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ABSTRACT

Let x be a p-variate (p>3) vector, normally distfibuted.with un-
known mean 6 and unknown covariance matrix L. Let W:pxp be distributed
independently ofix, and let W have a Wishart distrlbutlon with n degrees
of freedom and parameter X. It is desired to estlmate ® under the

' quadratic loss (5-6)'Q(s-6), where Q is a known positive definite matrix.
Under the condltlon that a lower bound for the smallest_characteristic

root of Q I is known, a family of minimax estimators is developed.
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1. INTRODUCTIdN_
Let x:pxl be a normally distributed random vector with unkndwn mean
0 and Unkhown cofariance matrix I. Assume that we have an independent
. _

estimator £ = n"* W of I, where W: pXp has a Wishart distribution with

n degrees of freedom and parameter I = n-lE(Wj. In the usual notation,
x = N(O,E) , W~ ¥ (n,5). . (1)

. We-Wish'to estimate 6 with an estimator S(X,W) subject'to the quad-.
| ratic loss function “ |

L(E,8,E) = (8-8)'Q(8-9) /e (@) @

~ Here, Q is a known pxp p051t1ve definite matrlx, end tr(A) denotes

' the trace of the matrix A. Note that tr(QZ) is just a norma11z1ng constant,
, cbosen to give the estimator Go(x,W) = X constant riek. bIt is well known
fhat 60 is a minimax estimetor for this problem.

The. 11m1t1ng case of thlS problem where I is completely known (cor-
respondlng here to n ==) has recently received a good deal of attention.
[See Berger [1] for references ] The problem with & unknown and Q
51 (which is not a special case for our problem because Q= _; cannot
be known) has also been studled by James and Stein [5], Lin and Tsai

[6]1, Bock [2], and Efron and Morris [3,4], amongvothers. However, the
assumption that.Q =z -1 is rather artificial (1t seems to be motivated
only by 1nvar1ance arguments), and does not seem to be of practical im-

portance. A possibly more reasonable assumption to make relating Q and I is



that something is known about the characteristic roots of QZ. [Note that
if Q = Z-l,lall.of the characteristic roots of QI are equal to 1.] In the
oresent paper, Qe assume that there exists a known conStant K > 0 such
that

.c_hp(Q)j) >k, all £ >0, ' L (3)

where

ch, (A) 3‘ ¢52(A) el > ch (A)

denote the ordered characterlstlc roots of the pxp symmetric matrlx A.
We con51der estlmators of the form

&, (X, W) »,= (Ip-hcx'w‘ xQ whx, R @

where h(u) is an absolutely continuous function on [0, m) Our main result,
which is proven in Section 2, is the following.

THEOREM 1. If (3) holds, then any estimator of the form (4) for which

(1) u h(u) is nondecrea51ng in u,

(i1) 0 £ h(uw) £ 2(p-2) (n=p)Ku/(n-1), all u > 0,

dominate5'66(§;W) = x in risk, and hence is minimax.
It is clearly of interest to determlne what happens to estimators

'of the form (4) when the bound (3) can be violated. In Section 3 it is
shown that when:(S) does not hold, no estimator of the form (4) can be
.minimax; [Bock [2]zhaslpreviously shown rhat for Q =.Ib, no estimator

of the form h(x'W_lx)x can be minimax. ] It is conjectured that members
'of a certain famlly (see (36)) of estimators closely resembling the
estlmators (4) in form may be minimax, but no proof of thls result is

- given.-

2. PROOF OF THEOREM 1

Let



A0.2) = tr(QRE[L(S,,0,5) - L(sy,6,5)]. | ()

'Clearly if A(G,Z)_i 0; all o, all g satisffing (3), then Gh'is minimax

for our_problem; | : »
| Using the fact that a'Qa - b'Qb = (a-bj'Q(a+b),the fact that Go(x,W) =
x,-énd.(4), we obtain

a(8,2) = B[’ (e wlox w1y Wk 2B W Soxwt(x-a)1. (6

Note that for. -any functions g(x,W) for Wthh Eg(x,W) exists, we may write
'Emum—q,ﬂmmu={ leCein1), (7)

where E ’w[g(x W)] denotes. eéxpectation over the condltlonal distribution
of x given W, and Ew and E denote expectations over the marginal
dlstrlbutlons of W and x respectively. The last equallty in (7) holds
since x and W are Statistically independent. Further » using integration
by parts term by term in the elements of x (with W treated as a fixed
matrlx), it can be shown (see Berger [1]) that

Ex[h(x'w W L x-0)] = E [h(x'W %) tow ! ] +26_[h 1) g1y

-1

W ], (s

"'where h(l)(u).='dh(u)/du. [Note: We are assuming that h(u) is
dlfferentlable, if not a similar argument, using Riemann integration,
: produces a corresponding result; see Berger [1].]

