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1. Introduction. We give some methods which, despite their simplicity,

have not found their way into the literature. They are based on two elementary
observations concerning acceptance - rejection procedures. Of course, the
procedure to be used in a specific situation depends on how many times the
particular distribution, including the specific parameters, occurs. It

also depends on the characteristics of the computer -- relative costs of
computing and access, availability of instructions, number of registers,

etc. The procedures given here should be at most 1-2 multiplications

slower than Marsaglia-MacLaren-Bray procedures ([1], [2]) with comparable
storage requirements. The procedures in section 4 are considerably more costly -
In general they should take approximately one transcendental function time
plus the cost of the uniform and eXponential random variables used.

2. Preliminaries. The basic idea of an acceptance - rejection procedure is as

follows. To obtain a random variable whose distribution has density of
(with reépect to the measure u), one obtains a random variable Y whose density
is bg where f < g, and then set X=Y with probability £(Y)/g(Y). This is
usually done by comparing f(Y)/g(Y) with a uniform random variable or
log (g(Y)/£(Y)) with an exponential random variable. There are also variations
on this, some of which will be discussed here.

Three examples (not recommended procedures) will serve to illustrate

this and one of the principles referred to in the introduction.

12 ), let Y be uniform

1+x
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A. To obtain a Cauchy r.v. (density %



(-1,1) and let K be independent with P(K = 0) = P(K = 1) = 4,  Let Ube
uniform (U,1). Then if U< (1 + Yz)_l set X=Y if K=0, and X=1/Y if K=1,

else start over.

Alternative: Let Ul = (l+Y2)U. Ir Ul < 1 form X as before and store Ul

as a uniform random variable, or else start over. Note that Ul is

independent of X given that Ul < 1l. Of course, this procedure runs a
risk of accumlating roundoff, but this is not likely to be serious.

| B. To obtain a normal r.v. (f =e % x ), let Y be double exponential
(g = e-le), E exponential. Set X=Y if E> % (|¥| -1)2, else start over.

Alternative: Let_El =8 - %1 (Ix - 1)2. If E- > 0 form X as before

and store El as an exponential random variable. The same remarks apply,

and roundoff is even less serious,espeéially if unnormalized arithmetic is
used.

C. To enlarge an existing stack of independent exponential random
variables, we can use the following procedure to generate exponential
random variables,bwhich is more efficient than the corresponding crude
version of von Neumann {3]}. Let N=0. Let U be wmiform (0,1), E exponential.
If El =E-U>0, El and N + U are the exponential variables, else increase
N by 1 and get new U and E and continue until acceptance. This procedure
generates a net of one exponential variéble per 3.78ﬁh uniform random

variables used. We recommend a more efficient version, similar to the

general procedure for fixed distributions in Section 3.

The second observation is that it is in general not necessary to compute

the tests precisely. Suppose that one wishes to obtain r.v.'s with density

a(l—xz)b. Let Z be normal (0,1), Y = 2//2b. If |z > 1, start over, else

1

let E be exponential and compute El E - th/Q(l-Yz). If E- > 0, X=Y and

Il

1 .
store E7 as an exponential. 1In all other cases the exponential is lost.
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If not, compute E ~ th/2(l- 3 Y2)._ If this is negative, start over.
Otherwise (even this can be improved, but it is already rather rare),
compute E + bY2 + b log (l-Y2), set X=Y if this is positive, and start

over is this is negative.

3. Some procedures. The following procedures are written in a FORTRAN-like

language. However, any implementation of these programs, especially the
general ones, in anything other than assembler language, is nothing short

of criminal.
Tet £ be a univariate density and let the domain of f be divided into N

intervals. Let g > f be a function such that for some @ either jJ f(x)ix = «
i .

or IJ.g(X)dx = o, where the choice may depend in i. Furthermore, call
i

J, normal if g is constant on J;. If J, is normal, let D(i) = sup log g(X)/£(X).
=J,
i

Let A(i) and B(i) be the endpoints of J; if J, is normal, and

let ¢(i) = A(i) - B(i). Let TEXP always contain an exponential random
variable, and let UNIF and EXPRV Dbe uniform (O,l) and exponential random
variables. Then the following 'program" will produce random variables

with density f.

