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LARGE SAMPLE PROPERTIES OF
NEAREST NEIGHBOR DENSITY FUNCTION ESTIMATORS

-t e = Ay ¢ s

By David S. Moore* and James W. Yackel
Purdue University :

1. Introduction. Let X],Xz,... be iid random variabies i
having unknown density function f with respect to Lebesgue mea- ‘ '
sure A on Euclidean p-space RP. We wish to estimate f(z) for a
given z. Let {k(n)} be a sequence of positive integers satisfy-

ing

(1.1) k(n) - » and k(n)/n -0 as n -+ =.

Define R(n) as the distance from z to the k{n)th closest of
X{»+--»X,, distance being measured in a norm [|-|| on RP which

generates the usual topology. Denote by S(r) the "sphere"

s(r) = {x in RP: ||x-z|] < r}.
A nearest neighbor estimator of f(z) is

k
9n(2) = A{s((a'()é‘)nj}' :

Note that gn(z) is simply empiric measure divided by Lebesgue
measure for the region S(R(n)). This estimator is essentially
due to Fix and Hodges [2], and was explicitly introduced and
studied by Loftsgaarden and Quesenberry [5]. These and subse-
quent authors used the Euclidean norm, but for p > 1 other norms
may be useful (e.g., squares about z rather than spheres are
obtained from the "maximum component" norm), and proofs are
unaffected by this generality. We have suppressed the dependence
on z of R(n) and S(r), since in this paper we consider only
results for a fixed z in RP.

Loftsgaarden and Quesenberry proved consistency in proba-
bility of gn(z). Wagner [8] established almost sure (a.s.)
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consistency under a condition equiva1ent'to k(n)/log n - =. For
the case p = 1, Moore and Henrichon [6] proved a.s. uniform
consistency when k(n)/log n -~ =. (They state only convergence in
probability, but an application of the Borel-Cantelli lemma shows
that their proof yields a.s. convergence.) The local control of
the estimation process which is a feature of the nearest neighbor
estimator has been popular with practitioners, who have used 9n
in discrimination and pattern recognition problems.

Sections 2 and 3 of this paper are devoted to 95 In
Section 2 we establish a.s. consistency under the condition
k(n)/log log n - ». Since R(n) is a sample k(n)/n-tile, the
study by Kiefer [3] of sample pn-tiles for p, » 0 provides the
tools needed for our result. What is more, it follows from
Kiefer's work that k(n)/log log n -~ = is the weakest condition on
{k(n)} satisfying (1.1) which guarantees a.s. convergence of
gn(z) to f(z). Section 3 proves asymptotic normality of gn(z).
The proof uses the standard device of restating an event defined
in terms of an order statistic as an event given in terms of a
binomial random variable. The limiting distribution derived in
Section 3 is required in the more general study in Section 4.

Recently, the authors [7] observed that 9, could be viewed
as the uniform kernel case of the general nearest neighbor
density function estimator defined by

f -1 T Keeh
n oR(m)P 51 RY
where
(1.2) K(u) is a bounded density on RP
K(u) = 0 for ||ul] > 1
Here the norm ||-|| must satisfy the additional restriction that

A{S(r)} = crP where ¢ = A{S(1)}.
This is the case for, e.g., the usual Euclidean norm and the
maximum-component norm.
The estimator fn js the analog of the Rosenblatt-Parzen
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class of bandwidth est1mators defined by

RS B T
nte nr(n)? =1 r(n]

where {r(n)} is a sequence of positive bandwidths satisfying
r(n) - 0 and nr(n)p +® as n - . Inour earlier paper we
showed, roughly speaking, that any consistency theorem (in
probability or almost sure, pointwise or uniform) true for f
remains true for f having the same kernel K and k{n) - anr(n)
for some a > 0. Th1s allows the large literature on consistency
of f to be restated for f See [7] for details and qualifica-
t1ons Here we mention on]y that either by this consistency-
equivalence result or directly from Kiefer's work it follows
that the uniform kernel case of f is a.s. consistent when

nr(n)P/1og log n + =. This is the analog of the result of Sec-
tion 2 below, and is similarly best possible and stronger than
known results for general kerne]s Thus Section 2 sets a goal
for work on a.s. consistency of f or f , and the results of [7]
show that attaining this goal for e1ther of f or f is suffi-
cient to reach it for both.

