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INTRODUCTION

The c]aséical testsvof homogeneity are 1nadequatévin many
practical situations in which the experiménter haélto make a
decision regarding k populations. This inadequacy is not in
the deve]opmenf of these tests but rather in the basfc formu]ation
itself which is not designed to answer many questions which are of
real interest to the experimenter. Bahadur [4], Mosteller [66]
and Paulson [71] were among the first research workersvto recognize
the inadequacy of such tests and to formulate the problem as a
multiple decision problem concerned with the ranking and selection
of k populations. | |

In the two decades since these early papers, rankfng and_
selection pfob]ems have become an active area of statisticé]
research. In the theory of selection and ranking procedures,
there are two basic approaches to the problem. One is called the
"indifference zone' approach and the other is called the 'subset
selection' approach. In the former approach, the experimenter
is allowed to select, say, one population which is guaranteed to
be of interest_to him with a fixed probability whenever the unknown
parameters lie outside some subset, or zone of indifferénce, of the

entire parameter space. This approach is due to Bechhofer [10].



Other contributions to this approach can be found in Bechhofer and
Sobel [14], Bechhofer, Dunnett and Sobel [11], Sobel and Huyett [90].
A quite adequéte bibliography = may be found in Santner [83] and
Bechhofer, Kiefer and Sobel [13].

In contrast to the indifference zone approach, Gupta [32], [35]

proposed a formulation in which the experimenter obtains a subset of

the k populations for which there is a fixed minimum probability over'

the whole parameter space that the population of interest is inclu-
ded. This approach is called the subset selection approach. Some
recent contributors in the area of subset selection include:
Gnanadesikan [26], Gnanadesikan and Gupta [27], Gupta and Studden
[49], Gupta and Panchapakesan [46], Gupta and Santner [47].

D. Y. Huang [52] and W. T. Huang [53].

Nearly all of the work in sequential and multistage selection
and ranking procedures has been fhrough the indifferen;e approach.
Very little wofk has been done for the multistage subset selection
approach. Some sequential subset selection procedures have been
proposed and studied by Barron and Gupta [8] and Huang [53].

Some optimum theory results have been developed by Bahadur [4],
Bahadur and Goodman [5], Lehmann [63] and Eaton [24]. Contributions
toward optimum properties of subset selection procedures have .
also been made by Goel and Rubin [30], Govindarajulu and Harvey [31],
Gupta [33], Gupta and Deely [36], Lehmann [61], Robbins [82],

Seal [84], [85], [86] and Studden [93].
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The main purpose of this thesis is to propose and'study the
subset selection approach for some new problems and make tontribu-
tions. | |

Chapter I deals with some selection and ranking'procedures
for the largest unknown mean of k normal populations with unequal
variances. The procedures are based on unequal numbek of observa-
tions from the given k normal populations. In Section 1.2, a single
sample procedure is proposed and studied under the assumption that
the variances are all known. When the variances are unknown to the
experimenter, the problem is more difficult than'the one above. In
this case, a subset selection is proposed and investigated.

In Section 1.3, selection procedures for treatments better than a
standard or control are discussed. An indifference zone approach
to the problem of selecting the populations with the t-largest
unknown means is studied in Section 1.4. In Section 1.5, a test of
homogeneity is proposed which is based on the range of sample means.

In Chaptef II, we propose and study a nonparametric subset
selection procedure based on U-statistics for selecting the largest
of the k location parameters. Again, the procedure is based on
unequal number of observations from each of the k population. The
asymptotic results for the infimum of the probability of a correct
selection and the supremum of the expected subéep size are given 1in
Section 2.3. It should be pointed out that the procedure proposed
in Section 2.3 is based on the complete samples. In Section 2.4,

we consider the case of selecting a subset which contains the



population with the smallest scale parameter. In Section 2.5,
the situation when the samples are trimmed, is studied.

Chapter III discusses some subset selection procedures for
Poisson processes. In Section 3.2, three different kind of
sampling rules are considered. Some properties of the proposed
selection ru]és are discussed. Section 3.3 deals wifh the
éna]ogous problem of selecting the population with the sma]]ést
parameter. 'In Section 3.4, applications to binomial and
multinomial selection problems are discussed.

Chapter IV, deals with a class of selection rules for finite
schemes. The parameter space is partially ordered by means of
majorization and the proposed selection rules are based on Schur
functions. Some properties of the proposed class of selection
procedures aré discussed in Section 4.3. 1In Section 4.4, we
discuss the procedures when the finite schemes are reduced to
binomial case. An upper bound for the expected subset size forv
the procedure is given in Section 4.5. In Section-4.6,‘se1ection
of treatments better than a standard or control is discussed.

An application to testing the homogeneity of k finite schemes are
given in Section 4.7.

Chaptef V discusses some subset selection procedures for a
negative multinomial distribution. Some properties of the proposed
procedures are studied in Section 5.2 and Section 5.3. An inverse
sampling rule for selecting the cell with largest cell-probability

from a multinomial distribution is discussed in Section 5.4.



CHAPTER I

SUBSET SELECTION PROCEDURES FOR THE MEANS OF
NORMAL POPULATIONS WITH UNEQUAL VARIANCES: .
UNEQUAL SAMPLE SIZES CASE

1.1 INTRODUCTION

Let T1aTpseee st be k independent normal populations
with unknown means HysHpse ool and variances °$’°g?""ci’
respectively. Our goal is to select a nonempty subset of the k
populations containing the population with the ]argeét mean. In
most of the earlier work (see for example Gupta [35]) it is assumed
that either the number of observations from each population is the
same or all the populations have a common variance. Very little
work has been done in the case of unequal sample sizes and
different variénces. Sitek [88] proposed a procedure for the
normal means; however, her result was shown to be in error by
Dudewicz‘[23]; Recently Gupta and W. T. Huang [42] and Gupta and
D. Y. Huang [40] proposed some subset selection proéedures for
selecting a subset of the unknown normal means. However, all the
works mentioned above are based on the assumption that the given
k normal populations have a common variance. For the case of
unequal variances, Dudewicz [22] proposed a two-sample procedure

for the normal means problem. His procedure is based on a linear



combination of the first stage sample mean and the second sample
mean. In this chapter a procedure based on the overall.sample means

is proposed and studied.

1.2 SELECTING THE NORMAL POPULATION
: WITH THE LARGEST MEAN

Let T1aTpseee st be k independent normal populations with
unknown means u];pz,...,uk and variances o%,og,...,oi,‘respective]y.
The ordered uj are denoted by 1] S 2] 53"5-“[k]‘_ Here we assume
that there is no prior knowledge of the correct pairing of the
ordered and unordered “i.s' Let Xi]""’xini be n; independent
observations from population T i=1,2,...,k. Based on these
observations, our goal is to select a nonempty subset of the k
populations so as. to include the population asspciated with MKl
A correct selection (CS) is the selection of any subset containing
the population associated with MK The objeét is to define a
(non-trivia]) prbcedure R so that P(CS|R), the probability of a
correct se]eétion, is at least a preassigned number P*(%—< P* < 1)
and which has some desirable properties. We shall refer to this
requirement as the P*-condition. We shall discuss the two cases:
(a) 0%,0%,...,05 unequal but known, and (b) 0?,02,...,0& unequal
and unknown.

Case (a): c?,og,...,ci unequal but known.

Let Xi];...,X be n; independent rangom samples drawn from
.i

in,

, i

populations n., i = 1,...,k. Let Xi =L ) Xij denote the sample
1

1 i j=



mean. We uefine the following rule R] based on these sample means.

Select the population s if and only if

R]:
ot ot
(1.2.1) X; > max (Xj - o ﬁl'+ ﬁQ-)
1<j<k i

where cy = c](k,P*,n],...,nk; o?,...,oi) is the smallest nonnegative o
number chosen so as to satisfy the P*-condifion. | |

Let X(i)’ n(i) and G%i) be the sample mean, sample size and
variance associated with the population (1) with mean Mri7e
i=1,2,...,k. It should be pointed out that X(i)’ n(i) and c%i)
are all unknown. For the evaluation of the infimum of P(CS[R]), we
need a Temma due to Slepian (see Gupta [33]) (stated bé1ow without

proof).

Lemma 1.2.1.} Let X = (X],...,X ) and Y = (Y],...,Ym) be two m-variate

m
normal random vectorswith zero mean vector, unit variance and
correlation matfices (pij) and (Kij), respectively. If Pij 2 Xij
for all i,j = 1,...,m, then P (X < a) > P.(Y < a) for all points
a= (a],...,am) of the real m-Euclidean space, and X < a means
X; < a; for i =1,...,m

Let ¢ and ¢ denote the cdf and pdf of a standard normal variate.

