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INTRODUCTION

In practice, there often do arise situations‘in which the
researcher wishes to choose the best (or the t best) from a group
of k populations, where the "bestness" of a population is based on
ranking them according to the value of some characteristic of
interest. In such situations, the classical tests of homogeneity
are inadequate in the sense that they have not been designed to
answer several possible questions in which the researcher may
really be interested. Bahadur [1], Mosteller [54]'and Paulson
[ 597 were among the first research workers to recognize the
inadequacy of the usual tests of homogeneity and to consider
more meaningfu] formulations in order to answer these questions.
These deve]opments set the stage for the early investigations
of multiple decision problem which have now come to be known
as selection and ranking problems.

In the theory of selection and ranking procedures, there are
two basic formulations to the problem. The first one is called
the indifferenée zone formulation due to Bechhoferb[13 ] and the
other is the subset formulation due to Gupta [29]. The goal
of the basic problem in the formulation of Bechhofer is to choose
one of the populations as the best. The researcher is required

to specify an "“indifference zone" in the parameter space and the



procedure determines the smallest sample size so that a certain
probability condition is satisfied whenever the unknown parameters
Tie in the "preference zone". For example, if we are interested
in selecting the population with the largest mean in N(ei’])’
i=1,...,k, the indifference zone is the set of all 6's such that
the largest and the second largest differ by an amount < &%,

| whereas the "preference zone" is the set of all 6's such that the
above difference > §*. Other contributions to this indifference
zone formulation have been made by Bechhofer and Sobel [16],

Sobel and Huyett [70 ], Barr and Rizvi [12], Desu and Sobel [22],
Bechhofer, Kiefer and Sobel [15], Santner [64] and others. The
goal of the basic problem in the subset selection formulation of
Gupta is to select a subset of the given populations which depends
-on the outcome of the experiments énd is not fixed in advance

such that it includes the best population with a specified minimum
probability regardless of the unknown configuratioh of parameters,
i.e., over the whole parameter space. Some recent results in the .
area of subset selection formu]ation are Gnanadesikan and Gupta [28],
Gupta andlsﬁudden [43], Gupta and Panchapakesan [38],

Gupta and Santner [41], Huang [46] and Wong [72].

Many problems in reliability can be considefed in the context
of selection and ranking problems. For example, one may wish to
choose one or more of the several systems or components which has
the largest mean life or the largest median 1ife. In general,
reliability problems also deal where the distributfons are unknown .

but assumed to belong to a class of distributions such as that



having an increasing failure rate (IFR). Such distributions form
a special cases of what are now commonly known as restricted
families of probability distributions. The investigations of
Barlow and Gupta [5] form the initial efforts on ranking problems
for such families. Other contributions to selection problem for
the restricted families of probability distributions are Gupta and
Panchapakesan [39,40] and Patel [58]. This area of research still
remains largely unexplored.

The main investigation of this thesis is to propose and study
selection procedures for some problems.

Chapter I deals with some selection and ranking procedures
for restricted families of probability distributions. In
Section 1.1, definitions of various partial orderings on the
space of distributions are given. In Section 1.2, we propose and
study a selection rule for distributions which are convex-ordered
with respect to specified distribution G. Some properties of this
selection rule are discussed. The asymptotic relative efficiencies
of this rule with respect to some.other selection rules are derived.
Section 1.3 deals with the selecting the best population using the
indifference zone approach. In Section 1.5, we propose and study
a selection rule for distributions which are s-ordered with
respect to G where we are interested in the scale parameter case.
The estimation of ordered parameters from the k unknown distribu-
tions is discussed in Section 1.8.

Chapter II discusses some interval estimation problems from

k populations. We are interested in finding the smallest sample



size N to be chosen from each population such that the probability

that a given confidence interval I which is based on T[k] = max Ti
1<i<k

(Ti is an appropriate statistic from i-th population) contains at
Teast one good population, is at least P*, where P* is a specified
number, 0 < P* < 1. Also we are interested in finding the smallest
sample size N such that the probability that I contains all good
populations (or excludes all bad populations) is at least P*.
Section 2.2 deals with the above problems for the Tocation parameter
case. The infima of coverage probabilities are-bbtained. For scale
parameter case, the above problems are investigated in Section 2.3.
In Section 2.4, we illustrate the above results by means of two
examples.

In some situations, one has to deal with a vector-valued
parameter A, associated X;- In such cases one may consider
comparing populations or gi's in terms of majorization and weak
majorization of these vectors. Chapter III deals with such
problems. The parameter space is partially ordered by means of
majorization or weak majorization. Selection procedures are
proposed and studied. In Section 3.2, a class of procedures

R, for selecting the best population is defined. A sufficient

h
condition is obtained for the infimum of the probabi]ity of a
correct selection to be Schur-convex in A. Also another sufficient
condition for the same infimum of the probability of a correct
selection to be nondecreasing and Schur-convex in A is obtained

in Section 3.3. Section 3.5 and 3.6 deal with selection procedures



for multivariate normal distributions in terms of majorization

and weak majorization. Various cases corresponding to the

known or unknown common covariance matrix % are studied. Properties

of these selection procedures are also established.



CHAPTER 1
SELECTION PROCEDURES FOR RESTRICTED FAMILIES
OF PROBABILITY DISTRIBUTIONS

1.1 Introduction

In mahy problems, especially those in reliability theory, one

is interested in using a model for 1life length distribution which
belongs, for example, to a family of distributions having increasing
failure rate (IFR), or increasing failure rate on the average (IFRA).
Such distributions form special cases of what arg'now commonly known
as restricted families of probability distributions. These are
defined more precisely later in this section. The 1dea of using

such families stems from the fact that in many cases the experimenter
cannot specify the model (distribution) exactly but is able to say
whether it comes from a family of distributions such as IFR, IFRA.
Families of probability distributions of these types have been
studied by several authors, see, for example, Barlow, Marshall and
‘Proschan [7]. These authors have mainly concerned themselves with
probabilistic aspects of these distributions. To some extent, there
have been some investigations dealing with statistical inference for
some of these families; see for example, Barlow and Proschan [8], (917,

Barlow and Doksum [3].



In this chapter we are interested in studying multiple decision
procedures for k (k > 2) populations which are themselves unknown but
which are assumed to belong to a restricted fami]y.. First we give
some notations and definitions. A binary ordering relation (<) is
called a paftia] ordering in the space of probability distributions
if
(a) F <F for all distributions F, and

(b) F <G, G <H imply F <H.

G.

Note that F <G and G < F do not necessarily imply F
We now define some of the special order relations of interest to

us (see Barlow and Gupta [5]).

(i) F is said to be convex with respect to G (written F <G) if
C

and only if G_]F(x) is convex on the support of F.

(ii) F is said to be star-shaped with respect to G (written F < G)
*

if and only if F(0) = G(0) = 0 and E:lgiil is increasing in
X > 0 on the support of F.

(i11) F is said to be r-ordered with respect to G (F < G) if and
only if F(0) = G(0) = %—and Qilgiél is increasi;g (decreasing)
for x positive (negative) on the support of F.

(iv) F is said to be s-ordered with respect to G (F < G) if and

S
G(0) = %—and 67 'F is concave-convex about the

only if F(0)
origin, on the support of F.

If G(x) = 1—e"AX, x > 0, then F g G is equivalent to saying that

F has increasihg fajlure rate (IFR). The class of IFR distributions

has been studied by Barlow, Marshall and Proschan [7].



Again if G(x) = 1-e™*X, x>0, F < G is equivalent to saying
that F has increasing failure rate on average (IFRA). The class of
IFRA distributions has been studied by Barlow, Esary and Marshall [4].
The r-ordering has been defined and investigated‘by Lawrence [48].
The s-ordering and c-ordering have been studied by Van Zwet [71]
and Lawrence [48].

In the statistical Titerature, selection problems for restricted
families were first investigated by Barlow and Gupta [ 5]. Some
further results in this direction and a review of some important
results concerning inequalities for restricted fami]ies and problems
of inference for such families have been given by Gupta and v
Panchapakesan [39]. The selection of the popu]atioh with largest
a-quantile from distributions which are star-shaped with respect to
the folded normal distribution has been considered by Gupta and
Panchapakesan [40]. In a recent paper, Patel [58] has studied the
selection of IFR populations which differ only in the scale
parameters. His procedure is based on the total life statistic
until r-th failure.

In Section 1.2, we propose and study a selection rule for
distributions which are < ordered with respect to a specified
distribution G assuming there exists a best one. Some propertiés
of this rule are discussed. The infimum of the probability of
a correct selection is obtained and an asymptotic' expression is
also given. We also study the asymptotic relative efficiencies of

this rule with respect to some selection procedures. Section 1.3



deals with the selecting the best population in the frame work of
Section 1.2 using the indifference zone approach. In Section 1.4,
we propose a selection procedure for distributions that are <
ordered with respect to G. Section 1.5 deals with selection proce-
dure with respect to the means for distributions that are s-ordered
with respect to G where we are interested in thé scale parameter
case. The distribution of v, (see Section 1.5) is also investi-
gated. Section 1.8 deals with estimation of ordered parameters
from k unknown distributions where we ére interested in the scale

parameter case.

1.2 Selection rules for distributions < ordered with respect to

a specified distribution G.

Let 3 be the class of abso]uté]y continuous distribution
functions F on R with positive and right-(or left-) continuous
dehsity f on the interval where 0 < F < 1. It follows that the
inverse function F~! is uniquely determined on (0,]). We take
F'](O) and F_1(1) to be equal to the left hand and right hand
endpoints of the support of F. For F, G € 3, consider the following

transformation (see Barlow and Doksum [ 3])

F
(1.2.1) Ho'(t) = f ol6 ' F(u)Jdu, 0 <t<1,

F 1
We assume that G is always fixed. Since H;] (the inverse of H) is
strictly increasing on [0,1], HF is a distribution. We know that

F <G if and only if HF is convex on the interval where 0 <'HF < 1.
c
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"Since G is assumed known we can estimate HE] by substituting the

empirical distribution F. of F; that is

Frl(t)
(.2.2)  Wle) =) = [ oleTTF (u)ldu
n F'](O) :
and X
“try o 0 -1 v are=1ed=Ty17y
(1.2.3) (5 = l{_%) al6™ Fo(wldu = T ol6™ (D10 1oXi_y )

where Xi n is the i-th order statistic in a sample of size n from

F and X 0.

0,n
If G(x) = 1-e”* for x > 0, then (1.2.3) can be written as

=lry _ 1
(1.2.4) Hy ' (5) = m [X1,n oot X gt (n-r+1)xr’n].

We say that X +...+ X + (n=r+1)X is the total life statis-

1,n r-1,n r.n

. . . -1,ry _ 1  total life statistic
tic until r-th failure from F. Thus, H, () = m Luntil r-th failure -

(A) Selection procedure and its properties

Let TyseeesTy be k populations. The random variable Xi associa-
ted with ms has distribution function Fi’ i=1,2,...,k, where Fi €3
(i=1,...,k). Let Fr] denote the cumulative distribution function
(c.d.f.) of the "best" population. For example, if we are interested
in the quantile selection problem, the "best" popu]ation may be
defined as that_F[k]\(unknown) which satisfies (a) below.

We assume that

(a) Friq(x) 2 Fpq(x) for all x, 4 = 1,...,k-1;



(b) there exists a distribution G such that
F[_i]'fG 1=],...,k,

where < denotes a partial ordering relation in the space of
probability distributions. It should be pointed out that the
condition (a) above may also imply that F[k] is the distribution

with the largest (smallest) parameter. For example, if

o p(X - .
Fi(x) = F(ei) for x > 0, 0, > 0 (i =1,...,k), then F[k] is the
distribution with the largest 0;- We are given a sample of size n
from each ms (i =1,...,k). Our goal is to select a subset from

the k populations so as to include the population with F[k]‘ Let

Q:{E=(F],...,Fk): 4 aj such that Fi(x) 3_Fj(x) vi$j}. Let
v - .

(1.2.5) T, = jZ] 3 Xi;j,n for i = 1,...,k.
r

(1.2.6) T-= jzl aJ Yj,n

where Xi'j n is the j-th order statistic from Fi’ Y is the j-th

3J o

sn
order statistic from G, r is a fixed positive integer (1 < r < n),

g G’](J—;l) - g 6'1(%) for j = 1,...,r-1

Qu
]

-1,r-1
ga (’7;“)-

jot]
pe }
. a
Q
]

For selecting a subset containing F[k]’ we propose the selection
rule R] as follows:

R]: Select population s if and only if

1



(1.2.7) T. >cy max T.

where ¢y = c](k,P*,n,r) is some number between 0 and 1 which is

determined as to satisfy the probability requirement
(1.2.8) inf P{CSIR]}_i p*
Q

where CS stands for a correct selection, i.e., the selection of
any subset which contains the population with distribution F[k]'
Let T(i) be associated with F[i] and wi(x) be the c;d.f. of T(i)

from F[i]' We now state a few preliminary lemmas.

Lemma 1.2.1. (Lehman [49] p. 112) Let F(x) be a distribution
function on the real line. If y(x) is any nondecreasing function

of x, then E ¢(X) is a nonincreasing function of F, i.e., if F](x) <

Folx) for all x, then [u(x)dF,(x) < fu(x)dF;(x).

Lemma 1.2.2. Let X]""’Xn be i.1.d. with distribution F(x). Let
y be a function of Xys--->X, which is nondecreasing 1in each of its

arguments. Then Ew(X],...,X ) is nonincreasing function of F.

n

Lemma 1.2.3. (Gupta and McDonald [35]) Let X = (XH,...,X]n yeens
k 1

X 1s--+2X ) be a vector valued random variable of ) n.; (> 1)
k1 kny iEp 1=

independent components with xij having the distribution F.(x),

J = 1,...,ni, i=1,...,k. Let y be a function of X]]""’X]n]""’

Xk],...,an which, for any fixed i, is a nondecreasing (nonincreas-
k

ing) function of Xi]"“’xin. when the other components of X are held
i

fixed. Then Ey(X) is anonincreasing (nondecreasing) function of

Fi'

12
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The following two lemmas are from Barlow and Proschan [8 ].

n n
Lemma 1.2.4. (a) ¢(.21a1x1) - ¢(0) 5_.21 a; [¢(Xi) - ¢(0)] for all
i= i=

0 <Xy <...< X < band for all convex ¢ on [0,b] if and only if

- — n
n
0 i.Ai = .Z' a; <1 fori=1,2,...,n.
Jj=i
n n
(b) o [ aj%;) - ¢(0) > ] a;[o(X;) - ¢(0)] for all 0 < X; <...< X
i=1 i=1 - o

and for all convex ¢ on (-«,~) if and only if A] > 1, AZ > Tyl

Ak > 1, Ak+] 5_0,...,An < 0 for some k (0 < k <'n).
n n
Lemma 1.2.5. (a) ¢( } aix.) < ) oa; oX;)
| (= I ) B

A
A
><

for all star-shaped ¢ on [0,b] and all O <X < , < b if and
only if there exists k (1 < k < n) such that

0<A <...<A <1 and A ;=...=A =0.

] —
n n
(b) ¢(121 aixi) 3_121 a1¢(Xi) for all 0 < Xy <...< X, and for all
star-shaped ¢ on (-=,«) if and only if there exists k (1 < k < n)
such that
Ayzee2 B2 05 Ay == A= 0

Let T.= ¥ b. X,

s i=1,2
1 JeA J 19\]’”

where b, > O for j €a, A c{1,2,....n} and X. is the j-th

13J,n

order statistic from Fi’ i 1,2.

Then P[T] < x] 3_P[T2 < x]J.

Proof.
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1 if T, > x

Let Vs (Xil""’xin) =
0 otherwise

where Ki1s---5X; are n observations from F. (i =1,2).

in

Since Vs (Xi]""’xin) is nondecreasing 1in each of its

arguments, by Lemma 1.2.2 we have
E wl(X]],,..,X]n) < E ¢2(X2],...,X2n)
That is P[T] > x] i_P[T2 > X]
This proves the Lemma.
We now state and prove following theorem which is more general than

that of Patel [58].

Theorem 1.2.1. Let Fi’ G € 3, Fi(x) 3_F[k](x) Vxand i=1,2,...,k,

F[k](O) 0 and F[k] < G.

- |
If a; > 0 for j = 1,2,...,r, 61(0) <0, g 6'(0) <1 and a

J rZ o
then
< k-1,x
(1.2.9) P[CSIR]] Z.f : GT (E;QdGT(x)

G (0)
where GT(x) is the c.d.f. of T.

Proof. P[CS|R,] = P[T(k) > q T(i), i# k]

o k-1
k-1,x
= [ 1n W, (% )dW, (x)
04=1 1 ¢k
T kX '
3_6 wk(E;)dwk(x) (By Lemma 1.2.6)

= PLZ, > 42y, § # K]

where Z],...,Zk are i.i.d. with c.d.f. wk(x).



Let ¢(x) = G'1F[k](x).

Note that
r _
(1.2.10) i:? ; i ,J n i=1,...,k,
where X* 23,0 is the j-th order statistic in a sample of size n

.from F[k]’ i= 1""fk'

(1.2.11) | P[Zk>_c] max Z.] = P[cp(-— Zk Z_CP(Zj)’ i=1,...

l<j<k 9
r -1
Since Z a; =96 (0)<landa;>0vj=1,...,r, then, by
Lemma 1 2.4 (a) and (1.2.10),
r .
*
(1.2.12) ¢(Zi) 5‘321 a; ¢(X ¥4, n)
Since J—-a > 1 and l—- z a, > 1fori=1,...,r, we have, by
¢ 8 J=i i= "

Lemma 1.2.4 (b) and (1.2.10),

] 1 &
(1.2.13) A Z,) > = .Z ay cp(X":,J n)
1 1 j=1
* = .
(1.2.14) qXXi;j,n) =t Yi;J,n
where Y J,n is the j-th order statistic from G, i = 1,2,...,k.»

Thus from (1.2.11), (1.2.12), (1.2.13) and (].2.]4),

r

j s s3.n = €1 ) ani;j,n’

PlZ, > c max  Z. ] > P[ a,
k=" 1 gick Z 31

i=1,2,...

" k-1
| 61 (£)dGr(x)
q 1

This completes the proof.

