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(v) Size and Sparsity. A matrix is sparse if, say, 90% of its
. elements are zero. The two important classes are:

. Dense matrices (usually small, can be stored in central
- - Memory as arrays, 2 < n < 100).

Sparse matrices (usually large, not storeable as arrays,
500 < n < 10%), -

'Small, sparse matrices do occur. In fact, dense matriees
‘are often reduced to these forms as a preliminary step.

'(vi) Class of Matrix. Some matrix properties are exploitable in
computation. Here are some common types: real, symmetrie,
- positive definite, band structured (aij =0 if Ii-jl >w).

D. Relation to Other Areas

The boundary between Numerical Linear Algebra Optimlzation, Mathe-
matical Software, and Differential Equations is fuzzy.

II. CHRONOLOGICAL DEVELOPMENT SINCE 1945

A. Direct Methods

- (1) ' The Fall and Rise of:Gaussian Elimination

In high school one learns how to solve a system of linear equations
by elimination of variables and backsubstitution. In the late 1940's
this technique was implemented on the new digital computers. The inevitable
roundoff errors are the only source of error but analysis, and a few unfor-
tunate experiences, suggested that these tiny errors could cascade and ruin
the calculation. Gaussian elimination was rejected for systems with more
than 10 unknowns as being unstable (1946). Other methods were explored.
Pessimism reigned. It seemed incredibly difficult to give a rigorous
analysis of the simplest matrix methods when executed in noisy arithmetic.
For example, addition is not associative

A+ (BHC) # (A+B) + C

and one seems forced to deal with pseudo-addition and pseudo-multiplica-
- tion at every turn.

The breakthrough, or rather the enlightemment, came between 1955 and
1960. Through a systematic use of backward error analysis Wilkinson
showed that floating point computations were rather easy to understand.

- This backward analysis (intuitively, ask not for the error but for the
-problem you actually solved) had been used previously but, for various
reasons, its implications were not appreciated. It permitted escape from
the pseudo-operations. Not only was Gaussian elimination vindicated but
almost all matrix computations were illuminated and understood by an ever

increasing band of users.
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1. INTRODUCTION -

A chi-square statistic for testing fit is a quadratic form having as its
arguments the numbers of observations falling in each of a finite set of
~cells. It will soon appear that when the freedom to choose the cells and the
quadratic form in various ways is exercised, this class inciudes a wide
variety of statistics. Chi-square tests are the oldest, and stfll one of the
most common, class of tests of fit. Surveys still of value are given by
Cochran (1952)land Watson (1959). These tests are usually lesg powerful
than such other general tests of fit as the various EDF statistics, and are
also less powerful than tests designed to test specifié hypotheses, such
as the Shapiro-Wilk test for univariate normality. The choice of material
in this paper is guided by this fact, and by several theses which follow
from it. |

The first thesis is that chi-square tests of fit must compete for use on

the basis of adaptibility and ease of use. EDF tests are somewhat dis-

comfited when (as is usual) we wish to test fit to a pafametric family of

distributions rather than to a single specified distribution. What is worse,
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these tests fall into disarray when the data are discrete or multivariate,.
The classical Pearson chi-square test is not affected (except for changing
degrees of freedom) by these complications. The Pearson test does require
that unknown parameters be estimated by the minimum chi-square (or asympto-
tically equivalent) method. Recent work has prov1ded alternative chi-square
statistics which retaln the advantages of the Pearson statistic while
‘aIIOW1ng alternative methods ;f estimating parameters, data-dependent cells,

and other features which increase the flexibility of chiquuare methods.

A second thesis: chi-square statistics actually having a (limiting)

chi-square null distribution have a much stronger claim to practical useful-

ness. Ease of use requires the ability to obtain (1) the observed value of
‘the test statistic, and (2) critical points for the test statistic. The
calculations required for (1) in chi-square statistics are typically itera-
tivé_solutions of nonlinear equations and evaluation of Quadratic forms,
perhaps with matrix expressed as the inverse of a given symmetric pd matrix.
These are not serious barriers to pract1ca1 use, given the current availa-
bility’ of computer library routines. Critical points often require much more
effort, so that (2) is the main determinant of ease of use.
The large sample null distribution of a chi-square statistic is typically

that of a linear combination of independent chi-square random variables.
Thedrem 4.2 of Moore and Spruill (1975) is a quite general result.of this form.
If infinite linear combinations are allowed, EDF statistics also have dis-
tributions of this form. See Section 3 of Stephens (1976) for a summary and
references. The:e are effective methods for computing critical points for
such distributiohs (Moore (1971), Section 4; Dahiya and Gurland (1972);
Stephens (1976).) But a user must actualivafite a program to do this, and
separate tables muét bé constructed for each hypothesized family. This is a
worthwhile endeavor when fit to a particular family Qill be tested repeatedly.

