Reprinted from:

STATISTICAL DECISION THEORY AND RELATED TOPICS, II

ACADEMIC PRESS, INC.
NEW YORK SAN FRANCISCO

LONDON

#455

LARGE SAMPLE PROPERTIES OF NEAREST NEIGHBOR DENSITY FUNCTION ESTIMATORS

By David S. Moore* and James W. Yackel
Purdue University

- 1. Introduction. Let X_1, X_2, \ldots be iid random variables having unknown density function f with respect to Lebesgue measure λ on Euclidean p-space R^p . We wish to estimate f(z) for a given z. Let $\{k(n)\}$ be a sequence of positive integers satisfying
- (1.1) $k(n) \rightarrow \infty$ and $k(n)/n \rightarrow 0$ as $n \rightarrow \infty$.

Define R(n) as the distance from z to the k(n)th closest of X_1,\ldots,X_n , distance being measured in a norm $||\cdot||$ on R^p which generates the usual topology. Denote by S(r) the "sphere"

$$S(r) = \{x \text{ in } R^p : ||x-z|| \le r\}.$$

A nearest neighbor estimator of f(z) is

$$g_n(z) = \frac{k(n)/n}{\lambda \{S(R(n))\}}$$

Note that $g_n(z)$ is simply empiric measure divided by Lebesgue measure for the region S(R(n)). This estimator is essentially due to Fix and Hodges [2], and was explicitly introduced and studied by Loftsgaarden and Quesenberry [5]. These and subsequent authors used the Euclidean norm, but for p>1 other norms may be useful (e.g., squares about z rather than spheres are obtained from the "maximum component" norm), and proofs are unaffected by this generality. We have suppressed the dependence on z of R(n) and S(r), since in this paper we consider only results for a fixed z in R^p .

Loftsgaarden and Quesenberry proved consistency in probability of $g_n(z)$. Wagner [8] established almost sure (a.s.)

^{*}Research of this author was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. 72-2350 B.

consistency under a condition equivalent to $k(n)/\log n \to \infty$. For the case p=1, Moore and Henrichon [6] proved a.s. uniform consistency when $k(n)/\log n \to \infty$. (They state only convergence in probability, but an application of the Borel-Cantelli lemma shows that their proof yields a.s. convergence.) The local control of the estimation process which is a feature of the nearest neighbor estimator has been popular with practitioners, who have used g_n in discrimination and pattern recognition problems.

Sections 2 and 3 of this paper are devoted to g_n . In Section 2 we establish a.s. consistency under the condition $k(n)/\log\log n \to \infty$. Since R(n) is a sample k(n)/n-tile, the study by Kiefer [3] of sample p_n -tiles for $p_n \to 0$ provides the tools needed for our result. What is more, it follows from Kiefer's work that $k(n)/\log\log n \to \infty$ is the weakest condition on $\{k(n)\}$ satisfying (1.1) which guarantees a.s. convergence of $g_n(z)$ to f(z). Section 3 proves asymptotic normality of $g_n(z)$. The proof uses the standard device of restating an event defined in terms of an order statistic as an event given in terms of a binomial random variable. The limiting distribution derived in Section 3 is required in the more general study in Section 4.

Recently, the authors [7] observed that $\mathbf{g}_{\mathbf{n}}$ could be viewed as the uniform kernel case of the general nearest neighbor density function estimator defined by

mus de minimum de sum

$$f_n(z) = \frac{1}{nR(n)^p} \sum_{i=1}^n K(\frac{z-X_i}{R(n)})$$

where

(1.2) $K(u) \text{ is a bounded density on } \mathbb{R}^{p}$ K(u) = 0 for ||u|| > 1

Here the norm $||\cdot||$ must satisfy the additional restriction that

$$\lambda\{S(r)\} = cr^p$$
 where $c = \lambda\{S(1)\}.$

This is the case for, e.g., the usual Euclidean norm and the maximum-component norm.