SUBROUTINE RANVAR (A,C,D,N,K)
C K+l is the number of abnormal cases, N the total number of cases, A, C,
and D as above
4 M+ V=N*UNF
C M is the integer part.
IF(L = M-K. LE.O) Go TO "ABNORMAL"

C ABNORMAL is the user--provided program to deal with the abnormal cases.



1 RANVAR = AM) +V * C(M)
IF (TEXP - D(M). LE.0) GO TO3

TEXP = TEXP - D(M)

RETURN

3 7 = TEXP
TEXP = EXPRV
IF (Z.GT.ATOG (g(RANVAR)/f(RANVAR)) RETURN

¢ The test can be made by any convenient user-supplied method.

IF (o - £(X)ax) GO TO 2

J
M

GO TO 4
2 V = UNIF
GO TO 1
END
Comments: (1) If N is a power of 2, N ¥ UNIF can be done by such operations

as shifts and string‘manipﬁlatidh- On certain machines which do not have
good communication between indek and floating register; fixed point arith-
metic should be used.

(2) If it is not desired to make a preliminary test or'if some other
test procédure is to be used, the two lines following 1 should be appropriately
changed and the two lines starting with 3 should be replaced. Even for
the normal (f(x) = exp (e%xz))it may pay to make a preliminary test in the
normal cases, | | B

(3) For symmetric random variables, the sign bit can be extracted and
put on at the end. |

(4) It is usually more economical to have o = JJ.f(X)dx for all i,

i

as this does not réquire the reloading of A(M), C(M), and D(M). However,

setting o = JJ g(X)dx for all i minimizes the expected number of trials, and
i

in some cases it may be better to use a = jJ g(x)dx for some I.
i



(5) Since the program is so short, it will pay to have special versions
for common distributions such as the normal. Also, it may be slightly
cheaper to produce many r.v.'s with a given distribution at the same
time, as this might produce significant savings in the cost 6f the uniform
and exponential r.v.'s needed.

(6) A procedure the author has found useful is to form an array whose
first word contains the data N(or L,N =2L) and K and which is followed by
A, C, and D. TFor certain machines, it may be more convenient to have
(A(1), c(i), D(i), T(i)), where T(i) contains data for the exact test in
consecutive words.

(7) This procedure can be modified for discrete distributions.

SUBROUTINE EXPSTACK ( I, J, E)

C I is the initial size, J is the terminal size, E is the stack array

K=1I
Q = TEXP
1 W= 0

11 M+ V =N * UNIF
IF (M.EQ.0) GO TO 10

3 D

v % ¢(M)
Q=Q-0D
IF (Q.ILT.0) GO TO 2
K=K+ 1
E(K) =W + A(M) +D
IF (K.NE.J) GO TO 1
TEXP = Q
RETURN

10 W=W+WOo

GO TO 11



2 IF (K.EQ.0) GO TO "BACKUP"

C "BACKUP" is the procedure to use when the stack gets empty. This will

be rare.
Q = E(X)
K=K-1

GO TO 11 (if c(M) exp (-A(M)) is constant)

V = UNIF
GO TO 3
END

Comments: (1) The stack procedure is especially well suited to the
exponential. The facts that log e = -x and e-(x+y) = e™* ™ make the
rejection case (Q.IT.0) and the abnormal case (M.EQ.0) particularly simple.
Because of.this, the exponential is likely to be 1-2 multiplication or
division times faster than anything else, including even normal. Also,
exponential random variables are quite useful for input for other distributions

(the abnormal case for the normal, e.g.).

