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ABSTRACT
Let X be an observation from a p-variate normgl distribution (p 23
with mean vector 6 and unknown positive definite covariance matrix §. It
is desired to estimate © under the quadratic loss L(G,e,t) = (G-S)tQ(d-e)/tr(Qt),
where Q is a known positive definite matrix. Estimators of the following

form are considered:

sSX,W) = (I - caQ'lw'l/(xtw'IX)) X
where W is a3 P*p random matrix with a Wishart (t,n) distribution (iﬁdependent
of X), o is the minimum charﬁcteristic root of (QW)/cnjp—l) and ¢ is a positive
constant. For appropriate vélues of ¢, ¢ is shown to be minimax and better

than the usual estimator 50(X) = X.



1. Introduction
Assume X = (Xl,...,xp)t is a p-dimensional random vector (p23) which is

normally distributed with mean vector 6 = (61,,..,ep)t and positive definite

covariance matrix }. It is desired to estimate 6 by an estimator & = (61,...,6 )

P
under the quadratic loss

L(s,6,1) = (6-0)%Q(8-0)/tr(qd) -
where Q is a positive definite‘(po) matrix.

The usual minimax and best invariant estimator fqr 6 is Go(xj = X, Since
Stein (1955) first showed that 60 could be improved upon for Q=t={ (the
identity matrix), a considerable effort by a number of authors (see the.
references) has gone into finding significant 1mprovements upon 60 For the
most part these efforts have been directed towards the problems where either
t was known (or known up to a multiplicative constant) or where Q=t'l (a rather
unrealistic assumption). For unknown f only a few special situations have
been considered. Berger and Bock (1976a) and (1976b) found minimax estimators
'.(better than 60) for problems in which } was an unknown diagonal matrix or
could be reduced to one. Gleser (1976) found minimax estimators under the
assumption that the characteristic roots of Qf have a known lower bound.

In this paper the fﬁndamental problem of completely unknown } will be
considered. It will be assumed that an estimate W of t is available, where
W has a Wishart distribution with parameter { and n degrees of freedom, and

is independent of X. Let chmin(A) denote the minimum characteristic root of

A, and define

= _[(n-p-l)ch,mm(Q'li'l'l)']'1 = ch . (Q¥)/(n-p-1).

The estimators considered in this paper will be of the form

(1.1) sSOX,W) = (I - J-——wx

X W X

H]

where ¢ is a positive constant. For known {, estimators of this form (with (n.p.l)w'l
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replaced by $-1) were shown to be minimax in Bock (1974) and Berger (1976b),
providing 0 < ¢ <°2(p-2). 1In this paper 6 is shown to be minimax for

0 <¢c <

Cc
n,p

where the < p are solutions to equation (2.17), and are numerically calcu-
»

lated in Table 1 for certain values of n and p.

Table 1

Values of ¢
n

>

NEE 10 12 14 16 18 20 25 30
3 .14 41 .72 .88  1.03 1.10 1.23 1.51 1.53
4 .65  1.37  1.88 2.27 242  2.60 2.81 3.07 3.12
5 1.83  2.85  3.37  3.80 4.02 4.26 4.78  4.87
6 1.71  3.32 4.27  4.81  5.33  5.66 6.36 6.50
7 3.42  4.99  5.78  6.42 6.96 7.92 8.14
8 2.50 5.15  6.57 7.6 8.19 9.24 9.84
9 4.50  7.02  8.40 9.22 10.60 11.28
10 2,61  6.79  8.90 10.25 11.98 12.84
11 5.78  9.15 10.84 13.14 14.24
12 2.73  8.42 11.10' 14.20 15.65
13 7.11 11.09 15.48 17.15
14 o 2,43 9.70 15.74 18.44
15 - 7.93  16.61 19.51
16 2,26 16.67  20.62
17 ' 16.67  21.56 -
18 16.38  22.38
19 | . - 22.83

20 23.47



2. Minimaxity of §¢

The notation'E(Z) will be used for the expectation of Z. Subscripts on

E will refer to parameter values, while superscripts on E will refer to the

random variables with respect to which the expectation is to be taken. When

obvious, subscripts and superscripts will be omitted.