The estimator $\mathbf{f}_{\mathbf{n}}$ is the analog of the Rosenblatt-Parzen

in a constitution of

narah perentah dari 🖈 Panjeran dari perentah pe

class of bandwidth estimators defined by

$$\hat{f}_n(z) = \frac{1}{nr(n)^p} \sum_{i=1}^n K(\frac{z-X_i}{r(n)})$$

where $\{r(n)\}$ is a sequence of positive bandwidths satisfying $r(n) \rightarrow 0$ and $nr(n)^p \rightarrow \infty$ as $n \rightarrow \infty$. In our earlier paper we showed, roughly speaking, that any consistency theorem (in probability or almost sure, pointwise or uniform) true for \hat{f}_n remains true for f_n having the same kernel K and $k(n) \sim \alpha n r(n)^p$ for some α > 0. This allows the large literature on consistency of \hat{f}_n to be restated for f_n . See [7] for details and qualifications. Here we mention only that either by this consistencyequivalence result or directly from Kiefer's work it follows that the uniform kernel case of \hat{f}_n is a.s. consistent when $nr(n)^p/\log \log n \rightarrow \infty$. This is the analog of the result of Section 2 below, and is similarly best possible and stronger than known results for general kernels. Thus Section 2 sets a goal for work on a.s. consistency of \hat{f}_n or f_n , and the results of [7] show that attaining this goal for either of f_n or f_n is sufficient to reach it for both.

Sections 4 and 5 concern the general nearest neighbor estimator \mathbf{f}_n . Section 4 establishes asymptotic normality. It is noteworthy that \mathbf{f}_n does <u>not</u> have the same asymptotic variance as the matching bandwidth estimator $\hat{\mathbf{f}}_n$. The nearest neighbor method is more efficient than the bandwidth method when $\mathbf{f}(z)$ is small, as intuition might suggest. Section 5 shows that weak consistency of \mathbf{f}_n implies mean consistency, a supplement to the consistency results in [7].

2. Almost sure consistency, uniform kernel case. We make use of a lemma which extracts a very small portion of Theorem 6 of Kiefer [3].

LEMMA 1. Let Z_n be a sample α_n -tile from n iid random variables uniformly distributed on (0,1). If $\alpha_n \to 0$ and $n\alpha_n/\log\log n \to \infty$, then $Z_n/\alpha_n \to 1$ a.s.

Lemma 1 is applied to $g_n(z)$ by noting that if

(2.1)
$$H(r) = P[||X-z|| \le r] = \int_{S(r)} f(x) dx$$

then H(R(n)) is the sample k(n)/n-tile from n iid uniform random variables. Here is our a.s. consistency result.

THEOREM 1. Let f be continuous at z, and let $\{k(n)\}$ satisfy (1.1) and $k(n)/\log\log n \to \infty$. Then $g_n(z) \to f(z)$ a.s.

PROOF. Lemma 1 states that

$$\frac{k(n)/n}{H(R(n))} \to 1 \quad a.s.$$

from which it follows that

$$(2.3) H(R(n)) \rightarrow 0 a.s.$$

We claim that

(2.4)
$$R(n) \rightarrow r_0 = \inf\{r: H(r) > 0\}$$
 a.s.

For clearly $R(n) \ge r_0$ a.s. for each n, and if for some $\varepsilon > 0$, $R(n) \ge r_0 + \varepsilon$ for a sequence of n at a sample point ω , then $H(R(n)) \ge H(r_0 + \varepsilon) > 0$ for these n at ω . By (2.3), this can occur only on a set of ω having probability zero.

Applying the mean value theorem for integrals to (2.1), there exist $\boldsymbol{\lambda}_n$ satisfying

$$\inf_{S(R(n))} f(x) \le \lambda_n \le \sup_{S(R(n))} f(x)$$

such that

(2.5)
$$H(R(n)) = \lambda_n \lambda \{S(R(n))\}.$$

With (2.2), (2.5) implies that $g_n(z)/\lambda_n \to 1$ a.s. If f(z) > 0, then by (2.4), $R(n) \to 0$ a.s. and by continuity of f at z, $\lambda_n \to f(z)$ a.s. If f(z) = 0, then (2.3), (2.4) and (2.5) imply that $\lambda_n \to 0$ a.s. In either case, $g_n(z) \to f(z)$ a.s.