- 4. A useful procedure - CONCAVE

Because of the large cost of computing the A, C, and D tables, these
procedures are not useful for a few r.v.'s with a given distribution.
For a large class of distributions, those with concave logarithm of
density, the following type of procedure is useful. Assume £(x) = ce¢(x),

¢(0) =0, o(X) <0, and let g(Xx) = cew(x), where

&(x-B) x <8,
= 0 P=xz?t
e.Y(X-é) x=>9.

Also let p(x) < o) j_q(x).



Let the array A start with ((6-8) + 1/a+ 1/y, - 1/0,B,1/Y,8).

The user may wish to have other items in the array for the computation

of,9,p,0, deciding whether the candidate is out of range, etc.

FUNCTION CONCAVE (A, RHO, SIGMA, PHI)
1 X = A(l) * UNIF + A(2)
IF(X.LT.0) ‘GO TO 3
Y= x- A(4)

IF(Y.LT.0) GO TO 4

U = TEXP
CONCAVE = X(3) + Y
2 IF(TEXP = U - RHO(CONGAYE,A).GE.0) RETURN

TEXP = EXPRV
IF (U - SIGMA(EONCAVE,A).LE.0) GO TO 1

IF (U - PHI(CONCAVE,A).LE.0) GO TO 1

RETURN
3 SF = A(2)
EP = A(3)
GO TO 5
4 SF = A(4)
EP = A(5)

C THE FIRST FOUR STATEMENTS PLUS THE PRECEDING FIVE CODE VERY EFFICIENTLY

C IN ASSEMBLER LANGUAGE

C WE NOW GET THE EXPONENTIAL TAILS. THE FOLLOWING CODE IS LIKELY TO BE

C NEARLY OPTIMAL



5 Uy .= TEXP
Y = X/SF
IF(TEXP = U - Y.LT.0) GO TO 6
CONCAVE = EP + X
GO TO 2
6 E = EXPRV + 1.
U = EXPRV + E

CONCAVE = EP + SF * E

GO TO 2

REENTRY OBDS

GO TO 1
C THIS DIFFERS FROM THE MAIN ENTRY IN THAT THE ARGUMENTS FROM THE
C PREVIOUS CALL ARE TO BE USED.

END
Notes:

(1) The call to SIGMA may have an out of bounds return.

(2). The code for exponential tails can usually be slightly improved
by using Y as an input uniform to a version of the exponential;prbcedurea
The amount of-improvement is usually small.

(3) In some cases, the half-normal can be used instead of the
exponential. Unless the setup cost is much lower, this is unlikely to
pay unless the analog of the modification suggested in note (2) is used.

(4) This procedure can be modified for discrete distributions.

However, the setup cost can be quite high and a procedure with

1. L<i<U
g(i) =
k Ut (k=1) V< i < U+ kv,

_ ok =
L~ (k1) V>i>1 - &V,



may be enough cheaper to set up to be preferred. For binomial with large
variance, a procedure of this general type is certainly good.

5. If an ekponential tail is not present, the coefficient (o or ¥)
is set infinite. The procedure uses only 1/0 and 1/y and works correctly
if either or both is 0.

6. The expected number of trials for the 'best'" procedure is
é-+ % ——elji—-= 1.582; for approximately normal distributions
1-e

. L
it is near (4/m)"= 1.12838.

c(6 -8+ ) =

The expected number of trials is minimized by solving the equations.

.

(@) o(X) = -1,
() o(¥) = -1,
(¢) X<0<Y,
@ !X = o,
(e) 9! (¥) = -v,

() 8 =X+ 1/y,

(g) § =Y -1/y.
However, if '"=" is replaced by "<'" in (a) and (b), the resulting procedure
is correct. If Y-X is increased by 1%, the additional cost will be much

less than one multiplication time.

5. Exagpies. For the normal and exponential, the more complicated
methods in the previous section are quite good. We do-not believe that
they are optimal; for the exponential in particular some intricate pit

handling methods, some of which do not even have roundoff error, may well

be better.
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For the gamma with shape parameter > 1, the logarithm C + a logt - ¢t
of the density is concave and the general concave procedure can be used.

