N

NOTATION FOR MARKOVIAN SYSTEMS

by

Winfried K. Grassmann
University of Saskatchewan
and Purdue University

Department of Statistics
Division of Mathematical Sciences .
Mimeograph Series #456

July 1976

-

Notation for Markovian Systems.

Winfried K. Grassmann, University of Saskatchewan.
Key words: Queueing, Erlang queues, Queueing systems, integer programming.

Abstract: This paper gives a concise notation to describe Markovian systems.
The application is explained for the example of parallel queues and
for two cases of Erlang queues. The translation of the notation.into
a transition matrix is also shown.
The.notatiqnlhas a similarity with integer programming, which can
bé exploited, both when formulating systems with the notation and when

translating it to the transition matrix.

l. Introduction

In queueing theory; there used to be a strong tendency to investigate
each model by a tallor made method. There is a theory for sequential
queues, a theory for parallel queues, a theory for queueing networks, etc.

Recently, several authors have tried to overcome this specialization
and have proposed models that can be applied in a great number of different
queueing situations and possibly other areas.

Specifically, it turns out thatva great number of queueing problems
are in fact Markov processes. A Markovian queue, e.g. ie by definition a
Markov process, but so are all Erlang queues. Also, systems of Markovian
queues, such as parallel queues, sequential queues etc. are Markov processes.
This approach is also usefuikbecause it allows to investigate systems which
are not queueing systems such as inventory systems. They, too, are often
Markov processes.

There is a great number of nice theories about Markov processes.
However, before one can apply these theories, a great number of problems
have to be overcome.

The first, aﬁd major problem, is the curse of dimensionality. Most
systems give rise to multidimensional Markov processes, and the number of
states tends to increase with the power of the d1men51on. It is for thlS
‘reason that Markov processes modelling systems usually have an extremely
high number of states, say 1000 and over. |

The transition matrix of a Markov process with 1000 states has
apparently 10002 = one million entries.

%o find all these entries by hand is 1mp0551b1e, and programs

generating the matrices have to be developed. There are several approaches

3 3 3 - . '
in this direction [5,10]. The next problem is then to find transient or

steady state probabilities, and the last step is to summarize these

"probabilities by averages, variances and whatever other measures are required.

This papér proposes now a very general notation‘to describe‘Markovian
systems, which can be u;ed as input for a matrix generator. It also
dévelops an efficient matrix generator. The paper does not contain any
information how to derive transient and steady state probabilitiés since
this is done elsewheré [3,6,8,10]. Also, the calculation of performance
measures is not discussed.

‘The notation proposed resembles the one proposed'By Irani [7], though it
was creﬁted independently by us. The matrik generatbf proposed is a
backtrécking algorithm which is very efficient for enumerations [2,9].

Though the work was originally used for a general program analysing
transient queues (4), the results of this paper should bé applicable to a

—~—

much wider area.

2. Systems and their mathematical description

In this paper, any multidimensional stochastic process is called system.
In other words: For each time t, a system can be described by a set of random
variables Xl, X2,...,Xd. The d-tupel X1’X2""’xd will be denoted by X and will
be called the state of the system. If, at a certain point in time, all Xi
assume certain values X;n? We say state m is realized. .m is thus the d-tupel
Xim® Xop? e X4 In some formulae, both X and m wi;i be used in place of a
column vector. However, this ﬁsage should always be obvious from the context.

For our purposes, it is assumed that all Xi can oniy assume the values
0,1,2.., . The set of all states is called sample space and denoted by DO'

At this point, it might be useful to introduce an example:

Let there be a system that consists of several interrelated entities,
called subsystems. Dependiﬁg on the application, thesé subsystems may be
queues, inventories, sub-populations, etc. Each subsystem contains Xi elements.
The elements may be customers waiting for service, units.in inventories,
individuals of a certain species, etc. ; |

The states of any system will change. In the syétem described above,
state changes ﬁay be caused by arrivals to the system, departures from the
System, elements changing the subsystem they are in, etc.

Any change of the system from one state to another is called a transition.
Thé,transitions, in turn, are partioned into groups of.tiansitions having
similar properties. These sets of transitions are called events. An event k
may e.g. be an arrival at subsystem Xj because all such érrivals have the common

jproperty of inéreaSing Xj by 1. Other events might be a departure from

- subsystem i, a switch from subsystem i to subsystem j, etc. There are no
specific rules how to partition transitions into events,'but the problem on
hand usually suggests a specific set of events. |

For éach event k, there is an interevent time T .’.The rate of event k

k

is defined as:

4

R = VET).