The proof of Theorem 1 amounts to observing that

$$g_n(z) \sim \frac{k(n)/n}{H(R(n))} f(z) = a_n f(z)$$

and applying (2.2) to a_n . From Kiefer's Theorem 6 it follows also that if $k(n)/\log\log n \to v$, $0 < v < \infty$, then $\varliminf a_n$ and

are in the second of the second

 $\overline{\lim}$ a_n are unequal, finite and positive. If $k(n)/\log\log n \to 0$, then $\overline{\lim}$ $a_n = \infty$ and $\underline{\lim}$ $a_n = 0$. Thus $g_n(z)$ is <u>not</u> a.s. consistent if k(n) increases more slowly than is assumed in Theorem 1. Of course, $g_n(z)$ remains weakly consistent as long as (1.1) holds.

- 3. Asymptotic normality, uniform kernel case. Although the proof in this section is straightforward, both it and the proof of Section 4 require the assumption
- $(3.1) \quad (k(n))^{\frac{1}{2}} |f(z_n) f(z)| \to O(P) \text{ when } ||z_n z|| \le R(n).$

The assumption (3.1) connects $\{k(n)\}$ and the local behavior of f at the point z. It can be restated in more explicit form for specific norms $||\cdot||$. In particular, when f(z) > 0 and either the Euclidean norm or the maximum-component norm is used,

(3.2)
$$\frac{k(n)/n}{cR(n)^p} \rightarrow f(z)(P) \qquad c = \lambda\{S(1)\}$$

(This is just weak consistency as proved in [5]), so then $R(n) = 0_{D}\{(k(n)/n)^{1/p}\}$ and (3.1) is implied by

$$(3.3) \quad (k(n))^{\frac{1}{2}} |f(z_n) - f(z)| \to 0 \text{ when } ||z_n - z|| = 0 \{ (\frac{k(n)}{n})^{1/p} \}.$$

If the p first partial derivatives exist and are bounded near z, (3.3) in turn is satisfied when

$$k(n) = o(n^{2/(p+2)}).$$

THEOREM 2. Let f be continuous at z, f(z) > 0, $\{k(n)\}$ satisfy (1.1), and let (3.1) hold. Then

$$\mathcal{L}\{(k(n))^{\frac{1}{2}}(g_n(z)-f(z))\} \rightarrow N(0,f^2(z))$$

PROOF. As in the proof of Theorem 1, we can write

$$g_n(z) = \frac{k(n)/n}{H(R(n))} f(z_n)$$
 for some z_n in $S(R(n))$.

Now (1.1) and f(z) > 0 are sufficient for $R(n) \rightarrow O(P)$ and $H(R(n))/(k(n)/n) \rightarrow 1$ (P) (see [5]). Therefore from

indiament lines in the

$$\frac{(k(n))^{\frac{1}{2}}}{f(z)} (g_n(z) - f(z)) = (k(n))^{\frac{1}{2}} (\frac{k(n)/n}{H(R(n))} - 1) + (k(n))^{\frac{1}{2}} (\frac{f(z_n)}{f(z)} - 1) \frac{k(n)/n}{H(R(n))}$$

and (3.1), we need only show that

Since H(R(n)) is the k(n)th order statistic of n iid uniform random variables U_1, \ldots, U_n on (0,1),

$$P_{n}(a) = P[(k(n))^{\frac{1}{2}}(\frac{k(n)/n}{H(R(n))} - 1) \le a]$$

$$= P[H(R(n)) \ge \frac{k(n)/n}{1+ak^{-\frac{1}{2}}}]$$

$$= P[B_{n} < k(n)]$$

where B_n is the number of U_1,\ldots,U_n falling below $\pi_n=(k(n)/n)/(1+ak(n)^{-\frac{1}{2}})$ and has the binomial (n,π_n) distribution. By (1.1), $\pi_n\to 0$ and $n\pi_n\to \infty$, so that B_n is asymptotically normal. Writing