From (6), (7). and (8), we have
8(6,5) = E[h2(x vw‘lx)x'w‘lq‘lw*lx-zh(x*w'lx)trw’lz-4h(”(x' Wiy

| | xw gyl x] . (9)

- We now flnd a canonical representation for (9). Make the‘change
~of variables - |
| _-1/2 V=212

y = 24, (10)

where 21/2 is any square root of I. Then



~N(Mm, 1), V ~%(n, L), - o1
y ( p) p( p) (11)

1/2

: where n=1 8., Further, y and V are statistically independent. From

(9) and (10), with

Q" = /2 gz'/?,
and usiné arguﬁents and notation analagous to that used to obtain (7), we
have ‘ | | 7
a6 =k B ey yv @) Wl vyt @

1) el 2 ’
- Py lyyvdy (12)
Let»Py be pxp orthogonal with first row equal to (yfy)'l/Zy'f Let

- . |
U=ryvr' , =TQr. " - 13
R A 4 =Ty - (13)

Theh, givén y;-u,~’%b(p, Ip), so that U and y are statistically indepen-

dént. Partition U as

o ¥ .
uof 11 Y2 :
u U )‘ u].l:IXI, Uzz:(P_l)x(p-l)’

21 22
and let _
: -1 -1/2
= -u!' ; = _ _ ,
P P i3 b P S R PP 44
.. where U221/2vis any square root of U22. It is well known that s, t, and
U22 are statistically independent, with
- , . | _
s XD-P+1’ t ~ N(O,Ip_l), U22 ~ %b_l{n, Ip—ll' . _ 7 (15)
SRS BT |
Further, V.” = U T and
. 4 y
- /1 eyt
vlo gt Tt Y22 (16)
B -1/2 - =1/2 na-1/2) M
ot Uyt (I ret)Uy, .
so that

yvly = sThyry, yvdy ='s‘ZY'Y(1+t'U£§t)’V : (17)



v = el = 57 (e u; 2t) + trUzé, o (18)
and
yV IOy = sy, uz” RICRR RO RN er)
Under the dlstrlbuflonal assumptions given in (15), it is known that
..E(Uzz) (n- p) p-1° so that |
EtrUE; - tr EU = (m-p) Lep-1). o (20)

" For any COnstant matrix A,

E[(1,-t'U 1/2)A(l, t'u1

_grynl/2

=E /2, 1/32 ~1/2

U, -1

tt' U22
( 0

= E tr '

U - -1

22 \o u,
1 0. -

= tr A - - (21)

: -1
0 (n-p) Ip—l

Taking A = Ip,'the result (21) allows us to verify that

E(1 + 0, t) = (a-p) L(n-1). - (22)
v *'—1 . |
.Taking A = (Qy) > the result (21) yields

BL0,-t 05, ) @ Aty h
1 0

_='tchy)‘ ;

If in (12) we make the change of variables (13)- and (14), and take

e ) N @

p-1

B account of the 1dent1t1es (17), (18), and (19), then by tak1ng our ex-

- pected values in the order E E Et T and using (20), (22), and (23),
' 22.

we obtaln



AG8,I) = (n-p)” EE[hcs Yys 2y 1,90

~2h(s” y'y)sfltn—l)-zhcs y y)cp 1)

~an D (7l TRy DI, ’ (24)
“where ' /
L * *=-1 fn-p O ,
t(y,Q) = tr(Q)
y Qy ‘ 0 Ip-l)-
= (-p- 'y '@y +er@yL. o (25)

' Fihally, integrating by parts in s, we can show that
-1 . -1 . -1 2 (1), -1
ER(sTyiy) = (-p-DE[s h(s y'w] - 26 [s "2y yn M sy, (26)
which, when substituted,in (24), yields the expression -