Now we prove the following theorem regarding the infimum of P(CS|R]).

Theorem 1.2.1. For the rule R1 defined in (1.2.1),

© k‘] C'l

(1.2.2) min min _inf P(CS|R,) = [ 1 o(——L)de(x)
n-l,...,l"lk 2 2 Q.l = j=

0],-..,O'k ‘ U.J-



where 9 = {g: u = (“1""’“k)’ - o< yp, <o §=1,2,...,k} and

(1.2.3) o = (1 + Lk g*‘] n[k]) s 3= T, ke1s
0[1] [J]

o117 < 927 2+5 9k and "[1] 2 M[2] <201 denote the ordered

values of the given sets{o],...,ck} and {n],...,nk}_respective]y.

Proof .
2 2
P(CS|Ry) = P (X > max (X,.:\ - ¢ (k) + &) )
] r(k) = 1<j<k-1 (i) 1 T NG

Xy - X
_P(M) c.l, j=],...,k-])

) 2
7(3) L Z(k)
“(5) ")
(1.2.4) = Pr‘(ZJk < C-l + M s J = ]: ’k'])
: 2
2(k) , 2(4)
(k) "(§)

where for j = 1,...,k-1, ij is given by

%) T R0 Tt g
2 2

°() , %K)

k)

MGy ™

(1.2.5)

-

Thus (Z]k’ZZk""’Zk-] k) is a (k-1)-variate normal with zero mean

vector, unit variance and correlation matrix



)2y g 2 )y -2

2
(1.2.6) (k) =1+ (
oGy "y )

1, = T1,...,k=-1, 1 #3].

We see from (1.2.4) that for any given association between

L2 2 2 2
v{n],...,nk}, {0],...,0k} and {n(]),...,n(k)}, {0(]),...,o(k)}
respectively, the infimum of P(CSIR]) will be attained when
Mppy Seees Mkl Thus the infimum we seek in (1.2.2) is reduced to
(1.2.7) ) min ) min Pr(zjk Scps J=T1,0.0.k)

],..., k 0],...,Gk
where ij are defined by (1.2.5). For any fixed °(1)""’°(k)’

and 1 < 2 <k, if we let

2 _
B (r,s) = (1 + —U—L) R (VR e S
G(S) [1] O(S) [J]
(1.2.8) - i, = Tyuiinks 955 # 854 # 3,
Kgf)(r,s) =1 s i = 1,0k, i 7 2.

where 1 <o 20 denote the ordered values of a given set
Nys-..sNs it follows from the fact that n[gjlf_n[k] for-all

i =1,...,k-T, we have for any (r,s),

(1.2.9) K$%§+])(r,s) 3_K§§)(r,s) > K§§)(r,s) for all i,3=1,...,k-1,

1# 2,k. By Lemma 1.2.1, this implies that



10 .

(1.2.10) min min Pr(zjk §>c],j=1,...,k-1) = min
n],--.,nk 0],.-.,Ck 0]’...’0](

P (Y

w5k < Cps J=1s...,k-1)

where (Y]k""’Yk-1 k) represents a (k-1)-variate normal with zero

L i . . (k)
mean vector, unit variance and correlation matrix (cgj)), where

(1.2.11) ;g {(1 +-—i——-—L—1) i

Similarly if we let

| 2
(0= o il 0y (g, fiﬁ:lill— "Lklyy-2 o

gis!
" of,;  "Li] ofa] 5]
1,0 = ook, 1, # 8, 1477
248 for i=1,...,k, %4,

then by using an analogous argument, it follows that

(1.2.12) ) min ] Pr(ij 2CsJ= 1,0..,k-1) = Pr(ng < s j=1,..,k-1)
-I,..., k

where (Ylk’ V] k) is a (k-1)-variate normal with zero mean

vector, unit variance and correlation matrix (ig;)). Let

(1.2.13) -1+ SLE—lill- ELEJ- B =1, k1,
[]] [1] '
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It is well-known that Yfk,...,Yﬁ_]  can be generated from k
independent standard normal variates 21’22""’Zk by the transforma-
tion |

a
2

(1.2.18) v, = (1-a§) Zo+aiZp, 0= Tkl

Hence the right hand side of (1.2.12) can be rewritten as follows:

- o k‘] C-I"(ij
(1.2.15) / B o(——)de(x).
-00 J: ]—a§

This completes the proof of the theorem.
It should be pointed out that when c[]] ="'=,°[k] = o, say, the
expression (1.2.15) is independent of o, this reddces to the resu]t
obtained by Gupta and Huang [40].

Consistent with the basic probability requirement, we would
Tike the size of the selected subset to be small. Now, S, the size
of the selected subset is a random variable which takes values
1,2,...,k. Hence one can use as a criterion of the efficiency of
the procedure RT, the expected value of the size of the selected

subset.

[T e Pl

(1.2.16) E(S[Ry) = P(n(i) is selected |R;)

1

]
H R

—
-~
=
e N [
. [Ce
—
+
S| Q
o~ N\ -—te
o | ade
~—r
!

Theorem 1.2.2. For the rule R1,
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(1.2.17) max  max sup £, (SIRy) < k @(cq).
17 - 1
n],...,nk Opse- 30 Q] ]

Proof. Arguing along the lines of the proof of Theorem 2.2 of

Gupta and Huang [40], we have

EQ](SIR])\=v%§] P(“(i) is selected IR])
k .
= ) P.{ max (J (1 ) < ¢yl
i=1 ]<J<k//é?i3__—;?—;-,
g UL, (G
i) ")
k k X;:y - X
1 (4) (1)
< P ( <C )
SIS g jzl A
J#i (3) , ~()
"(3) i)
;ok ok | i) ifﬂ p
_'E:T-iz] jZ] Q(C] + (U[j] - U[i])(n(j) + "(1)) )
%] . .
(1.2.18) = lra (say).
Now we show that Q attains its supremum when 1] =,,.= MIKT"
To this end, we consider the configuration
(1.2.19) M[1] 5e % M[p] T W SH[my] SeeeSupeye TEms kel

For this configuration, Q can be rewritten as follows:

2
m k . J
1.2.20 = -1 —(—‘l °(3)y-% }
( ) Q 121 {(m-1)e(cq) + jz o(cyt(u- u[J])(n(1) "(j)) )
0%') % )
{ . _1_ J '2
+ 12m+] JZ @(c]+(u[1] u)(n(i) + (J)) ) +
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2 2
k N
+ o(c+(uprsq-up )(_ill.+ _Lll)'k)}.
st ST Gy R
J#i |
m Kk
Interchange the labels i and j in the sum } } = and
i=1 j=m+l
then differentiating with respect to u and grouping the terms,
we héve
2 2 2 2
k m o /- . o
4. L+ Sy gt (umngy ) (GOL + Ldy-3)
# 7 it ng () NG TRy T g
() , °)
= gl (ups 3-u)( + —1)%)
PRI gy o)

where of-) represents the pdf of the standard normal variate.
Thus, by successive application of the above result, with
m=1,...,k=-1, we see that the supremum of Q over 2 is attained
when 111 =...= Mk and this gives
(1.2.21)  sup E(S|Ry) < pop (k-T)ke(cy)
Q
1
= k @(c]).
Since this is true for all possible association between {n],...,nk}
and {n(]),...,n(k)}, and between {o},...,0,} and {o(1)s 5005 s
the result (1.2.17) follows.

Remark 1.2.1: For k = 2,

(l2.22) [ o122

- 00

)do(x) = @(c]).

-a]

It follows that the constant ¢y obtained to satisfy the P*-condition

is given byv¢(c]) = P*,  Thus in this case the uppek bound'of
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E(SIR]) s 2P*, which is the exact upper bound in the case of equal

sample size and equal known variance.

Case (b) g%,...,o§~unknown.

As pointed out earliér, this case presents more difficulty than
the case in which 0?,...,05 are assumed known. We propose and
investigate a selection procedure for this case as described

below. For this problem it is necessary

to require that n, > 2 for all n, where n; is the total number of

independent observations from m,, i = 1,...,k. We now define the

1'9
selection procedure as follows:

(i) Take a first sample of size n0(3_2) independent observations

from each population mis 1= T,...,k.