The rate may or may not depend on the state X. Henceforth, it will be

assumed that the system is Markovian. This implies that all T, follow

k
an exponential distribution.
Each event has a predictable effect. In particular, if m = X m?

x2m""’xdm is the state before event k occurs, the state after event k

has occurred equals with probability 1:

n=fm.=f,Mm, f2k(m),...,fdk(m).

State m, the state before event k, will be called originating state, whereas
state n is the déstinating state.
Any event_k.éan only occur when certain conditions are met. These
conditions are df two kinds:\namely explicit and implicit:
Any event k éan only occur if both originating statf and destinating
state are part of the sample space DO' These conditions are the implicit
conditions. ' An example of an implicit condition is e.g. the condition that !
there can be nb departure from subsystem j if Xj = xjm = 0, since the Xj of
the destinating state would become negative otherwise. All states meeting
the implicit cqnditions form a set Di, named the implicif set of event k.
’ Some conditiéhs have to be stated explicitly and are.therefore called
explicit conditions. As an éxample, suppose arrivals in Subsystem j can
only occur if Xj;? Xi, 1;1,2,...,d, i#j. Such may e.g;:be the case when the
':isubsystems represeﬁp parallel queues in front of a coﬁﬁtér, and all arrivals
join the shortest queue. Xj ?.Xi would then be an explicit condition of event k.
The set of all d-tupels X with-integer components éatisfying the explicit
coﬂditions from the'éxplicit set of event k, called Di. 55 may exceed the

sample space Do.

There are not necessarily any explicit conditions. 'In this case, DE

includes all integer d-tupels,

The event sét of event k, Dk’ is defined as:
'Dk_= Di n DE.
Clearly, points of this intersection satisfy all expliéit and implicit
conditions.

| Summing up, one can characterize a system with K eveﬁts by the following
expression B:

: E
B = [\ (X),£(X), D, X D, k=1,2,...,K].

B, together with the present state X=m allows, at leASt in principle, to find
for any future moment the probability that the system.is‘in state n. As
Irani'(7) has shown, B actually defines the transition matrix of a continuous
Markov process.with the state space DO. The reverse'isialso true, at least if
D, is finite, as will bd shown later. ¢
" For our discussions, B will be restricted as follows.
1) Do isvfipite, i.e. it dnly contains a'finitevnumber of sample points.
-2) lThe conditions defining DO are assumed to be 1inear inequalities,
which can be written in matrix form as:
cx<b * - W
Hefe, C is a matrix, and b a column vector. |

3) The exp11c1t condltlons of event k are 51m11ar1y assumed to be

11near 1nequa11t1es defined by the matrix Ck and a vector Pk

Ce X < by | - (2)
If there are no explicit conditions, Ck and Ek are zero.

4) f (X), the functlon .mapping the originating state into the
;

'dest1nat1ng state, can be expressed as:

O = H X+ g, | b @

X % 6
There, Hk is-a d by d matrix, and gy is a column vector: In almost all cases
considered by us, Hk turned out to be the identity matrix.
Under the restrictions stated, B can be completely:specified by
Ak(g), Hk, gk, Q<’Ek’ k=1,2,...,K, C, b. The next two éections show how to
find these vectors and functions in a number of concreté cases. It will turn

out that the notation is not only extremely compact, butﬁalso extremely flexible.

3. Parallel queues with jockeying

Suppose, the B of the following problem has to be found:

In front of 3 ticket counters, there are 3 different queues. Customers
arrive at a rate X and always join the shortes* queue. 1In case of a tie,
they prefer queue 1 over queue 2 and queue 3, and queue 2 over queue 3.

No arrivals occur if (a) one queue exceeds 10 customers or (b) if the
number of customers in all three queues together exceedsils. These
restrictions aré imposed to keep the sample space fihité.-

Once in line, customers may switch queues. Specifi;ally, if any queue
is 5 or more customers shorter than the queue with tﬁe longest line, the
last customer of the longest line switches. Tﬁis insures that the differences
between the queues cannot fg; any length of time exceed 4. In case of a tie
between the two longest queues, the customer of the cl&se queue jockeys.