,k']]

15



The constant cq = c](k,P*,n,r) satisfying (1.2.8) is determined by

k-1,x
G E;)dGT(x) > P* and

I T
.-

(o)

-1,r-
96 (F) 2

We now consider two specific distributions G(x). If G(x) = 1-e7%,
X > 0, then we have following result which generalizes the result of

Patel [58].

Corollary 1.2.1. If Fi(x) z_F[k](x) vxandi=1,....k, F[k](0)=0, |

-X

F[k] : G, G(x) = 1-e™", x > 0 and n > max{r, %{%;},then

(1.2.15) inf P[CS|R,] = T HE=T (o) dn(x)
- - Q 0 1

where H(x) is the c.d.f. of a X2 random variable with 2r d.f.

Proof. If G(x) = 1-e~* then a = %—for = 1.2, .01

1

and a = ﬁ-(n-r+1).
Also l—-a > 1 iff n > %:l—

By Theorem 1.2.1 and the fact that 2nT is distributed as X2 with 2r
d.f., the result follows.
If G(x) = x for 0 < x < 1, then we have the following result which is

a special case of Theorem 2.1 of Barlow and Gupta [5].

Corollary 1.2.2. If Fi(x) 3_F[k](x) Yxandi=T1,...,k, F[k](0)=0,_-

F[k] : G and G(x) = x for 0 < x < 1,

“then

16



(1.2.16) inf PLCSIR,] = fHk s )i (x)
where Hr(x) is the c.d.f. of the r-th order statistic from G.

Proof. If G(x) = x 0 <x <1 then a; = 0 for j = 1,...,r-1 and
a, = 1. By Theorem 1.2.1, the result follows.
We state and prove the following theorem about the asymptotic evalu-

ations of the probability of a correct selection.

Theorem 1.2.2. If Fi’ G € & forall i =1,..,k and

(1) Fi() 2 Fpq(x) vx, 4= 1,005k, and Fppq :G,

(ii) G(x) has a differentiable density g in a neighborhood of

its a-quantile n_ and g(na) #0,

(iii) g Gf] is uniformly continuous on [0,1), G'](x) is convex and
there exists an n, 0 < n <1, such that forn<y<1,g G'l(y) is

(y)

nonincreasing and g—————1—-15 nondecreasing in y, then as n » o

(1.2.17)  PLCS|R,] 3_{: @k'l[gi + l§f1”a g(na)(g:)%]d¢(x)

where %—+ aas n->ow, g =1-q and ¢(x) is the standard normal c.d.f.

Proof. See the proof of Theorem 1.2.1, we have

(1.2.18) - P[CS|Ry] > P[Z, > ¢y max Z.]
14 = "tk =1 J
1<j<k
where Z,,...,Z, are i.i.d. with c.d.f. W (x) and wk(x) is the c.d.f.

of T(k).

By Theorem 2.2 of Barlow and Van Zwet [11] and (iii),



(1.2.19)  sup|f g[G'1F[k]n(u)]du - ? | g[G-]F[k](u)]du|+O a.s.
x>0 FEI](](O) FE;](O)

where F[k]n is the empirical distribution of F[k]'
Then we have (see Barlow and Doksum [3]), for n large,

(1.2.20) Z. = Y

is the r-th order statistic from Ho = and HE] (the
[k] [k]

) is defined in (1.2.1). Since F[k]-< G, therefore
c

where Yi;r,n

inverse of H

Fri]

H is convex. Since G'](x) is increasing and convex, therefore

Frk]

6 'H (x) is convex. Since He < G and G'](O)‘g_O, therefore

Frk3 [k] ¢

HF[ ] < G. In a manner similar to the Theorem 2,1, of Barlow and
k] * .

Gupta [5], we have

(1.2.21) P[Yk;r,n >Cq_max Yi;r,n] 3-P[Yﬁ;r,n 3-C1Y?;r,n’ i# k]
T<i<k .

where Y?-r n is the r-th order statistic from G, i = 1,...,k. From

(1.2.18), (1.2.20), (1.2.21) and using the fact that

* OL&
3 . ~ N(n s )9
15r,Nn o n92(na)

Y
the theorem follows.
Consistent with the basic probability requirement, we would like
the size of the selected subset to be small. LetvS be the size
of the selected subset. One criterion of the efficiency of

the procedure R] is the expected value of the size of the subset.

If in addition to the assumptions of the Theorem 1.2.1,

18
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we assume that (a) f[]](x) 3_F[i](X) 3_F[]](§9 for 311.X > 0,

i=1,2,...,k, where § > 1 is given and (b) G < F[]].

o
We have the following theorem.

Theorem 1.2.3.

(1.2.22) E(SIR)) <k 651 (& x)dap (x)
G™'(0)
where GT(x) is the c.d.f. of T.
k
Proof. E(S|Ry) = J PLT. > ¢yT., for j # i].
L ] L

By Lemma 1.2.6, we have

PLT, 2753 # i] < P[T¥ 2 eqT¥, § = T,..,k-1]
T*‘

where TE has c.d.f. w](x) for 3 = 1,...,k-1 and Ek-has c.d.f. w1(x).

So that E(S|Ry) < k P[T} > C1T§» i=1,...,k-1]
=k PLZ8 > ¢qZss 5= 1,u.,ke1]

where Z],...,Zk are i.i.d. with cdf w1(x).

Hence

E(S[Ry) <k P[gsz > 25, 5= 1,2,000k]

Let ¢(x) = G_]

F[]](x)

since G : Fryq then - ¢(x) is convex.

Using the same approach as in Theorem 1.2.1

19
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8 1
and — > —
o2 g, we have

o
||
2|
N
~
|v
N
-
<
]

1,2,...,k] i.P[g;-ZE 275, 5= 1,0k

- J 65 1(& x)ds, (x)
a 1
where Zf,...,ZE are i.i.d. random variables with c.d.f. GT(x).

This proves the theorem.

Before discussing properties of the selection rule R], we give some
preliminary definitions. Let 2 denote the set of all k-tuples

F = (F],...,Fk). Let PF(i) denote

PE(1) = pf[ﬂ(i) is selected|R]

when n(i) is associated with F[i]'

Definition 1.2.1. A rule R is strongly monotone in T(4) if

PF(i) is 4 in F[i] when all other components of F
\ ' are fixed
( + in F[j](ifj) when all other components of

F are fixed.

Definition 1.2.2. A rule R is monotone means

Pe() < Pe(d)  for all E € q with Fyq(x) 2 Fryp(x).
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Definition 1.2.3. A rule R is unbiased if Pc(i) < P-(k) for all F €@

with F[ij(x) 3_F[k](x)-

Definition 1.2.4. A rule R is consistent with respect to Q' means

Q

inf P[CS|R] -+ 1 as n » .

Theorem 1.2.4. If a, > 0 for i = 1,...,r, then R, is strongly

monotone 1n “(i)'

Proof.

Let w(x) =

1 ifT,.y >¢c max T,.
(1)_ ]i\]_(_k (J)

0 otherwise

since a; > 0, T(i) is nondecreasing in each of its arguments for

i =

So that y(x) is nondecreasing function of X(i)],...,X(

1,...,k.

i)n when the

other components of X are held fixed and w(g) is nonincreasing

function of X(j)],...,X(

j)n (j # 1) when the other components of X

are held fixed where x(j)],...,x(j)n ;re n observations from

Frs7(3 = 15--5k). Since Ey(X) = Pp(i), by Lemma 1.2.3, it follows

that R1 is strongly monotone in (i)

1

Remark 1.2.7. (1) If a rule R is stirongly monotone in (4) for

all i

=1,...,k, then R is montone and

“Inf P[CS|R] = Inf P[CS|R]
Q . QO

where gy = (F = (Fy,...,F): Fyo=oo= FL

If R is monotone, then it is unbiased.
If Fi(x) = F(x,ei), i=1,...,k and Ti is a consistent estimator of

0:5

then R] is consistent.
If F., G €3, F; <G, i=1,...,k and the condition (iii) (excluding
G°1(x) is convex) of Theorem 1.2.2 is satisfied, we can show that

Ry is consistent.
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The selection of the population with Targest Fi (i=1,..,k) can be

handled analogously. We assume F[i](x) 5_F[]](x), i=1,...,k, and
F < G. The rule for selecting the population with F is
1 ; [1]

R2: Select population ms if and only if

(1.2.23) ¢, T. < min T,
21 = 1<j<k J

where c2(0 < Co< 1) is determined so as to satisfy the basic
requirement. In a manner similar to the proof of Theorem 1.2.1,

if Fi’ G € 3, F[i](x) E_F[]](X) vxandi=1,...,k, F[]](O) =0

and Froy <Gand if a, > 0 for j = 1,...,r, 671(0) <0, g 61(0) <1
i iz < <

and a,. > c,, then

T x)dGx(x)

co _k_
(1.2.24) PLCSIR,]T > f 61 (c,
G

“1(0)

where _ GT(X) = ]-GT(x).

(B) Efficiency of procedure R] under slippage configuration.

We consider slippage configuration F[i](x) = F(%J, i=1,2,..,k-1,
and F[k](x) = F(x), 0 < 6 < 1. Let E(S|R) denote the expected subset
size using the rule R. Then E(S|R)-P[CS|R] is the expected number

of non-best populations included in the selected subset. For

a given € > 0, let nR(E) be the asymptotic sample size for which

E(S|R)-P{CS|R} = €. We define the asymptotic relative efficiency

A R E(R,R*,5) of R relative to R* to be the limit as ¢ > 0 of the
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" ARE (R,R*;8) = 14 "
ti i.e. s =
ratio EEITEY i.e (R,R im —E;(—y
Under the slippage configuration, for large n, we have (see
Theorem 1.2. 3)

1.2.25)  E(S|Ry) = P[CSIR k-1)P[T, 1\ > T
( )(I]) [l]]+( )[(]) C]T%( (])]

(1.2.26) P[T(]) > C Tg¥ T( )] «lP[Y] > ¢ T;? Y. ]

where Y],...,Yk are independent and Yi is the r-th order statistic

from He for i = 1,...,k. The right-hand side of (1.2.26) is

[i]
equal to
(1.2.27) fm o(SX - an(a)(1 - —2—]—)(—;"_)%)-
-0 1 Q.0 ‘
¥ 2% - a h(a ) (1 - %T)(——r%m( x)
1 o

where C is the constant used in defining R], a, is the (unique)

a-quantile of H (x) and h(x) is the density function of H (x).
Fk iy

From now on, it is assumed that k = 2. Therefore (1.2.25) reduces to

2
(1.2.28) E(S|Ry)-PLCS|Ry] = o(-h(a )a (1 - "ﬁ + 5)79).

C

1
Let f k- 1(31— +(1- c] n g( 0L) l—](_’_‘)‘%)d@(x) = pk.

Barlow and Gupta [5] have proved that

25D . p 3 D
n

Ci =1 -5+ 2 - sy + 0(
C 3 2372 372

)

:Nl-—'

i

-1 2
where D =.2__U%il¥£ll.
n,g(n_
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Now, setting the right hand side of (1.2.28) equal to € and using

l .
¢y ~1 - g;g_, we obtain
n=

X

ol

(1.2.29)  np (&) ~[-(od) %' (& (1+6%)2+/2 Doa_h(a_)1%-

1
[a2h’ (2, ) (1-6)°77".

Comparison with Barlow-Gupta Procedure

Barlow and Gupta [5] propose a procedure R3, for a quantile
selection problem.

R3:- Select population =, if and only if

1

(1.2.30) T max T .
ryi = ©3 1<j<k r,J

" .
P* and Tr,i 1s

|v

where Cy (0 < c < 1) is chosen to satisfy P[CS|R]
the r-th order statistic from F; where r < (n+1)a < r+l. A similar

expression for ng (€) (see Barlow and Gupta [5]) is
3

(€)= [-(a) %71 (&) (106?372 Dse, (5,0 120272 e, ) (1-6)

where f is the dens1ty of F with unique a-quantile, g

o) - R]( g fZ(Eu)

.2.3 ARE(R4,R436 1m 5o -
1°73 ( y o (aa)

If G(x) = 1-e™%, x > 0 and F(x) = 1-e7%, x > 0, then 

2, 2
(1.2.32) ARE (R; ,R336) U-u) 24 Ua) .
o

_ 1
0.4803, o = .
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Comparison with Gupta Procedure

Gupta [30] gave a selection procedure for gamma populations
X
1 a-1 _ %

m.'s with densities = X e x > 0, ei >0, 1=1,2,...,k.
i

i

.r(a)e.

The procedure R4 is

R4: Select population “1 if and only if
(1.2.33) X. >c, max X,
i 4 1<j<k J

where Xi is the sample mean of size n frdm s and c4'1s the largest
constant (0 <cy < 1) chosen so that P[CS[Rd] > P*,

For k = 2, 817 = § and 827 = 1, Barlow and Gupta [5] have prove that

(]234) ARE(R3,R4;5) = Tim W

2)

;'a(1094§)? ao(l + 6§
2(1-5)%[¢_f(z)1°

It is easy to show that

(1.2.35) ARE(R],R4;6) = ARE(R],R3;6)ARE(R3,R4;6)

{/5 log § A;g JGIE?}Z .
/2 (]-5)aa h(aa)

If G(x) = 1-e* for x > 0 and a =1,
then
' (1-a) (1+6%)10g%s
(1.2.36)  ARE(R;,R,38) = sl
2(1-6)"a

Therefore as 6 >~ 1, we get



(1.2.37) ARE (Ry,Ry3641) = 122
It is easy to see that
<1, a>p
(1.2.38)  ARE(RyRy36014= 1, o= 1.
> 1, a< %

Comparison of R] and R. from uniform distribution

Suppose i and m, are two 1ndependenf uniform populations with

distribution functions Fi (i =1,2).

0 x <0
={ X
F'I(X) - 91' Oixie1
1 X >0

where § = e[]] < 6[2] =1,

A sample size n is drawn from each of the two popu]aiions. Let T;
be the total Tife statistic until r-th failure from s (i =1,2)
where r < (n+l)a < r+1.

The procedure R5 is given by

26
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R5: Select population s if and only if

(1.2.39) . T* > ¢, max T*
i="5 1<j<k Jj

where Cs is chosen so that P[CSIRS] > P*. Let T(ﬁ) be associated

C
(1.2.40)  E(SIRg) - PLCSIRG] = PITEy) > c5Tfp)] = PIT} > 22 Ty]

where Ti, Té are two independent total life statistic until r-th
failure from uniform distribution over (0,1). By Gupta and
Sobel [42],

Ti-u
(1.2.41) : ~ N(0,1) as n » =,

a

no(2n-an+1)

where u = o] - MU' = "a(g-a)

2 _ a(l-a)n(2-a)%n? _ o3n3

g .
4n3 12n2
=An where A = ajl;g)j@;gﬁfg+ .
A 17 -
Hence Y ~ Y. - B/n where B = a(z'“).
o ¢ 2/R
From (1.2.40), we have
) l_l Tl_ul c
1 C5 '2 5 u'
E(S|Rg)- PLCSIRG] = PI-— > % (Z—)+(z2 -1) &y
cy C
~ P2y 2 =22, + (52 -1)BVA]

where Z], Zz‘are i.i.d. with N(0,1).
Hence

E(S|Rg) - PLCS[RG] = [:¢[§g x-(l--%g)B/ﬁ 1de(x)
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- - i—-)s/ﬁ
5
= o[— 1.
»/1+(‘5—)2
s

Let E(S[R5) - P[CS|R5] = € > 0, we obtain

A5 -1
(1.2.42) (- Ly =/ 1 .2 (€
Cg 8 2 2 B
8 Cp
Note that

inf P(CS|Rg] = P[T] > . T3]
Y] v

where Ti, T2 are defined as above.

Tl-ul Tl_ul .
Pl > ¢, [-E—T + (c-1) U]

PLT} > cTy]
~ P[Z] 3_c522 + (c5—1)B/ﬁ]

where Z], 22 are i.i.d. with N(0,1).

Hence
P TE R I 1
PIT} > cT,] = {mq’(cs x -(1 - CS)B/rT)dcb(x)
-(1 - e
‘s
= o[ ]
4 1
+
cs
Setting inf P[CS]R5] = P*, we obtain
Q
Ly LY
| 5 Cg _
-1
(1-c)vn = D/ﬁ + ¢ where D = E~_Lﬂtl_
5 5 B
We see that Cp ~ 1- v2 D R
/n
LN V2 D _
c

5 /n



From (1.2.42),

-1
U+£j-bm=2%ﬂw%+n+250

EQE]}%
_»/rT‘S 8 /n n

-1
/n(1 - %) + /2D a:g——ifa-{l?-+ ]}%

Thus

-1 2 = . v
(1.2.43) nRs(e) 2 Le)/1+g(]:6{? so_ ' (P )}2-,

If we assume that G(x) = x for 0 < x < 1, then the np (€) is

1
given by (1.2729) with a = a, h(ad) =1, n, = ¢ gnd g(na) = 1.
Hence
. R (e
(1.2.44) ARE(R], 5, ng ——_T—T
_B%0-a) | 301 (2-0)? |
@ 3(]-&)(2-a)2+a2
= 0.931, o = +
.931, 5
_ _ 3
= 0.675, o = g
_ _4
= 0.574, o = 5

(C) Selection procedure for distribution < ordered with respect to
C

Weibull distribution

Assumed that the specified distribution G(x) is a Weibull
distribution. In other words, G(x) is given by

-ax®

1-e for x > 0

0 for x < 0
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where X > 0 and attention is restricted to o > 1 which is assumed

known.

In this case, we use the statistic T? which is defined by

r
- o o -
(1.2.45) T* = jgl Xigjon (PG i Tk,
(as before, Xi'j n denote the j-th order statistic from Fi’ i=1,...,k).

Since G(x) is convex with respect to the exponential distribution if
a > 1 and since the convex ordering is transitive, the family of
distributions which are convex with respect to Weibull (o > 1) will
have IFR dfstfibution. Thus our interest here is in a special subclass
of IFR distributions.
The rule for selecting the population which is associated With F[k]
is as follows,

Rg: Select population . if and only if

(1.2.46) T > cp max T¥
1<j<k

where s (0 < Cq < 1) is determined so as to satisfy the basic
probability requirement.

Using the fact that if F <G and F(0) = G(0) = 0

: c
then F <G
o

a
C

for a > 1,

where F_ is the c.d.f. of X%, F(x) is the c.d.f. of X, G is the
c.d.f. of Y* and G(y) is the c.d.f. of Y.