But since the work required for a chi-square test is similar to that for a



more powerful EDF or specialized test, use of a chi-square test is not
justifiea. The argument on behalf of the second thesié;is now clear. There
are very general methods for constructing statistics having a chi-square
distribution in Iarge samples. Indeed, the Pearson stétistic is one such
method. These are the chi-square tests which can most effectively compete
for the attentioﬁ of users.

It is already clear that I would not recommendiuse of a chi-square sta-
tistic in such standard situations as testing whether a random sample comes

from a univariate normal population. I hope my support for a third thesis

is also clear. In many situations, especially when data are discrete, multi-

variate, or censored, or when parameters must be estimated in an uncommon

model, chi-square tests of fit are superior in practice to their competitors.

Section 2 surveys recent work on chi-square tests of fit in a quite
.seieétive way, guided by the first two theses. Section 3 presénts several
éxamples of the use of these statistics, and attemptg'to illustrate the third
thesis. - The emphasis in this paper is entirely on construction of chi-square
statistics having tabled large-sample distributions. Although this emphasis
is, I believe, justified both by the discussion above and by the volume of
recent work.in this area, some aspects of great practicél importance are not
- covered here. Chief among these is the study of exact distributions and of
the accuracy of the large-sample approximations. Readers interested in
these aspects might begin with Good, Gover and Mithcell (1970). I haVe also
qmitted any systematic discussion of power or efficiehcy. The performance of
several of the statistics reviewed in Section 2 has ﬁot.yet been adequately

studied, so that no survey of this aspect is yet posSible.



2. CONSTRUCTION OF CHI-SQUARE STATISTICS
I will diQide the chi-square statistics to be reviewed into two classes,
The first I call ﬁstandard,” as it contains all statistics whose large sample
theory is similar to thét of the classical Pearson statistic. A general account
of this theory appears in Moore and Spruill (1975). The second, or '"‘non-
staﬁdard" class coﬁtains some interesting statistics not falling within the
range of this general theory. For reasons stated in.the intrbduction, I have

restricted attention to statistics having tabled large-sample distributions,

~usually chi-square distributions.

» 2.1 STANDARD STATISTICS
' 'Suppose that Xl,...,Xn are independent and identically distributed r.v.'s
taking values in RP and having unknown df G. Suppose also that F(-|6) is a
family of df's indexed by an m-dimensional parameter.6 taking values in.an
open set Q in R™. We wish to test the hypothesis |
| : HO: G(*) = F(-ie) . for some 6 in Q.
If El""’EM aré cells which partition Rp, the cell probability for’E0 under

HO with 6 true is

P4 (0) -1 arele)
(o

Since 6 is unknbwn, it is estimated by some estimator eh = en (Xl,...,Xn),
and the estimated cell probabilities are po(en). The number of xl"”"xn
falling in E0 will be denoted by Nnc' Denote by Vn(e)'the M-vector of

standardized cell frequencies having oth component
[N, - P, (6)1/ (np_(8))%
no Py Py

if Qn = Qn(xl""’xn) is a possibly data-dependent M x M symmetric nnd matrix,

the general form of a standard chi-square statistic is

(2.1) ) Va(8'Q V. (6)
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That‘is, we afe concerned with arbitrary nnd quadratic forms in the standard-
ized cell frequencies.
There is an additional feature which greatly increases the flexibility
of these statistics, fortunately without increasing their complexity in
practice. This‘i§ the use of data-dependent cells. Suppose then that each

cell Eno = Eno(x Xn) is a p-dimensional rectangle with vertices con-

12e0es
verging in probabiiity to the vertices of a fixed cell Eo(eo) when HO holds
and 60 is the true parameter value. A'commonvexample_is_the use of cell
boundaries i; +as (7; and s are the sample mean and standard deviation)
in testing fit to the univariate normal family. Since the cell frequencies
Nﬁo no longer have a multinomial distribution, the theoretical study of these