Sections 4 and 5 concern the general nearest neighbor
estimator f Section 4 establishes asymptotic normality. It
is noteworthy that f does not have the same asymptotic variance
as the matching bandw1dth estimator f The nearest neighbor
method is more efficient than the bandW1dth method when f(z) is
small, as intuition might suggest. Section 5 shows that weak
consistency of f implies mean consistency, a supplement to the

consistency resu1ts in [7].

2. Almost sure consistency, und uniform kernel case. We make
use of a lemma which extracts a very small portion of Theorem 6
of Kiefer [3].

LEMMA 1. Let Z be a sample o, -tile from n iid random
variables uniformlx_d1str1buted on (0 ). fa,~ 0 and

nanllog log n -~ =, then Zn/an + 1 a.s.
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Lemma 1 is applied to gn(z) by noting that if
(2.1) H(r) = P[|[X-z|| < r]l = [ f(x)dx
S{r)

then H(R(n)) is the sample k(n)/n-tile from n iid uniform random

variables. Here is our a.s. consistency result.

THEOREM 1. Let f be continuous at z, and let {k(n)} satisfy

(1.1) and k(n)/log log n > ». Then gn(z) + f(z) a.s.
PROOF. Lemma 1 states that

(2.2) E%%%%?T +1 a.s.

from which it follows that

(2.3) H(R(n)) -~ 0 a.s.

We claim that

(2.4) R(n) ~ ro = infir: H(r) > 0} a.s.

For clearly R(n) > rga.s. for each n, and if for some ¢ > 0,
R(n) > rg + e for a sequence of n at a sample point w, then
H(R(n)) 3_H(r0 + ¢) > 0 for these n at w. By (2.3), this can
occur only on a set of w having probability zero.

Applying the mean value theorem for integrals to (2.1),
there exist Ay satisfying

inf f(x) <A, £ sup f(x)
S(R(n)) S(R(n))
such that
(2.5) H(R(n)) = A, A{S(R{n))}.

With (2.2), (2.5) implies that gn(z)/xn +1a.s. If f(z) >0,
then by (2.4), R(n) -~ 0 a.s. and by continuity of f at z,
Ay > f(z) a.s. If f(z) = 0, then (2.3), (2.4) and (2.5) imply
that . 0 a.s. In either case, gn(z) - f(z) a.s.

The proof of Theorem 1 amounts to observing that

gn(2) - E%E%%%y f(z) = a, f(z)
and applying (2.2) to a . From Kiefer's Theorem 6 it follows
also that if k(n)/log log n » v, 0 < v < =, then lim.an and

[

P R S
g SERHENCEL D



iiensbinmi

NEAREST NEIGHBOR DENSITY FUNCTION ESTIMA TORS 273

Tim a, are unequal, finite and positive. If k(n)/log log n ~ O,
then Tim a_ = = and 1im a, = 0. Thus g,(z) is not a.s. consis-
tent if k(n) increases more slowly than js assumed in Theorem 1.
Of course, gn(z) remains weakly consistent as long as (1.1)
holds.

3. Asymptotic nommality, unifornm kernel case. Although the
proof in this section is straightforward, both it and the proof
of Section 4 require the assumption

(3.1)  (k(n)¥|f(z,)-F(2)| » O(P) when ||z -z}| < R(n).

The assumption (3.1) connects {k(n)} and the local behavior of f
at the point z. It can be restated in more explicit form for

specific norms ||-]|. In particular, when f(z) > 0 and either
the Fuclidean norm or the maximum-component norm is used,
(3.2)  XnM/n ey (p) ¢ = AS(1)3

cR(n)P

(This is just weak consistency as proved in [5]), so then
R(n) = Op{(k(n)/n)]/p} and (3.1) is impliied by

2
(3.3)  (k()B[F(z)-F(2)] > O when ||z,-2]| = ot(K{B)1/P.
If the p first partial derivatives exist and are bounded near z,
(3.3) in turn is satisfied when
k(n) = o{nz/(p+2)}.
THEOREM 2. Let f be continuous at z, f(z) > 0, {k(n)}
satisfy (1.1), and let (3.1) hold. Then
2
2 {(k(m)E(g (2)-F(2))3 > N0, ()
PROOF. As in the proof of Theorem 1, we can write
H n n

Now (1.1) and f(z) > 0 are sufficient for R(n) - 0(P) and
H(R(n))/(k(n)/n) = 1 (P) (see [5]). Therefore from

gn(Z) = 5%%%%%7-f(z ) for some z._ in S(R(n)).
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3
B (g, (20-1(2)) = (e Bala )
, f(z)
+ (et - DRy

and (3.1), we need only show that

£ ((k(n)EERLL - 1)} 5 w(0,1).