Also,

) St i-th order statistic from G*(x) = 1-e'AX,

x > 0 where X] n S--.2 X, are order statistics from F. In a

6 TF (x@

a-o'i,n



manner similar to the proof of Theorem 1.2.7, one can prove the

following theorem.

Theorem 1.2.3. If Fi(x) Z_F[k](x) yxand i =1,...,k,

- o max?
F[k](O)“O, F[k]:G, G(X)_]-e ,X>0,A>Oand a(i])

is known. If n > max{r, %:l—ﬁ, then
—_— _C6

. _ 7 k-1
(1.2.47) 1gf PLCS[Re] = é Gy (é—6)dGT(x)

where GT(x) is the c.d.f. of a x2 random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations

Let LA ERREL be k populations with densities

o -
1 ai-] -BX

- _B . . s
ri(x) =T o X e ", x>0,8>0, o > 1,1 =1,...,k.

Let Ri(x) be the distribution function of mes 1= T ke We
are given a sample of size n from each s Let T; be total life
statistic until r-th failure from U

Let O] S oy be the ordered values of qi's. We are
interested in selecting the population with the largest value

o

a[k] (unknown). Since the mean of ms is Ely selection of the

population with largest mean is equivalent to selecting the
population with largest value, ISk The subset selection rule
based on Ti is:

R;: -Select population " if and only if

72

31



(1.2.48) ' T¥> ¢, max T¥,
P gk

where cy (0 < c, < 1) is chosen to satisfy

PLCS|R,] > P*.

Since the rule R7 is scale invariant, we can assume B =

Case 1: A1l a; are unknown and > 1. Let

R, <G(x) =1-e%, x>0,1i=1,...
1C'

Q] = fg =_(a],...

.k.

1.

In this case, by Corollary 1.2.2, we have the following result.

If n > max{r, %f%}, then inf P[CS|R7] fH
Q
1

k- 1

dH(x)

where H(x) is the c.d.f. of a X2 r.v. with 2r d.f.

Case 2: a; are unknown but assume 1 < oy

known.

<4, i

Let RA(x) be the c.d.f. of X with density function

A
£ xA']e-Bx, x>0, 8>

0.

Tse.

,k and A is

Let h(x) be the density function of a x2 r.v. with 2r d.f.

Theorem 1.2.4.

-1 2n 2nh(2n ) _-x
(1.2.49) P[CS]R7] é & r_AmLe dx,

where y = R™! (1-e7%).

Proof. P[CS[R7]
: T<j<k-1

where T?i) is associated with o

*
P[T(k) > €4 max T?.

)]a

(i1 1 =

1,...

k.

,ak): o 2}

1

32
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Since R,(x) < R.(x) < G(x) = 1-e”*, by Lemma 1.2.6, then

(1.2.50)  PLCS[R;] > P[T§*> c; max  T#+]
1232k-1

where TE*is the total life statistic until r-th fai]ure from G(x)
and T;*(j = 1,...,k-1) is the total life statistic until r-th
failure from RA(x).

Since A > 1 then R, < G.
- A c

Let ¢ (x) = 67T, (x).

‘ _ T N .
(1.2.51)  P[TE*> ¢, TH*,§=1,.. k=11 = P[q(ﬁ-TE*)z_qKﬁ—-Tg*) i=1,...

..= ad =

r-1 > 8 =

EZ. : (n—r+1)c7
n r o

By Lemma 1.2.4 (a) with a

a.

7 =0 for i > p+l

and q{X)?% Y where X is a r.v. with distribution R,

Y is a r.v. with distribution G,

we have
(1.2.52)  PLefx TE*)> quZT**) =1 k=11 > PLo(x T¥*)> EZ—Y
$e n 'k ‘= "n 'j SUREERERE - n k =2n 'j°
=, k1]

where Yj (3 =1,...,k-1) is a r.v. with x2 with 2r d.f. From

(1.2.50), (1.2.51) and (1.2.52), we have

PLCSIR,] 3_2 Hk"(és x)dB(x),

where B(x) = P[g{l Ti*)< x].

Since ¢fx)

-tn (1-R,(x)), then ¢ '(x) = R (1-e7).

33
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Thus
B(x) = P[TR*< n ¢ (x)] = H(2n ¢ (x))
= H[2n R;](l-e'x)].
Now
= h(2ny)2n - Ff%;y where y = R;](l—e'x).
So that,

T k-1,2n T uk=1,2n _\ 2nh(2ny) -x
[ HT (&= x)dB(x) = [ H*(ER x) ———T—TXl-e dx.
0 C7 0 7 Fa\Y

This completes the proof.
Let S denote the size of the selected subset. The expected
value of S when R7 is used is given by

(1.2.53)  E(S|R,) = ] PIT#

;> ¢y max T*].
i=1

1<j<k

[v

Let @' = {a = (a],...,ak): 1 <ay <A, i=1,...,k}.

For ¢ € @', since RA(x) g_Ri(x) < G(x) = 1-e”
k
E(S|R7) < 121 P[TT*Z ¢, Zggék T\?JS*]
where Ty*is the total life statistic until r-th fai]ure from RA(x)
and Tg*(j = 2,...,k) is the total life statistic unfi] r-th

failure from G(x).

Hence E(S[R;) < k P[T¥* ¢, max T#*x]
7 < 172 €y max 13
2<j<k

so that,

34
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(1.2.54) sup E(S|R,) = k JRT(ZX)ds(x)
Q' 7

where R(x) (S{x)) is the c.d.f. of total life statistic until

r-th failure from G(x) (RA(x)).

1.3. Selecting a best population - using indifference zone approach.

Let TyseeesTy be k populations. The random variable Xi associ-
ated with 5 has an absolutely continuous distribution Fi’ We assume there
. X . _
exists a F[k](x) such that F[i](x) 3-F[k](6) for all x, i=1,...k-1 and

6§ (0 <8< 1) is specified. Let

(1.3.1) @ = {F = (F,...,F): Eajsuch that

Fi(x) 2 F5(35) vi# 4} .

The correct selection is the choice of any popu]étion which is
associated with F[k]' We propose the selection rule R8: Select

popu]ation'ni if and only if

(1.3.2) T. = max T, where T. is defined as in Section 1.2.
i 1<j<k j j

We want the P[CS|R8] > P*, for all F € ¢ , where P* (%—< P* < 1)

is specified.

Theorem 1.3.1. If F., G €3, 1 = T,...5k, F[k](O) =0, F[k] : G
and 671(0) < 0. 1fa; >0, j=T,....m,

g6 1(0) <1 and a_ > s,

Y‘_
then
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(1.3.3) PLCSIRG] > | 651 (%), (x)
where GT(x) is the c.d.f. of T.

Proof. P[CS|R,]= P[T > max T,.y].

Since F[i](ax) 3_F[k](x), i=1,...,k-1, it follows from Lemma 1.2.6 that

TG
PICS[Rg] = P[T(k) > 8=~V # k]
2 PTGy 28 T8 vkl

where Tf,...,Tﬁ_], T(k) are i.i.d. with c.d.f. wk(x). Using
the same argument as in Theorem 1.2.1, we have our theorem.

Remark _1.3.1. inf PLCS|RT= | 651(%)de (x) if 677(0) = 0.
Q e 10)

For given k, &, P* and G(x), we can possibly find the values of
the pair (n,r), (n > r) which satisfy
T k-1,x
(1.3.4) a, > ¢ and [ G- (2)dG(x) > P*,
r — -1 T Y777 =
G "(0)
If G(x) = x for 0 < x < 1, we can always find the values of the

pair (n,r), (n > r) which satisfy

G#'](godGT(x) > p*.

O 8

In this case, GT(x)is the c.d.f. of r-th order statistic based on a
sample of size n from G.
If G(x) = 1-e”* for x > 0 (see Patel [58]), we can find

the smallest integer r which satisfies
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[ 65 (X)d6(x) > P* where 6;(x) is the c.d.f. of a x? random variable
0

with 2r d.f. Since +a, > 1 iff n > %=L, the minimum n

satisfies n > max{r, ;}%}.
1.4. Selection procedure for distribution < ordered with respect to G.
*

Let t(> 0) be a given number. Let Ni(t) be the number of failures
in time t among the n units on life test from m; which has a

continuous distribution Fi’ i=1,...,k. We assume that

(1.4.1) Ni(t) > 1,4 = 1,00k,

and there exists a F[k](x) such that Fi(x) z_F[k](x).for all x,
i=1,...,k. The correct selection is the choicé of any

population which is associated with F[k]' Let Ti be‘the total life
statistic until Ni(t)-th failure from popu]ation ;. Let T(i) be
associated with F[i]' We propose the rule v'

(1.4.2) Rqg: Select n, « T, > ¢, max T.
_ 9 i i 9 1<j<k J

where cg(0 < cg < 1) is chosen so that PLCS|Rg] > P*.

Theorem 1.4.1.» If F.(x) Z_F[k](x) VX, i =1,....k and Fpyq <G,

then
(1.4.3) PLCS|Ry] > Z A'](-](é—g)dAZ(x)

where_A](x)(Aé(x)) is the c.d.f. of total life statistic until n-th

(first) failure from G.



Proof. From (1.4.1), we have
Z.P[TE > Cq T} for j =1,...,k-1]

T*

‘where ﬁl is the mean of a sample of size n from F[i]? i=1,...

T*
and ﬁk-is the first order statistic from F[k]'
Let
n
4. CTH* = X. f i = 1,...,k-1.
(1.4.4) TJ QZ] iz or j =1 k-1

where Xj]f""xjn are i.i.d. from F[k]’ J = 1,.ii,k-1.

inc Fr. ki *. He
sinc [J](x) z_F[k](x) then TJ %f TJ Hence

(1.4.5)  PIT§ > cgT¥, §tk] > PITE > CoT¥*, Jj¥k1.

Let ofx) = G']F[k](x).
T*

' 1 - k 1 .
(1.4.6) P[Tﬁ_z_chg*, jtk] = P[q(ﬁgg),i q(ﬁ'Tg*), jtk]
Since ¢ is starshaped, then
T* T*
1 k 1 k

9
By Lemma 1.2.5 (a) and (1.4.4),

(1.4.8) ol TH%)

| A

.n]
221 n le).
T*

Sk-1

Note that qiﬁkd St Yy where Y, is the first order statistic of

size n from G and q(XjQ) has distribution G, j = 1,...,k-1,

2=1,...,n.

38
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n
Let Y, = ), =1, k-1,
et ¥, zg]g(x”),a 1,.. k-1

From (1.4.7) and (1.4.8), the right-hand side of (1.4.6) is greater than

or eqUai to
Pl— vy, > Ly, j=1 k-11 = P[—(nY,) > Y., j=1 k-1
Cg kZn J, se0y Cg k! Z j3 J: 3---s.

oo

(f) Al]('](%:(;)dAz(x).

The proof is complete.

1.5. Selection with respect to the means for distributions s-ordered

with respect to a specified distribution G.

Let the random variable Xi associated withvni_have an absolutely
continudus. distribution Fi;. Assume that Fi(x) = F(gjd, i=1,....,k,
: i
F <G and F and G are symmetric about 0. As before, let
A :

0 < °1] 5,;.5_e[k] be ordered values of unknown 6; (i = 1,...,k).
A best population is defined as the one having e[k];b-We are given
a sample of size n from each of the k populations. Assume that n

is large. Let

(1.5.1) '_Ti = op Xi;r',n'xi;r'+1,n—"'- Xi,zi,n+xi;zi+1,n+"'
where X;.q 5...5_X1;21,n <0 f-xi;£i+1,h 5"'5-Xi;n,n are

order statistics from Fi(x), and r',r are given'integers such
that 1 < p! < i N> g, i=1,...,k.

Similarly, let



—

(1.5.2) T=-r'y .’n-YP.H’n—...—Y!L,n+Y!L+]’n+.'..+(n-r‘+])Yr’n

where Y],n 53"5-Yz,n <0< Y2+],n 53"5-Yn,n are order statistics

from G. Then, for selecting a subset containing'e[k], we propose
the following selection rule:

R Select population ms if and only if

10°

(1.5.3)  T.>cqn max T,
i 10 1<j<k

where 10 (0 < g < 1) is determined as to satisfy the probability

requirement, inf P[CSIR]O] > P*, where CS stands for a correct
Q

-selection, i.e., the selection of any subset which contains the

>0, i=1,...,k}.

population with e[k] and Q={(e1,.,.,ek): 0

Let n(i)'be associated with e[i], i=1,...,k. Now, we give
a theorem pertaining to the computation of the minimum probability

of a correct selection.

Theorem 1.5.1. If F.(x) = F(’g—) vxand i =1,....k, F <G and

i : S
F and G are Symmetric'about 0.

If 1im %~ =t', 1im %—= t and 10 < min{t', 1-t},

N->co N->c0
then,
(1.5.4) 1im inf P[CS!R]O] [ H ~—)dH(x)
N 0 ]0

where H{(x) is the c.d.f. of T defined in 1.5.2.

Proof. P[CSIR]O] = P[T(k) 3_C]OT(j), j=1,...,k-1]

where T(5) =--r' X(i)r',n_x(i)r'+1,n_"'fx(i)z(i),n+x(i)2(1)+]’n+"'

+ (n—r+1)X(i)r,n

40
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and X(i),],n i...i X(i)g’(i),n< 0 < X(‘i)l(_i)+],n<'f'< X('i)n,n are
order statistics from “(1)'
It is easy to see that
(1.5.5) igf‘P[CSlRlo] = P[T& 3_c]OT3, J=1,...,k-1]
where Ti,= -r Yi;r',n""'Yi;z ‘ ,n+Yi;2 . +],n+...+(n-r+1)Y1’ N
- (i) (i) °
and Yi;],n 5,..5_Y1;2(i)’n <0< Y1;2(1)+1,n 53"5-Y1,n,n are order

statistics from F(x).

Let ¢(x) = G'1F(x).

: | 17 = 1 1 _]_l JEEL I
(1.5.6) PLT) > ¢;qT3] = P[¢(E?55-Tk) > 45 T3)s 351kl

By Corollary 2.9 of Lawrence [48] with ig = 2(1)"j0 = z(i)+],

and
0 1T<j<r
-Y" P |
o I
1 )
S S A I
aj_ 'l L]
o 9,(1.)<J<r
n-r+l <
n J=r
0 n>j3>r
then
N e ]
(1.5.7)  o(5T:) < n¢anm)ﬂ~'ﬁ“ﬂﬂ“rﬂ

..+ 0ty

. )y i=1,...,k=1.

]
* ﬁ'¢(Yi;2(1)+1,n isr,n

Also by Corollary 2.10 of Lawrence [487] with ig = r'=1, g = ntl,
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0 0<j<r!
-y .
j=r'
ncyg
-1 . )
ncio o3 2y
Nt jL(k) <Jd=r
- n-r+l i=r
ncyg
0 J>r
-r' n-r+l
< -1 and > 1,
NCyo ~ 0
then _
(1.5.8)  slmg—=TY) > 52 40y, ) =oeem = (Y, )
10 10 BT 10 )
o n-rtl |
+ —nC]O ¢(Yk;2(k)+]sn) 4'-.." nC'IO ¢( k;r,n)-
Now ¢(Yj;1,n) <t Vj;i,n’ j=1,...,k, 1 =1,...,n, where Vj;i,n

is the i-th order statistic from G(x), j = 1,...,k.
let

T'| = -r V]';r",n e ee™ V'i;,Q,()sn + v];Q(i)+],n HERE

+ (n-r+1) Vi;r,n

From (1.5.6), (1.5.7) and (1.5.8), we obtain
PIT} > cqqT3s 3FkI 2 PITE 2 cq0Ty> 3 = Thennsk-11.

Since G is symmetric about 0, as n becomes large,

J
Thus



e

| T k-1 . . P ners]
PLCS[Ry o] 3_£ H (%;b)dH(x) if cqg < mingl-, B2,

This proVes the theorem.

[

F(gf) vxand i =1,...,k, F <G, F is

Corollary 1.5.1. If Fi(x)
5
symmetric about 0 and g(x) = Q%&él =]

|

S L .

. ! 1 . r 1 .
If 1im - = ¢ < 7 1im = =1t > 5 and ¢y, < min{t"', 1-t},
e N - 2 foseo N 2 10 —
then, as n is large,

oo 1-c
(1.5.9)  inf P[CS|R;y] = @k"[§;6-+(—-E%§)¢F?FTIT']d¢(x)
Q -0 .

Proof. Considering
2-1 r

T* = T oSy, aYo o )+ T (n-i#l)(Y. oY, o)
) 1Zr| 1,0 "i+1,n le 1,n»,1-],n
where VinSeo2 ¥y <0< Yg+];n <...< Y, are order

statistics from G(x).
Since 2 T* is distributed as a x° r.v. with 2(r-r'+1) d.f.
(see Lawrence [47]) and T* has same distribution as T when n is
large, theh 2 T is distributed as XZ with 2(r-r'+1) d.f.
By Theorem 1.5.1,
PLCS[Ryq] > PV, > ¢pq 123§k Vj]
where  Vy,...,V, are i.i.d. from x® with 2(r-r'+ 1) d.f.

Since Vi ~ N(2(r-r'+1), 4(r-r'+1)), then

= 1-c ‘
]~ ¢k'](§-—-+ ———lQ-Vr—r'+1)d¢(x)

PV, > c max V
k= 7L 10 S0

1<j<k

This proves the corollary.
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Assume X],n f?"f-xk,n <0 5_Xk+],n <ooo< X ,n are the order statistics

-1

from distribution G where %; G(x) = g(x) = %—é'lxl, - o < X < o,
Define
i-1 .
1o
(1.5.10) v, =931 -1, .. .n,
- -1,1
. Hn (ﬁ)

1 TR S O
where Hy () = L 980D (X oo n)-
Now we want to get the Timiting distribution of Vn (as n is large).
Let T = /ﬁ[% V, - %J. To obtain the asymptotic distribution of T ,

we use the following result. Let X1 p <eee< Xn n be the order statistics

o
from G and Sn.— - Z L(

6) = 2 [ [ L(6(s))L(G(t))G(s)[1-G(t)]dsdt.
s<t . ,

where L satisfies the condition (ii) of following lemma.