It is assumed that queue 1 and 2. are closest, where as queue 1 and 3 are
farthest apart. N

To find B fdr that problem, let Xi be the number of customers in queue i.
Clearly, Xi 3_0, in accordance with the model. The state space D0 is further
defined by the following conditions:

1) Each queue must be less than or equal to 10, i.e:

| Xy < 10 i=1,2,3 o (4)
~ 2) The total number of customers in all three queues is less than or
equal to 15, i.e.: | |

+ X, < 15 |) | (5)

xl + x2 < |
3) The difference between two queue is less than or equal to 4, i.e:
v . o
X; - X5 <4, i,j = 1,2,3, i$j - - (6)

The inequalities (4) - (6) taken together form system (1).
All'possible'transitions can be partitioned into K = 12 events, which

are as follows:

Let event 1 be the arrival at queue 1. Clearly:
N W -

+ 1, X,, X

£, (XX5sX5) = X 2> X3

1

The last two inequalities represent the explicit conditions. They indicate
that customers join queue 1, unless it exceeds the other queues. To bring -

these conditions into the form given by (2), they must be written:

x1 - X2 <0
Xl -X3 i 0 -

The implicit conditions, such as xl + X2 + X $ 15 need not be mentloned
i

because they can be derived from f (X) and D0 (When x1 + X2 + X3 = 15,

an arrival would bring the total to 16 and is thus impossible).

Event number 2 is an arrival in the second queue. One has:

N

A

,fz (xl,xz,xs) = XXy ¢ 1X,

The last two inequalities, (they indicate that arrivals'join queue 2, if

queue 2 is shorter than queue 1, and if it is not longer than queue 3),

can be written as: .
i
-Xl x2 < -1
xz-x3 < 0

Event number 3 is an arrival in the third queue. One has:

»

Ay (X =
f3 (Xl »X) X XZ,X3 1
x3 f‘xl or —x1 + X3 < -1
Xs < X2 or -X2'+ x3 <-1

Event number 4 is a departure from queue 1. One finds:
Ay X) = “1

f4 (X1 X) = X1 1,X2,X3 (7)

Event 4 has no explicit conditions. Xl > 1 is implied by equation (6) ?nd
Xl > 0. Furthermore, relation (6) and (7) imply:
(x1-1)-xj <4, §=2,3.

However, these 1mp11c1t~cond1t10ns need not be mentloned

Event 4 and 5 represent departures from queue 2 and queue 3, respectlvely.
These events are identical with event 3, except that A (m) = My _3e k = 4,5,
and X1 in equation (7) has to be replaced by X2, respectlvely, XS.

Events 6,7,8,9,10, 11 and 12 are events describing Jockeylng The
problem as formulated above implies that jockeying can occur only following
a departure. For this reason, one combines the effect of the departure with
the effect of the switch of the queue. This means that the queue having

the departure loses one customer because his service is completed, and gains

one customer because of jockeying, giving a net change of zero. The longest

queue, however, has a net loss of 1. These remarks should enable the reader
to derive the following relations for event 6, which describes a departure.

,frou server 1, followed by a switch from queue 2:

-

Sk
- A (X) = uy
£o(X),X,0Xg) = X)X o1 X,
X, =X, +4)

2° %N

B Y P R

~ There, the explicit condition indicates that foIlowing a departure, a

switch from queue 2 to queue 1 occurs if X2 is four elements longer than
queue 1 before the departure. To bring the explicit condition into the

form required by equation (2), it is written:

x1 ;lxz :.4

The remaining events will no longer be discussed in detail. Rather, we

describe B by the'following table:

Table 1: B for parallel queues

VEvent , gz rate Di

1 - 1,6,0_ | AT XX, <0, X)Xy < 0
‘2 ,05;,0- AKXy <1, KX, < o.z_{

3 d,o,; { Qxl +Xg <ol X, 4 X, < -1
4 rfl,b,o | Hy

3 0?71,6 M,

6 0,0 -1 g o

7 0,41,0 My -Xl + x2'5_4, X;-X, :.;4_,

8 | 0;6;51-- CoHp X+ Xp <4, XXy 5{-4 xz-x3 -1 .
. _»-1,6;0' ._ nz : X,-X, <-4, X, + xz_f.f41 ' _
0 0,011 ny X, + Xg <4, xz.x3 5_-4;'}x1'f ks < -1
n o,s;%o “3: + xz-x3 <4 XX :i;§ "