(i1) Calculate for i = 1,...,k the sample means and variances

based on these n0 observations,

><

1 ;"x
i g <1 ij

(1.2.23)

where Xij represents the jth observation from mes 1= 1,000k,

j=1, -+ 3Ny
Let

2 51?
(1.2.24) Ve = max - .
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(111) Take the additional n,-ny independent observations from =,
is= 1,.;.,k. Calculate the sample means based on the total n{

observations for T

and retain the population s in the selected subset if and only if

(1.2.25) R,: X. > max X: - c,V
2 i 1<j<k J 2

where Cy = c2(k,P*,n],...,nk;n0) > 0 is the smallest positive number
such that the P*-condition holds.

To obtain a Tower bound for the infimum of P(CS|R2), we see

thét
P(CSIRZ) = Pr(x(k) 2_]T?;k_] x(i) - CZV)
1.2.26 = P (Z:, < (c,V - _j_l_ _L_l
228 Pelles et g ) Gy R
i=T1,....k=1)

where Zik is given by (1.2.5). It follows from (1.2.26) that

2 2
1.2.27) P(CS|R,) > P (Z;, < c,V ACIIES SR
(1:2:27) PUESIR) » Py (2y < eV n(}) 1 )

> P (Z; <c2(—§— ——l)" i= 1,0 ke1)
(k) (1) |

Denote the right hand member of (1.2.27) by T. Since the entities

of the correlation matrix of (Zlk""’zk-l k) are all nonnegative,
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it follows that given S%]),.;.,S%k), T is minimized when (k)

approaches zero. Or more precise]y,

(1.2.27) TP (28, < cz(—i—l- —1210 B is 1, k1)
S St |

where ka, . k 1 k are iid standard normal -variates, and are

independent of S(]),.;.,S(k). It follows that

2 yda(x) ¥~ Tda(y)

/(n0-1 )z + )

(1.2.28) T >

<D%58

{f o
0

where G(-) denote the cdf of chi-square random variate with (no-l)
degree of freedom. Thus infimum of P(CS!RZ) is at leést P* if c,
is determined by the equation

€2
Jing- 1)L+ )

Thus we have shown the following theorem.

(1.2.29)

)da(x) 1% da(y) = pr.

0%8

{fa(
é

Theorem 1.2.3. If ¢, is defined by (1.2.29), then

min inf P(CS|R2) > p*
Nyse..sN,
1 k 2

WheY‘e 92 {(u-l, -.,uk; 0],-..,Uk): -0 < Ll_i < o, G,i > 0, 1 = ],.o‘.,k}.

Next we consider the expected subset size E(S]RZ). It is given

by

=

E(SIRZ) Y P(“(i) is selected [R,)

=]

H
nes1x

1 Pr(1T§§k ORROUES
I

.i
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Using the similar argument as in the proof of Theorem 1.2.2, it is

easy to see that

I~k

i

(1.2.31) E(S[R,) :p%r

O 8

ey -~y + fiigiﬂgilodﬂ(v>

k
L
i H4

1 =1
j#1

where H(-) represents the cdf of V, and £i5 = —f—%— —fﬂgq,

i,j = 1,...,k; 1 # j. Denote the right hand number of (1.2.31) by
E;T'f 02 dH(v), and consider the configuration (1.2.19) and suppose

62>o.

i 6] >0 for all i = 1,...,k.

D)+ z Py + Gy D)EiE)

m m
(1.2.32) Q2 = _Z { Z
A= ; 513

+ Z Z ¢((C2V+(u[1] u))E ) + Z

i=m+1 j=1 J=m+1]

3#1

o((c Cov + (U[1] U[J]))E 2)}

Keeping all parametersbut u fixed and differentiating Q2 with respect

to u and interchanging the labels i and j in the sum Z T, we
i=1 j=m+1
obtain '

0
(1.2.33) == g X ]€1J{<P((C2V+(u LT %) -

ollcpv + (upy7-u))e] 2)}

This shows that
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k k CoV
(1.2.34) 02 5_.2 .Z o -)
. i=1 J:] é]J
J#i .
Kk 5 max/no-l 01
5._21 ,71 ¢(§;' ! )
1= J= n n
#i (ng-1)(H + 111,
i nj
maxv/n.-1 —
62 0 a;
=2 Q(g*' )

S

Let A represent the cdf of max /ﬁa:T'g%-. Combining (1.2.31)
3 _

and (1.2.34), we obtain the following theorem.

Theorem 1.2.4. Let 25(87,8,) = {(“1""’“k; 01,.;.,ok): o <y < o,

62 > o5 > 6] } 0, i=1,...,k}.

(1.2.35)  max (g.up(S )E(S]Rz) f_kz%s} ) ;¢.§$ X . ‘_)
Niyeuesn, . <i<j<k 1
1000 oM 9(89,8, 2)1<i<id ‘/("o'”(;ﬂ]‘*:‘[u)
O Gy
di (x).

1.3 SELECTING A SUBSET WHICH CONTAINS ALL
- POPULATIONS BETTER THAN A STANDARD

In this section, we discuss a related selection problem.

Let MQsT]senssMy be k+1 independent normal populations with
means HosHyse - ooy and variances og,oﬁ,...,os, respectively. It is

assumed that MgsHys«--sH are unknown. The procedure described in



this section controls the probability that the selected subset

contains all those populations better than the standard (“i >
with the probability of a correct decision to be at least P*.
we discuss separately the following cases:
Case A. og,qz,...,oi are known

Let Xi denote the mean based on a sample size hi independe

observations taken from population Ty i=20,1,...,k. We propo

procedure as follows:

R3: Retain in the selected subset those and only those

populations ms (i =1,...,k) for which

2 02
. 0 i

Let r and rs denote the number of populations with u > Hy
and p < ugs reépective]y, so that ry+r,= k. The‘probability

of a correct decision (CD) is given by

2 2
_ - b (¥ 7 °0 , %i) . _ . -
(1.3.2) P(CD|R3) = Pr(x(i) 3_X0 - C3 o + "(i)’ 1‘—‘r2+1,...,
: Upsq - M
Z i 0 . ;
= P(Z; < gt — i= rytl, ik
YD)
o "(49)
where (Z seessly) is @ ro-variate normal with zero mean vect
: r2+] "k 1

unit variances and correlation matrix (pij) where

19

o)
Again,

nt

se a

k):

)

or,



2
| _ "o 9(4)
.. = (1 + — 1
Pij (1 + n(i) ;g——)( +
(1.3.3)
Pss = 1

11

o

6

2
°)

.20

By using the transformation (1.2.14), it follows that P(CD|R3) is

bounded below by

«© k C3-OL-X‘

[ 1 e(—=—)ds(x)
o j=1 2
J
where
: n 0? 1
(1.3.4) o, = (1 + -2 dy3, i=1,
Jj n. 2
J 00
Hence
Theorem 1.3.1. For rule R3,
- o k Co-ai:X
(1.3.5) PCDIRS) 2 [ 1 o(—2—L)da(x)
- J=1 'I-a§

Let 53 denote the number of populations with means less than

ug that are included in the selected subset.

r
2
E(S3|R3) = i;] P(ﬂ(i) is selected ]R3)

2o B wotuig
= 7P .
i=] 2 2
VERED
no n(i)
r2 @(C3).

i
i~ s

A

< C3 -

"2 by oy
élnﬂﬁ)z%-csﬁa+éﬁg

Uo"U[ij)

ol

0, ()

Ny

"(4)



Case B. QL YA EERERY-1) unknown.

In'this case we propose a selection procedure to select those
populations whpse means are greater than or equal to ug- Again
we assume that n; >m> 2 for i = 0,1,...,k. As in the case (b):
of Section 1.2.

(i) Take a first sample of size m observations from each

s 9 i= 0,],...,](.

population s

(ii) Calculate for i = 0,1,...,k the sample means and variances

based on these observations.

~ %
X = — X
iom oy T
(1.3.6) m
s2 = b T (kg - %)
i m-T 211 i

where Xij represents the jth observation from =., i = 0,1,...,k.