Lemma 1.5.1. (Moore [53])

If 02:< « and
] -1
(i) E|X] = élG (u)|du < =

(ii) L 1is continuous on [0,1] except for jump discontinuities
at yseeesdys and L' is continuous and of bounded variation on
[0,]] i {.é],...,aM},

then

(1.5.12) £ (/A IS, - [ xL(G(x))dG()T} > N(0,02).

-00

Let



n

(1.501) s, 'JTZ Ty - i,

Then using an argument similar to the one in Barlow and Doksum [3]
1
Sn = Ly L) K

where L(%J = g G'](iﬁl)-n(%-- 1+])[ G ( . -g 671zl ])]

Since x for O« x_g-%
a(0) = { :

1-x  for y<x<l

then
i 1 i 1]
]. J2p) - g for g3
L(ﬁ') = { _
3. 2(10 for 151
2 "' n-" 2

Thus we can consider

1
(1.5.12) S = .

: 1
2x =5 for 0<xz<5

where L(x) = {
5 - 2x  for %—< X :_1_

We can show. that

2]

J xL(G(x))dG(x) = 0.

It follows from Lemma 1.5.1,

2 (/i's) > N(0,0%(6)).

where
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(1.5.13) o2(6) = 2 | [ L(G(s))L(6(t))6(s)(1-G(t))dsdt.
S<
’ v 1 .
2(G) = 2 f[é L) 461 LB (1g)qe
00 g6 (s) g G (t)
=2:fé[f—|‘(—sLsds]———L(1 t)dt
0 0ga (5), g G
1 3
+2 [[f I=——)~—-sds + } Lgs) sds] Eiilg}lil dt
12 096 1(s) 2 96 '(s) g G (t)
2 e

By Theorem 2.1 of Barlow and Van Zwet [11], H;](l)_+ G(X a.s.

n,n)

Since G(Xn n) ~ 1, therefore H;](1) > 1 a.s.
/ms

Now T = - » hence by Slutsky's theorem,
Hy (1)

we have the following result.

Theorem 1.5.2.

(1.5.1) 2 (i (-2 - 3)) >N(0, 7)

1.6. Selecting a subset which contains all populations better than '

a control.

In addition to my,...,m , we have a control population my. Let
s have a continuous distribution Fi’ i=20,1,...,k. We are given
a sample size n from each of the (k+1) populations e i=0,1,...,k.
Let £ o . be the unique a-quantile, i = 0,1,...,k. A population ms

(i = 1,2,...,k) is defined as better than the control o if Ei 2 0"
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We want to sé]ect a subset such that the probability is at least
p* (%-< P*¥ < 1) that all populations ™ (i =1,...,k) for which

wi 2 540 will be included in the subset. We regakd any such

€
- selection a correct selection (CS). We assume that for a fixed

i, 1=1,...,k, either Fi(x) z_FO(x) or Fi(x) 5_F0(X) vx > 0.

Thus ms is better than m iff Fi(x) 5_F0(x) ¥ x > 0. - Here

Tq is not known and we assume FO : G. Let Ti be the r-th order
statistic from F. where r < (n+1)a < r+1 and let Hy be the c.d.f.
of the r-th order statistic from Fioo 1= 0,1,...;k."we propose the

rule R]] as follows,
R]]: Select m if and only if
(1.6.1) v '. Ti 3_c1]T0

where 11 (0 < 13 <:1) is determined to satisfy:the basic probabil-
ity requirement. Let t be the number of ni's better.than 0 and let .
A be the index set for those mis t is unknown. Let Gr(x) be the

c.d.f. of fhe r-th order statistic of sample size k'from G. Let g

be the set of (k+1)-tuples (FO,F],...,Fk).

Theorem 1.6.1. If F0 < G and for a fixed 1, i = 1,...,k, either
’ *

Fi(x) 3_F0(x) or Fi(x) 5_F0(x), x > 0, then

(1.6.2) inf P[CS]R1]] = ZGt(c]1x)dGr(x) where G;(x)=1-Gr(x).
Q ‘ _

Proof. P[CS[Ryy] = PT; > cqy Ty T €]

oo

é 1_léA[]—Hi(c”x)]dHO(x)



Since Fi(x)_i Fo(x) for i € A, then Hi(x) 5_H0(x).
Thus '

co

PICSIRy,1 > [ = [1- d
[cs| ”]_(f) A [1-Hg(eq1x) IdHy(x)

[ 1-Hg(eq)1* () iZ [1-Hy (e, x) 1¥dH, (%)

Pl min Z, > ¢qyq Zn]
1<i<k i 11 0,

where ZO,‘Z],...,Zk are i.i.d. with c.d.ft Ho(x). Since F0 : G
(see Barlow and Gupta [5]), then
. = k
Pl min Z, > cq7 2,1 > [[G.(c x)1" dG _(x).
1<i<k i="11 “0 —-é r*-11 r

This completes the proof.
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1.7. Quantile selection rule for a restricted family of distributions

We assume that each Fi(G) has a unique a-quantile Eia(”é) and
F.(0) = 0=6(0), i=1,2,... k. |
Let g[]]a Do By be ordered va]ues‘of Eig> 1= 1.5k A
best popu]étion is defined as the one having g[k]a;_ Let Ti
denote the r-th order statistic from Fi’ where r < (n+l)a < r+l.

The rule we propose is

R12: Seject s if and only if

(1.7.1) T. > max T. - ¢

where Cio (0 < €19 < 1) is determined so as to satisfy the probabil-

ity requirement P[CSIR12] > P,
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As before Tet © be the set of all k-tuples (F . Fk). A]so

if F has a unique a- quantile £, We define F < G if and only
. S *

if F(O) =0 ; G(0) and G']F(x) is concave-convex about the Ea,
on the support of F. L

For example, if G(x) = 1-e”%, then F < @ is equivalent to
o Sk S

saying fhét ﬁ(x) is DFR for x < £, and F(x) is IFR for x > £,

on the support of F. We are interested in this. "turn1ng point"
£, Let Hr 1(x) be the c.d.f. of the r-th order statistic from
F[i] and 1gt Gr(x) be the c.d.f. of the r-th order:statistic from
G.

Theorem 1.7. 1 If F[ ](x) > F[k](x), x> 0andi=1,...,k,

[k] 'S<* G and F[k](y+£[k]a) > G(_y+n ) for y > 0, then
(1.7.2) Inf PLCS[R;,] = Z Gt—](X+C]2)dGr(x)

where Gr(x) is the cdf of r-th order statistic from»G.

Proof.
k-1 '
(1.7.3) | P[CS]R]ZJ = é 1_I=I]Hr’1,(x+c]2)dHr,k(x)
> 7 [H. ,(x+c )]k'] (x) = P[X >max X :=Cq,]
~0 r,k 12 r k r,k= T1<i<k- ] r,i 12

where Xr]"‘;’xr,k are i.i.d. r.v.'s with distribgt1on Hr,k'
Let ¢ (x) = G']F[k](x) = G;1Hr i (x).  Since G']F[k](x) is concave-

convex about gtk]a, then ¢'(x) is decreasing in x for 0 < x < E[k]’a



and ¢'(x)_isbincreasing in x for x > E[k]a'
So that ¢'(x) > m'(g[kj’a) v x > 0. Since F[k](y+£[k]a) > G(y+n, )
for y > O,Ithen F[k](x)_i G(X+nu-€[k] o) for x 2 &Ko
G F[k](X) - na N
X_E[k]a -

Hence
Let A(x) = G~ F[k](x)'- G F(E[k] ) = G']F[k](x) - ﬁa; theﬁ

A(x) - A(E[k] )
X= E[k]a

1

Let X » g[k] ~then A' (E[k] ) > 1.

- ¢
Since g;-A(x) = A'(x) = _][k](X) >
' o g[G F[k](x)]

fr1ereq.)
then | A' (E[ ]a) _L_%‘_gkl_“._

Hence. o¢'(x)'>1 vx > 0.

wmax Xy 5) = elXp )

Since = ¢'(t) for some t sUch that

max Xr,i - Xr,k |
Xeg St < 1m'?xk Xe i and ¢lX, ;) = Yy i has distribution G,
<1<
then
max Y - Y > max X - X
lcick ™1 KT g Tl T Tk

From (1.7.3), we obtain

P[CS]R]Z] > P[ T?ik Yr i - Yr K f_C]z]
= é Gr' (x+c]2)dGr(x).

This completes the proof.
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1.8. Estimation of ordered parameters

We assume that F.(x) = F(%T) ¥ x and i
: i

1,.:.,k, where Fi

and o, are unknown and 0. >0, 1=71,...,k. Let

e[]] 53"§fe[k] be ordered values of 8;'s. MWe as§ume that
each F.(F) has a unique a-quantite g5(8), 1 =1,k

Let g[]] 5f"f-€[k] be ordered values of gi's. ‘We-are givén a

sample of size n from each of the k popu]ations.v Let Ti be

the total life statistic until r-th failure from F., i=1,....k,

T*(T) be theutotal life statistic until r-th failure from F(G)
and Tet T# be the r-th order statistic from F., i.= 1,...,k,

where r < (ntl)a < r+l.

Let T[]] 53"5-T[k] be order values of T;'s

* * 1 )
and let T[]]fo..f_T[k] be order values of T? S. Let T(i) and

T?i) be associated with e[i], i=1,...,k.
(A) Estimation of 6[1] based on T[i]'

Theorem 1.8.1. If F <G, F(0) = G(0) = 0 and if
c

(=] <}

6y = [ xdF(x) = [ xdG(x) where 8y is known, then
0 0

(1.8.1)  Plogy 5_%—T[1]] > 8 i A< oy(n-rHl),
| i v

where A = W'](] - ek'i+]) and W(x) is the c.d.f. of T from G.

Proof. P[G[i] 5,%‘T[1]] - P[T[i] 24 e[1']]'
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Since P[T[i].i t] is a non-increasing function of_ez‘(l < 2 < k)

(see Chen and:Dudewicz [20 1), then

P[T[i] > A 6[1]] 3_Pk'1+][T(i) > A e[i]]
Pk‘i+][T* > A].

By Theorem 4.6 of Barlow and Proschan [8],

: 1
- {]-W(A)}k'1+] - {]_(]_Bk—1+])}k—1+1 - 8.
Let X2(2r) denote the 100a percent point of a chi- square distribution

with 2r d.f. Aga1n, by Theorems 3.3 and 2.4 of Bar]ow and Proschan

[ 91, we have the following theorems.

Theorem 1.8.2. If F is IFRA and [ xdF(x) = 6y where 6, is known,
_ 0 0
then | o
(1.8.2) P[é[i] f_C]T[i]] > By where
2

——— i 5 (2r) < 2(n-r+1)
eOX]_Bl(Zr)

C =
1
1
Tﬁ???TYEE if X] .(2r) > 2(n-r+1)
]
k-1+1

where g' = B]

Theorem 1.8.3. If F is IFR and [ xdF(x) = 6, where 6, is known,
' : 0

then
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(1.8.3) P[e-; > CyTr.q] > B, where ¢, = — &M<~

{—

and " = 8

N =t

Let_B],BZ'(O < BysBy < 1) be such‘that By + 32-1.= Y1Where y is
fixed and 0 < vy < 1. By Theorems 1.8.2, and 1.8.3 and the fact that
P(AB) > P(A),+.P(B)-1 with A = {6[1.] < C'IT[i]} 'and"B':_{e[i] > CZT[i]}’
we have the fo]]owing theorem for two-sided confidenbe interval

of e[i].

Theorem 1.8.4. If F is IFR and [ xdF(x) = o, where 6, is known,
then

| (].8.4) ,P[CZT[i] 5_9[1] S.C]T[i]] >y
where Cys C, are defined as above.

(B) Estimation of £, based on Ty

Theorem 1.8.5. If F < G, then
*

Ay if A](n—r+1) > 1

(1.8.6) .P[g 7 < CqTr.4] > By where ¢y =] : ‘

| -1
where Ay = G ‘(“% and

k=TT,

w-](]‘B]

W(x) is the c.d.f. of T from G.
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Proof. P[g[i] 5.C1T[i]]
> Pk-,iﬂ [T(i) > l—]- E[i]] (see Theorem "1.8.1).

ey 2y orin

= P > Lo la)g = ok p(e 1) 5 ol
P = |

In a manner similar to the proof of Theorem 3.1 of Barlow and
Proschan [9], we can show that
' 1

PLF(cqT*) > o] z_s$'1+].

- Hence _
: P[F’['i] = C]Tﬁ]] > B-l- ;
- Looking at Theorem 2.1 of Barlow and Proschan [ 9], we can

have the following theorem.

Theorem 1.8.6. If F <G and F(0) = 0 = G(0), then

- By if a,n <1
(1.8.7) P[g[i] > ¢ T[i]] > B, where Cy = .
‘ ifAzn_>_1
1,
By = -£i-—%il and
W (s3)

W(x) is the c.d.f. of T from G.
Let By, 8, (0 < B1s> By < 1) be such that By + Bp-1 =y where y is

fixed and 0 <y < 1. By Theorem 1.8.5 and Theorem 1.8.6, and the fact that
if F(0) = 0=671(0) = 0, then F <6 =F <G we



have the fo]]owing theorem for two-sided confidence interval of
t[i]

Theorem 1.8.7. If F <G and F(0) = 0 = 6™1(0), then
(o

-(c) Estimation of E[i] based on TEi]'

Theorem 1.8.8. If F <G, then
*

o | O
- Tk G, (1-87"7")
(1.8.9) (1) P[g[i] < —;lll,z B if ay = d T =
T )
| ey
: T*, (8")
(2) Ples zJA;—l] 2 B if 4y = 3_](u) 2.

Proof. Firét‘ we want to prove (1).

[] -
P[g[]] —] P[T[ i] > A]E[i]]

Pk'1*1[T?i) 3-A1g[i]] (see Theorem ].8.5)
= (-F (a4 - ﬁ)}k M R (203 "

where‘Fj(x) is the c.d.f. of the j-th order statistic from F.

Since G-]F(x) = 631Fj(x), it follows that Fj(x) = GjG']F(x). Hence



-1
Fy(878) = 6,67 F(4¢)

|A

G.[a G']F(g)] (since F <G and 0 < A, < 1)
Al * 1

6508:67' )]
1 3 ]
- -7

it
R—
1
w

so that
1

{1-Fj(415)}k'1+] > {1-(1-g kT g

Now, we want fo prove (2).
Tt
PLapy 2 5 = PITE) < tgipy)

z_Pi[ng) < 8gkri7]

i
Fs(az€)

-1 i
{GjG F(AQE)}

|v

G-[AZG_]F(E)]}i (since F <G and &, > 1)
J _ * 2 =
‘ 1
5 N SR B 08
{Gj(AzG (@))} = (6,6 (g')} = 8.

This completes the prooF.

56



57

CHAPTER II
INTERVAL ESTIMATION AND SELECTION PROCEDURES
' FOR A SET OF GOOD POPULATIONS

2.1. Introduction

In praétice, one is always faced with the prob]em of selecting
the bettér dnes from a group of populations. Here, we consider
such kind of problems. Suppose that we are given k(k > 2) popula-
tions LR with distributions F(x,ei) where 95 lies in an
interval A on the real line, i = T,...,k. The qué]ity of the i-th
population is characterized by the real-valued parémeter 0;- The
population with the largest 6-value is called the best population.
A population is considered a good one if its qué]ity does not fall
too much below that of the best population. If d(ei,ej) is a
suitable distance measure between 05 and ej and if e[k] =

max (e],..;;ek),_popu1ation ms is

good, if d(e[k],ei) <A
(2.1.1)
bad,  if d(e[k:l,ei) > A

where A is a given positive constant. Let Zi = (xil”"’xin)’

i=1,...,k be mutually independent random samples, each of size n,

from population Mo i=1,...,k respectively. Let Ti = T(gi) be



an appropriate estimator of 6.. Let 9n(t’91) and Gn(t’ei) be the
density function and the distribution function of Tj, respectively.

The results of this chapter relate to two cases,

(1) Gn(t’ei) = Gn(t-ei), —00<t<00,. —oo<e_i<co’ and

(2.1.2)

t
Gn(e—.), t >0, O,i > 0.

(ii) Gn(t’ei)
1

If the distribution function F(x,ei) of =. belongs to a

i
location parameter family, then F(x,ei) = F(x-ei). The distribution

function Gh(t’ei) of Ti which is based on a random sample size n is
not necessary of the form Gf(t-ei), but we can always find a
statistic Ti such that Ti has the distribution function of the

form Gn(t-ei). For example, let LA EREREL be k normal populations

. . 2
with unknown means 61,...,6k and a common known variance ¢°. Let

Ti = Xi be the sample mean of LF based on a sample of size n. In

this case, Gn(x,ei) (the c.d.f. of Xi) is of the form Gn(x,ei)_=

Gn(x-ei), where Gn(x) = ¢(§E X).

~ If the distribution function F(x,ei) of s belongs to a scale
parameter family, then F(x,ei) = F(%T), X > 0, 6, > 0. As before
'I .
we can find a statistic Ti such that Ti has the distribution func-

tion of the form Gn(g—J. The results of this chapter deal with
i

the cases when G (t,0.) is one of the two forms in (2.1.2).

In Definition (2.1.1) we take d as dL or dS’ respectively,
whenever 0, is a location parameter or is a scale parameter for
the density of T.. dL and dg are defined as dL(a,b)'= a-b, i

dg(a,b) = g. :
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Estimation of e[k] based on (T],...,Tk) has been considered by
several authors. Construction of two-sided and one-sided confidence

intervals for e[k] based on

: (2.1.i) T = max T,
| [kl gGeg

was considered by Dudewicz [24], Dudewicz and Tong [26], Saxena and
Tong [65] and others.

For deb]em of selecting the good popu]ations"from a given
collection was considered by Desu [21], Carroll, Gﬁpta and Huang
[ 19] and others.

We consider confidence interval I which is bgsed on T[k]'

In this chapter, we are. interested in finding the smallest sample
size N such‘that’the probability that I confains at least one good
population is at least P* where P*-is a specified.number, 0 < P* < 1.
The probabi]ity that I contains all good popu]atiohs and the proba-
bility that:I_ex¢1udes all the bad population are discussed.