Since H(R(n)) is the k(n)th order statistic of n iid uniform ran-
dom variables U],...,Un on (0,1),

PL(k(m) AR - 1) < a]

PLH(R(n)) > K(n)/ny
T+ak 2

P[Bn < k(n)]
where Bn is the number of U],...,Un falling below
-t
= (k(n)/n)/(1+ak(n)"2) and has the binomial (n,nn) distribu-
tion. By (1.1), m, > 0 and nm, > =, S0 that B is asymptotically

P.(a)

normal. MWriting

n
-
[
S
=]
A
=]
—_

P,(a)

I
where o, = [nnn(l-nn)]z, and computing

k(n)-mrn k(n)—mrn
~ I
%n (nTrn)2
3 2
= a(_E_:)E >a
at+k=2

we obtain Pn(a) ~ ¢(a), ¢ being the standard normal df. This
completes the proof.

4. Asymptoiic nommality, genmeral case. Recall that in
order to formulate the general nearest neighbor estimator fn’ we
require that the norm |[|.]| satisfy

(4.1) A{S(r)} = crP where ¢ = A{S(1)}.
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In this case, (3.1) is equivalent to the more usable condition
(3.3).

THEOREM 3. Let f be continuous at z, f(z) > 0, K(u) satisfy
(1.2) and {k(n)} satisfy (1.1). Let also (3.3) and (4.1) hold.
Then

%

< {(k(M)B(F (2)-F(2))} » N(0,cF2(2) fK¥(u

The proof will be divided into several parts. First note
that in

fla) =l T ki
nte* nR(n)P 121 R{n}

there are exactly k(n)-1 nonzero summands by (1.2), corresponding
to the first k(n)-1 order statistics of ]IXi-zll. Denote by

Y]""’Yk(n)-l the subsequence of X,,...,X defined by
Y, = Xi] i, = min{i: |IX1-2|I < R(n)}
Yj = Xij ij = min{i > 1 IlX -z|] < R(n)}
z-Y;

and let Kn,i = K(ﬁrﬁy) be the nonzero summands in f Then the
conditional distribution of Yy,. +++Yy(n)-1 9iven R( ) = r is that
of k(n)-1 independent observations each having the density func-
tion '

f(y)/P(S(r)) for y in S(r)
where

P(S(r)) = [ f(x)dx
S(r)

Therefore the conditional distribution of K]""’Kk(n)-l given
R(n) = r is that of k(n)-1 iid random variables having mean

E(r) = E[K,[R(n) = r] = f K(EL) S Lor dy

and variance

2 - 2,2~ f 2
)= LK Estly v - E2(r)

By the (vector) change of variables u = (z-y)/r and the mean

“a.ate
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value theorem for integrals, we can write

| A \ |
(4.2)  E() = gty {mnm=P;1 P .
s(1) | §
= .-____)\'i’r .
and .
A A
(4.3)  A(r) = 2= [ KE(u)du - (h)?
2,r S(1) 2,r
where
inf f(x) < Aj o S sup f(x).
S(r) > §(r)

We first consider the normalized sum
k(n)-1 Ki-E(R(n))
Z = ~
i=1  (k(n))%s(R(n))
LEMMA 2. Under the conditions of Theorem 3, if K(u) is not !

constant on S(1), then
£{Z} ~ N(0,1). !