12 ’ ;i,o;d-' u37 +X15X3 <4 -X1 + x3 51;4.;i1+x2'5_1
State space o ;-xl :_10, x§ < 10, 'xs < 10 x1 + X, + xslg_ls
D |] X,X, <8, X -X, <4, XX} <4, XX <4

o T b B b R 1 TR e B

XX, < a, Xg-X, < 4 :

S P N

10

11

This table contains gi, the amount by which E.increases: Thus, for event 1,
g: = 1,0,0, because X1 increases by 1,_X2 by 0 and X3 by zero. For the other
. events, g{ has to be interpreted in a_simila; way. .

For event 1 t6_7, the table only summarizes what waszekplained before.
Event 8 givesié»sﬁitch from queue 3 to queue 1. This cén‘only happen if

Xs ='x1 + 4 and X, $ X; + 4, or, what is the same, X, < X,. Hence the

2 3°
condition XZ-XS,:-'I' With these remarks, events 9, io, 11 and 12 should
become clear as well. At the bottom of the table, there are, finally, all
inequalities defining D, - ‘.
It is clear that all the information given by table 1 éan easily be
. converted to form-compufer input. We also note that>the ma;hema;ical

description of the system as given by table 1 is considerably shorter

than the English_text describing the same problem.

12
4. Erlang queues

“r

The same ideas used in the previous section should allow the reader to
- formulate a variety of other queueing problems, including queues with feedback;
sequential queues and even queueing networks. Howevef,vsome miﬁor difficulties
arise when anal}sing queues witthrlang service times. By formulating two
diffefent Erlang queues, namely the M/Er/S queue with homdgeneous servers and
the M/Er/Z queue with heterogeneous servers, it is shown how to resolve these

difficulties. Incidentally, the same techniques can be applied to formulate

Y

priority queues.
The state space of the homogeneous M/Er/S queue is characterized by the

random variables XO,XI,Xz,...,Xr*l. Xr+1 is the queue length, excluding the

elements being served, and xO’xl’XZ""’xr are the number of servers having
still 0,1,2,...,r phases to do until the service of their customer is complete,
The inequalities détermining D0 are now:

1) There are a total of s servers. Therefore:

X +X +...+X_<s . o (7

oM r=
2) In order to keép D0 finite, let xr+1 be restricted to 20, or

i Xr;l < 20.

The events-aré, essentialiy, arrivals, completidp_of a phase, and
departureé, However, it will turn out that some arrivals_and departures
‘are special caSés, forming their own events.

1) Event number 1 is an arrival. Arrivals apparénfly increase

X

rel? hence:

fl(z) E,XO’XI""’xr'xr+1 + 1.

13
If the arrival rate is A, one has more over.

M -

If X0'> 0, the arrival will not increase Xr+1, but Xr. This situation
is best dealt with by introducing a separate even. For this reason, we
impose an explicit condition:

X0_= 0.

2) When XO > 0 while an arrival occurs, one server becomes occupied,
i.e. instead of zero phases, this server starts with r phases again,

Hence.

fz(i) = xo-l, xl,n‘.,xr+1, xr*la

Since all Xi, including XO must be non-negative, there are no explicit
conditions connected with this event. The rate of the event is again:
R ® = .
3) Events 1 + i, i=2,...,r are completion of phases not affecting

~ the queue length X Their effect is:

r+l*®

o @) = XXX 50 X+ 1, XA, X,

1+i X ,X

141277720 Tl

To calculate the réte of the events 1+i, 1=2,...,r, suppose each server
has a service rate of u, or, what is the same, the rate of sefving one phase
s, Since there are X, servers with i phases to go, event 1+i has a rate:

(X) Xiru, 1=2,...,r

All these events have no explicit condition.

14

4) The npext event is a departure followed by the start of the service

from the queue. One has:

£, = XgoXp=1,Xps 0o X #1,X 2]

Ay ® = X;Tu

This event has no explicit condition.
5) The fifth event is departure while Xr+1 = 0. This event can be

described as:

fr,.(X) = Xg*1Xp =1, Xp X X

A3+r(§) = Xlru
r+l 0. e

To sum up, the M/Er/S queue can be characterized by 3+r events.
i .