In Séctibn 2.2, we investigate the above problems for Tocation
parameter case. The infima of coverage probabi]ifies are obtained.
Some special cases are discussed. In Section 2.3; we investigate
the above brob]ems for scale parameter case. In Section 4, we
discuss the above problem for the means of normal populations and

for the scale parameters of the gamma populations.
2.2. Results for the location parameter case.

In this section, we assume that 6. is a location parameter

fdr Ti’ i 1,...,k. It is assumed that there is no a priori
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knowledge about the ei's. For arbitrary fixed d], d2 B d]+d2 > 0, the

confidence»jnterva] is defined as
- where T = max T..
LY

For the location parameter case, we say that pobuTation wi'is

(2.2.2) good if 8, z_e[k]-A,
bad if 61 < e[k]-A,

where 6 = max o6..
LY P

For given 8 = (6;,...,8,) and 4 > 0, let aé(]) denote the
probability that I] contains at least one good p;pu]ation, let
a8(2) denoté the probability that I] contains all good populations
a;d let ue(3) denote the probabi]ify that I excludes all the bad
popu]atio;s.

Let us denote the ordered o-values by e[]] 5,..§_e[k] and
let @ be the parameter space which is the collection of all possible
parameter vectors ¢ = (e],...,ek). For given A > 0, Tet m denote
the unknown number of bad populations in the given collection of k

populations. Clearly we have 0 <m < k-1.

Let | |
(2.2.3) Qm = {9 e[]] Lo e[m] < e[k]-A < e[m_{_-l] L2 e[k]}.

Then
k-1
(2.2.4) _ Q= U Q.
— m=0 m

We need the following Temma before we prove some theorems.



Lemma 2.2.1. Define f(r) = AC"-BD", r = 0,1,...,m where A > B > 0.

If either (i) 1<C<Dor (ii) 1>C>D> 0, then

(2.2.4)  min f(r) = min[£(0),f(m)].
~ 0<r<m

Proof. Assume 1 < C < D. For r =0,1,...,m-1,

£(r+1)-f(r) = AC"(C-1)-BD"(D-1)

F(r+1) < f(r) if and only if & (& < D
Since ,-%_5'1 = %(%)r+1 5_%}% .

Hence

f(r+2) < f(r+l).

<o sim=1.

Similarly, one can show that if f(r+1) > f(r) then f(r) > f(r-1).

Hence the lemma fb]]ows.

If 1>C>D>0, then by a similar argument as above, the

result follows.

This completes the proof of the lemma.

Now we want to discuss the probability that_IT_contains at

least one good population and the infimum of this probability over

Q. We heed the following lemma.

Lemma 2.2.2. If the family of density functions'{gh(t-e): 6 €A}

has a m0notbne likelihood ratio, for every n > 1, then for arbitrary

fixed dy,d, satisfying ditdy > 4,

(2.2.5) inf a,(1)
o

min{GM(a+d; )65 ™(dy)-6M(a-d,)6E ™ (-d,),

61

-~ k-m k-m
Gn (d])-Gn (-dz)}.



Proof. For 8 ¢ Qm’

(2.2.6) ag(1) = P{T[k]-d1 < e[i] < T[k]+d2’ for‘some i, i=mt+l1,...,k}

= 1-P{e[i] ¢ 1, for each i = m,.. .k}

1—P{T[k]+d2 5-e[m+1]}_P{T[k]-d1 ife[k]} (since
§1+d2 > A)

= P{T[k]-d1 < e[k]} "P{T[k]+d2 S;Q[m+]]}
C L )
"5 Slnathrtr - T Galerm g

<

Let 61 = BEk]-Q[i], is= ]"'f’k’ then 0 = dk < Gk—] <...< 6m+]

A < 6m <ove< 6].

Hence
k

: Gn(5j+d]) - jz] Gn(sj-am]-_dz).

= . x

(2.2.7) qg(1) = ;

It is easy to. see that-ae(l) is nondecreasing in St 2 where

Spto < Spyy < b Let 8.4 = 840, then
ay(1) = 16 (8.+4)6% (5, p*dy)= T 6 (8:-8,,,-dy)G2(-d,).
S jme 1S
jim+2 : v JFm+2

In this case, also we can see that ae(l) is nondecreasing in 6m+2’

where Spe3 < 9, Repeating the process with

| m+2 < A. Let 6m+2 = §

m+3°

each Gj’ j = m+l,...,k-1, thus we have
(2.2.8) Q = inf (i) C 16 (5,44 )65 ™(do)- T G (6.-d.)eKM(<d.)
e = TH Gttt/ " FECRL AR L B A e I B A 2
]

Where H] = {(6m+1,---,6k_]): 0 < 6k_-l Ceeoe¥< 6m+-l < A}.



For i = 1,2,...,m,

Q _ 9(6 'dz)
—E— = g(8., +d] ){A-B° _TE-IE_Y}
where A = G5(d,) TG a(65%4;) and B = 6k m(~d ) T 6 2(85-d5).
j=1 J-T
ji J#i
v g(‘S 'd2) . ’
Since A > B and —TE—;H—T is non-increasing in 6 > A, i=1, m,

then Q is greater than or equal to the right hand side of equation

(2.2.8) w1th either §; = Aor 5{ = o, i = 1,0, m.

- Thus

(2.2.9) Q> min (6"(a*d, JGE™(d,)-6F (8-dy)6KM(-d,) 3.
v ‘ 0<r<m e
By Lemma 2.2.1, we get

. s epkemy v okem m, k-m
.(2.2.]0) ]gf ag(]) = m1n{Gn (d1)-G (—dz),Gn(A+d])G (d1) -

This completes the proof.

Theorem 2.2.1. If the family of density functions {gn(the): 6 €Ay}

has montone 1ikelihood ratio, for every n > 1, then for arbitrary

fixed d;.d, satisfying d;+d, > 8,

(2.2.11) inf ay(1) = min(G, (d})-6 (-d,), 6K(d)-6K(-d,),

Q .
k-m m k=m m _ ’
G, (dy)G,(a+dy)-6.""(-dy)G (a-dy), m=1,...,k-1}.
k-1
Proof. Since @ = U0 Q , by Lemma 2.2.2, we have
me

(2.2.12) inf o (1) = min min[ak-Mm_gk-B, Ak‘mcm4sk'mom]}
Q - O<m<k-1

63

m m k~m
_Gn(A'dz)G .('dz)}'
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where A = Gn(d]), B = Gn('dz)’ C = Gn(A+ d]) and D = Gn(A'dZ)'

By Lemma 2.2.1, min [Ak'm-Bk'm]'= min[A-B, Ak-Bk]. From
O<m<k-1 | . |

(2.2.12), we get
(2.2.13) inf a,(1) = min{A-B,AK-gK ak-Mem_gk-mpm oy o 1y,

This comp]étes the proof.

Corollary 2.2.1. Let the family of density functions {gn(t—e):

6 € Ay} have a montone Tikelihood ratio, for every,n‘gkl. For
arbitrary fixed dy» d, satisfying g(-d2) i_g(d]) and‘d]+d2 > A,

-then

(2.2.14) igf a§(1) = min{Gn(d])—G (-dz),G

Proof. By Theorem 2.2.1, we get
k

(2.2.15) inf a min{A-B,AK-BK, Ak-Mem_gk-mpm -y ke1y

Q

(1)

8

2)-

where A = Gn(dj), B = Gn(-dz), C = Gn(A+d]) and D =_Gn(A-d

Consider

(2.2.16)  f(m) = ak-mcm _ gk-mpm

_ akscym k,Dym _
= A (K) - B (E) » M= O,], sk']
Let
: G _{x+d,)
1
p(x) = 2
Gn x—d2
dy(x) gn(X+d1) 9n(x'd2)
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g(x-d,)
since d, > ], _TI-H;7'1S nondecreas1ng in x > 0 and g(- 2) > g(d )»
thenvddix) < 0 for x > 0. Thus y(a) = %-5_¢(0) =.éu
By Lemma 2.2.1 and 1 < %-5_33 then '
(2.2.17)  min  f(m) = min{f(0), f(k-1)}.
O<m<k-1"
Hence from (2.2.15) and (2.2.17),
inf o (1) = min{A-B, AK-8¥, £(0), f(k-1)}
Q 2
= mintA-B, AK-BK, ack-T_gpk-Ty,

This completes the proof of the corollary.
Now we'wish to discuss the probability that 1, contains all

good populations and the infimum of this probability over Q.

Lemma 2.2.3. If the family of density functions'{gn(t-e):

6 € Ay} has a monotone likelihood ratio, for every n > 1, then for

arbitrary fixed dq,d, satisfying d;+d, > 4,

(2.2.18) inf o (2) = min  min ([G(d, )]k+”“m‘”‘]ar+‘(-A+d )
0 n
Qm = O<r<k-m-2 0<g<m
- [G (A d )]k+2‘m r-1 Y'+]( d )
Proof. For o ¢ Qs
(2.2.]9) (19(2) = P{e[_'] € [T[k]-d] ,T[k]+d2], i =..m+].,...,k}

= PlOpny 2 Tygwdys Opkg < Tpegtds?
K k

J..

7?

G (s

2] n

J

n Gnpmg-ery1tdy) -

i Cm+l

i5 Enlopgorgyds)
k
I Gn(aj;dz)

S tdy) - I
Jj=1
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where Gj = e[k] - e[j], J=1,...,k and

0= Sk'< 6k—1 <...< 8 <A< Gm <ia.< 61.

m+1

Since ae(Z) s nonincreasing in &, where 5m+2 <'6m+1 < A, then

a,(2) > Q where

6
( ) k-1 ) k-1
2.2.20) - Q=A m G(5,-a+d;)-B 1 G _(6.-d,),
jeme2 n 1 jeme2 n\-j "2
m _
A = jE] Gn(sj—A+d])Gn(d])Gn(-A+d]) §nd
m
B = jE] Gn(sj-dz)an(A-dz)Gn(-dz).

For i = m2,...,k-1,

S k-1 k-1 g (6.-d,)
3aQ  _ v : 2ntti T2
=g (8,-a+dy)[A 1 G (6.-a+d,)-B 1 G _(6.-d,) __T———_—_—7J'
3t it |
. . L q gn(6i~d2 . . .
Again, since d2 > A-dy aﬁd 5;152:313;7-15 nondecreasing jn 61,

i =m2,...,k-1, then Q is greater than or equa]'tb'the right hand

side of equation (2.2.20) with either 5. = 0 or 6, = 8, 1= m2,
<5 k-1,

Let H'l = {(6m+],6m+2,---,6k-]): O < (Sk—] <...< (Sm+-l < A}-

Hence,

(2.2.21) infay(2) =  min  [AGF(-a+d;)6K™ 2T (d,)-BEM (~dy)
Hy = O<r<k-m-2 '

k-m-2-r
Gn (A—dz)].

Let Hy = {(6],...,6m): A< <iin< 6]}.

In a manner similar as above, for r = 0,1,...,k-m=2, we can show

that
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. Kem-2- -2~
(2.2.22) infLAG (-a+d) 6K 27" (dy)-B6] (~d,)GK ™2 (51 ]

H, :
_ OTlgm{G;+](_A+d])[Gn(d])]k-m-l-r+2_[Gn<A_d2)]k—m—]—r+2
| 6 (-d,) 3.
From (2.2.21) and (2.2.22), we have bur lemma.
Since Q=klg Qs by Lemma 2.2.3, we can have the following theorem.
m=

Theorem 2.2.2. If the family of density functions {gn(t—e): 0 €Ay}
has a monotone likelihood ratio, for every n > 1, then for arbitrary
fixed d1,d2 satisfying d]+d2 > A,

k+o-f-r-1
)1

(2) = min min “min {[Gn(d
O<m<k-1 O<r<k-m-2 0<g<m

r+i k+2-m-r-1.r+]
Gn (—A+d])-[Gn(A—d2)] G - (—d2)}.

(2.2.23) inf Gy
; q 8
n

Lemma 2.2.4. Suppose that (1),gn(t) = gn(—t) > 0 for all t and

(i1) the family of density functions {gn(t-e): 6 € Ay} has a
monotone likelihood ratio, for every n > 1. For arbitrary fixed
.d],d2 satisfying d] = d2 =d > 4,

pckmTp, ak-Tg_ck-Tp, agk-m-1_

1
=3
—d s
>
=
T

(2.2.24) inf ae(Z)

oy

CDk'm_], Am+1Bk-m—1_Cm+1Dk-m—1}

where A = Gn(d]), B = Gﬁ(-A+d]), C = Gn(A"dZ) and D = Gn('dZ)'

Proof. By Lemma 2.2.3, we have

(2.2.25) inf o (2) = min  min (AKTATMr=lgrHl _ckdiemor-lpred
e O<r<k-m-2 0<t<m



where A, B, C and D are defined as above.

Consider

(2.2.26) Q=

Now we want to

Let f(x)

df(x)
dx

min pk+e- m[A]r+1 ckte- m[D]r+1
Oifik-m-Z
B_D
show A>T
= G, (x-d)-G3(x-d) for 0 < x < d.

= gn(x—d)[]-ZGn(x—d)] >0, 0 <x <d.

Sihce 0 < A < d, f(a) > f(0) and Gn(t) = 1—Gn(-t), we can see

' B _D
that —A— i E

By Lemma 2.2.1 and from (2.2.26),

(2.2.27) Q=

min(aAktemTp_ckteomeTp - pevlgom-1_cotlpk-m-1,

‘From (2.2.25) and (2.2.27),

(2.2.28) inf a (2) = min{ min [AK*AM-Tg_ck¥i-m-lpy,

n

By Lemma 2.2.1

(2.2.29) inf ae(Z) = min{minfA B-C

n

This completes

Since @ =

8 0<&<m

min [Az+1 k-m-1 C£+]Dk'm']]}‘

O<e<m

and (2.2.28), we get

k-m=1, ~k-m-15 k-1, ~k-1

D,A® 'B-C™ 'DJ,

k-m-1_n k-m-1 ,m+1 k-m-1_.m+1 k-m-1

min[AB -CD AT B -C* D

the proof.
k-1
U Q , by Lemma 2.2.4 and Lemma 2.2. 1, we can

- m=0

obtain the foll

Corollary 2.2.2.

owing result.

and (ii) the fa

mily of density functions {gn(t-e): 6 € Ay} has a

1}

Suppose that (i) gn(t) = gn(-t) > 0 for all t > 0

68



monotone likelihood ratio, for every n > 1. For arbitrary fixed

d],d2 satisfying d] d2 =d > A,

k-1 k-1, k-1

B-C™ 'D}

) = mi k_gk agk-T_cp

(2.2.30) inf ae(Z min{A-C,A"-B",AB
Q -

»A

where A, B, C and D are defined as in Lemma 2.2.4.
Now we wish to discuss the probability that I] excludes all

the bad popp1ations and the infimum of this probability over q.
Lemma 2.2.5. For o € Q0
(2.2.31) o (3) > 1-65™(d,)6(-a+d, )’

T ) = n 1 ]

Proof. For ¢ € Qo

(2.2.32) ae(3)

Plopgy €1 1= oo ]

| v

Plomy 2 Trgte P lep < Tpg-did
k k
I Gnlor 1o yd) 1 T (oo ).

lLet G_i = e[k]'e[_i], 1 = ],2,...,k.

k k
(2.2.33) a9(3) = 1+j£] Gn(dj-a1-d2)-jg] Gn(aj-am+d])
Bae(3)
since —sg;—fji_o for 8 > 8,, by letting 8y = =, then
-k
(2.2.34) a9(3) > 1 - jEZ G (6J—6m+d])

Since the right hand side of (2.3.34) is nonincreasing in dj for

J = 2,3,...,m-1, ml,...,k-1, and is nondecreasing in Gm’ it follows
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k
that the infimum of ]-jzz Gn(aj-6m+d]) over the set {(8,,...,8, ;)i
0 < Sy <e-e< 6m+1 <A <8 <...< 85} is achieved at Bppq =-i-=
Spo1 =8 Sp=aand s, =...= 8§ 1 =« Thus
' k-m

The proof is complete.
k-1
Since o = y @
: m=0
following theorem.

e Dy Lemma 2.2.5, we can easily Tead to the

Theorem 2.2.3. For arbitrary fixed d],d2 satisfying d]+d2_> 0,

(2.2.36) f a,(3) > 1-6 (d])G

0 > n (-A+d]).

n

Remark 2.2.1. (i) The right hand side of (2.2.36) is independént

of d2. That is, for a given d] and for any fixed d2 satisfying
’d]+d2 > 0, a9(3) is bounded below by 1—Gn(d])Gn(—A¥d1). If the
confidence interval is defined as Iy = (T[k]-d],w) where d; is

any given number, then inf ae(3) can be obtained as follows.
Q -

(2.2.37) inf 6y (3) = 1-6, (d))6, (-avdy).

(i1) If we assume ae(4) is the probability that I; contains

at least one good population and also I] excludes all bad popula-
tions, then ag(4) > o (1) + ay(3) - 1. From (2.2.11) and (2.2.36),

we get

o) (4) z_an{Gn(d])_G ('dz)sGE(d])'GE(‘dz)sGE-m(d])GI:(A"'d]) -

8 n

. Gﬁ_m(-dz)Gm(A-d2)=m=]’---’k‘]}'G(d])Gn(—A+d1)'



Similarly, we can find the lower bound of ae(S)vwhich is defined
as the probability that I] contains all goo; populations and
also i] excludes all bad populations.

Let S' be the number of non-best (bad) populatfons that enter

I We are interested in E(S'), the expected size (over Q) of

1°
non-best populations that enter I].

‘Theorem 2.2.4.

(2.2.38) sup E(S') < (k-1)G,(d;)
Q

Proof. For g € e

(2.2.39) E(S) P[e[i] €I}

[

k k
fnlorinfrsr ) - TG payogyydl)
k k

m{ n 16, (61" 8r57d )-JE
m k-

AR TS I TR M DN

He~13 b~
—
~

-

—

.
1

| A

]Gn(e[]]-e[j]—dz)}
]

I A

(Opiy-0r57791 )6 (-

+1 N

k-1
Gn('dz)Gn [e[]]-e[k]-dz]}

m{Gn(d])Gﬁ'm ](A+d [k] []]+d )-G ( dg)‘

[-A

n [k]‘dz]}

n G, (dy)6k™ ](A+d])

| A

kT
since Q@ = Q0 then
m=0
(2.2.40)  sup E(S') < max{m 6 (d;)6X™  (ard) me0,1,...,k-1)

Q
= (k-1)6,(d;).
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In the following, we deal with special values of d],d2 and A.