- statistics becomes more complex. But in practice, the use of random cells

has no effect: the limiting distribution of the statistics (2.1) with

random cells Eno is exactly the same (under HO and 60 true) as if the limiting

Eﬁllﬁ.Eg(eo) were used. This is true even when the estimator Gn is the mini-
mum-chi—square e#timator computed from the random cells. These results hold

under.mild regularity conditions. Details may be found in Section 4 of Moore
and Spruill (1975). |

1. The Pearson Statistic. Here Qn = IM’ the M x M identity matrix, and

is estimated by 5;, the minimum chi-square estimator which is the solution of

MON - p_(6)
no .
X ( ) = 0 J='1,;.-,m-
o21 Pg (8) aej »
It is asymptotically equivalent, and computatlonally simpler, to take 9 to be

the maximum likelihood estimator from the multinomial N tound as the

solutlon of

Mo (8 .
po(e) Y] =0 J=1,...,m.

(2.2) : S 2
, o=1



The Pearson statistic is

M N - np (5 )]

= vn (En) 'vn (.é-n)

2. The Rao-Robson Statistic. Here we estimate 9 by the MLE én from
Xl,..;,Xn. The Péarson statistic Pn(én) does not have a chi-square distri-
_bution. As Chernoff and Lehmann (1954) discuss in detail, the distribution
of Pn(én) in general depends on the unknown 6 and has critical points known
only to fall between those of the xz(M—l) ané xz(M-mfl) distributions.
When the number of cells M is large, these are often useful bounds. As A. R.
Roy and G. S. Watson notiéed (see Watson (1959) for discussion and references),
the use of data-dependent.cells can render the distribution of Pn(én) B-free
in location-scale cases. But this distribution is not F-free, and is not xz.
In accordance with the sécond thesis, I will therefore ignore this option in
favor of one offered by Rao and Robson (1974). Their idea is to ask: What
quadratic form in vn(én) has the XZ(M-I) limitiﬁg law?

To>answer this question, let J(6) be the m x m inform;tion matrix for

F(x|6) and define the M x m matrix B(6) with (i,j)th entry

. op. (8)
. -1 i
2 1
p; () T
o J
Then nB'B is the information about 6 in the cell frequencies Nno‘ If J-B'B,

which is always nnd, is pd, we can write
-S(e) = I, + B(9)[J(6) - B(0)'B(5)] (o)
The Rao-Robson_statiséic is
Ry =V, (6)'S(B )V (8 )

and has the xz(M-l) limiting null distribution. This form simplifies consid-

erably.since 'z¥apo/aej = 0 implies that



2.3 M N 3 : M N 3
@9 URCT B R B B R
n P 6, *""" Lo p Q8. -
o=1 *g 1 o=1 Yo j

Further simplification can be achieved in location-scale cases by the use of

random cells for which po(én) = 1/M. When m=1, the Rao-Robson statistic is,

using (2.3),

- 2
: » M (N -np) M N_ dp .
@0 R ) (] i)
: o=1 po o=1 Po
where " ‘
1 g .2
v=s- [ Lo

o=1 Yo
and J, Pg» dpo/de are all evaluated at 6 = én' Rao énd'Rosson (1974) give
several examples of the computation of this statistic, using data-dependent
cells in some‘examples. Their simulations of power and some theoretical
work by Moore and Spruill, (1975),'Section 7, and Spruill (1976) suggest
strongly that tﬁe Rao-Robson statistic generally has high power relative to

other chi-square tests of fit.

3. Thé Wald's Method Statistic. For general estimators en of 6 one
can ask what quadratic form in vn(en) has the chi-square limiting null dis-
tribution with the largest possible number of degrees 6f freedom. Moore
(1976) has shown that a general answer has the following form. Suppose that
when Hoand 60 are true, Vn(en) has a limiting M-variaté normal distribution
NM(O,Z(QO)). ;f Z(8) is any generalized inverse of the limiting covariance
matrix I(6), then

Wo(e) = vn(en)'z(en)'vn(en)
has the xz(k) limiting null distribution, k being the rank of z(eo) and
the largest possible number of degrees of freedom. This rather abstract
recipe is made more usable by the fact that typically wn is invariant under

choice of ¥ and can be computed as the quadratic form corresponding to the
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inverse of a nonsingular matrix depending on the method of estimation used.
Details appear in Moore (1976).