If we set t = a(l + u), an upper approximation for § + % is

}'; - 1.0052814 . (}/._55_'_%)—1

and a lower approximation for B - 1/ is

¢ _ 1.-1 1/3
X =mx(-1, - (v.5a + B) * 7 (1133594),
If X = -1, the lower expomential part is absent.
Also, log (1 +1t) - t <- t%/2(1 + 3 1),
and
2
-t7/(2 + t) t >0,
log(l + t) - t >
—t2/2(‘1,+ t) t<0.
Alternatively, if we set t = (a +*§) 1+ v)s, the density becomes
log(v) = k + 38 log(l +v) + B - B (1 + V)S,
B =g + % This is valid for a > -%. Now
3 log(l +v) + (1 + v)3 = _9v2 _3 V4 + 0,. < _gvz
2 4 - 2
. 3 92
Also if we set Y(v) = 3 log(l+v) + 1 - (1 + v)~ + e,
we have
R v
v = 1+ .8y’
- 4
-.75 v
YW 2775 > St v 2o
--75V4 Vio
1+v °

This provides a procedure starting with normal random variables
which has a low rejection probability, particularly if a is large.
However, we question whether the three extra multiplications involved

and the higher cost of the normal make it particularly good.
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Notice that for v > 0 we give two lower bounds for ¥. The rejection
probability is small enough that for a > -.5 it is likely to pay to use
-.75 v4 first. For a < -.5 the procedure is not very good although it
works: to a = = %-

, . 2
. . -1 .
For the X distribution, density C x a+ 1e X , the same idea can

be applied with x = (2a+1)(1+v). Since log @(u) = b(-u + log(l + u) —%uz),
the approximating functions for the gamma are easily modified. We

also have simple formula

- .1770955
y=(1+ ) /b,

Vb + .4247652

-1, b

i - f_.2375
3b - 1.07125, .2375 < b < 1,
(1.001497 - =272833 5, p 5,
b - .23736

where b = 2a + 1.

Another example is the beta distribution. If we take the density

in the form
£F(t) = el + HPa - HA, _B<t<A
we find that

. 2
log £(t) < log ¢ - - (A+B)t
"3AB + F(A-B)t - t

2

and can use this to form the procedure. The approximation to the optimal

procedure of this type is fairly good unless one of A or B is small (<2/3)

and the other is not.
Let us considér'the'BiﬁomialfWith“large“variancel"”LetVs°denbte‘the'?
number of successes, f the number of failures, s* = s + L, f*=f +%,

S=(m+ Dp, F=(n+ 1)1 - p). We can write
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log s! = s* log s* - s* + % log 2w - n(s*)

where

1 7 + 31__

* . - E PP,
n(s*) v oy 5% - 3380 5% * 70320555 ,

Then
s¥ £*
log P = ¢ - s*log =g - £*log = + n(s*) + n(£*)

(n+1) x>
R R 2
25F7- 2 (s-F)x - x%/3

* *
If x = s* - S5, s*log §§-+ f*log ﬁﬁ'i

The limit as F»« is valid and hence we also have a procedure for the
Poisson with large variance.
The setup cost is quite high, so if only a few binomials are

wanted, we can use further acceptance-rejection procedures as

oo 1_..c.x_ + l az
= ’ B 2 12/

n=0 1+ %4 } az

12
and o uz
1- 5 * 17 -
log 1+ %, ;gff’= 1+ Z (?l)n 0L6n—1 7 + 0L6n+1
2 1 n=1 (6n-1)123n_1 (6n+1)123n
. 2 4
Bn_ 1, 1.8 8, 8
L™ =g+ 34 7 Uleggaymsy + ou),

provided. a ij/TEZand B < 2m. For g = B+ = 1, the rejection probability
for this part of the approximation is-< .06233.

Caveat. In many situations, better procedgres can be found or these
procedures can be modified for greater efficiency. Finding good

procedures is an art, not a science.
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