Case (i): " Arbitrary but fixed dy,»d, satisfying dy+d, > 0 and
A = 0. Since A = 0, the only good population is the one associated
“with e[k]. Applying the earlier results,
. . . . oy okea v ok o
(2.2.41) 1;f‘ag(]) = 1gf aQ(Z) = m1n{Gn(d1)-GnG<%),Gn(d])-Gn(-qz)},

a result obtained by Dudewicz and Tong [26]. Also, in this case
(2.2.82) . ay(3) > 1-62(d}).

Case (ii): -One‘side'(1ower) confidence interval. Arbitrary-but
fixed d] and d2 = o with A > 0. Our confidencé interval is now

711 = (T[k]*d],w). We can show that

e _ k
(2.2.43) inf o) (1) = 61(¢)),
(2.2.44) nf o (2) = 6,(d; )61 (-atd;) and

i

(2.2.45) inf o, (3)

Case (iii): One side (upper) confidence interval. Arbitrary
fixed d,, d1'= © and A > 0. Now our confidence interval is

defined as I] = (o, T[k]+d2), we can show that

(2.2.45)  inf o (1) = 1-6(-d,),

(2.2.46) int o (2) = 1—65_](A-d2)G(—d2) and
(2.2.47) inf a,(3) = 0.

Q -
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2.3." Result for the scale parameter case.

In this section, we assume 0 is a scale parameter for Tss
i=1,...5k. It is assumed that there is no a priori knowledge

about the ei's.

(2.3.1) Gn(t,e

for o, > 0, k=1,....k.

For arbitrary fixed a, b satisfyingfa >1and b > 1, if the

confidence interval is defined as

(23.2) Iy = (Thge b T

Where T = max T..
[kl e

Let A be a given positive constant, A > 1. We say population i 1s
(2.3.3) | good if Oy < 4 0.
bad if e[k] > A 0

where 9 = max 6..
Lkl ik

For giVen 8 = (e],...,ek) and A > 1, let Be(l) denote the probability
that I, contains at least one good popu]at;on, let 86(2) denote the
probability that I, Eontains all good population andélet 39(3) denote
" the probability that 12 excludes all the bad populations. -Using the

same arguments as in Section 2.2, we obtain the following results.
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Theorem 2.3.1. If the family of density functions {gn(g): 0 €Ay}

~ has monotone Tikelihood ratio, for every n > 1, then for arbftrary

~ fixed a, b satisfyinga > 1, b > 1 and ab > a, then -

k k.1,
), Gi(a) - 6k,

O}

(2.3.4) igf 89(1) = min{Gn(a)—Gn(
k-m m “k-m;1y.m, A P
Gn (a)G (aA)-Gn (E)Gn(E), m=1,...,k-1}.

Coro]iary 2. 3 1. Let the family of density funct1ons {gn( ):

B € AZ} has monotone likelihood ratio, for every n>1. For

arbitrary fixed a,b satisfyinga > 1, b > 1, gn(B) > 9,(a) and ab > a,

(2.3.5) inf g (1) = min(G (a)-G, (1),6

n n “(an)-

k k] o k
“(a)-65D), 6 (a)ek
k
n

Typak=1
6, (506, (£)7.

Theorem 2.3.2. 1f the family of density functions {g (%): o €n,)
has a moriotone 1ikelihood ratio, for every n > 1, theh for arbitrary
fixed a,b satisfyinga > 1, b > 1 and ab > a,
(2.3.6) inf 36(2) = min min min {[G (a)]k+Z m-=r= ]

: Q = O<m<k-1 O<r<k-m-2 O<g<m

Gy (2)-[6, (§)1K AT G (5

Theorem 2.3.3. For arbitrary fixed a >1land b > 1,

(2.3.7) 8,(3) 2 1-G,(a)s, (2).

LetS' be the number of non-best (bad)populations that enter I,.

-Also we can obtain the following result.
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Theorem 2.3.4.

(2.3.8)  sup E(S') < (k=1)G,(a).
Q

In the following, we deal with some special values of d],

d2 and A.

Case (i): Arbitrary fixed a,b satisfyinga > 1and b > 1 and & = 1.
Since A = 1 the only good population is the one associated with
e[k]. Applying the earlier results,
(2.3.9) inf g.(1) = inf 8, (2) = minfG (a)-G, (&),6%(a)-6K (1))

- g 8 q 8 n n‘b’*“n n‘b’*?

a result obtained by Saxena and Tong [66]. Also, in this case

(2.3.10)  8,(3) > 1-62(a).

Case (ii): One side (lower) confidence interval. Arbitrary
but fixed a > 1 and b = » with A > 1. Qur confidence interval

is defined as I, = (a T[k]’w)‘ We can show that -

(2.3.11)  inf g (1) = 65(a),
Q -

(2.3.12)  inf 5,(2) = Gn(a)GE_](%O and
Q -

(2.3.13) inf g, (3) = 1-Gn(a)Gn(%)..

Q -
Case (iii): One side (upper) confidence interval. For arbitrary

fixed b, a = » and A > 1. Now our confidence interval is defined as

I, = (0, b T[k])'
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We can show that

. _ 1
(2.3.14) inf 8y(1) = 16,3,
(2.3.15) inf 8,(2) = 1-6_ ()65 () and
Q p=4
(2.3.16) inf 8_(3) = 0.
. 6
Q -
2.4, Some examples.

We sha]] discuss the above problem for the means of normal
popu]at1ons and for the scale parameter of the gamma popu]at1on
Let T MoseesTy be k normal populations with unknOWn means
81,895...,8, and a common known variance o°. Let Xi be the sample
‘mean from s based on a sample of size n. Let
_(2.4.1) Ti =-Xi and T[k] = ]T?ik X

Let G (x,0.) be the c.d.f. of Xj from m., i = 1,...,k. In this

case, Gn(x,ei) =an(x-ei) and
(2.4.2) 6,(x) = o(Z0 x)

where ¢ is the standard normal distribution function. The
confidence interval I, is of the form (T[k]-d], T[k]+d2),

whererd]+d] > A. In this case, applying Theorem 2.2.1, we get

(2.4.3) inf o (1) = min{A-B, AK-gK, ak-Mcm_gk-mpm oy o iy

o @9
where : _
/n d] ' -/n d, /ﬁ(A+d]) /ﬁ(A—d2)
A=o(—=), B=e(—), C= o(——5—) and D = o(———=).



For a given P*, 4 > 0, dy > O, d2 > 0 and d]+d2 > A, Since

1imA =1, 1imB =0, 1imC = 1 and 1im D = 0, there exists a

N0 N->o N0 N0

smallest integer N such that for every n > N, we have inf ae(l) > p*,

A d
Let x; be the unique solution of @(d]x)—¢(-d2x) = P*, Let Xo be

the unique solution of @k(d]x)—Qk(—dzx) = Pr. lety, be the unique

solution of

oK M(d1x)6™((a+d; )x)-0K T (~dx)e™((a-d,)x)= P*, m=1,2,... k-1,
Let

W= (090, i = 1,2 and My = [0B2], 4 = 1l ke,

where [x] denotes the smallest integer > x. It follows that

the smallest sample size N required to satisfy inf o (1) > P* is.

Q 2

given by

(2.4.4) N = min{Ny, My, i=1,2, j=1,...,k-1}.

Consider the probability that I] contains all good populations.

For given P*, o > 0, d1 > A and d2 > 0, then

1im Gn(d])-= 1, Tim Gn(—A+d]) =1 and lim Gn(—dz) = 0.

N> N->co N>

- By Theorem 2.2.2, we can always find the smallest sample size N

which satisfies

(2.4.5) inf o,(2) > P*.
Q -

Consider the probability that I] excludes all good populations.
For given P*, A > 0, d], d2 such that d]+d2 > 0 and d] < A, then

Tim G(-A+d]) = 0.

N->co

77
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By Theorem 2.2.3, we can always find the smallest sample size N

required to satisfy

(2.4.6) inf o (3) > P*.
e —
_ Q = _
Now let us consider the problem in relation to the scale
parametérs of the populations. Let Tys MoseeesT) be k gamma
~distributions. The distribution associated with m; has the

- density function g(x,a,ei) where

X
. : | Y
(2.4.7) 1 e 1 fop X >0

0 otherwise. .

~ We assume that the shape parameter o is the same for all populations
and o Ts known. Let T; be the sample sum from m; based on n observa-

tions and let T = max T.. Then the confidence interval is
S ‘ [k] 1<i<k ! o

| given by

(2.4.8) I, = (%'T[k]’ b T[k]) where ab > A.

Let 6n(x,6;) be the c.d.f. of T. from i = 1,...,k.

o, _ L
In this case, Gn(x,ei) = Gn(ei) and

(2.4.9) Gn(x) is the c.d.f. of a gamma distrfbution
with scale parameter 1 and shape parameter ng. Since the condition
in Theorem 2.3.1 holds, we get

(2.4.10) inf ,(1) = min(a(a)-6(L), o



For given P*, o > 1, a>1, b > 1 with ab > A, since Tim Gn(a)=1,
, Moo
Tim Gn(%) = 0 and 1im Gn(aA) = 1, there exists a smallest integer
N> i N->c0 .
N such that for every n > N, we have inf Be(]) > P*,
o ettt
Let N, be the smallest positive integer such that Gn(a)—

G (B) > P*, let N, be the smallest positive integer such that

n -B)»z_P*. Let M, be the smallest positive integer such
that 6 "(a) 6"(as) - F (L"), m = 1,2,... k1.,

It follows that the smallest sample size N required to satisfy

(

inf ue(1) > P* is given by
Q -

(2.4.11) N = min{Ni, M

1

50 17152, 3=1,2,...,k-1}.

Consider the probability that I, contains all good populations.

For a given P*, A > 1, a > A.and b > 1, then
. N . T
lim G (a) = 1, 1im 6_(2) = 1 and 1im (&) = 0.
a(@) = 1, 1im 6, (%) ()

N> N0
By Theorem 2.3.2, we can always find the smallest sample size N

required to satisfy inf Be(z)-i P*. »
_Q -
Consider the probability that 12 excludes all. good populations.

For given P*, 4 > 1, b > 1and a > T with a < a, then Tim 6 (3) = 0.
N->c0

By Theorem 2.3.3, we can always find the smallest sample size N

required to satisfy inf 86(3)-i P*.
Q -

Remark 2.3.1. (i) If the sample size N is preassigned and P* and
A are given, then the confidence interval I] can always be found
from (2.2.11), (2.2.23) and (2.2.36) with Gn(x) as defined in

(2.4.2) so that inf ae(i)_i P*, i = 1,2,3.
Q -
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Similarly, the confidence interval 12 can always be obtainéd
from (2.3.4), (2.3.6) and (2.3.7) with Gn(x) as defined in
(2.4.9) so that inf g (i) » P*, 1 = 1,2,3.

(ii) - In 1ocationgpar;meter case, if the population with the
smallest e~value is called the best population. :Let A be given,

we say- population s is
(2.4.12) o good if 8, < e[]] + A,
- bad if 6; > e[]] + A

where e[]].= ]g;gk ei.

Then the confidence interval is given by

(2'4i]3).l I] = (T[]]—d], T[]]+d2)
where T = min T..

0T G
The calculation of the coverage probabilities ae(i),'i =1,2,3,

and their 1nfima can be handled similarly as in Section'2.2.

The scale parameter case can be handled in a similar manner.
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CHAPTER III
SELECTION PROCEDURES 1IN fERMS OF
MAJORIZATION AND WEAK MAJORIZATION

3.1. Introduction

Ovér the last fifty years, majorization and_SChu} functions
have been‘app]ied to develop many useful inequalities in many
branches of mathematics. Some of the referehces are: Schur [67],
Ostrowski [57 ], Hardy, Littlewood and Polya [45], Beckenbach and
Bellman [17], = Marshall and Proschan [52] and Marshall and
_ 01kin [507].' In recent times the techniques of majorization and
Schur functions have been applied to probability and étatistics
(see, for example, Marshall, Olkin and Proschan [51], Rinott [62],
Proschan and Sethuraman [61], Nevius, Proschan and Sethuraman
[55] ahd Gupta and Wong [44]).

Recenp]y, Nevius, Proschan and Sethuraman [56] introduced
a stochastic version of weak majorization. They héve'discusséd
some bropefties and made some applications.

Gupta [32] defined a class of selection procedufes and
considered some of its properties.. Some additional results
cbncerning the properties of this class of procedﬁres were

obtéined by Gupta and Panchapakesan [36], Gupta and
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Panchapkésan [37] defined a class of selection procedures which
is a natural generalization df the class considered by Gupta [32].
In that paper, they obtained a sufficient condition for the
probability of a correct selection to be nondecreasing in A when
FA] TeeeT AL T A, where Aj is the parameter associated with T

i ¥_1,...,k. They also obtained the supremum ofrthe expected
size of the se]ectedvsubset and showed that'if the sufficient
_.condition holds, it takes place when the Ai's'are equé].

In thjs'chapter, we order the parameter space by means of
 majorization.ok weak majorization and propose some selection

- procedures when the pafameter A; associated With ﬁi, i=1,...5k
is a vector.. ‘Section 3.2 defines a class of procedures-Rh for
selecting the popu]atfon associated with vector é[k]'(sée

Section 3.2 Fdr definitions). A sufficient conditfon is obtained
: fbr the infimum of the probability of a correct selec¢tion to be ».
 Schur—convex in A. Also another sufficient condition is dbtéined
for the sUpremum of the expected size of the selected subset‘tO'
take place When Ap =...S gk. Some special cases of interest are
discussed. In Section 3.3, a sufficient condition is obtained

for the‘same infimum of the probabi]ity of a corre#t selection

to be nondecreasing and Schur-convex in A. Section 3.4 defines

a class of procedure RH for the selection of therpopu1ation with
vector 5[]]. Some properties of the selection prdcedure are
briefly discussed. Section 3.5 and 3.6 deal with selection prdcedures

for multivariate normal distributions in terms of majorization
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and weak majorization of mean vectors. Various cases corresponding
to the known or unknown common covariance matrix r are studied.

Properties of these selection procedures are also established.

3.2 A c]ass of selection procedures Rh(and some properties)

for vector-valued A; in terms of majorization

First we givé the definitions of majorization, Schur-concave

and Schur-convex functions.

Definition 3.2.1. A vector a = (a],...,ap) is said to majorize

a vector b = (b],...,bp), ifa >..>a,0b 3,;.3_bp, and

p> 1
r r
) oa; > 7 bi’ r=1,...,p-1, while E a;
= = ) '|=]

]
It~

b.; we write,

i=1 !

o

a >
m _ ,
The above definition is according to Beckenbach and Bellman
[ 17] and differs slightly from that of Hardy, Littlewood and

Polya [457.

Definition 3.2.2. H is called a Schur-concave (Schur-convex)

function if H(a) < H(b) (H(a) > H(b)) whenever a > b. A Schur
- function is a function which in either Schur—conc2ve or Schur-
convex.

From above definitions, we know that majorizatibn is a partial
ordering in RP, the p-dimensional Euclidean space and Schur functions

are functions that are monotone with respect to this partial

ordering. Now we state the following theorem.



84

Theorem 3.2.1. (Ostrowski [57])

Assume H is defined for Zy >...> Z and first partial-

P

derivatives of H exist. Then H(Z) > H(Z') for all Z > Z' if
: : ' m
and only if

(3.21) 2, 0, for i<, i, g=1,...0p.
1 J .

Let Tyseesst be k populations. Let A be an interval on

the real line. Associated with ms is a vector xi = (xi1,...,xip),

=1,k where’xij has density 6(3;5,%), 1 = T,....k, 3=1,..,p.

We assume that Aij ip’ i=1,...,k. we say that
).

m. is better than ™ if Aj = (Ai],... Aip) ; 5j = (Aj],.;.,xjp

It is assumed”thatbamong the k given populations, there always

€A and Ajp Zeee2 A

-exists one population which is better than others. This is equiva-

lent to saying that there exists a Ark] such that.g[k] > givfor'
. . m -
all i.=1,...,k. This population is called the best population.

_ If there are more than one "best" population, then we assume that

one of them is tagged as the best. Based on one observation

ip
T.i = g(Xﬂ,-...,X

xi1,...,x from population Ti»> We construct a suitable statistic

ip)s 1= 1ok Let Féi(x) = P[T; < xJ be the
distribution function of Ti from population s Based on the’
-values of T, from n., i =1,...,k, we wish to define a class of
- procedures for selecting a non-empty subset of the,k'popu1atf0ns'
such that the probability is at least P* (%-<‘P* < 1) that the

population associated with 5[k] is included in the selected subset.
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‘Let
(3.2.2) E={) = (A],...,Ap): M oZee2 Aps Ay €4, i=1,00,p)
- and
(3.2.3) o= {w-= (395052 )0 2y €E, i=T,...,k and there exists

~ some i such that ), > A5 for each j}.
_ m

Wé wish to define a selection rule R such that

(3.2.4) ~inf P[CS|R] > P*.
Q

Let h = hC 4> € € [1,=), d € [0,») be a function defined on
the real line satisfying the following properties: for every real
X,

(3.2.5) (i) h_ 4(x) 2 x

—
-
—_

~—
=
——
-
o
—
>
~—
i
>

(ii1) hc d(x) is continuous in ¢ and d

(iv) hc,d(x) + » as d » » and/or th,d(x) teas o, x$0.

Some functioné satisfying these properties that will be of interest
~are cx, xtd and cx+d. Now, we define a class of procedures

Rh as follows.

Rp: Se]eét population =, if and only if
(3.2.6) h(T;) > max T.
T<r<k

Because of (3.2.5)-(i), the procedure Rh will always select a
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non-empty subset. Let T(i) be the random variable associated

with 5[1] and Tet F (4] be the cumulative distribution function
i
1,

...,K, we have

>

(c.d.f.) of T(i)’ i

PIR(T (1)) 2 Tiqys 151500 uke1]
7SR ke, 0

n F h dF .
Lo smr g M

We now assume that the distributions are Schur-concave in Ay

(3.2.7) PLCS|R,]

]

~d.e., for a > A', Fy and F,. are distinct and

m -
- (3.2.8) | FA(X).E FA.(x), for all x.
Then _
" ® k-1
PLCSIR,] > F h dF .
[CSIR,T > [ l[k]( (x)) 5[k](X)
“Hence :

]

inf v(A; c,d,k)
A

(3.2.9)  inf PLCS R, ]
Q

where
_ -

/ F[;“(h(x))dF&(x), A EE.