As a last example, consider the M/Er/Z queue with the first server having
service rate ul_and the second, Hyo Furthermore, it is assumed that (other
things being equal) a customer will prefer server 1. For this problem, the

State space is described by the 3 random variables Xl,x2 and'XS. X3 is the

queue length, excluding the elements being served, X1 is the number of phases
server 1 has to do until service is completed, and X2 is éame thing for

server 2. The restrictipns defining D0 are now, provided X3 is limited

to 20:

20X, >X ')

20 X, > X, | T S (10)

15

Relation (9) makes sure'that Xl can only be zero if X3 is zero and relation
(10) gives a similar restriction for Xz. In equalities of type (9) and (10)
. are frequently used in integer programming, especially'in connection with
the fixed charge problem. There is thus a connection bgtween integer
programming and the notation presented here. |

Having defined D,, the formulation of the events is relétively easy.

0,
The events are:
1) An arrival increases XS' One has:
f1(§) = XI’XZ’X3+1'

If A is the arrival raté, one finds:

A =L

There are no explicit conditions for this event.

"

2) An arrival occurs while server 1 is idle (X1 = 0). One has:

fz(z) = X1+r,X2,X3
12(5),=)
There are no explicit conditions, because X1 < r implies X1+r <ror X1 = 0,

~ 3) - An arrival occurs while server 2 is idle, but server 1 is not. Then:

£,(X) = X, X+, X

2 3

Ag(X) = A

Xl > 0.

The condition X1 > 0 is necessary because if X1 = 0, the'arrival prefers
server 1.

L3 ' ~

~ 4) Server one completes a phase, but no new service starts, either

becaﬁse fhe line'is émpty (X3 = 0), or becausé there are.still more phases

. to go. Then: ‘ !

1

16

£,(0 = X -1,X,,X;

: C ¥
5) Server two completes a phase, but no new service starts. Then:

£ (X) = X;,X,-1,X

1272 3

Ag(X) = ru,.

6) The next customer enters service at server 1:

f6(£) xl'l + k’XZ’xs-l v v

Ao (X) Ty -

7) The next customer enters service of server 2, i.e:

~

X,-1 + k,X,-1 1

£(0) = XX, 3

t 4

The reader may check that all conditions of events 4 to 7 are implied

conditions which need not be stated. B for the M/Er/2 queue with hetrogeneous
servers is thus fully described. §
The limited space prevents us to describe more caseé, but wé hope that
the 3 examples presented give the reader some idea of thé-power of the
notation. Theﬁhext section gives an algorithm to convert B into a transition

. matfix, using again ideas developed for solving integer pfogramming problems.

- -

17 .

The translation _ 7
For the purpose of translation, one needs Dk the set of all points
satisfying all 1mp11cit and explicit conditions of event k. The implicit
conditions are:
CXxb (11)
C HX < b-Cg o (12)
Relation (11) is just relation (1). Relation (12) can:be obtained from
(1) and (3), using the fact that the fk(z) must also Satisfy (1). This
gives:

CH = CH X+g]=CH X+cCg sb.

Deducfing Cgk from both sides of this inequality gives.(12). (11) and (12)
together with (2),.define Dk' The new system has again the form of relation

(2), i.e:

__2 | S (13)
There, C! = [C, C H. ,C]T and b' = [b,b-Cg, b 1"
» k » Plk, k — gk’ __k .

In the case that Hk is the identity matrix, (which was true in all
examples dlscussed here), relation (11) and (12) can be comblned to give:

CX<b . | o (14)

* *
Here, C is the same matrix as in (11), whereas b = [bv] is found as:

x d
bv = min (bv, bv - L ¢

o | o2 Cvifa)-

Here, bv is thg'vgh_componeht of b and 8ki the iEh_coﬁpénent of g+ The c,i are
similarly the entries of c.
Inequality (14) implies both (li) and (12) for the following reason:
If Hk is the identity matrix, the left hand sides of (il){and (12) are b and §7Cgk,-’

respectively. Now, take the vth inequality of (11) and compare it with

the vth inequality of (12). This gives:

18

n ™A
(g}

vi 71 v cvigki'

d
X, <b -z
1) i=1
It is obviously sufficient to retain only the inequqlitj with the lower right

. » - *
hand side, which is bv' To include this case by relation (13), define C' and b'
for Hk=I as: ' ' '

T
|-

Ck = [C,Ck]

e _ * T
P_ = [_tl sgk] .