PROOF. If Fn(xlr) is the conditional df of Zn given

§$§&&§§§§ R(n) = r, then by the remarks above, the Berry-Esseen theorem ﬁiéiﬁﬁih'}ﬁﬁﬁﬁﬁﬁ

applies to give

3 i
(4.4) IF (x]r) - 8(x)] & ——2—3 |
a(r)(k(n))? !
where M = sup|K(u)| < =. Since (1.1) implies that R(n) - O(P),
(4.5)  o2(R(n)) » o = c ' [ K(u)du - ¢2 (P)
S(1)
and 02 > 0 when K(u) is not the uniform pdf on S(1). Then if Gn

is the df of R(n) and & > 0,
|P[Zn5x]-¢(x)[ 5_[|Fn(x|r)-¢(x)|dGn(x)

2
< —M  plo(R(n))>6] + 2P[o(R(n))<s] i
s(k(n))=

and this with (4.5) establishes that £ {Z } - N(0,1).
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PROOF OF THEOREM 3. We write

(4.6) (k()3(F (2)-F(2)) = K(n)e(R(n)) 5
n nR(n)P fa

+ (k(n)) BLRMERM)) _ ;)1
nR(n)p
Since by (3.2) and (4.5),
kin)oRin)) , ct(z)s (P
nR(n)P
The first term on the right in (4.6) has

N(0,cf2(z) [k3(u)du - F2(z))
as its 1imit in law by Lemma 2. The second term on the right of
(4.6) can be written as

k(m/n (i (n))B(E(R(n))-c 1)+ (k(n)) BKRLR ¢4y
R(n)P cR(n)P

x (zy ) 3
c;? jp )%(?(—n')‘- 1) + (k(n))*(g,(2)-F(2))

for large n, by (4.2) and continuity of f at z. Here Zi n lie in
S(R(n)). By (3.1) and (3.2) applied to the first term and
Theorem 2 applied to the second, this last expression has
N(O,fz(z)) as its limiting distribution. Moreover, it is asymp-
totically independent of Zn' To see this, it is sufficient to
show that :
PLZ, < alk®(g,-f) > b] = P[Z, < a|R(n) > (K0S
f+bk
converges to é(a) for any b. That this is true follows from the
argument used to prove Lemma 2. Theorem 3 now follows from
(4.6).
Note that the bandwidth estimator f using the same kernel
K(u) and r(n) = {k(n )/n)]/p does not have the same limiting dis-
tribution as does fn' Cacoullos [1] shows (under conditions
which ask more of f and less of {k{n)} than those of Theorem 3)

that

)1/

Wk

Wik

= {(nr(n)P)B(F, (2)-F(2))} > N(0,F(2) [K*(u
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Comparison of asymptotic variances shows that %n(z) is less
efficient at points z where f(z) is small, that is, where use of
the fixed radii {r(n)} may result in few observations.

5. Mean consdistency. Pointwise weak consistency results
for fn are available both by direct proof (for gn) and by the
consistency-equivalence results of [7]. It is easy to show that
under quite general conditions, weak consistency of fn implies
mean consistency. This we now do.

THEOREM 4. If K(u) is bounded, f is bounded in a neighbor-
hood of z, and {k(n)} satisfies (1.1), then fn(z) +~ f(z)(P) im-
plies that E[]fn(z)-f(z)l] + 0.

PROOF. We must show (Loeve (1963), p. 163) that

Tim f lfn'dP +0
Ao {[fn|>a}
uniformly in n. Let M denote an arbitrary positive constant.
Since K is bounded,
[£,] < w k(0o
R(n)P
and hence if c(n) = (Mk(n)/an)]/p

- (n) -p
P(n,a) = £ |dP < M Xin) R dp.
(n-2) {lf,{|>a}l ldP < M5 {R(n)£C(n)} ")

But R(n) is the k(n)th order statistic from n observations on the

df H(r) (see (2.1)). So
c
P(n,a) < M % k(E)én r'PHk'](r)[]-H(r)]n'de(r)

c

2 n
<M @] e PHET () ()

From H(r) = A(r)erP for inf f < A(r) < sup f, we see

2 n
P(n,a) <M & i K2 (r)aH(r)
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2
_mkoony 1 k-1
=M () e B (ey)

<M G

after again substituting H(r) = alr)er? in H(cn). Thus we must
show that given ¢ > 0, there is a § > 0 such that

(%?k(z)sk'] < ¢ forall n.

That this is true follows easily from

k k-1

ER@eT < ok e e as ks
: e (2wk)?
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