- The statistic Wn(ﬁ') is the Pearson statistic, and W (5 ) is the Rao-
Robson statistic. In other cases W (e ) is much more compllcated to compute.

4. The Dzhaparidze Nikulin Statistic.. Faced with the complexity of the

Wald's method statistic for general Gn, we might willingly sacrifice degrees
‘of freedom (and presumably power) for ease of computation. Dzhaparidze
and Nikulin (1974) offer the statistic .

-1 ’
= t - { '
Dn(en) Vn (IM B(B'B) "B )Vn
where Vn and B are evaiuated at 8 = en. They claim that Dn(en) has the

xz(M—m-l) limitihg null distribution whenever Gn approaches the true 6, at

0
i : .

the usual n® rate. (Their proof of this claim appears to be defective. I

can verify that Dn(en9 has a xz(k) distribution for k < M-m-1, and in most

cases that k = M-h—l, but I cannot yet prove this last result in the gen-

erality claimed.) Computation of Dn is again simplified by (2.3).

Dzhaparidze and Nikulin give no examples.of the use of their statistic.

2.2 NONSTANDARD STATISTICS

1. The Kempthorne Statistic. 1f the number of cells M is allowed to

' iR
increase with the sample size n at a rate faster than o(n”), the nature of

the large-sample theory of chi¥square statistics changes radically.
Kempthorne (1968) proposes such a test: given n observations, use the Pear-

son sum of squares for n cells each having probability 1/n under HO'

That is, for celis an""’Nnn chosen in this manner, the Kempthorne statistic

is

2

K = Z‘(Nnc- DT = 1)

M
PR

For the case of testing fit to a completely specified distribution, the

Nno are multinomial and it follows from, e.g., Morris (1975) that Kn has a

normal limiting null distribution. One expects that this result will be
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unaffected by estimating unknown parameters, but to my knowledge this has not
been proved. The theory of general chi-square statistics when M increases
more rapidly than o(n%) is largely unexplored. Some preliminary simulations
suggest that K is superior in power to standard chj- -square tests only for
very short -tailed .alternatives, and may be quite inferior in other cases.

2. The O'Reilly—guesenberry Statistic. O'Reilly‘and Quesenbefry (1973)

‘propose a transformation approach to testihg fit. Specifically, they give
a "conditional probability integral transfofmation" (the form of which
dependé on the hypothesized family F(-le)) of Xl,...,Xn.into Ul""’Unp-m’
where under H0 the Ui are independent uniform r.v.'s on the unit interval.
Quesenberry (1975) has extended the class of families-F(-]e) for which
such transformations are available. One can now test the.Ui for uniformity
by any available test, thereby obtaining a tesf of fit to the parametric
family F(x]e) having a ﬁull distribution which is bofh 6-free and F-free.
ﬁerhaps the tests suggested by Weiss (1974), (1976) deserve consideration
for use in this last step. They represent an interesting theoretical devel-
opment, but are not discussed in this survey since they test fit only to
a specified distribution, which is taken to be uniform.

O'Rgilly and Quesenberry, by applying a chi-square statistic to the Ui’

obtain particular members of the following class of nonstandard chi-square

tests. Rather than base cell frequencies on cells Eo (fixed) or Eon (xl,...,xn)

(data-dependent) into which all of X ,...,X are classified, the cells used %

to c13551fy each succesive X are functions E .(X X ) of X X only

l,..

Thus additional observations do not require reclassification of earlier
observations, as in the usual data-dependent cell case. O'Reilly and Quesen-
berry show from their conditional transformation approach the existence of

_ functions Eoi (Xl,...,Xi) such that thecell frequencies N .,NnM comput ed

nl’""

as above have the multinomial distribution with any specified set
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{pl,...,pM} of cell probabilities. The O'Reilly-Quesenberry statistic is

then the Pearson statistic

_ 2
M ,(NnU - npc)

On = n
o=1 po

for these Nno’ and has the xz(M-l) limiting null distribution.

- The authors”show by example that in common cases the boundaries of the
appropriate ;ells Eoi(xl,...,xi) can be obtained fairly simply. In terms
of distribution theory, these statistics are direct éompetitors of the
Rao-Robson statistics, which also achieve a xz(M-l)ilimiting null distribution.