1

$$P_n(a) = P\left[\frac{B_n - n\pi_n}{\sigma_n} < \frac{k(n) - n\pi_n}{\sigma_n}\right]$$

where $\sigma_n = [n\pi_n(1-\pi_n)]^{\frac{1}{2}}$, and computing

$$\frac{k(n)-n\pi_n}{\sigma_n} \sim \frac{k(n)-n\pi_n}{(n\pi_n)^{\frac{1}{2}}}$$

$$= a(\frac{k^{\frac{1}{2}}}{a+k^{\frac{1}{2}}})^{\frac{1}{2}} \rightarrow a$$

we obtain $P_n(a) \rightarrow \Phi(a)$, Φ being the standard normal df. This completes the proof.

4. Asymptotic normality, general case. Recall that in order to formulate the general nearest neighbor estimator f_n , we require that the norm $||\cdot||$ satisfy

(4.1)
$$\lambda\{S(r)\} = cr^p \text{ where } c = \lambda\{S(1)\}.$$

In this case, (3.1) is equivalent to the more usable condition (3.3).

THEOREM 3. Let f be continuous at z, f(z) > 0, K(u) satisfy (1.2) and $\{k(n)\}$ satisfy (1.1). Let also (3.3) and (4.1) hold. Then

$$\mathcal{L}\{(k(n))^{\frac{1}{2}}(f_n(z)-f(z))\} \rightarrow N(0,cf^2(z))/K^2(u)du\}$$

The proof will be divided into several parts. First note that in

$$f_n(z) = \frac{1}{nR(n)^p} \sum_{i=1}^n K(\frac{z-X_i}{R(n)})$$

there are exactly k(n)-1 nonzero summands by (1.2), corresponding to the first k(n)-1 order statistics of $||X_i-z||$. Denote by $Y_1, \dots, Y_{k(n)-1}$ the subsequence of X_1, \dots, X_n defined by

$$Y_1 = X_{i_1}$$
 $i_1 = min\{i: ||X_i-z|| < R(n)\}$
 $Y_j = X_{i_j}$ $i_j = min\{i > i_{j-1}: ||X_i-z|| < R(n)\}$

and let $K_{n,i} = K(\frac{z-Y_i}{R(n)})$ be the nonzero summands in f_n . Then the conditional distribution of $Y_1, \ldots, Y_{k(n)-1}$ given R(n) = r is that of k(n)-1 independent observations each having the density function

$$f(y)/P(S(r))$$
 for y in $S(r)$

where

$$P(S(r)) = \int_{S(r)} f(x) dx.$$

Therefore the conditional distribution of $K_1, \ldots, K_{k(n)-1}$ given R(n) = r is that of k(n)-1 iid random variables having mean

$$E(r) = E[K_{i} | R(n) = r] = \int_{S(r)} K(\frac{z-y}{r}) \frac{f(y)}{P(S(r))} dy$$

and variance

$$\sigma^{2}(r) = \int_{S(r)} K^{2}(\frac{z-y}{r}) \frac{f(y)}{P(S(r))} dy - E^{2}(r).$$

By the (vector) change of variables u = (z-y)/r and the mean

value theorem for integrals, we can write

(4.2)
$$E(r) = \frac{\lambda_1 r}{P(S(r))} r^p S(1) K(u) du = \frac{\lambda_1 r}{P(S(r))} r^p$$
$$= \frac{\lambda_1 r}{c\lambda_2 r}$$

and

(4.3)
$$\sigma^{2}(r) = \frac{\lambda_{3,r}}{c\lambda_{2,r}} \int_{S(1)} K^{2}(u) du - \left(\frac{\lambda_{1,r}}{c\lambda_{2,r}}\right)^{2}$$

where

$$\inf_{S(r)} f(x) \leq \lambda_{i,r} \leq \sup_{S(r)} f(x).$$

We first consider the normalized sum

$$Z_n = \sum_{i=1}^{k(n)-1} \frac{K_i - E(R(n))}{(k(n))^{\frac{1}{2}\sigma}(R(n))}$$

