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Introduction. It has frequently been proposed to use physically generated

random digits for simulation. One of the methods is to use particle
.counts from radioactive decay or similar processes. This has the advantage
over other methods in that it is already digital. If counting takes
place modulo B, the results at the sampling time are used as random
digits to base B. If the arrival process is Poiséon with rate 1, the
distribution of the digits approachés the uniform at the rate
exp(-(1l-cos g%at). It is easily seen from this that 3 is the best base,
and 2 and 4 are next.

However, counters have a '"dead time"f We are then led to the question
as to the effect of this on the generation. The effect can be looked
at in two ways: the dead time can be adjusted given the arrival rate,
or the arrival rate can be adjusted given the dead time. We conjecture
that for B > 3 the optimal dead time for a given arrival rate is 0, but
that in general the arrival rate for given dead time should be 2-2.5 dead times.
However for B = 2 the optimal dead time for a fixed arrival rate is always
positive for sufficiently regular distributions of dead time and frequently
the asymptotically optimal dead time for fixed arrival rate and the
asymptotically optimal arrival rate for fixed dead time are reciprocals.

This can even be approximately true for relatively short times. This

1Research was supported in part by the Office of Naval Research Contract
N00014-A-2260008, Project Number NR 042-216 and National Science Foundation
Grant No. MCS 76-08316 at Purdue University. Reproduction in whole or part
is permitted for any purpose of the United States Government.



phenomenon makes the convenient base 2 optimal in the presence of dead
time.

However, the asymptotic nature is not all that important. Since,
from the previous discussion, the counter should be operated at a high
rate, it will frequently be interrogated while in transition, It is
unlikely that, even with the counter not being directly interrogated but
driving a flip-flop.circuit, that the reading mechanism can be unbiased
to much better than one part in 105. In addition, since anything that
can go wrong is likely to happen, the output should be tested. As the
capacity of a tape is <109 bits and it is unlikely that more than a
few tens of millions of bits can be handled for a single test, the
reliaBility of the output unit cannot be tested for much better than
10—3. This is much too low an accuracy for random numbers, and we
propose that several tapes should be added (mod 2) to obtain the final
random information for computational use. But this makes the performance
of the counter system for relatively short periods important,b For the
case B = 2, we have computed the actual performance for Type I and
Type II counters, and charts are appended give the time reéuired from
the start of a dead time to achieve.a given level of IP(O) - P(l)l
for levels .1, .05, .02, .Ol,f..,.00001. The discontinuites arise
after the approach‘to 0 becomes oscillatory.

Methods and results. The times at which dead times begin form a

renewal process. Let W, s be a complex numbers. Then for Ju <1
and R(g) < 0, it is well known that the generating function of the

number of renewals starting at a renewal has the Laplace transform [1]
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where ¢(s) = E(eSt), T the renewal time. (If we do not start at a renewal,
the ¢ in the numerator only is changed.) Now since the renewal period is

the refractory period plus the wait for an arrival after its termination,

p(s) = {g;%u If we use arrival rate units, A = 1, and 1 becomes

_ f(s)+s-1
(2) g(s,u) = S(l-S-f(S))'

If f is analytic, this formula is valid for all s whose real part
is less than both the abscissa of analyticity of f and the smallest real
part of a nontrivial zero of the denominator. Now we are only interested
in (2) for u a non-trivial B-th root of unity. We can get some insight
by letting f(s) = h(as), o > 0. Then for small o, the real part of the
critical zero increases with o if R(M) < -.5, and decreases otherwise.
Thus if B 3 2, fhe rate determined by the root u = exp + E%i gets
worse with increasing a. If B=2, p=-1 and the improvement occurs, the
convergence rate can be asymptotically more than twice as good. As a
simple example, let the dead time distribution be exponential with mean
1/6. Then
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(3) Pt(O) - Pt(l) =
2e -e

according as the counter is or is not dead at t=0.
The graphs were obtained by finding the last t with the desired

accuracy, by power series until the solution could be replaced by the



asymptotic solution using either the two real roots or the two complex
roots, and by the asymptotic expression afterwards. Since §(t) = Pt(O) - Pt(l)

satisfies the equation, with dead time as the unit,

(4) C 8'(t) = —a(8(t) + 8(t-1))

for a type I counter and

(5) - C8N(t) = -2ae %8 (t-1)

for a type II counter, this was rather easily done.
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