I know of no work on power comparisons which might aid a choice between the

two methods. Obtaining the cells for the O'Reilly-Quesenberry statistic for

a specific family F(+[8) requires the computation of the minimum variance

unbiased estimate of F(+|6), so that a practitioner wishing to test fit to a
relatively uncommon family (I have argued that this is the case in which
chi-square tests are most defensible) will generally find the Rao-Robson
statistic easier to obtain. It would be valuable to have available the
specific recipes for On for testing fit to common multivariate families,
where competitioh from EDF tests falls off. A first effort in this direction
(multivariate normal with known covariance matrix) appears in Section 5 of
O'Reilly and Quesenberry (1973). Finally, it should be noted that thé very
ingenious conditional probability integral transformation approach constructs
- and obtains the limifing null distribution of only épecific members of the
general class of "sequential-cell" chi-square statistics. The theory of this
class of statistics does not fall within thé scope of Moore and Spruill (1975),

and offers much room for future work.

3. Easterling's Test. Easterling (1976) provides a very interesting

approach to parameter estimation based on tests of fit. Roughly speaking,

he advocates replacing the usual confidence intervals for © in F(-]e) based
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on the acceptance regions of a test of

Hl:' 9 # Q

with intervals based on the acceptance regions of tests of fit to completely
specified distribufions; ,
L L] = L]
Ho*: G(+) = F(+]ey)
H.*: G(<) # F(-

1 89)

(I say "roughlf speaking" to avoid discuséion of the phiiosophy cof inference
aspect of Eastefling's paper, which is not relevant here.) 1In the course of
his discussion, Easterling suggests rejecting the family'{F(xle): 8 in Q}

as a model for thé data if the (say) 50% confidence interval for 6 based on
acceptance regions for HO* is empty. It is this "implicit test of fit" that
I wish to comment on, using the chi-square case to make some observations -
which apply as well when othe? tests of HO* are employed.

Taking then the standard chi-square statistic for H.* when Yn = (X 2 X))

0 12000 Xy

is bbserved,
. 2
M [Nn0 - npc(eo)].

T (Y ,64) = ogl hp,(6,)

3

and denoting by xdz(M-l) the upper a-point of the xz(M—l) distribution, thé.

(1-a)-confidence interval is empty if and only if
, 2 . .
(2.5) | Tn(Yn,a) > Xy M-1) for all 6 in Q.
But if 5; is the minimum chi-square estimator, (2.5) holds if and only if

. — 2 :
(2.6) T, (V.80 > x,“(0-1)

When any F(xle).is true, Tn(Yn,E;) has the xz(M—m-l) distribution, and the
probability of the event (2.6) can be explicitly computed. It is less than
w, but close to o when M is large.

Thus Easterling's suggestion essentially reduces to the use of standard

tests of fit with parameters estimated by the minimum distance method
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corresponding to fhe test statistic employed. He is a bit surprised that
as many as 16% of simulated exponential observations failed this test for
exponentiality (using the Anderson-Darling statistic) with o« = .50. I am

surprised that so low a percentage failed.

3, EXAMPLES

The examples beiow are chosen to illustrate the versatility of chi-square
methods and>yet be sufficiently simple for compact presentation. Consequently,
theihypothesized families are all univariate and for the most part allow
explicit cdmputation. Where computer work is needed, the exampleé are incom-
plete. I hope to provide more details in the final version of this paper.
The examples are restricted to standard chi—sqpare tests, since (some of)
these are easier to adapt to a new problem than is the O'Reilly-Quesenberry
statistic.

Example 1. We wish to test fit to the double exponential family having
density function

£f(x|8) = 7%— e"x'ell/ez : co < X < o

The MLE en = (eln,GZn);from a random sample Xl,...,Xn is

-~

8 median (Xl,...,Xn)

in~
6, =L
n

- Since f(x|e) is a location-scale family, we follow the usual practice of using
data-dependent cells to achieve equal estimated cell probabilities. If the

successive cell boundaries are 8, + a062n’ then

1In
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In o 2n
(3.1) p (8) = N . 5%—-e‘ix‘61|/92 dx
' 1n * ao—l 2n 2

and
a
A -t
P, (6 = [0 3 tlae
a
o-1

‘which depends only on the a . Using an even number of cells, say M = 2v and

choosing the a, symmetrically about 0 as aey = -av_i =c. where
c. = -log (1 - 1.‘-) i=0 v
i = g v =U, .00