Let
(1.3.7) . ' V2 = max
O<i<k i

Take the remaining ny-m observations from each population s and

compute the overall sample mean

-1 =S
><
-
-
H
[an)
-
—
-
-
o~

1
R, = 1_
1 ni

1Y

Now we propose a selection procedure as follows:

R4: Include population s in the selected subset if and

only if
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(1.3.8) X; z_XO = ¢V

where Cy = c4(k,P*,m,n0,n],...,nk) is the smallest positive
number such that the basic P*-condition is satisfied. ‘The

probability of a correct decision is given by
(1.3.9) P(CD|R4) = Pr(XO - X(i) < ¢V j= rotl,... k)

where ry denote the number of populations whose means are less

than ug- Now P(CD|R4) can be expressed as follows:

(1.3.10) P(CDIR,) = P (Z, < (egVHlups3mug)ER2, 1 = rptl,. k)

where
2 2
220, %)
E1' n n,.
0 (i)

(1.3.17)

Z;

(XO - X(]-) + H[iT T UO)E;%-

Using the similar argument as in the proof -of Theorem 1.2.2, we

obtain
(1.3.12) P(CD|R,) ?{?@( i )dG(x)}r]dé(y)
e Ja 4 Z : \ A
°0 Anend D)

where r =_k4r2 and G(-) represents the cdf of the chi-square random
variate with (m-1) degree of freedom. Hence we have shown the follow-

ing theorem.
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Theorem 1.3.2. For procedure R4, if Cy is determined by the

equation
© o C4 k
é{£¢( . )dG(x)}"dG(y) = p*
f(m-])(§'+ y)
then
min inf P(CD]R ) > P*,
n'l,...,nk Q3
where Q3 =.{(UO,U],...,uk903’0$9---30§): = < Ui‘< @y Oi i.o’
= 0,1,...,k}.

Let.S4 be the number of populations with means less than g

that are included in the selected subset.

(5,1R,)
r2 i
= iZ] Pr(X(i) > XO - C4V)

r2 +
LU ey (cgV = o * upip)

= 2 2
//1_ + _i_l. //éo ___l. A
o (i)

2 Xo-R(5)ugtri] Ve, 1
< LR S ).

i=] 2 2. 0 G(i) m-1
20, 2(1) AT,
: no n(i) 0 (i)

This implies that
© oo . C
E(S4IRy) < 1y [{fo(——2 )dG(x)1dG(y).

An-1) (L + Ty
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1.4 SELECTING THE POPULATIONS WITH THE t-LARGEST MEANS
FROM SEVERAL NORMAL POPULATIONS WITH UNKNOWN VARIANCES
- AN INDIFFERENCE ZONE APPROACH

It will be helpful if we first state the problem clearly. An
experimenter is given k normal populations ms with unknown means W
and unknown variances 0?, i=1,...,k. Let the ranked p-values
be denoted by M1] S 2k It is assumed that there is no a
priori information about the true pairing of s with i1
(i, = 1,...,k). The experimenter is interested in selecting an
unordered set of t (> 1) "best" populations which are associated with

the t-largest means Mlk-t+177 " K [K]* Before the experimentation,

he has to specify a pair of constant (5*,P*) where 0 < §* < o,

(k) < P*¥ <1, with the intention of achieving the following

pFobabi]ity requirement
(1.4.1) P(CS) > P* whenever M[k-t+1] - M[k-t] 376*.
In order to solve this problem, we need two stage (samples)
procedure of the type proposed by Stein [92]. The steps are as
follows:

(i) Take an initial sample of size ng from each of the population
and compute the separate sample variances

(1.4.2) s= Lo T (x
0" j=

n

where X, = — .
L j=1 ij
observation from population e

i=1,...,k. Xij represents the jth

(ii) Take a further sample of size n, - ng from Mey i = 1yeua,k,

i j?
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where

S;€ 5
(1.4.3) n; = max{no, [(37?0 1+ 1}

where [x] denote the largest integer less than or equal to x,
and ¢ = c(P*,nO,k,t) is a positive constant which will be

defined in equation (1.4.4).
i
) Mg

= =

(ii1) Calculate from m the overall sample mean Xi‘= %—
ild
i=1,...,k, and select the t populations which have given rise

to the t 1akgest overall sample means.

Remark 1.4.1. The sampling rule in this section is slightly

different from the one given in Section 1.2.

Theorem 1.4.1. Let C satisfy the equation

(o c )dG(x) 3¢t

T fng e 1)

Yi
where G(-) represents the cdf of a chi-square random variate with

L= o

(1.4.4) Z .

O— 8

dG(y;) = P*

X |~

(no-l) degree of freedom, then P(CS) > P* whenever M[K-t+1] M [k-t] > &%,
Proof. Note that

(1.4.5) P(CS) =P ( min K;oy > max X .y).
M-trlcick ) T 1gek-t ()

Using a theorem of Barr and Rizvi [7], it follows that P(CS) is
non-increasing in e[j]’ J=1,...,k-t and nondecreasing in e[i]’

i = k-t+1,...,k. Consider the configuration
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(].4.6) 9[]] ...z e[k-t] = e[k_t_l_-l] - &% =, .= e[k] - §*,

Under this configuration, P(CS) can be Writtén as follows

(1.4.7) P(CS) = P (Z;5 < ____EI__E___, P Koty Goket+l,.. k)
(1) , 2G)
) ")
where
X/:v-X, .
(1.4.8) 25 = ) 7E)
2 2
/éiil.+ °G)
(i) "(§)

are components of the t(k-t)-variate normal Z with Zero mean vector,

unit variances, and correlation matrix,

Alk-t+1) By-tal k-t+2 o Bropa1k
Br-tez,k-t+1 A(k-t+2) o Beltok
By k-t+1 By k-2 e A

wherg A(Q) =-(ag§)) and Br,s = (bgg’s)) are (k-t)x(k-t) matrices

such that Bk-t+i,k-t+j = Bk-t+j,k-t+i’ where prime stands for

matrix transpose, and for i # j, i,j # 2, 1 <2 <k

]
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v 2 2
L +:§%;O§ih(1-+:§%;~ (j)nféifl <i<231<j<a,
1) 0 J g
(2) (2)

. 5 5
6(2) =< {(1+ n(z) . 0(i+]))('| + Ei&l—- S-%il)}-%'if 2 < i< k-1;

N "(i+1)  %(s) "§)  ofy
1<j<a,
n 02.+ ‘ n, - 02. 1
.{(] + n(l) . 0(1 ])) 1 + n(l) . (J'H) }"E if
(i+1)  %(2) (3+1)  °(x)

% <1 <k-1; 2 <j<k-1,

and ,
(r) L (2) ..
: aij aji for all i,j # 2
(2) _ .
aii =1 i= ],'i.’k_t
-and

2 2
n n 1
bl(‘C’S) = Guv{(] + ﬁﬂl . E’lzll)(] + -n—gv—) . OJZS—.))}“§

rw) (s} o(y)

where Sy stands for the Kronecker delta function. By Lemma 1.2.1,

and the choice of c, it follows that

PCS) 2 P(¥y z_c{(no-l)(%;-+ %30}

-
2

3 1=1,...,k-t, j=k-t+1,...,k)

where Yij.are iid standard normal; Yi and Yj are iid chi-square

random variate with (no-l) degree of freedom, and also {Yij} and

{Yi’ Yj} are stochastically independent. Hence

c )da(x) 1" tda(y.)

P(CS) > 1

{o(
= g s 7

I = ok

oO—. 8
O‘&.S

This completes the proof.
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It should be pointed out that when t = 1, it reduces to the

result obtained by Rinott [80].

1.5 K-SAMPLE BEHRENS-FISHER PROBLEM

The Behrens-Fisher problem in its original simple version
can be formulated as follows: Given two samples X]],...,X]n] and
X21""’X2n2' It is assumed that the values of the first sample
are generated from a normal distribution with mean M and variance
0% and that the values of the second samples come from a normal
distribution with mean uo and variance og. The true values of u's
and o's are not known and the sample sizes and thé.variances are
possibly not equal. The problem consists in making inference about
the actual value of the differencefu] - up of the means. So far,
no entirely satisfactory test for the Behrens-Fisher problem has
been derived. When k = 2, several solutions to this problem were
provided (see Pfanzagl [73]). Unfortunately none of these methods
is applicable for the case when k > 3.

In this section, we demonstrate that the procédure given in
Section 1.2 provides a solution for the Behren-Fisher problem when
k > 3.