For an estimator, §, define the risk function

R(8,0,1) = t [L(s(x,w),0,1)]

For notational convenience define n* = (n-p-1) and

= 8,(0,1) = tr@DRGS,6,8) - R(s%,0,1)]
The estimator & is clearly minimax (and as good as or better than 60) pro-
viding Ac(e,t) < 0 for all ¢ and {.
Expanding the quadratic loss L for 8% verifies that

ca(X-6) W Ix ]+ Bl c2a?xt w Q v 1x
xtw1x (xtw X)

[ ——)

(2.1) & = -2E]

As in Berger (1976b) an integration by parts with reépéct to the Xi gives

(X- e) tyly pe e axtwlw?
E[ 1, 1 =Bl = t 1,2
Xt~ Ix xtwIx W 1xy

Thus (2.1) becomes.

t,-1g -1 ty~l.~1 -1
@ 8= Bl S e - 2L t‘f Loetd 2 N Xy
(X'W °X) XWX XWX
Note that
axwlg w7 lx o 1
t.-1 s T
XWX ch . (QW)
Using this in (2.2) gives
kz.S) A, < -E[ -;2§T——-{ztr(tw'1) - ii_ﬂz_%%L___ T

S




In this expression, perform the change of variables

* - -y X
Y=§7x ,  va= Ty
Note that V is now Wishart with parameter I and n degrees of freedom, and that
o« = ch . n(t"QiéV)/nw Clearly (2.3) becomes

-2,

(2.4) b, < -E 2tr(vly - f”—v—" -£n

(th'ly) yev-ly -

For convenience, define

Bech @), zZ=wIY] , and § = fottse

Note that chmin(i*) = 1. Line (2.4) can then be rewritten

- ch . (i*v) -2 g
-B8c Y, 1 v min 4Z vV “z c
(2.5) A < = { E'{ (2tr (v ) - — - =)} .
[ n* 'YIZ | (ztv—lz) Ztv-l n* »

To show that AC < 0 it suffices to show for all ZEUp (the unit p-sphere) and
Call i* with chmin(t*) = 1, that the following inequality holds:
v, Chpin (V) aztvZ

-1
(Ztv_l ) [Ztr (V ) = Ztv_lz = ',;'*)}Z 0

(2.6) E

(Note that the distribution of V does not depend on Z or on t*.)
Let T be a pxp orthogonal matrix such that IZ = (1,0,...,0)t. Define

v* = rvrt and $Z = rfrt, Clearly V* is also Wishart (I) and Chmin(tTJ = 1.

For convenience, let vy denote the (1,1) element of (V*)_l, v, denote the (1,1)

element of (V*)'Z, and let

-1
*) = * -
p(V*) [2tr{(v*) ™"} 4v2/v1]
It is straightforward to verify that under the above change of variables for
V, (2.6) becomes

ch_. ($,v%)
V) min 'z [p(v*) - =

vl n*

(2.7 1} =



Since chmin(tz) = 1, it is clear that
(2.8) chmin(tzv*) 2 ch . (V*)

Also if aEUp (i.e. |a] = 1) then

ty Aveg B
chmin(tzv*) <a tz V*tz a

Choosing a to be al, the characteristic vector of the root 1 of tzé, it follows
that
(2.9) ch . (£,V*) s (al)tyral

For convenience define

Qc = {V*: p(V*)< ¢/n*}
let 5; denote the complement of Qc’ and let IA(V*) denote the usual indicqtor
function on A. Using (2.8) and (2.9) it then follows that (2.7) will hold

(and s¢ will be minimax) if

. 1,t...1 . ch . (v®)
210y " R o - Sr ey v TR ey g ey s o
1 c 1 c
for all al

€U .
P

To simplify this expression further, let

\ 10...0 ,
T=10 ,
: S
0

where S is a (p-1)x(p-1) orthogonal matrix such that

N .
Tal = b, (1-bH%p, ..., 00" (-1sbs1).
In (2.10), performing the change of variables V = TV*Tt-(again Wishart (1))

then gives as the condition for minimaxity

ch . (V)
< min [
nellg W)+ —2— o) - mllg )12 0

1Lt . 1
2.1y gY (2 3 V(Ta’) 1o qv) -

for all al ey |

p.



-1
= *
(Note that vy (v )11

The inequality (2.11) can be rewritten

n*EY { (Vv Licralytv(ral JIp () + e Iz ]}

v

(2.12) c < -
E {v1 [(Ta ) V(Ta )IQC(V) +

(V)I—-(V)]}

3

mm

Note that

(ral)tv(ral) = b2 (V);7V5) +b(-bAB(V _+v. ) + v

12* 21 22

Hence defining

1o(c) = Ev{p(V)vl‘ (V) + ch . (V)I—-(V)]} ,

v 22 Q.