(in particular, ay = -, av = 0, ay = «) gives po(en) = 1/M.
. To obtain the Rao-Robson statistic Rn’ first compute spo/aej by inter-

changing differentiation and integration in (3.1) ,Substituting én for g gives

3P, . -1/Mé2n 0=1,...,Vv
30, (en) = . "
+1/Me2n o§v+1,.:.,M
(3.2)
W, . 1 -Cs 1 -Cs ' 0 = v+i, sv-i+l
55, (&) = (c;_qe - ce ) - »
2 26, . o li=1,...,v
E 2n
51 e}
Set d, =¢, e . - c.e . Then
i -1 i
- - . -1 1 0
1 = :
B(en) B(en) 62n Y 2
0 vIi.d.
17i
-1

Since the inforﬁation matrix for f(xle) is 62 12, the hétrix
J(én) - B(én)‘B(én) has rank 1 and the Rao-Robson statistic is not defined.
This is an unusual situation.

We can fall back on either the Pearson statistic or the Dzhaparidze-

Nikulin statistic Dn(an). The latter is more natural when 5n—depcndent cells
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are used, and much easier to compute. Since these cells have the practical
advantage of adjusting to the location and spread of the data, I prefer to
uSe them and thérefore recommend the use of Dn' Computation of Dn is almost

trivial because (i) here

ap, .
Nno 35, (8 = 0

(3.3)
‘ 1

[N I

o=1

”by (3.2) and the definition of the median; (ii) B'B is diagonal; and (iii)

the xelation (2.3) applies. The resulting statistic is.

IR VI n v ' 2
Dnten) T n g Ny - ﬁ-) B —__——_5-[i§1di(Nv+i ¥ Nv»i+l)]
and has the xz(M-S) limiting null distribution.

[Comments. The first term in Dn is the Pearson statistic for this
_choice of cells. It has the distribution of xz(M-S) + Alxz(l) where the xz's
deﬁote independent chi-square r.v.'s with the indicated degrees of freedom
and 0 < Ay < 1. The number Al is 6-free because of ouf use of data-dependent
cells. If J-B'B were nonsingular, another term of the form Azxz(l) would
appear in thiéifepresentation. The second term in Dn‘can b¢ thought of as
cancelliﬁg the Alxz(l). If 62 were known, we would Ha&e by (3.3) (compare
(2.2), recalling that po(én) = 1/M) the unusual situation in which the MLE

en(xl""’xn) is the same as the grouped data MLE en(an,....N So for

N

the location-parameter double exponential family, we can choose cells as here

and then use the Pearson statistic

e~
~
=z
)
4=
| —

~ M
pn(en) “n

with the XZ(M—Z) distribution. The use of data-dependent cells is essential
to this result.]
Example 2. We wish to test fit to the negative exponential family

having density function

e et e e

o
B
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£(x]0) = L ¢™X/0

0 < x < »

£ =1{0: 0< 8 < w}
We have not a full random sample, but rather Type II censored data. That is,
we observe the order statistics up to the sample a-quantile,

X

<X

< L..< X
@° " Mnel)
where [na] is the greatest integer in na and 0 < o < 1. Such data are common
in 1ife testing_situations. It is natural to make use of random cells with

sample quantllgs gi = X([nGi]) as cell boundaries. Here EO = 0, 51 = o apd

so that the n - [n¢] unobserved X fall in the rlghtmost cell. Although the
cell frequencies Nn are now flxed the general theery of Moore and Spruill
(1975) applies to this choice of cells. The use of order statistics as cell
bbundaries was considered by Witting (1959) and Bofinger (1973), but this
application to censored data seems new. I will discuss several chi-square
tests of fit based on this choice of cells. For references to pfevious lit-
erature on tests of fit for censored data, see Lurie, Hartley, and Stroud
(1874) . This example can be taken as a response to their claim that ''the
chi-square criterion is not generally applicable to testing the fit of Type

IT censored samples." -

~ The Pearson Statistic. Estimate 6 by the grouped data MLE found as the
solution of (2.2). That equation becomes in this case

- _,/8 -£ /8
M gq-le o-1 _ goe a

(3.4) LN
: o1 ¢ -50-1/0 -&0/0
e - e

which is easily 'solved iteratively to obtain 5; = 65(51""’5M-1)' The test

statistic is
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— 192
by b Do - 2ol
n'n oél np0(§n)
where
N G = [ndo] - [ndo_l] (nonrandom)
-£_ /6 - /6 .
P 8) = e -l e O (random)

The limiting null distribution is x2(M-2).