- Now let TysesesTy be k independent normal populations with
MEANS hys...ohy and variances c%,...,oﬁ, respectively. Suppose we
are allowed to take n1(3_2) observations from each‘normal population
., 1 = 1,...,k. Based on these observations, we wish to knOW"

1

whether uy are significantly different or not. The problem is to

test the homogeneity of the means of the k normal populations. Let
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Ny be a fixed integer such that 2 < Ng < min {n;}. Use the
1<i<k

two-sample procedure given in Section 1.2. to obtain sample

variances
0
2 _ 1 _y 2 A
Si’ EB:T jZ] (Xij Xi) s i 1,...,k

Where

_— ;O

X = —— X..,

o j=1

and

X; = ;i X Toon ok

= — * 2 1 = | I L]

2

N i .
when max X. - min Xj 2 cV, where V = max — and c is a

l<ick 1 1<ick <ick M

3 »n

constant such that the hypothesis of homogeneity will be rejected

at the level o if the observed value of max Xi - min X, is
1<i<k 1<j<k J
greater than cV. Now using Theorem 1.2.3, we have the following

theorem.

Theorem 1f5.1. For any a, 0 < a <1, let P¥ =1 - %—and let ¢ be

the constant determined by (1.2.29), then

(1.5.1) max  sup P(Hy is rejected) < o -
Nps-eosn 24

where @, = {u = (u,...,u), - © < p < =},



Proof.

sup P(H0 is rejected)

9
= sup P( max X, - min X, > cd)
Qg lzizk 1<j<k J

sup P(X. < max Xi - cd, for some j, 1
2 J 1<i<k

[A

k sup P()'(k < max Xi - cd)
29 1<i<k

k(1 - inf P(X, > max X; - cd))
20 1<i<k

A

= .

_J_

0

30
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CHAPTER 2

ON SOME NONPARAMETRIC SUBSET SELECTION PROCEDURES
FOR THE LOCATION AND SCALE PARAMETERS

2.1 INTRODUCTION

In the past twenty years many papers have appeared on
ranking and selection problems. As can be expected, most of
this research has been devoted to rules which assume a specific
distributional form of the underlying observations; e.g. normal,
binomial, multinomial, etc. Barlow and Gupta [6] haQe considered
the problem of selecting a subset containing the largest (smallest)
quantile of a given order and a subset containing the largest
(smallest) mean. They assume the observations from each population
have a distribution which belongs to certain restricted family, e.g.
IFR (Increasing Failure Rate) distributions, IFRA (Increasing
Failure Rate Aver&ge) distributions, etc. Distribution-free
éelection procedures which are based on joint ranks of the observa-.
tions, have been studied by Lehmann [62], Rizvi and Sobel [81], |
Bartlett and Govindarajulu [9], Puri and Puri [74] and Gupta and
McDonald [43]. In [37], Gupta énd Huang proposed some selection
procedures based on one-sample Hodges-Lehmann estimates of the
parameters for a class of distribution functions F(x-8) where F

and & are both unknown. In this chapter, we discuss some subset
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selection procedures based on genera]ized_U-statistics for
selecting the location parameters. It should be pointed out
that some related non-parametric selection procedures have also
been discussed by Bhapkar and Gore [15].

In Section 213; we propose a subset se]ectionvhule for
selecting the largest location parameter. It is assumed that
all the observations are available i.e. it is the complete sample
case. An upper bound for the supremum of the expected size of the
selected subset is also given. In Section 2.4, we consider the
case of selecting a subset which contains tﬁe population with the
smallest scale parameter. In Section 2.5, we investigate the

situation when the samples are trimmed.

2.2 NOTATIONS AND REQUIREMENTS

Let TysenesTy be k independent popu]ations with continuous
cumulative functions Fe](x),...,Fek(x) respectivéiy.. The ordered
8's are denoted by e[]] 5,..§_e[k]. It is assumed that there is no
a priori information available about the correct pairing of the
ordered e[i] and the k populations from which observations are taken:
- Any population whose parameter value equals e[k] (e[]]) will be
defined as a best population. The problem of primary interest is
to define a procedure R which selects a subset of fhe k given popula-
tions that is small, never empty and large enough so that it contains
the best population with probability at least P* (%-< P* < 1)

regardless of the true configuration, i.e.
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(2.2.1) inf P(CS|R) > P*
2

where @ denote the space of all possible configurations.

Suppose we have k independent random samples, Xil’XiZ""’Xin
_ i
say, of size n, from population s with a continuous distribution

Fi’ i=1,2,...,k. We form k-tuples by taking one observation from

each sample. Put for i = 1,2,...,k,

" &0
_ 1 : :
(2.2.2) Us; = + Z] ee. Z] ¢1(X1a]""’xkak)
I n. %1 ok
i=1 !
with _
(j-])r (k—j)S if x{ is the jth smallest

k-1 ~ k-1 among Xqs...,X
(2.2.3) ¢i(x],...,xk)={ ro 3 1 k
: . 0 otherwise,

where (h)m = h(h-1)...(h-m+1), (h)0 =1, r and s are two fixed
integers such that 0 < r, s < k-1 except for (r,s) = (0,0). Then Ui
is called a generalized U-statistic. It should be pointed out that

in case r = 0 and s = k-1, (2.2.3) reduces to

0 i§f X; < xj for all j # i

(2.2.4) (P'_i'(X],..,xk) =
1 otherwise.

This leads to Bhapkar's V-statistics (see [15]) which has been

offered for testing the hypothesis
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(2.2.5) H.:

against the location alternatives

(2.2.6) H,: Fi(x) = F(x-ei) not all 6's being equal

or the scale alternatives

(2.2.7) H: Fi(x) = F(gj) not all o's being equal for skew
i
~distribution F.

If r=15=k-1, then (2.2.3) reduces to

1 if X; > xj for all j # i

(2.2.8) ¢1(X]""’Xk) ={ -1 if X; <x; forall j # i

J
0 otherwise.
This leads to Deshpande's L-statistics which has been proposed for

testing the hypothesis H, against H, for symmetric F.
0 2

Now we use the U-statistics for subset selection problem.

2.3 SELECTING A SUBSET CONTAINING THE POPULATION
WITH THE LARGEST LOCATION PARAMETER

Suppose we have k independent populations n],nr,...,nk with
continuous éumu]ative distribution functions F(x—el), F(x-ez),

ces F(x-ek)'respectively. Let XiqoeooaXs be'ni‘independent

1n1.

observations from population m;s and let n{ =reN, 1= 1,2,...,k.
Suppose we are interested in choosing a small but non-empty subset
according to the procedure (to be defined below) such that the

probability is at Teast P* that the selected subset contains the
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population with the largest value of 6. We define a rule based on

U-statistics as follows:

Rc: Select population 5 if and only if

c
5 k n(r,s
(2.3.1) U; > max U - A / (n. )

"<k

()]

where

2 2

- r S - 2 2ris!
(2.3.2) nlr,s) = PRTYRLY. + PR T Y1)~ TrasH)T

and cy = c](k,P*,r,s,n1,...,nk) is the smallest non-negative number

such that the basic probability requirement (2.2w1) is satisfied.
For the evaluation of the infimum of P(CSIRS), we need the

following lemma which is due to Sﬁgiura [94] and is stated below

without proof.
Lemma 2.3.1. Assume the sequence of distribution

(2.3.3) FM (x) = F(x-N"2o,)

of independent random variables xij"J

1,...,ni for each N, where -

n; = riN with ry being a positive constant independent of N,

i=1,2,...,k. Suppose that the distribution F(x)‘bossesses a

continuous derivative f(x) except for a set of measure zero and

further there exists a function g(x) such that

(2.3.4) fw g(x)dF(x) < «

-00

and that
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(2.3.5) lfiﬁiﬂ%lfiéll.i g(x)

holds for every x and any sufficiently smalllh. Let U' = (Ul""’Uk)’
1' = (1,...,1). Then as N » w, the limiting distribution of

N (U - (F%T" E%T)]) is k-variate normal with mean vector

p' = (uys...5u,) and covariance matrix (cij), where

Ak(r’s) k .
(2.3.5) ui = ———E:T—-GZ1(ei-ea), 1= ],2,...,k,

with

(2.3.7) A lrys) = fm{rFr'](x) + s(]—F(x))S']}f(x)dF(x)

and
2
k k®s. .
1 1 .1 i
(2.3.8) o, =nrs) oy 11 L1y, "0

We now prove the following theorem regarding the infimum of

P(CSIRS) when the sample sizes are large.