LEMMA 2. Under the conditions of Theorem 3, if K(u) is not constant on S(1), then

PROOF. If $F_n(x|r)$ is the conditional df of Z_n given R(n) = r, then by the remarks above, the Berry-Esseen theorem applies to give

* and the second second

$$|F_{n}(x|r) - \Phi(x)| \leq \frac{3M^{3}}{\sigma(r)(k(n))^{\frac{1}{2}}}$$

where $M = \sup |K(u)| < \infty$. Since (1.1) implies that $R(n) \rightarrow O(P)$,

(4.5)
$$\sigma^2(R(n)) \rightarrow \sigma^2 = c^{-1} \int_{S(1)} K^2(u) du - c^{-2}$$
 (P)

and $\sigma^2 > 0$ when K(u) is not the uniform pdf on S(1). Then if \textbf{G}_n is the df of R(n) and $\delta > 0$,

$$|P[Z_{n} \leq x] - \phi(x)| \leq \int |F_n(x|r) - \phi(x)| dG_n(x)$$

$$\leq \frac{3M^2}{\delta(k(n))^{\frac{1}{2}}} P[\sigma(R(n)) > \delta] + 2P[\sigma(R(n)) \leq \delta]$$

and this with (4.5) establishes that $\not = \{Z_n\} \rightarrow N(0,1)$.

PROOF OF THEOREM 3. We write

$$(4.6) \quad (k(n))^{\frac{1}{2}} (f_n(z) - f(z)) = \frac{k(n)\sigma(R(n))}{nR(n)^p} Z_n + (k(n))^{\frac{1}{2}} [\frac{k(n)E(R(n))}{nR(n)^p} - f(z)]$$

Since by (3.2) and (4.5),

$$\frac{k(n)\sigma(R(n))}{nR(n)^p} \to cf(z)\sigma \tag{P}$$

The first term on the right in (4.6) has

$$N(0,cf^{2}(z))K^{2}(u)du - f^{2}(z)$$

as its limit in law by Lemma 2. The second term on the right of (4.6) can be written as

$$\frac{k(n)/n}{R(n)^p} (k(n))^{\frac{1}{2}} (E(R(n)) - c^{-1}) + (k(n))^{\frac{1}{2}} (\frac{k(n)/n}{cR(n)^p} - f(z))$$

$$= \frac{k(n)/n}{cR(n)^{p}} (k(n))^{\frac{2}{p}} (\frac{f(z_{1,n})}{f(z_{2,n})} - 1) + (k(n))^{\frac{1}{p}} (g_{n}(z) - f(z))$$

for large n, by (4.2) and continuity of f at z. Here $z_{i,n}$ lie in S(R(n)). By (3.1) and (3.2) applied to the first term and Theorem 2 applied to the second, this last expression has $N(0,f^2(z))$ as its limiting distribution. Moreover, it is asymptotically independent of Z_n . To see this, it is sufficient to show that

$$P[Z_n \le a | k^{\frac{1}{2}}(g_n - f) \ge b] = P[Z_n \le a | R(n) \ge (\frac{k/nc}{f + bk^{-\frac{1}{2}}})^{1/p}]$$

converges to $\Phi(a)$ for any b. That this is true follows from the argument used to prove Lemma 2. Theorem 3 now follows from (4.6).