The Dzhaparidze-Nikulin statistic. It is tempting to use a more efficient
estimator of 6 than 5;. The MLE (also the MVUE) of 6 based on the observed

order statistics is given by Epstein and Sobel (1953) as

.y [ned
n = el U2 Y@t DX gy

Since ®n has a simple explicit form, we have a double incentive to use it.

When m=1, it is very easy to calculate Dn(en) as

2 . .

b (6 ) = % (N - ™P,) ) 1 ( % .Nnc dpc 2

L e Moy 4y 5 21 Py
n g = ( gg— )

where pO(O) is given above,

dpo -2 -50_1/9 _gc/e

de =0 (Eo-l o

and both are evalﬁated at 6 = 6n' Alfhough Dn(én) has an explicit form, while
Pn(gh) requires numerical solution of (3.4), the practical advantage of D in
ease of use is not great. Both statistics have the x (M 2) limiting null
dlstrlbutlon their relative efficiency has not been studied.

The Wald's Method statistic. It is quite probable that a more power-

ful chi-square test than either Pn or Dn can be obtained by computing the
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"natural’ quadratic form in the Nnc_ npc(én) given by Wald's method. The

first step is to show that Vn(éﬁ) has a limiting multivariate normal'N(O,Z(e))-

~distribution’ when f(x|6) is true. This follows fromvTheorem 6.1 and Section
7 of Shorack (1969) after writing each component of V (6 ) as a 11near com-
blnatlon of order statistics plus an asymptotically negligible remainder. The
resulting 2(6) is quite involved. I hope to investigate whether Z(én)- can
be obtained in usable form.

Example 3. We suspect that a population is described by a member of the
unlvarlate normal family, but the data come to us rounded to the nearest

integer. We must therefore test fit to the discrete family with probability

function
X X+g- 6 x-%_——el
f(x|e) = ¢( —— ) - o —=) x=0, *1, *2,...
e, e,
2 2
Q = {(61,62): —w < 61 < ew, 0 < 92 < w }

where ¢ is the standard normal df. This problem is not uncommon in survey .
data when respondents give numerical replies. An example appears in Carlson
(1975), where the data are predictions of future price index levels by busi-

ness economists.

The unknown parameters 91 and 6 are not the mean and standard deviation

of f(x]e), and X,s are not consistent estimators of 61, 2. The MLE
en = (eln’ ezn) can be found as the solution of the log-likelihood equations
X, +% - 0, X, - % - 8,
,z,.<P( 5 ) - 9( 5 )
=0
X. +% -0 X. - % -8
i=1 2" e TN
e ) - e )
2 _ 2
(3.4
| X, +% -9 X; =% - 8,
n (X1+2 'el) (P( 62 )" (X - '61) (P( 62 )
) . I
i=1 X3tz -0 - 270
¢ ( 5 } - 9 5 )
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Qhere @,® are the standard normal pdf and df. Solution of these equations,
computation of J(én),.computation of B(én) for fixed cells having boundaries
at half-integer points, and finally computation of the Rao-Robson statistic
Rn is an exercise in computer usage, made easier by library routines for ‘
evaluation of 9¢. tThere are some preliminary theoretical problems involving
the équations (3.4). It appears that they may have multiple roots for small
n. I do not know if practical problems will arise from this.)

The Pe#rson statistic offers considerable computational advantages here.
Though the equations (2.2) here differ in computationalvcomplexify from (3.4)
~only in having M rather thén n terms, thaF and the relative simplicity of the
Pearson sum of squares are clear advantages. The Pearsoﬁ statistic is still
a defensible choice in many problems. Turning to Carlson's data, we do
encounter a difficulty (in addition to probable loss of power relative to Rn).
In 25 of his 14075amp1es, the data led him to use only 3 cells. While Rn
remains applicable with the x2(2) distribution, Pn cannot be used. Carlson
used a very rough approximation, estimating the parameters gy X and s and
using critical points for the Watson-Roy random cell version of Pn(én). If
would be interesting to reassess his data using Rn or (leaving out 25 samples)

even P_.
n
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