As was mentioned earlier, events are sets of transitions. Formally

transition number h can be expressed as
Ty = [mponp,apls
There, m is the originating state, n, the destinating state, and ah the rate.
If transition h belongs to event k, one clearly has:
Ty = Do £ (m) 2 ()], o (15)
The list of all transitions is called the transition list of the system.
‘The list of the transitions of event k is called the transition list of event k.

The transition list of the system is easily converted into a transition

matrix; To see that, define'
" %I o U= [h|m =mn =n]
- hey
- and

The matrix A = [amn] is the transition matrix.

19

The transition list of event k can be obtained by enumerating all m
satisfying (13) and calculating Th according to (15). The union of the
transition lists of all events forms then the transition’list of the system,
which can then b; transformed into a transition ﬁatrix. .However, as
pointed out by Hiller [6], it is preferable to work with the transition list
than with the transition matrix.

Incidentally, any transition matrix can trivially be transformed into a
transition list, and any transition list is really the B of the system. To

see this, take the hth non zero entry of A. Suppose this entry is in row m

column nh, and its value is a n = 3 Clearly, this entry defines a
' h)

transition. Next, each transition h can be thought to form a separate event,
with Dh consisting of m only, and fh(}) = nh,kh(EJ = ah.

To enumerate all m € Dk’ it seems appropriate to use a backtrack - -
algofithm. As - shown by Whitehead [9] and Golomb [2], backtrack
algorithms are'gxtremely efficient to do such an enumeration.

The essential idea of the algorithm for enumerating all m is now as

follows:

Supﬁoéé, there are upper and lower bounds for each Xi, i.e:

Such bounds can-normally be found from inspection of eQuétion (13). Also,
Fourier o [1] has given a systematic methoa to find such
bounds . . : - ’ |

As the next step, one finds a sequence of bounds gg;ahd ;g, given %d

assumes the value xj for j < i:

given X. = x., j < i, i=1,2,...d.
) J -

- Hence:

20

These bounds can be found in a way such that the bound on Xd, ;: and ;3 are
tight in the sense that only points of Dk satisfy these bounds and have

Xj = xj, j < d,at the same time.
°L °L
= X

' _ L,
One now can find a first point by.settlng X1 = X, Xz = x2,...f Xi i

etc. Whenever a new lower bound xg is calculated, it is compared with the
Au ~ A
upper bound X As soon as x? > xg, the points starting with the coordinates

A

x?, j < i cannot belong to Dk and can be disregarded.__As soon as this happens,
one or several backtracks are started. By this, we mean that X -1 is replaced
by X1 1 1, and new lower and upper bounds are calculated, using the new

value for xi-l' In this way, one eventually finds coordinates Xl = X,

T “u
X2 = xz,...,xd_1 = X5.1° and upper and lower bounds for Xd, namely X3 and

~ ~

xg. Since these last bounds are tight, one finds xg - xa + 1 points of Dy
. L4 : -

as follows: : _
N _ AL *u
=X Xp = peeees Xgp = Xg_paXg S Xy < x3

(16)
These points are easily enumerated. Once this is done, one backtracks again.
One also backtracks if xB > xg, i.e. if there is no point satisfying (16).

In this way, one eventually enumerates all points of mﬁ of Dk’ and the
tran51t10ns can be, evaluated readily, using (15).

The xg and xg can be evaluated as follows: Let cvj be the elements of

Ci and bv the elements of b'. Then, one can write equation (13) as:

d i
I ¢ .X. <hb
=1 Vit -~ v,

c..X. <b_-I c.x.- I ¢ X.
vi®i - v T,

. 21
,!g
+ - + - ’
Now, let cvj =.cvj - cvj s cvj’ cvj > 0, and use the»faqt that Xj has the upper
‘ u L
and lower bound xj and xj.
Then:
i-1 d ' :
+ L - u
C3X: <b_-I ¢ .x. - L (c.x. -c. X:)
viTi - v j=1 vitj =i+l vi©j vj *j

If Svi is the right-hand side of this expression, one has:

c .X. <8

vi'i — “vi-

For ch > 0, it follows:

