a special computation to obtain critical points even though A does
hut,depend on 6,

Using a different quadratic form. Both of the statistics we have thus
far applied to testing fit to the family (26) have disabilities in ease of
use, The Cn statisﬁic.of Rao and Robson can be explicitly computed, has a
XZTM—I) limiting distribution, and also appears from simulations to be more
powerful than its tWo competitors. Let us find its form for this problem.

The. general forms of both the Cn and D(én) statistics from Section 4 simplify

S DR
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M . .
because 21 api/aek = 0 implies that

4 BNy MON; o dp,
VIB = n"%( ) S I 2 .

o
3
(=
Q
=]

When m = 1, the Rao-Robson statistic reduces to

2
S e U SIS o
L = N D Ciop Py dO
where
M dp.
p=y-'] L F?
i=1 Pj

~and J, Ps» dpi/de are all evaluated at 6 = én'

The use of equiprobable random cells continues to have advantages in

simplicity and (probably) in power, so the cells (ci_li,cii] for
c; = -log(l - ﬁa will again be employed. From (28),
dp1 ci_lx -C _IX/S ciX —ciX/G
Tdel, o T T 7 ¢ -T2 °¢ .
6=X ) 6 0=X
-c. -c,
= l-(c. e 1 _ e 4
% i-1

M 2 M
% X (N. n2 M 1 {

n 2
N, - Ba )2,
M.2 . 1 M7i
(1-M£;dD) =1
1,...,Xn in
(ci_li, cii]. This is. the recommended chi-square statistic for this

e - cie 1 and Ni is the number of X

problem.

Censonred data. 1t is quite common in experiments on reliability or
survival time not to wait for all the lightbulbs to burn out or all the
drugged rats to die. The lifetimes are observed in order, so let us denote

~ the ordered observations by
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’ < X <,..<X

X (2)< -

(1) (n)

and suppose that observations are stopped after the sampfe a-quantile is
observéd for some 0 < o < 1. This is the order statistic X([na])’ where
[na] is the greatest integer in na. The exponential distributions form
4 very common model in life-testing, so it is useful to test fit to this

family given only the censored data

X <X

) <...<X 94 e
1) (2) ([na])
Here is a challenge to the great flexibility of chi- -square methods.

The response is to use random cells with boundaries given by sample

.-quantlles g for
‘ ([nSi])

so that the n - [na] unobserved lifetimes fall in the rightmost cell. Of
course, 50 = 0 and gM = ». These random cells fit the demands of Section 6,
for the sample quantile Ei converges in probability to the population
Gi-quantile xi(e) as n + «», The population Quantiles are found from

X.

[* %—e-x/edx = 8.

0

This choice of cells produces nowwndom cell frequencies
= [nai] - [n6i-1]’

but the theory of Sectlon 6 is entirely undisturbed by this rather odd

. happenstance. We may cheerfully compute a variety of chi- square statistics
for these cells, but we will content ourselves with the Pearson Statistic.
The grouped data MLE is computed exactly as in (27), "ignoring" the fact that

the cell boundarles are random. That is, find 3 = encgl""’%M-l) numerically

by solving
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. /6 -E./9
Mg e e
z N i-1 i =0,
=1 b 6 /8 -8/0
- e - e
then use the statistic ‘
= 2
[Ni = npi(en)]
i=1 npi(en)
=B /9 -£./8 .
with pi(e) = Ei-l e - gie and critical points from the X (M-2)

‘table. Hats off to the amazing chi-square statistics.
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