Theorem 2.3.1. - Suppose that the assumptions given in Lemma 2.3.1

hold. Then for large N,

o k-1 o ‘
(2.3.9)  min dnf P(CS[Rg) ~ [ 1 e(—L (xrcg))de(x)
9

-0 J:] )

J

n],...,n_k

‘ ne, _
where o = (1 + LKLy 5 -9, .. k1.
J 31



Proof. Let ¢ = (e],..,ek)-e Q and let nesy = r(i)N be the unknown
sample size associated with the population (1) whose parameter is

e[i]. Then

. C
Po(CSIRg) = Py(Uy > Uy - 2k /mlns) oo, k)

T
A (ras)(er 1-6r47) Cs
(2.3.10) = Pyl < E ] [J% ye i Ny
2 In(r,s)(m—+ ——)1* (1 + Lk
(k) 7(3) n(3)
J = ], -sk'])

where the (k-1)-dimensional random vector with components

M) Ug) + kI () oy g-0p47)

k(k-1)"T{n(r,s) (o + )17
! "(k)  "(3)

(2.3.11) Yj

is, as N » », distributed as a (k-1)-variate normal, (Z],...,Zk_]),
say, with zero mean vector, unit variances and correlation matrix,

where

n(k

37

(2.3.02) o{8) < 1+ e Dyl g

(1) "(3)

For any given association between {n],.,.,nk} ahd
{n(]),...,n(k)}, we see from (2.3.10) that the infimum of P(CS|R5)
is attained when e[]] =...= e[k]. Thus as N large, the infimum we

seek in (2.3.9) is given by



38

(2.3.13) min PL(Z < cg(1 + ;ln(—k))‘%, i=T,...,k1).
- .n(]),...,n(k) J (J) ‘

It follows that (2.3.13) is minimized when "(i) = "[i]’ i=1,...,k.

By using the transformation (1.2.14), (2.3.13) can now be expressed as

o k-1 .

[0 s (comx))da(x).
- J= V]-aj °

Replace x by -x' and drop the prime, gives the right hand member of

(2.3.9). This completes the proof of the theorem.

‘Remark 2.3.1. It should be pointed out that when Ny =...= s the

right hand member of (2.3.9) reduces to

©0

(2.3.14) o (xreg)do(x).

- 00

Let S denote the size of the selected subset. The expected

value of S when R5 is used is given by
. ) |
(2.3.15) 7-E(S|R5) = 121 P(w(i) is selected |R5)

k c
- 5 k_ /n(r,s)
= P(Ursy > max U,y - —- )
ih e () =g Q) 7 g BT /700,

k c.
p Upy-U,y) < 2 Kk /olr,s]
igl r(]gggk( (i) (1)) “ N k-T "(1))
J#i
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Theorem 2.3.2. Suppose that the assumptions given in Lemma 2.3.1

hold, then for large N,

k &k n
(2.3.16)  max  sup E(S|R.) < v o /LKl ¢ .
Nyse-oshy 0 %) < J§1 1151

Proof: Sinée

°5
(23170 Pl e W)Uy g er SR < Py <

37‘1

for all j # i, it follows that

| % kAT 1
(2.3.17) Pr(]gggk(U(J) Ugiyls /-”T ") ) 1 JZ PrlUig) Y s

J#1 ’ Ji‘

k

For large N, the right hand member of (2.3.17) approaches

3 1 -2 )
R | e %) e gy e

J i

‘lk

Therefore, for large.N,
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: k k n
_ 1 [k] T 1 -4
2.3.18) E(S|R;) < 5$) Ble—— z
j#i
Ak(r,S)(e[i] = B[J]))
= E%T'Q1 '(say). | |

Under the configuration (1.2.19), Q] can be expressed aé follows:

k np
(2.3.19) Q, = .§ {.§ o(csb—lixl———)'%)+ Y e(c C—IHJQL——J% +

i=1 §=1 2 P(4)™M(y) NE IR TS
J#i
-3, 1 1 -2
+ n(r,s) (n—“7+ "(j)) Ak(r,S)(é-e[j]))}

k m n
| [kl 3 -3 1_ -3
{ )2 + n(r,s) 31—+ :
" ik j§1¢(c5("<1)+"<j> rnlrs) LT

Ak(r,s)(e[j]\-‘e))

L 1
O e L3 N A T S B

(
JEm ()M 5) i) ()

Ak(r,s)(e[i].-‘e[j]))}

Differentiate Q1 with respect to 6, we get

3Q-| -m ok -3 nl k] | 2 . -2
(2.3.20) = »$) 72 (ry8) ® - n(r,s)7®
¥(_ 20) 35 | 121 J.Zer]n(rﬂs) Me(rss) ¢(C5("(i)+"(j)) n(r,s)
1 143 |
(ﬁz;; + n(j)).axk(r,s)(e[j]-e))

_ "] .3 3, 1 -3 o).
.‘.¢(C5(n(i)+n(j)) + n(r,s) ("(1) + n(j)) _Ak(r,s)(e[a],e))
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Since if a is positive then ¢(a-x) > ¢(a+x) for all nonnegative x.
It follows from (2.3.21) that Q1 is nondecreasing in 6. Thus
inequality (2.3.16) follows.

2.4. SELECTING A SUBSET CONTAINING THE POPULATION
WITH THE SMALLEST SCALE PARAMETER

Let TysenesTy denote k independent popu]ations with continuous
cumulative distriBution F(Z—) F(——J respectively. The functional
o
form of F and the parameters are assumed to be unknown Let

X, X, be n. random samplestaken from population r.

Xi]’ i2°" " in; i

i=1,...,k. Corresponding to the statistic (2.2.2), we shall put

-I’

at this time for i = 1,2,...,k

n
1
(2.4.1) U= T ... z 05 (K sereX, )
i n. 0L-|=] ak-] ] k
i=1 !
with
(3-1),. (k i) if X, is the jth
: (k-]) (k 1) smallest among X],...,Xk;
(2.4.2) ¢1(X1,...,Xk) =
0 otherwise

where 0 < r,s < k-1 except for (r,s) = (0,0) and (1,1). In case

r=s=k-1, (2.4.2) reduces to

1 if Xi < Xj or Xj > Xi for any j # i

(2.4.3) ¢1(X],...,Xk) .
' ' 0 otherwise



o which leads to Deshpande s D-statistics which has been proposed for

testing the hypothesis Ho against H. Ifre0,s= k-1,
' ‘1("1'----"k) is given by (2.2. 4) which leads to smmw

o -_V-stotistics. ‘Now we define a subset selection rule based on these

U-stntistics as follous
| "6 ;;5??9“,.;,90?"‘??7‘0" v if and only if
: 6 . k Ar,s)
2. 4 4) < min Yy + == ‘ /_ o
_!Mn;'f7»- R
' LT (2r+l)(r+l )7 (Zs+l)(s+l) ('"" 5_._,;‘”_',5 | _mf_-

~ and. c6 is the smallest nonnegative constant so thet (2 2 l) is
E satisfied : _ ‘ . . :
‘ The following result is due to Sugiura [94]

,Lemla 2 4 l.‘ Assume the sequence of distributions

'_'iaon.75=.;qu)=ﬂﬁﬁfﬂ

5 '1sﬂf?of:independent rdndom-variahles'xij-5j = 1,. ;aniffor'eech'l where

_7 Ny = rfN with vy being a positive ‘constant independent of N,
t=1,... ,k Suppose that the distribution F(x) has a derivetive :

B f(x) except for a set of measure zero and further that there exists

a function g(x) such that -
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(2.4.7) fmxg(x)dF(x) <

-00

and that

(2.4.8) PPy ¢ g(x)

holds for every x and any sufficiently small h. Let U' and 1' be
defined as in Lemma 2.3.1. Then as N » », the limiting distribution
of /N(U - (F%T-+ E%TJI) is k-variate normal with mean vector

= (“]""’“k) and covariance matrix (pij) defined as follows:

k
S(P,S) Z](oi-oa)
(2.4.9)  w; = a?;_1) , 1= 1,...,k

with

(2.8.10)  £(r,s) = f xFOO0F™ (x)-s(1-F(x))S~T3eF (x),

-0

and )
L(r ) | k 11, Koy
(2.4.11) 055 = (k " Z k(ri + r‘j) + —7?—J&.
Now
CP(CSIRG) = P (Uyyy < min Upsy + 8k /ETRST)
6/ " 'r (]) —-zg;gk ( ) /N-E_T' n(])_
= Pu(Y, i; S + % s i=2,...,k)
n
— 1
" S)("(l ' 1)) /1 "21;

where the limiting distribution of Y with component
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o2 ) U)) * SRR Kepy o)

Voo ko L 1
("T‘M-’ "y Ta)

is (k-1)-variate normal with zero mean vector, unit variance and
correlation matrix given by (2.3.12). Using the analogous arguments

as in the prbof of Theorem 2.3.1, we obtain the fo]lowing theorem.