A(8,1) =_(n-p)-lEyEs[hz(s'ly‘y)sfzy‘YT(y,Q*J —'2p(n-p)s'1h(s'ly'y)
-4 M sy s Py ], @27
“ ﬁhere
| ,

y ~ N(H,Ip), s ~ X n_p+1,

| y and s'are independent n = 2-1/26 Q* = Zl/zQZ /2 , and T(y,Q ) is given
- by (25). The expre551on (27) is the desired cononlcal fbrm
Now, we are ready to complete the proof of Theorem 1.
Let
r(u) = uh(u), | (28)
and note that , L
u |
where r(l)(u).= dr (u)/du. Substltutlng in (27), we obtaln
A(G £) = (n-p)~ b {(Y'y) E [r (st 'Y)T(Y:Q ) - 2(p-2) (n- p)r(s yy)
-4-p)s e M 57y
-1
-1 r L |
< ep TEEEEIN. (o(y,Q")ris Ty - 2(p-2)(n-p)é],
, _ yy _ _
(30)



since, by assmnption (i) of Theorem 1, r(u) is nondecreasing in u. Note
s frojﬁ (3) and _(2.5_)‘thatl'
13,0 < (eeh, (@)Y < o) [eh, (@01

o < @-1) KL, o (31)
 Thas, applying assumption (ii) of Theorem 1, (30), and (31), we conclude
that for all satisfying (3),

A(8,I) <0, all e
ThlS ,c.om_ll)letes the proof of Theorem 1.1..

We remark that our proof actually demonstrates the following.

THEOREM 2. Let an estimator §, (x,W) of the form (4) satisfy

“(1) u h(u) is nondecreasing in u,

© (i) 02 h(w = 2(p-2) @-p)lu, all u > 0,

where L > 0 is a given constant. Then if I satisfies

_ep-1)eh @7 v eraen Tt < 7L o (32)
we have
_A(8,5) £ 0, all b,

_@_aJ_a_c‘_l_vlen(x,W)v i_s_ minimax.
Although Theorem 2 is more general than Theorem 1; the additional
'ge_herality is unli_kely to be of practical importance.
3. THE CASE WHERE I IS COMPLETELY UNRESTRICTED
' When z ié uﬁresti‘icted’, and (3) need not hold, then GO(X,W) is

essentially the only estimator of ‘the form (4) that can be minimax.

THEOREM 3. When I is unrestricted, no estimator of the: form <_S+(x,W)_ =

0.

—

' Qp-h’(x'wflx)Q_ﬂlw_l)x can be minimax unless h(u) = 0 for almost all u

2

Proof. Note from (25) that

T_(y,_Q*) > tr(Q*)—l, for all y. | B (33)

Now from (33) and (27),



: . ) _
A6,5) > tr @) B[ (s hyry) s 2y"y] o
~2(n-p)E[ps” h(s™ty! y)- 2h( )(s Y'y)s 3yry] (34)
where the expected values in (34) are easily shown to depend only on

-1
S erzT e, Thus, if we choose a sequence {(6 z. )} of parameter values

..such that 6'211 i = ¢ all i, and

tr(Q')'l = tr(Ei)-lQ—1+m, as i e,
we see that unless

E[h?(s’lyry)s_szyi =0, all o'z Lo= C, - (35)
vwe.willohave A(e )+w | Thus, for some parameter p01hts A(e, Z) will
vbe positive (1ndeed, infinitely large), and hence § (x W) cannot be
minimax. On the other hand, 1t is easy to show that (35) holds if and
:>-_only if h(u) = 0 for almost a11 u > 0. This completes the proof.
- Estimators of the form 4) do not perform well when any linear
-comblnatlon of the elements of x has low variability (1mply1ng that chp(z)'
is small) To find a class of minimax estimators when I is un-
restricted, we m1ght think of modifying members of the class (4) to

| produce new estlmators of the form

5 P OGW) = a, - ch, (n” lannawioewhx, - (36)

‘Assum1ng that ch (n QW) and ch (Q2) are close in value (whlch should

fbe true at least when n is large), any member of the class (36) will

T behave like the m1n1max estimator x when ch () is small and will behave

. 11ke 6 ch (Qz)h otherw1se.‘ Thus, we have good intuitive reasons for
conJecturlng that a member of the class (36) of est1mators is minimax
rh prov1ded that (i) uh(u) is nondecreasing in u, and (li) 0 <h(u < 2(p-2)u,
?va11 u > 0. Unfortunately, we have not yet been able-to prove this
conjecture. One can follow the steps used in Section 2, but unlike the
:rresult (24) obtained for the class (4), 1ntegrat10n over t and U, does

22
: not lead to any 51mp11f1cat10n. This lack of simplification is due to
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the"fact-that chp(n_lqw),.after the change of variables from (x,W) to
(y;s,t,Uzz), isva compliecated and nonlinear function.ofiy, s, t, and
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