1 (e) = EV{p(V)vl' V3V, ),

1,(c) = e"{p(V)vl‘l(v1 Wyp)Tg (V)

’

[} - v -1 . —_— '
10" (€) = By T V)T () + chmin(V)IQc(V)]}_ ,
T () = E"{vl'lcv11 Vo) lg M}, and
e = B v, v, + Valp ),

. it is clear that (2.12), the condition for minimaxity, can be rewritten.

n{[ro(c) + Tl(c)b2 + Tz(c)b(l—bz)%'_]

(2.13) — ) 3 >
o (c) + T (c)b™ + Tz'b(l—b )@

for all -1 s b s 1. Finally, defining b = (b,(1-b2j%)

Tgle)+t; (c) T,(c)/2 [ 1" (€)+1,"(c)
Ale) = , and  B(c) =
1,(c)/2 19(c) . 1,'(e)/2

line (2.13) becomes

E:Eituzua
b B(c)b

(2.149)

5

= pmty,-1 P | . . _ =2
= (TV 'I‘)11 = (V )11 apd_llkew1se vy = 4 )11.)

12'(c)/2

' (€)
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Now for fixed ﬂ, the nonnegative solutions to (2.14) lie in an interval
0<sc S,CS‘ This ‘can most easily be seen by looking at (2.11) (an expression
equivalent to (2.14)) and noting that the left hand side is decreasing in c.
Thus defining
cn,p =-1§B§1 6 .
it follows that if

(2.15) 0O<cse
n,p }
then (2.14) will be satisfied for all -1 < b < 1, and hence s¢ will be minimax.
To get a more explicit equation for c, p,=note from equation (2.12)
? .

(an eduivalent expression to (2.14)) that B(c) is posiiive definite. Hence

if (2.14) holds for all -1 < b < 1, then
* -1
(2.16) c <n chmin[B(c) A(c)]

Thus (2.15)=» (2.14) for all -1 <b < 1 = (2.16). It is also clear that the
reverse implications hold, so that

{c: 0<c< cn’p} = {¢c: ¢ sn*phmin[B(c)'lA(c)]}

It is also easy to check that

.. -1
cn,p 'n*Chmin[B(cn,p) A(cn,p)] R
. -1 .
¢ <n*ch . [B(c) "A(c)] if 0 <ce < hp
and -1
c >n*chmin[B(c) A(c)] if c > cn,p

Hence h p is the unique solution to

(2.17) ¢ =psch_. (B(c) lA(c)) .

As there appeared to be little hope of analytical}y obtaining solutions
to (2.17), the cbmputer was used to numcrically compute the solutions. For
a4 given n and p, the values of the Ti(c) and Ti'(c) (and hence A(c) and B(c))
were calculated by monte carlo methods using 4000 generations of V (for n=8) to

1000 generations of V (for n=30). (Unfortunately a larger number of generations




g
could not be used due to the considerabie expense of generating V and per-
forming the calculations involving V-l.) The resulting estimated solutions,
cn,p’ to (2.17) were then found and are listed in Tablg 1. The standard
deviations of these simulated solutions ranged from about .02 (for p=3)‘to

about .1 (for n-p = 4).

3. Comments

1. The values Cn,p are not the largest values of é for which GF is
minimax. Approximations were made in the proof (lines (2.8) and (2.9)) which
resulted in a smaller than necessary upper bound. If one could soﬁehow
determine the "least favorable" matrix tz in (2.7), the approximations could
be eliminated and the largest possible value of ¢ obtained.

2. The estimators 6° have a singularity as X+0. There

are numerous ways of eliminating the singularity, one of the simplest being

used in the following estimator:
1

7S 0,W) = (1 _min(n*th_lx,c)aQ-IW'
> N -
Xtw1x
Through analogy with the known §{ situation, it seems quite likely that §*C is

)X

itself minimax (fo; 0 <cc <, p) and considerably better than §°.

3. If the linear restriction_R6=r0 is thought to hold, where R is
an {m*p) matrix of rank m and ro is an (mx1) vector, then the estimators
&€ and G*C can be modified so that their regions of significant risk
ihprovement coincide with the linear restriction. Indeed, defining

0 . -1t -
, W = RiRY, and ¢* = ch . fRQ7IRY) W*)/(n-n-1, Theorem 2 of

Y=RX -r
Berger and Bock (1976b) can be used to show that

6g = X ~carQ RE () "Ly vt wey "Ly
is minimax if 0 < ¢ < Cn,m' The appropriate modification of 6* is the

. above estimator with ¢ replaced by min{(n-m-l)Yt(w*)-lY, cl.

i
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4, if (Q}) has a characteristic root considerably smaller than the other
characteristic roots, then chmin(Qt) will be small compared to tr(Qt). From
the definition of Ac(e,t) and line (2.2), it is apparent that tﬁe ;mprovement
obtained in using ¢ will‘be quite small. The estimator, dc, will therefore
perform best when (Q}) has no exceptionally small roots. (If it is suspected
that a coordinate Xi might give rise to an exceptionally small root of (Qt),
it would ?robably pay to eliminate that coordinate in the construction of GC,.

- providing of course that there are at least three coordinates left.)
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