Theorem 2.4.1. Suppose that the assumptions given in Lemma 2.4.1

hold. Then for large N,

min i f P(CS Rg )~ | n ¢(—gJ——{x+c ))de(x) -
n" ,nk n2 ' !oo J.- ’ 6 X
. J

where o is defined in Theorem 2.3.1 and 2, denote the set of all
possible configurations of (o],...,ok).

Similarly, one can show that

Theorem 2.4. 2 For large N,

n[k] .
i ol "[11*"[31 2)

2.5. SELECTING A SUBSET CONTAINING THE POPULATION WITH THE LARGEST-
N _PARAMETER: TRIMMED PLES CASE .

max sup E(S[Rg) < Z
n]s_'--snk 2 .k_T'l ]J

Consider a single sample of size n from a diStribution with
absolutely continuous distribution function F(x-6). For distribution
with heavy tails, Tukey [96] proposed and investigated the a-trimmed

- mean as an estimate of @ which is based on the middle n-2[na]



45

observations. Later Huber [54] considered essenfia])y the class of
maximum Tikelihood estimates and found that the trimmed mean
minimizes the maximum variance over various classes of contaminated
diétributions. In [16], Bickel studied the asymptotic relative
efficiency properties of the a-trimmed mean relative to the mean
for the class of continuous distributions with symmetric Unimodai
densities. Recently, Hettmansperger [51] has shown that one can
increase the asymptotic relative efficiency in Pitman's sense of
the Mann-Whitney test for some distributions with heavy tails by
using the trimmed samples instead of the complete samp]é. Here
a subset selection procedure based on trimmed samples is proposed
and studied for distributions with heavy tails. 7

Let Xi[l] 5"'5-Xi[ni] be the ordered statistics from
absolutely continuous distribution Fi(x) = F(x-ei), i=1,...,k, where
F(x) has a symmetric density of unknown functional form. We further
assume that for 0 < o < %—that F(x) is continuously differentiable
in some neighborhood of the unique quantile dy and CI of order a
and 1-a respectively. In this section, we propose a subset selection
rule based only on the middie ni-ZAi ordered observations

xi[ki+1] 53"5-Xi[n-ki]’ from population =., i = 1,...,k, where

-i!
Aj = [nix] denote the largest integer not exceeding niX. We assume

further that n; = riN, i=1,...,k. Define a U-statistic as follows:

: Ny=24 Mk
(n-22) a1=Ay @ =Ay
J=1 i1,k

(2.5.1) ule) - .. b (Xe o Xy. )

II..‘:l Fal
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where ¢; is defined by (2.2.4).

Now we define a selection procedure as follows:

Ré: Retain the population s in the selected subset if

and only if

(2.5.2) U(a) > max U(a) - Cé
T T giek 9 /Zk=T)r (N-20)

: k
where n; = r.N, i =1,...,k, 1 = 1X]Ai.

Suppose that the assumptions stated in Lemma 2.3.1 are satisfied.
The random vector /N-2x (U(“) - —-1) has the joint asymptotic normal
distribution N(y, 0L), where
a;-

2 =g k
= (]-2a)§'kf {F(x)—a}k-zf(x)dF(X).Z](91"63)
q -

i=1,...,k, and Za = (wij)’

Qo

1,
17 i i '

k
wii =B (]
1 k2(2k 1) g=

where

8= (k-1)2(1-20) + (2k=1)(K2-2k42)a(1-a) 4 2(k-1) (2k-1)a?,

It follows that

Pr(Uéz; > max ufe) 6

P(CS|R! '
(C51Rg) 1<k @) BTy TR-23]

; k(e 1-6r.9)v(a)
YO (1[k] ]m Y] 3= T kel)
1+ ﬁi—l- 2k-1 r(k) * T(j))_
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where
1-q

o. ) _
Yoy = (-20F [ R 0-a0 2R (0 0F (),
%
and the limiting distribution of (Y],...,Yk_]) with component

P a) |
v - AT oo vie)
1 1 1
ST )

i= 1,...,k-1

~is (k-1)-variate normal with zero mean vector, unit variances and
correlation matrix given by (2.3.12). This implies that when N is
- large,

k-1«
]¢(——J—m (x+cé))dq>(-x).

J

min  inf P(CSIRg)~f
-0 j:

‘n],.“,nk Q-l

."vsimi1ar1y, for large N, the inequality (2.3.16) holds.
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CHAPTER III

ON SUBSET SELECTION PROCEDURES FOR POISSON PROCESSES AND SOME
APPLICATIONS TO THE BINOMIAL AND MULTINOMIAL SELECTION PROBLEMS

3.1 INTRODUCTION

The Poisson process arises in many applications, especially as
a model for arrivals at a store, for the arrivals of calls at a
.telephone exchange, for the arrivals of radioactive particles at
a Geiger counter, etc. In this chapter, the problem of selecting
a subset of k Poisson processes including the best which is associated
with thésma]]estvalue of the mean arrival time is discussed. Some
subset se]ecfion:procedures are proposed and studied. An applica-
tion of these procedures to the subset selection préblem for the
largest probability of a success of k binomial populations, whose
parémeters are unknown, is considered. Results are also applied to
the problem of selecting the largest cell probability from a
multinomial distribution, again the cell probabilities being
unknown. It.should be pointed out that single sample subset
se]ection‘procedurés have been considered by Gupta and Nagel [44],
Gupta and Huang [39] and Goel [28]. Some parallel selection
procedures have been discussed by Alam [1]. Recently Goel [29]

also proposed a subset selection procedure for Poisson processes.
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Let TysesesT be k Poisson processes with mean arrival times
A;],...,AL], respectively. Let arq; <o Mk denote the ordered
‘set of the values Ayseeeshy. The process associated with A[k]

(A[]]) is defined to be the best process. Assume A's are unknown
and that there is no a priori information available about the
cbrrect pairing df the ordered A[i] values and thg k given préces;es.
Our problem is to define a selection procedure whicﬁ satisfies the
P*-condition.

In Section 3.2, some subset selection rules for selecting a
subset containing the process with largest value A[k] are proposed.
Three-different kind of sampling rules are considered. The
probability of a correct selection is evaluated. Some properties
of the proposed selection rules are discussed. Seétion 3.3 deals
with the analogous problem of selecting the process for which the

. associated value A is the smallest. In Section 3.4, applications to

binomial and multinomial selection problems are considered.

3.2 SELECTION PROCEDURES FOR PROCESS ASSOCIATED WITH A[k]-
In this section, four different selection rules are proposed.

(A) PROCEDURE R7 AND ITS PROPERTIES

Let X](t);...,Xk(t) denote the number of arrivals from processes
mys-+.om during time t, respectively. Let X(i)(t) and w(i)’be
associated with A[i], i=1,...,k. Let N be a fixed positive

-integer. We propose a subset selection rule as follows:
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R7: Observe the processes until max Xi(t) = N. Select
1<i<k
- process 7, if and only if T

(3.2.1) X;(t) > N-c,

where Cy = c7(k,P*,N) is the smallest non-negative integer for which
the P*-condition is satisfied.

Before we derive some properties of the se]ectioh rule, we
introduce some definitions. Let @ denote the set of_all k-tuples

A= (A],...,Ak), Ay > 0, i =1,...,k. Define

(3.2.2) px(i) = PA("(i) is selected |R).

Definition 3.2.1. A rule R is said to be (reverse) strongly

monotone in (1) (see Santner [83]) if

(+)+ in Ap.q when all other components of » are fixed.
| [i] -’

p, (i) is

(4)+ in A[j] (j#i) when all other components of A are fixed.

Gupta [35] has proved that the subset selection rules which he |
studied possess the properties of monotonicity and unbiasedness.

Recall these definitions:

Definition 3.2.2. The rule R is (reverse) monotone means for all

1<i<j<k,and ) €gq,

(3.2.3) p, (1)(
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Definition 3.2.3. The rule R is unbiased means for all 1 < i < k and

A€ Q,

P, (R does not select n(i)) 3_P&(R does not se]ect-w(k))

Remark 3.2.1. (1) If a rule R is (reverse) strongly monotone in T(4)

for all i = 1,...,k, then R is monotone and

(3.2.4) - inf P(CS|R) = inf P(CS|R)
Q Q
0 o
where g5 = {1 = (x,...,1), for all possible values of A}.