Note that the bandwidth estimator \hat{f}_n using the same kernel K(u) and $r(n) = (k(n)/n)^{1/p}$ does not have the same limiting distribution as does f_n . Cacoullos [1] shows (under conditions which ask more of f and less of $\{k(n)\}$ than those of Theorem 3)

$$\mathcal{L}\{(nr(n)^p)^{\frac{1}{2}}(\hat{f}_n(z)-f(z))\} \to N(0,f(z))/K^2(u)du).$$

Comparison of asymptotic variances shows that $\hat{f}_n(z)$ is less efficient at points z where f(z) is small, that is, where use of the fixed radii $\{r(n)\}$ may result in few observations.

5. Mean consistency. Pointwise weak consistency results for f_n are available both by direct proof (for g_n) and by the consistency-equivalence results of [7]. It is easy to show that under quite general conditions, weak consistency of f_n implies mean consistency. This we now do.

THEOREM 4. If K(u) is bounded, f is bounded in a neighborhood of z, and $\{k(n)\}$ satisfies (1.1), then $f_n(z) \rightarrow f(z)(P)$ implies that $E[|f_n(z)-f(z)|] \rightarrow 0$.

PROOF. We must show (Loeve (1963), p. 163) that

$$\lim_{a\to\infty} \int_{\{|f_n|>a\}} |f_n| dP \to 0$$

uniformly in n. Let M denote an arbitrary positive constant. Since K is bounded,

$$|f_n| \le M \frac{k(n)/n}{R(n)^p}$$

and hence if $c(n) = (Mk(n)/an)^{1/p}$,

$$P(n,a) = \int_{\{|f_n| > a\}} |f_n| dP \le M \frac{k(n)}{n} \int_{\{R(n) < c(n)\}} R(n)^{-p} dP.$$

But R(n) is the k(n)th order statistic from n observations on the df H(r) (see (2.1)). So

From $H(r) = \lambda(r)cr^p$ for inf $f \le \lambda(r) \le \sup f$, we see

$$P(n,a) \le M \frac{k^2}{n} {n \choose k}_0^{c_n} H^{k-2}(r) dH(r)$$

$$= M \frac{k^{2}}{n} {n \choose k} \frac{1}{k-1} H^{k-1} (c_{n})$$

$$\leq M (\frac{k}{n})^{k} {n \choose k} (\frac{M}{a})^{k-1}$$

after again substituting $H(r) = \lambda(r)cr^p$ in $H(c_n)$. Thus we must show that given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$(\frac{k}{n})^k \binom{n}{k} \delta^{k-1} < \varepsilon$$
 for all n.

That this is true follows easily from

$$\left(\frac{k}{n}\right)^{k}\binom{n}{k}\delta^{k-1} < \delta^{k-1}\frac{k^{k}}{k!} \sim \frac{\delta^{k-1}}{e^{k}(2\pi k)^{\frac{1}{2}}}$$
 as $k \to \infty$.

References

- [1] Cacoullos, T. (1966). Estimation of a multivariate density. Ann. Inst. Statist. Math. 18, 178-189.
- [2] Fix, E. and Hodges, J. L. (1951). Nonparametric discrimination: consistency properties. USAF Sch. Aviation Medicine, Rep. 4, Proj. 21-49-004.
- [3] Kiefer, J. (1972). Iterated logarithm analogues for sample quantiles when $p_n + 0$. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 1, 227-244.
- [4] Loève, M. (1963). *Probability Theory*, 3rd. Ed., D. Van Nostrand Company, Princeton, N. J.
- [5] Loftsgaarden, D. O. and Quesenberry, C. P. (1965). A non-parametric estimate of a multivariate density function. Ann. Math. Statist. 36, 1049-1051.
- [6] Moore, D. S. and Henrichon, E. G. (1969). Uniform consistency of some estimates of a density function. Ann. Math. Statist. 40, 1499-1502.
- [7] Moore, D. S. and Yackel, J. W. (1976). Consistency properties of nearest neighbor density function estimators. *Ann. Statist.* to appear.
- [8] Wagner, T. J. (1973). Strong consistency of a nonparametric estimate of a density function. *IEEE Trans. Systems, Man and Cybernetics* 3, 289-290.

Į