Xy 28yifey

Hence, one finds as ﬁpper bound:

u . : —
X. =min (S ./¢c .). -
Pl § c .>0 Yl VI;' o - - o

vi
Similarly, one finds as lower bound:

X, = max (s../¢.). |
1 T vi'vi -

vi :
; . o
The S_. can be calculated recursively: '

vi
| . i-1 S d o .
- 8, = b, - I ¢ iX: - I [cC.x% - ¢ .x]
=1 VIJ j=is+l J] Vil
- - + L - u
B T SLI IV U an
Of course, S . equals:
: E vl d
= - + - = u
Svl --bv .E (cvjxj cvjxj)'
- J_z
&
Whenever i is increased, all Svi can be wpdated, using equation (17).

The same equation allows to find Svill from SVi when backtracking is to be

done.

¥ "

22
f

There are two reasons why this algorithm should bé extremely efficient:
First of all, thg Svi’ and with them, the ;i andv;? can be found very
efficiently, and éhanged easily when backtracking., Secondly, because of (16),
one normally §btains an entire group of solutions at once. |

As with other backtrack algorithms, the ordér of the_.xi is not irrelgvant.
Iﬁ other words: Though the problem as such would not be affected by renumbering]
fhe Xi, the efficiéncy of the algorithm would change. G}nerally, it is
suggested [2] to determine the Xi such that Xl has the smallest range of
possible values, X2 the second smallest, etc, until Xd has the larggst.
This procedure | can also be supported by equation (16).

VT

| - .

23

. *
6. Conclusions.

The article presentéd a notation which allows to describe any finite-state
Markovian system, The basic entities of the notation are the events, which
can be described by an effect-function, a rate, and a set of conditions.

The notation is much more concise than the English language. Furthermore,
the functions used to describe the system are in most cases linear and can
.thus be fully.specified by vectors and matrices. Because vectors and
matrlces can be used as computer input, the notatlon is extremely su1tab1e
fbr computer programs. However, it should also be su1tab1e for theoretlcal
1nvest1gat10ns, especially for classifying queueing problems. Finally it
might help bridging the gap between practitioner and theorist because the
notation gives a language é;éily mastered by both practitioner and theorist.

When the notation is used as input for computer programs, it is essential
to convert it to a transition matrix. This translation can be done
efficiently by a specia}ly designed backtrack algorithm.

It should be mentioned here‘that we wrote a progfam-tﬁat made use of
these concepts.presentéd in this paper. This program was used as a teaching
tool in an undefgraduate class. It was a great success because it allowed
-the students to solve non-standard queueing problemé they could not have
.solved otherwise. It has to be admitted, though, that the mathematical

- education of these students was limited.

1.

3.

5.

6.

10.

24

~ References

G. B. Dantzigf Linear Programming and Extensioﬁs, Princeton University
Press 1963, pp. 84-85. |

S. Golomb, L. Baumert, "Backtrack Programming", Journal of the ACM

12 (1965), pp. 516-524, | |

W. K. GraSsmann, Transient solutions in Markovian ﬁueueing Systems,
Purdue University, Dept. of Statistics, Mimeograph Series #451.

W. K. Grassmann, R. T. Churchman, Users Guide for Transient Solutions
for Queueing Networks, Working Paper, Dept. of tomp. Sciénce, Univ. of
Saskatchewan. . !

G. K. Grace, T. K. Bye;;: An Analysis of a Netwdfk of Finite-Queue,
Multiple-Server Facility, Dept. of Computer Science, University of
Missouri, Rolla,

F. S. Hillier; R. W. Boling. Finite Queues in Seriés, Operations

Research, 15, pp. 286-303, 1971.

K. B. Irani, V. L. Wallace; On Network Linguistics and the Conversational

’ Desigﬁ of Queueing Networks, Journal of the ACM, Vol. 18, No. 4,

Oct. 1971, pp. 616-629,

V. L. Wallace, R. S. Rosenberg, Markovian Modelé and Numerical Analysjs

of Computer System Behaviour, Proc. AFIPS Spring Joint Computer Conf.

28, 1966, pp. 141-148.

T. S. Whitlock, Modeling Computer Systems with Time-Varying Markov

Chains, University of North Carolina, Chapel Hill, 1973. $