(3.2.10) w(rsc,d,k)

In the following theorem, we are interested in a sufficient
condition for the Schur-convexity of Ep(T,2) where w(x,é) is some

real-valued function, 5=(A],...,Ap) € E and T=g(XA ,.’..,XA ) is a func-
: : 1 7p

tion of XA]""’XAP' Let Fé(x) = P[T < x].

Theorem 3.2.2. Let {Fk(x), A €E} be a family of continuous

distributions on the real line such that FA(x) is a differentiable
function in x and A and let y(x,)) be a bounded real-valued and
differentiable function in x and Xjs» 1= 1,...,p. Then Ey(T,2)

~is Schur-convex in A €E provided that



are

. > . c el .
Uiy 2 Uyp 2--e2 U

3 d
ax M%) 3% V(%:1)
(3.2.11) |
(5= - 5)F, (x) (5= - 2u(x.)
1 - i J
Proof.

Gupta and Panchapkesan [37].

support I. Let

(3.2.12)  A) = Eu(T.2) = [ w(x,2)dF, (x).

Consider uy, u, €E, where u; =

1

ip?

i =1,2 and assume u,

(3.2.13) A](E]syz) = { ¢(X592 dFu](X),
(3:2.10) Apluyaup) = w(x,g])dFuz(X);
and o |
(3.2.15) B(uy,up) = Ay (uq,un)+As(ugsu,).

By integrating_A](g],gz) by part (see Gupta and Panchapkesan [371),

(“11"°"

= 92'

> 0, for i<j,i,
i=1,..,P.

We argue along the lines of the proof of Theorem 2.1 of

We assume that Fx(x), A € E has the

u.ip)!i = '152’

Define

(3.2.16)  B(uj,u,) = a term independent of u,
+ {[w(x,g])fy (X)-w'(x,yz)Fg](X)]dx
. . _ _d
where y'(x,u) = 5 w(x,u) and Fylx) = gy Fy(x).
For i < j, we have
5.217) (e - Bl - [o5, (E ) 2vben),
2. — Uy,U,) = X - —
By AUy =1°=2 u, Y 5 auy 5
( )[an (x)_ aFg (x):|
- ' x,u - }dx

J
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We can show that, for ¢ = 1,....D,

2
(3.2.18)  =2-B(3.2) = J 2 B(u.u,)| . _
] BA,Q, -"= j=] ang‘ =122 g]"l_] -é
where A = (x],...,xp) and ), 2oz Ay
From (3.2.18) we get
(3.2.19) <2 B(x,a) = 2. 2 B(uy,u,)]
: . . 3)\1 ",‘ SU-H '],‘2 l_j]=l_‘2=a .
and
o9 . _ 3 :
(3.2.20) ﬁ; B(Z\,Z\) = 2 E‘G B(l_]-l ’92)'9]=92=A_
From (3.2.19) and (3.2.20), we get
(3.2.21) (<2 - fé—)B(A,A) = (2 - =2 )B(u, ,u )
BRI Fantis Bupy  Bupy =120 ug=u,=a
If
g%Fgé(X) o bou) | |
(3.2.22) _ oo ‘ >0, Vi< j,
;3 ) ' i,3=1,..p,
(o = 2—IF, (X) (s2— - 2 )y(x,uy)
| AUpy  dupyT Uy Uy By 1
then from (3.2.17),
) 3 C e s e
(3.2.23) (Buli - 53;308(91’92) >0 for i< j, i,j=1,...,p.
Hence if (3.2.22) holds, we have from (3.2.21)

3 3 .. ..
(3.2.24) (EK;-- EKEJB(Q,A) >0 fori <j, i,J=1,...,p.
Note that
(3.2.25) B(x,2) = 2 A(2r).

Applying Theorem 3.2.1 and from (3.2.24),
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it follows that B(,2) in Schur-convex in A if (3.2.22)
holds. Since uy = u,, then A(}) is Schur-convex in A if (3.2.11)
holds. |
This completes thé proof of the theorem.
In some cases, we will be dealing with the function w(x,g)

such that it satisfies

9 = = 90
(3-2*26) ﬁTw(X’}_\) Tes T a)‘p U}(X,A),
then (-——-- —~—)w(x,x) =0, i<j,i,j=1,...,p. Hence
J _

we have the following result.

CoroT]any 3.2.1. If v(x,1) satisfies (3.2.26), then Ey(T,)) is

Schur-convex in A if

(3:2.27) - - IF (x) - g elon) <0, < 4y 4, 5T,
1 J .

‘Corollary 3.2.2. IfF ( ) is Schur concave in A € E P(Xy2 )

satisfies (3.2.26) and p(x,2) is nondecreasing in x,.then Ew(T,g),

is Schur-convex in A €E.

Proof. - Since FA(x) is Schur-concave in ) € E,

3 3 c s sl
(‘a—}‘?' WJ-)F?:'(X) .iO,‘ for i < j, 1, j=1,...,p.

Also y(x,A) is nondecreasing in x, then w(x,x) > 0.
Hence by Corollary 3.2.1, the result follows.

As a special case, if y(x,1) = y(x), then we héve the following

result.
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Corollary 3.2.3. If FA(x) is Schur-concave in ) and y(x) is

nondecreasing in x, then Ey(T) is Schur-convex in j.

Theorem 3.2.3. For the procedure R, let {F,(x), 2 €E} be a
family of continuous distributions on the re;I line such that
Fk(x) and FA(h(x)) are differentiable functions in x and Ay

in=.1,...,pi Then y(x3c,d,k) as defined in (3.2.10) is Schur-

convex in A € E provided that

(3.2.28) f,(x) (5= - %.)Fx(h(x))-h'(x)fA(h(X))(% - a—i—,)ﬂ(ﬂ >0,
s i j & 2 R ] j 2
| for i < j, i,j = 1,...,Ps
_ where fx(x) =.%; F.{(x) and h'(x) = gi-h(x). |

~ Proof. By letting y(x,A) = FE'](h(x)) and using Theorem 3.2.2.
b “yields the proof. |

We note that

(3.2.29) 'a_iT v(r3c,d,k) =.. .= 5—2—; v(rsc,d k), if
(3.2.30)  f,(x) (= - Z2IF, (h(x))-h' (x)F, (h(x)) (52— - 52-)F, (x)=0,
- 1 J - - 1 J -

for i < j, i3 = 1,....k.

Case (i): F,(x) = F(x-£(3)), - = < £(2) < « and h(x) = x+d, d > 0

where £(1) is a Schur-convex in i, then

; 2g(2) 3g(2)

(3.2.31) 55— F (x) = -f(x-£(2)) —57— = -f,(x)
1

~In this case, (3.2.30) is satisfied and w(r;c,d,k) satisfies (3.2.29).

90
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Case (ii): 1If FA(X) = F(E%XT)’ x > 0, n(2) > 0 and h(x) = cx,

¢ > 1 where n(1) is a Schur-convex in j, then

oF. (x)
2 ] ) an(1)
(3.2.32) Bhy —'f(n(z))[_ nZ?A) 9y = - ; fé(x) Ay

In this case, (3.2.30) is satisfied and y(x;c,d,k) satisfies
(3.2.29).
Actually, in the above two cases, ¥(i;c,d,k) ddes not involve
A, i.e., v(rsc,d,k) is independent of :. |

Let S denote the size of the subset selected by the procedure

Ry Let ' = fw= (q»..5n): Ay €E, i=1,....k and there exist

R1,.+.,2;, Such that x> a > ... > A}
1 k U "4 -

Lét‘Ew(Sth) be the expected size of the selected subset using

Ry w €. Let 5[]] ; 5[2] ;...; 5[k]’ for w € @'. It is easy

to see that
' k
: (3.2.33) | Eg(ish) = 121 Py
" where
) / : (h(x)) (x)
(3.2.34 p; = n F h(x))dF X),
o=l A a1
ri :
and FA is the c.d.f. of T(i) which is associated with 5[1],

-[1]

i=1,...,k. Using the same arguments as in Gupta and Panchapkesan [37]

and Theorem 3.2.2, we have the following theorem.

Theorem 3.2.4. Let {F,(x), » € E} and {F,(h(x)), 2 € E} be as in

the hypothesis of Theorem 3.2.3. For w € @', Ew(Sth) is Schur-convex
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in A, where 5[]] == Ayt A X[m+1] .- ; Ark] and consequently

sup E(S]R ) takes place at V where A[1] ..= 5[k]-= V provided that,
for A < xz and Ays Ay €E, the following holds; '

(3.2.35) (8_317- -'Tiﬁ)_Fh(h(x))fh(x)-(m; - ﬁ]—-j)rh(x)féé(h(x))-
h'(x) > 0,
fér i<j, i, ="1,...,p where A; = (Ail’f"’kib); i=1,2.
. (X)
Remark 3.2.1. (i) If —;;(_Y is nondecreasing in X for A < Az, then

(3.2.35) is satisfied, when (1) Fx(x) = F(x=£(1)), == < E(}) < =

and h(x) = x+d, d > 0 where £(}) is Sthur-concave in A, or when
(2) F&(x) = F(ﬁrﬁjﬁ, x > 0, n(2) >0, and h(x) = cx, c>1 whefe
n(x) is Schur-concave in . |
(1i)b If (3.2.35) is satisfied, then
(3.2.36) sup E (S|R,) = k sup P[CS|R,]

1 W h h :

oot = 2

where Q; = {u = (Apseeady )t Ay =eea™ No Ay € E, i=1,...,k}
~(iii) If (1) F (x) F(x-£(2)), -= < £(}) < = and h(x) = x+d
where £(}) is Schur concave in A or (2) F (x) = F(—T—jd, x > 0,

n(2) > 0 and h(x) = cx, ¢ > 1 where n(x) is Schur-concave in 2,

(X)
also if ———1—7—15 nondecreasing in x for A < Az, then

2
(3.2.37) sg? E@(S|Rh) = k P*,



3.3. A sufficient condition for the monotonicity in terms of

weak majorization

First we give the definition of weak majorization. -

Definition 3.3.1. A vector a = (a1,...,a ) is said to weakly

p
majorize a vector b = (b],...,bp), if a, Zeee2 80 by 3,..3_bp
r oy _
and _Z] a, 3;.21 b;s r=T,...,p. If a weakly majorize b, then
i= i= -

we write a >> b.
m

We state the following theorem which is the characterization of

weak majorization (see Nevius, Proschan and Sethuraman [561).

Theorem 3.3.1. 'Z >> Z' if and only if f(Z) > f(Z') for all
nondecreasing Schur-convex functions, where f(Z) is defined for

Z] 33"3-Zp‘

Let Xx»i (X, »-..5X, ) be a random vector of independent -
1

components whére A € E and the distribution function FA_(x) of
j

random variable XA. is stochastically increasing in Ajs i=1,...,p.

1

Let
(3.3.1) T = g(XA se Xy ) be a function of Xy sevenXy
1 p 1 p
Let
(3.3.2)  F(x) = P[T < x] = PLg(X, ,..-5%, ) < xI.
A 1 p

In the following theorem, we obtain a sufficient condition for
Ey(T,A) to be nondecreasing and Schur-convex in ) € E for some

function y(T,)) as defined in Theorem 3.3.2.

93
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Theorem 3.3.2. If {Fk(x): A= (A1,...,Ap) € E} is a family of
continuous distributions on the real line such that Fx(x) is a

- differentiable function in x and each Ass FA (x) is stochastically
: i
increasing in A; and ¥(x,1) is a bounded real-valued and differen-

tiable function in x and Aj» 1= T1,...,p, then Eyp(T,2) = Ew(g(gx),g)

- 1s nondecreasing and Schur-convex in A € E provided
(3.3.3) (i) w(g(xx),g) is nondecreasing in Xx and A, and

(1) 53 Fy 0 (3 - V001 - g vl - 5i)F (X020,

for i < j, i,j = 1,...,p.

Proof. By Theorem 3.2.2.and (3.3.3)=(i1), Ep(T,r) is Schur-convex

in a.

Now we want to show that Ey(T,2) is nondecreasing in A. Let

A= v(A],.'..,A >.

P
Assume A > x'. We define ) > A' in the sense that Ay 2 5. 1=

Yo Ay 22 - and A' = (Ai,...,;\i')), M 3"'1‘)‘5'

1,...,p. Since F. (x) associated with the random variable Xi is
i , i
stochastically increasing in Mg i.e. if A 3_x%, i=1,...5ps

then
(3.3.4) X, > X.us i=1,...,p.
| | NSt oM
Since Xy.s+-+5X, are independent random variables, then
1 p
(3.3.5) X, > X, .
R %f

By (3.3.3)-(i), since w(g(gx),é) is nondecreasing in KA, then

(3.3.6) w(a(x,).2) > w(g(¥,.).).

2
st
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Since y(g(X,1)51") is nondecreasing in A" and A > ',
(3.3.7) Cw(a(X0s2) 2 wlg(X ).t

From (3.3.6) and (3.3.7), we have

(338 lely)a) 2 wlely ).
Hence
(3.3.9)  Ep(T;n) > Ep(T,2").

This completes the proof.

By applying Theorem 3.3.2, we can obtain the following results.

: Corollary 3.3.1. If FA(x) is Schur-concave in i, y(x,1) satfsfiés

(3.2. 26);‘¢(x,x) is nondecreasing in X, w(g(x ),2) is'nondecreasing in
X and A and F (x) is stochastically increasing 1n A » 1=1,...,p,

: A
then Ew(T,2) is nondecreas1ng and Schur-convex in A.

. Coro]Tary 3.3.2. IfF (x) is Schur-concave in A, ¢(x) is nondecreas1ng

in x, w(g( )) is nondecreas1ng in X, and Fy (x) is stochastically increasing
= A

in Ajs i=1,...,P, then Ey(T) is nondecreas1ng and Schur-convex in A.

| By letting y(x,2) = Fi_j(h(x)) and using Theorem 3.3.1 and Theorem

3.3.2, we have the following theorem.

Theorem 3.3.3. Let {F (x), » € E} be a family of continuous

distributions on the rea] line such that Fx(x) and Fx(h( X)) are
differentiable functions in x and A; and F;i(X) is s;ochastically increasing
in Ajs 1=1,...,p. Let y(rsc,d,k) be defined in (3.2.10).

Then y(r;c,d,k) is nondecreasing in A €E in the sense of weak

majorization, i.e., it is nondecreasing and Schur-convex in As

provided that
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(3.3.10) (i) F ,(h(g(X,)) is nondecreasing in X, and ) and

(i1) f (x)<-§— - -§-J—) (h(x))-h' (x)f <h<><>)(m - =)
- J
’ F (x) > 0, for

i<j, i,j=1,...,p, Where f (x) F (x)
3.4. Selection of the population associated with A1y

If the best popu1at1on is defined to be the one associated

with A[]]’ where A[]] A;» 1= 1,...,k. We now def1ne a class

of procedures RH for the selection of the population assoc1ated
W'I th l[]]
Let H=H, 43¢ ¢ [1,=), d € [0,») be a function def1ned on

the real line satisfying the following COnd1t1ons. For every x -

(3.4.1) | (i) Hc,d(x) < X
(i) H]’O‘x) = X
(ii1) He d(x) is continuous in ¢ and d

(1v). Hc’d(x) 4+ » as d + « and/or XHc,d(x) + 0as ¢~ =

Of particular interest are the functions %3 x-d and %—- d.
A . class of procedures RH for selecting a subset containing the

best is defined as follows.

Ry: Select population =, if and only if
(3.4.2) H(T ) < min T,
1<r<k r

The probability of a correct selection is given by
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, » k-
3.4.3 PLCS|R, 1 = F H dF R
(.83 PLSIRI = 1 By (H00)F, (),

-0 r‘:
where F&(¥) = 1-Fé(x).

Because of the assumption (3.2.8),

(3.4.8)  PLCSIRT 2 [ Py e, (0.

Let @ = {w = (A1se.-0d )t A €E, i=1,...,k and there exists some
1 o :

Ay Yyl

i such that ), j

<
m
‘Hence

(3.4.5)  inf PICS|RT = inf glrsc,d,k)

o R Y , A :

where

(3.4.6)  gascdik) = [ FTHO0 ), () and 3 €.

sting the same method of proof as in the case of Rh,'wé have the

following results.

Theorem 3.4.1. For the procedure Ry, ¢{A;c,d,k) is Schur-convex ,

'y

in A € E, provided that

., (3.4.7) (5%2" Egngé(x).H-(x)f&(H(x))-fé(x)(3§;-- EQEOFA(H(x))zp, ,

for i < j, i, j=1,...,p, where H'(x) = H% H(X)‘

Let @' = {w= (Ays..-52 ) Ay €E, i=1,...,k and there exist

R295...5%, Such that x, > A, > ... > X, }.
1 ko 2] m L2 m m 2k.

Theorem 3.4.2. sup E(SIRH) takes place at V where }; =...= Ak =y

provided that, for 2, ; Aos A1k €E,
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(3.4.8) H' (X)f (H(X))(——;~ --———*)F (x) f (X)( - 5;$f0
SN

Fhm(x)) >0,

for i < j, i, j=1,...,p where A; = (Ail""’éip

), .i =],2-
3.5. Selection procedures for multivariate norma] d1str1but1ons

in terms of ma30r1zat1on

Let TysesesTy be k populations. Let 5 be associated with
51 = (Xil’f"’xip)’ i=1,...,k where Xy is random vector with a
p-variate normal distribution with unknown mean vectors By =
’(ui],...,ui ) and positive definite covariance matrix I. We assume

thatu ]’-u-,k-'

] 2oz Myps 1=
It is assumed that among the k given populations, there a]ways
"‘ex1sts MK ] such that “[k] > u[ ] for all i = 1,...,k. This popu]a-

~ tion.is ca]]ed the best popu]at1on

Let X'1,‘. ’x%n denote n independent observation vectors,
each with p components, from population ™S
Let |

(3.5.1)  Xip = (Kgyps XippoeeeaXipg)s 1= Toueky 2= Thuuiyn,



s _1 1D . .
(3.5.2) | X = W,LZ] Xiser 1= Taevsks 3= Thuiup,
(3.5.3) Vi = 221 Rig s 1=1,000k, § = 1,v...,p,
(3.5.4)  §2 =l§(x - %2, 4= K, j =1
.‘ . 'IJ n m=_| 'IJm 'IJ s s sl J s 9p9
(355 Ry= 3 L, icT k=1
=1

(3»5-6) V:_Ij = ].l_i-l +,..+ U

(3.8.7) upi7 = Guggypeeeeongyp)s 1 = Toessks and

(1) | D
Vj ]J(,i)-l +...+ u(i)j, 1 1‘,.1.,k,J..._>],.-~-,pu.u

Let us denpte by T(4) the population (unknown) a§so¢iated.
with mean Vector ¥[§] and Tet Y(i)j be the observatianaSsoéiated‘
With"(i)’ is= i,...,k, j-= 1,...,p. Our goal is to select a Subsetf
~ (may be empty) 0f the k populations so as to.include the‘populaF

tion. associated with MK
(A) Assume © is known.

- We propose a selection rule as follows:

R1: Select population s if and only if

(3.5.8) Yie > max Y .-d,j=1,...,p-1 and
- 1 1<v<k

min Y _+d>Y. > max Y _-d.
T<v<k VP - 1P T<v<k VP

.Let
(3.5.

O
L

Q=D z*D
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where
A O ........ 0 B
0 A B
D = 0 o . oo .
((k—1)p)x(kp) P A0 B
0 0....0 A B
T 0 o0\
s+ = |o 7T . T =‘%—czc'
(kp)x(kp) - . pxp
. 0 T
{1 0\ 1o 1 0
A= | . , B= .. and C=[ 1 1
pxp  \0 "1 pXp o "-1j- pXp : ey
| 1 ... 1]

Let @ = fg = (E],;..,gk): u; €Ey 1= 1,...,k and there exists some

. YV Jj}, where

i such that p, > u
T ™

p —
The following theorem gives the infimum of the probability

- (3.5.10) E1.= {r= (A],...,A'): l]_Z:--> Ap’ —o < Ay < w,i21,...,p}

of a correct selection.

Theorem 3.5.1.

(3.5.11) inf P[CS|R,] = PZ;<d, |Z| < d, for i ¢ {1,250, (k-1)p}-
infF

{ps2ps....(k-1)p} and § € {p,2p,...,(k-1)p}],

“where (z],,..,z(k_])p)' . N(‘ o, Q ).
: - (k-1)px1  (k-1)px(k-1)p



. C

Proof.

(3.5.12) PLCS(R,] =

P03 2 Yw)570 Mgp®

101

Y(v)pl < d,3=1,...,p-1,

\)=]§--¢’k‘1}.
N i1 C . -
| the Yij ~ N(vj, - chCJ), i=1,...,k, j=1,...,p, where
L= (1,.00,1,0,...,0), § = 1,...,p.
J L e
~J times
Since ¥[k] ;‘E[i]’ is= ],...,kf1,
(3.5.13)  ‘igf PLCS|R,] = P, 3_Y;j-d,]v;pfvgp|<d, J=1,...,p-1,
» v=l,...,k=1},
where
(3.5.14) _-(Y31”"’Y3p)' ~ N(Q)T), v=1,...,k.
Let Yx = (Ya,...o¥h )"y v = 1,0k

Hence from (3.5.14),

*

(3.5.15) LSYENY SN0, 3.

1° k
kpx1
) LEt Z\)'i=Y.\k)~i-.Yit-is\)_], !k-]s1;],
Let - ‘
Zt = (Zv],. .,va)' v=1,..,k-1
Since
Z = (ZT,...,ZE_])' =DY
(k-1)px1

This completes the proof.

R

and from (3.5.15), then Z - N(0,Q).

Theorem 3.5.2. If Q = Dg*D'= (qij) is positive definite with

N1 =T AUk-1)p, (k-1)p T

o° and a5 = Gzp when i # j, o and p are
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known, then

(3.5.16)  sup E(S|Ry) = KP* provided that inf PLCSIR,] = P*.

Proof;

| . k
(3.5.17) E(SIRy) = 121 POy 2 Yy —ds Y pmd < Yy < ¥ 0+ d,
vii, v = 1,...,k, 2=1,...,p-1}
= E P{Z, < (vi-v“j+d |z. | ; d | |
351 ive = e Tl T Tjypt = 7

vii, v = 1,000,k 251,...,p-13,

~ v i - L

where Zivz = (le '-Yiz) - (Vzivz)’ v¥i, v,1—1,...,k, 2=1,...,p.
Thus
(3.5.18) Zy = AZ3,,1 - NOL0).
| (k=7)px1 ‘
Let o

By = {2 Zivg 5_d,[zivp|5g,g=1,...,p-1,v#i,v = 1,....k}
Let

=( ‘ = .i- v i i= =
T, =(T,,,) where T. =V -VP, viiv, i=1,...k,2=1,...,p.

Tx(k-1)p
Hence

k
(3.5.19)  E(S[R;) - 1.Z]P[B#Ii].

‘Since the joint density of Z which is defined in (3.5.18) is

Schur-concave (see Marshall and Olkin [50 1) and sinée y € Bi and

X <y implies x € B;, then by Theorem 2.1 of Marshall and O1kin [50],
m - ‘
P[B;+T;] is Schur-concave function of T., i = 1,...,k.
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SinCe T. > (@55...58:)s 1 = 1,...,k where
=i i

a; = TF"TY“ Z Y?”TT" Tk, - Z A} and

A; = Ve, ..+vi_], then from (3.5.19)

1

(3.5.20) E(S{Ry) < ) P[B;+(a;,...,a;)]

<

P[B +(a [k]’ "’a[k])]

where-a[k] is the largest value among {a],...,ak}. That is,

. sup E(SIR]) is obtained when a;=...=a . If a; =...= a,, then
- : , v | |

.A] =...§ Ak'. Hence ay =...= q = 0.

Thus

sup E(S|Ry) = Z P[B.] = k P* provided that inf P[CS|R,] = P*.
i=1 _ 0 . N ‘

This comp]etes'the proof.

. 0 _
. (B) Letz = (8 . 2) where o is known. Without loss of generality,
‘ » » g . :

we can assume o = 1. We propose a subset selection rule as

folTows.
RZ: Select s if, and only if,
(3.5.21) Y.. > max Y . - dv2j for j =1,

. ...p=1 and
1J T<v<k vJ n P .



max v, -9y o omin v+ 92
1<p<k P /n P= q<cyck VP /n

Theorem 3.5.3.

(3.5.22) igf PLCS|R,] = PLZ,;

where Zvi (v=1,...,k-1, i=1,...,p) are standard normal random

variables with

(3.5.23)  cov(z ;2 5)= | [MAIE gor y -

min(i,j)

for v,
2/73 vt
Proof. " | _
'_ N . _dm
(3.5.24) PLCS|RyJ= PLY ()5 > Yoy = S5
Y(wp e Yop < Yo)p
Let
(v k) _
T ) v Tk,
v ‘/2_1—//;]— 1=], s P
‘Since (Y(v)T-Y(k)i) . N(ng)_vgk), Z%)’
then ZQi ~ N(0,1).
"~ Hence 7
(3.5.25)  PLCS|R,] Vik)-Vg“)l |
3.5.25, P[CS|IR,] = P{Z . < d + ————,|Z
: VT T

f_d,Ival < d for i=1,...,p-1]
v=1,...,k=1

104
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Since v{k) > v a1 ke, then

inf PLCSIRy] = PLZy; < du]Z |< d, L:}"":E:} ]
o seen

where Zvi’ v =1,...,k-1, i=1,...,p are N(0,1) random variables
wfth covariances as defined in (3.5.23). This completes the proof.
If k =2 and p = 2, we can show that
- d_(1)1/4 d- (1)1/4 -d- (1)1/4

(3.5.26) inf PLCSIR,] = | of LY )-o(~ ]d¢(x

a-/hHE (- /f_)P, - /’h)%‘

Wi

Theorem 3.5.4. o
(3.5.27) PLCS|R,] 3_max{[a(d)-¢(-d)]P(k‘1),1+(p+1)(k-])@(-d)};

Proof. ’Let‘{Zvi}'be defined as in'Theorem'3.5.3, then
(3.5.28) 'P[cisz] 2 P2 < d|z | < d, i=],..,?p-l,v=1,f..,k-]]fv

Note that

m
3.5.29 p A.] > 1- PLB.
(3.5.29)  PLAAT > ]z] Jz][

where A], . A denotes a sequence of events, and A' the event
complementary to Ai’ such that A: = U]B1J, i=1,...,m
Hence from (3.5.28) and (3.5.29),
| k-1
(3.5.30)  PLCS[RY] > 1- Z_P[zvi>d]-vglp[{zvp|>d]

V1

= 1-(p-1) (k=1)8(-d)- (k-1)26(~d)

= 1-(p+1) (k-1)o(-d).
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By [68 ] and from (3.5.28)

(3.5.31) PLCS|R,] = PLIZ;|<ds v=1,. . 5ke158=1,0 0 0p]

> w PLIZ,l<d] = [o(d)-e(-a)IP(KT).

Vel

From (3.5.30) and (3.5.31), we prove the theorem.
' For given.P*(%-< Px < 1), a conservative value of d (d > 0)

can be obtained by letting
maxd[o(d)-0(-d) P, 1 (pr1) (k-T)o(-d)} = P*.

~Let d; > 0 be the value such that [o(d)-(-d)1P(K1) = p* and
1et_d2 > 0 be the value such that 1-(p+1)(k-1)e(-d) = P*, then'
'the'minimum‘d(> 0) satisfying the basic requiremént is given by

d = mintdy.dy}.

Theoren 3.5.5.

(3.5.32)  E(S|Ry) < k[o(d)-o(-d)]

Proof.

k
- (3.5.33) E(S[R2)=.Z]P
_ i

Y _.CL_@< Y. <Y +.c_l_/__2__E.’
vp F~a VP n
for i=1,...,p-Tovki,v=l,enk 1
Y oY= (VYvd) |
let 7, =4V 1 T =1, ,p,vivl,. 00k

.\)1 m-//ﬁ
Then
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o
(3.5.34) E(S|R,) = jZ]P{ZVi <d+ ,§q7¢ﬁ"lzvpl§ﬁ’
=1, .. ,p=1,v$3,v=T, .00k
K i oo -
j_jz]p{zvi <d+ = for v+q,v=],...,k} = a; (say),

i=1,...,p-1.
Also,
E(SlRZ)'f__Z]P[Izvpljﬁ,v+j,v=1,2,...,k] = A (say).
_ J=

ydoyy
- Since P[Zvifﬂ + L1 vi,v=T, ... ,k]
‘ YZi/v/n

k
1. 1 1
CigT LoPlZsd 1
L T s
Cthen 0 uij

: o -k ' : :
:(3;5.35) : Ai-j_E%T Z ) (since Zvi ~ N(O,]))

W

<I>(d + ﬁg—l-l—:A—,;y—ll—)
1 Y2i//n

e =

21
k-T 5

1w
v
_ 1
=T - Q (say)
1k
where A[]]i 53"5-A[k]i are order values of {vi,...,vi}.
By the same argument in Gupta and Huang [34], we can show

that the sup of Q is obtained when A[]]i =...= A[k]i'
Thus from (3.5.35) '

—
IHes1x)
[ o
E=d
—
j=R
~—
1]
o
o
—
[=
—
-
—t
[}
—
-
-
=]
]
—

(3.5.36) b <17 ;

Also
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e~

(3.5.37) s <

k
1
PL1Z < d]
R

it

| k[e(d)-o(-d)].
Hence from (3.5.36) and (3.5.37),

- (3.5.38)  E(SIR,) < mintke(d), k[a(d)-e(-d)]}
= k{e(d)-o(-d)}.
This comp]eteé the proof. -

(C) Assume 3 = (9 ., 02) where o° is unknown. . -

We propose a subset selection rule as follows.

R3f SéTect‘popuTation my 1f and only if

: ) /2 d Rij ‘ .
3.5.39) Y..>max Y . - ——=, j =1,...,p-1 and
_ ‘TJ v A =T . ‘
B dR, VZ d R,
max Y - ——P <y <min ¥ 4 B

AV P vn-1 P Vv P vn-1

. Theorem 3.5.6.

p-1 _ '
(3.5.40) P[CS|R3] _>__1-(k-])_z1 p[ti < —d]-(k—])P[Itpl > d]
_ : i= .

where t. is a r.v. having a t-distribution with i(n-1)d.f., i=1,

ceesP.

Proof.

| /Zd R,
(3.5.41)  PICSIRy] = PLY ()5 2 ¥ \yy - MR (I} ]
‘/n_ I .

]
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V2 dR /2 d R |
Y(\)) - -___Mi Y k = Y + _“——'J;'L)‘Es“j=]s--"sp"]‘3
P =T (k)p (v)p =T .
) v=l,...,k-1]
v(k)-v(.\’) . |
= Plt 5 <d - ATt ] < dydsT,. . upT,v=1,. .. k1]
| V2 Ry s vP \ |
_(k)J
where ) (k)
Y, oyamY - (Vv oytk)y |
(3.5.42) ¢ ; = BCO R (9 R R A /=T, §=150,psv=T, 0 kT,
2 R(k); |
. R 5 (v)_y(k) 25 2
Since (Y(v)j Y(k)j) N(Vj Vi, Ao )
) .
nR k)3

and is distributed as a r.v. of X2 with j(n-1) d.f.,'then'tvj‘

g
15 a Student's t-distribution with J(n-1) d.f.

wv=1,...,k=1, j = 1,...,p, then

- (3.5.43)  inf P[c$]R3] = P[t
. o

bi S sltypl < dy =, pTvml, k]

k-1 .
2 1-§ Plt,; <dl- ] PLlt,|< d] (by (3.5.29))
V5] v=] : o

-1 . _
14bn% PLt; < d1-(k-1)P [t | < d]
3= P

where tj is a r.v. of a t-distribution with j(n-1) d.f., j=1,...,p:

This completes the proof.

Theorem 3.5.7.

- (3.5.44) E(S]R3) j_min{kG](d), k[Gp(d)—Gb(-d)]}

where Gj(x) is the c.d.f. of a r.v. of a t-distribution with j(n-])_

d.f., j = 1,...,p.



Proof.

k
(3.4.45) E(S[R))= ] P
i=

dv? R. dv2 R,
y - —2™™P® .__-_Jl
w T S T e
Cfor j = 1,...,p-1, v¥i, v = 1,...,k}

let t . = Y“j 13 (V V )
v |

 distribution with j(n-1) d.f

/n-1, then t vj is a Student's t-

o
t.<d- Lo /n- |t|<

‘ k vl — V2 R1J
(3.5.46) E(S|Ry)=7J P
§= Tyeensp-1y v, velen 0K
Hence )
| K vi-yy ‘ |
(3.5.47) E(S|Rg) < ] Pit ;<d+ JJ . AT, ki, vel,e..ok)
- .k v ]
. i=1 VZ R, _ .
B b |
= Aj (say), j = 1,...,p-1.
‘and

'(3.5.48)- E(is3 Z P{]t, | < d, v#i, v=T,...,k}

= A (say).
“As in Theorem 3.5. 5, we can show that the sup of Aj}is obtained.
when V3 =...= V§, for j = 1....,p-1. From (3.5.47) and (3.5.48),
we get A < kG (d) 3=1,...,p=1 and A 5_k[Gp(d)-Gb(-d)]. Thus

E(S|Ry)

I A

m1n{k[Gp(d)-Gp(-d)]. ij(d), j=1,...,p-1}

min{k[Gp(d)-Gb(-d)], kGy(d)?
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3.6. Selection procedures for multivariate normal distributions in

terms of weak majorization

It is assumed that among the k populations, there always
exists up, v such that u >> Upsqs 1= 1,...,k.' This population
S K] [k] 7 “Li] o |
is called the best population. We are using the same notation as
in Section 3.5. Let @ = {w € (uqs...om): u; € Eqs i=1,...,k and

there exists some j such that uy >> E{ Vil where'E1 is defined

m
in (3.5.10).
(A) Assume I is known.
We propose a selection rule a; fo]]owé.
RS; Seieét popu]ation s if and only if
_(3.6;];)> Yij Z;iziék ij—d, j =‘1,...,p.

Using the same argument as in Theorem 3.5.1, we'obtain the fo]]owing

~ result.

Theorem 3.6.1.

(3.6.2) inf P[CS|R] = P[Z, < d, i = 1,...,(k-1)p]
Q

where

(Zys--sZeqyp)” = MO 0 ,Q), where Q is defined in (3.5.9).
. (k-1)px1

2 | |
(B) Assume £ = (%« 02) where ¢ is known and we assume o = 1.
' 0 ‘o
We propose a selection rule as follows.

R6:’ Select population ™ if and only if,



(3.6.3.) Vij > max Y . - &2 i

T<v<k VI n

It is similar as in Theorem 3.5.3, we can show that

Theorem 3.6.2.

(3.6.4) inf PLCS|R.T = P[Z ; < d, v=l,...,k=1,3=1,...,p]
' ‘ Q v) — }

where Z . is defined in Theorem 3.5.3.
If k =2, p =2, we can show that

1 ]/4
(3.6.5) inf P[CS]RG] f@ [— ]d@(x)
e (1- /T)

In a same mdnner és in Theorem 3.5.4 and Theorem 3.5.5,

we have the following results.

"Theorem 3.6.3.

(3.6.6) P[CS|RG] > max([a(d)-o(-d)JP(k-1), 1-p(k-1)[1-8(d) 1.

Théorem 3.6.4.

(3.6.7) : E(S|Rg) < ko(d).
: 02 0 2
(C) Assume z = (7., o) where ¢ is unknown.
0 ‘o

We propose a subset selection rule as follows.

R7: Select population s if and only if

(3.6.8) Yy >max ¥, - ZdRys i1,
e v Vn-1

In a manner similar to that in the proof of Theorem 3.5.6,

we have
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Theorem 3.6.5.

(3.6.9)  P[CS|R,] 3_1-(k-1)_E PLt; < -d]
_ | ’;

where t, is the r.v. of Student's t-distribution with

i(n-1) d.f., i=1,...,p.
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