(2) If R is monotone, then it is unbiased.

Let Ti(N) denote the waiting time for N arrivals for the process
i=1,...,k. Ti(N) is distributed according to gamma distribution
with density given by

U N
)\ -] -A-t

_ i .N- i
(3.2.5). f'i,N(t) = _I'—(W)_t e -, t>a0Q.

Let T(i)(N) denote the unknown waiting time for N arrivals for

the process (i) i=1,...,k. Then for any » €q,

(1) = P, (X4 (1) 2 Ncy)

PA(T(i)(N-c7) 5']T}2k T(j)(N))

(3.2.6)

f
O 8

where

(3.2.7)  G.(x)

I
O X
—
-+
-~
1
—
(1]
}
+
[
+



It follows from (3.2.6) that prdcedure R, is strongly monotone in

n(i) for all i = 1,...,k. Furthermore

, . % k-1,
(3.2.8) 1gf P(CS[R,) = 1gf P(CS|R,) = é{I-GN(t)} dGy_._(t)

0 7
which 1is independent of the common unknown parameter. Hence we

have proved the following theorem.

Theorem 3.2.1. The procedure R7 is strongly monotone in (1) for

all i = 1,...,k, and the infimum of the probability of a correct
selection occurs when all the processes are identica]Iand the

infimum does not depend on the common unknown parameter.

Remark 3.2.2. 1In order to find the selection constant C; SO as to

satisfy the P*-condition, it suffices to choosec7 of (3.2.1) to be

the smallest integer greater than or equal to X where
(3.2.8)  [01-6,(t)3 TdGy (t) = p*
[ . 0 N N—X .
Let S denote the size of the selected subset when procedure R7

is used. S is a tandom variable which takes values 1,2,...,k. The

expected value of S is given by

k
_EA(S|R7)}= izl Pg("(i) is selected ]R7)
- - kK « k Ara
3.2.9 - (1-6, (L3 ¢) 1dg .
(3.2.9) L jg! N(A[i] t)1day_c_(t)
j#i

It will now be shown that the maximum of EA(S|R7) takes place

when all the parameters A; are equal. If we set the m smallest

52
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parameter A[i] (1 <m < k) equal to a common value i (Say), we obtain

from (3.2.9) that

A
® k .
- -1 [i]
(3.2.10) E,(S|R,) = mf{1-Gy(t)}™ ' 1 {1-G( t)1d6y . (t)
A 7 é N jem+ N*a N-c,

Ay
+ {1-6, (A— )3 1
=1 00 VAL jeml
Jj#i

‘il
{1—GN(XE;5-t)}dGN_C7(t).

we now show that the right hand member of (3.2.10) is a‘nondecreasing
function of ) for k'] < P* < 1. Since this holds for integer m < k,
this proves that its maximum value occurs when A = A[k]’ and the
desired result will follow. To show that EA(S]R7) is monotone, we

differentiate EA(SIR7) with respect to A and show that the derivative

1

is positive for k™' < P* < 1. Differentiation gives

[oo]

' k k Aps
- -1
(3.2.11) 35 £, (SR;) = ml o [0-6 ()" n (16, (L )

j=m+1
j#i
Ars Ars )
[i1 .y2[i]
fi,N(X~——-t);?——-thN_c7(t)
k o k ) Ars
- -Gy A— )™ 1 (-6, (L1 ¢)3
it §11 Mil T gEmel N
J#i :

fo v—t)t—da,  (t).
1,N(A[1] )A[i] N-C7( )

If we let At = A[i] t' in the second 1ntegré] and drop primes then

(3.2.11) becomes



v k k A s
= -1 _
E,(SIRy) = mizm+]{(1-GN(t))m j£m+1(]'GN(XLll £))
o it
1 1 AT N
F(N) T(N-C,) G o

Ars
“t(1 XLJJJ}{l-(§———
[i]

3
(3.2.12) EYN

c,+1
)7 }dt

Hence we have proved the following theorem.

Theorem 3.2.2.

| p k-1
(3.2.13) SSP EA(S|R7) = k é {1-6y(t)} dGN_C7(t).

_ AND R, AND THEIR PROPERTIES

(B) PROCEDURES Rg 9

Let t, be a fixed positive number. Observe the number of
arrivals X1(t0)""’xk(t0) from processes my,...,m during time

tO respectively.

R8: Select process T if and only if

(3.2.14) X:(ta)+] > ¢ max X;(tn)
o 0 =~ -8 1<j<k j‘ o

where cg(> 0) is the maximum value for which the P*-condition is

satisfied. It should be pointed out that the motivation of this

54

type of rule lies in the result of Chapman [19] who showed that there

6

is no unbiased estimator of the ratio —l-with finite variance, where

2

84 and 0o are‘expected valuesof two independent Poisson distributions

Y
Y, and Y, respectively, but that the estimator 1 is "almost
1 2 Y2+1

unbiased".
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Procedures Rg was proposed by Gupta and Huang [39] in studying
the single sample selection problem for Poisson populations. Here
we derive some further properties of this selection rule. It is

easy to see that for any ) = (x],...,Ak) € R,

. X+1
o Apiqty (Apsqta)X K e e
(3.2.15) p,(i) = Je LOZLIO 4 v SeVay

where [églﬂ denotes the integer part of 5%1.
8 8

It follows from (3.2.15) that Rg is strongly monotone in (4)
for all i = 1,...,k. 1In particular,

+
e
o X ’ 1
(3.2.16) inf P(CS|Rg) = inf [ e & ] e gkl
v v Q >0 x=0 =0 '

One can follow the method of Gupté and Huang to obtain a conservative

vatue of the se]ection constant. For more detail, see [39].

Let @, = {3 = (A,...,2,8)): & > Ay >0}, 6§ > 1. Then for any

EA(SIRB) = Pé(x(k)(t0)+1.z Cg 1T§fk-1 X(j)(to))+(k-1)PA(X(])(to)+] >

c8.maX’X(j)(t0))

IA

KBy K g (10141 < gty (29)) = (k1P (X (11

Cg X(k)(to))
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[c8x+]]
o 1 Xy, 8 vip 1 xei. “Mg(1#8) (itg(1+8))%
=k - xgz{igo (i)(T:g) (Tpg) le Xt
c8x+1
B e X
8 ; At0(1+6) (xt0(1+5))
- (k- 1))2 {1_2_ (% )(m) xt

_ —A0t0(1+6)
(3.2.17) < K-{inf g(x)+(k-1)inf h(x)}{1-e

(Apt (1+6))
X>2 X>2 "0%0

(1 + %-A0t0(1+6))},

where g(x) and h(x) are defined in terms of incomplete beta function

as follows:
‘ gx- 1 CgX- 1
g(x) = 1-1 5 ([—T;E—J+]a x-[ 1+c 1)
T+
(3.2.18)
gx- ] CgX- 1
hx) =11y (2 1+c g X))
T+§

Note that the upper bound (3.2.17) is better than the bound given
in [39].

Using the same sampling rule as in R8’ the fo1]owing conditional
procedure was also proposed by Gupta and Huang [39] fbr the selection
problem of k Poisson populations. Their procedure written in terms

of observations in a fixed time to from each process, is

R9: Select process s if and only if

(3.2.19) X; (ty)+1 > ¢ max X (t,) given Z X; (ty) = r,
0 9 1<j<k 0 = 0
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where cq > 0 is the maximum value for which the P*-condition is
satisfied.

Let A = (Ay5...51) €0, and let

S,i =,>‘['|'] +...+ }\[,i], i < k,

(3.2.20)
Then
.
Pé(cisg) = P&(X(k)(t0)+1 > ¢ 12§§k-1 X(j)(t0)|iZ]X(i)(t0)=r)
r k-1 pxj
@3.2.21) = | QP (1) z(r-x)!jg](%)

where the second summation of the right hand side of (3.2.21) is

over all (k-1)-tuples (x],...,xk;]) of nonnegative integers, such

that 0 < x; < min{=— , r-x}, i=1,...,k-1, and J. X; = reX.
9 i=1

Recall that the vector x = (x;,...,x ) majorizes the vector
Y= (Yqs-..0y,) if
g | m
ig1x[n+1-1’] = 1.—Z.1y[n+1-1'] form=1,...,n-1, and

(3.2.22)

n ‘ n
B0 L

and is written x >y. A real-valued function ¢(x) is called a
Schur-convex (concave) function if ¢(x) > (<)¢(y) whenever x > y.
It is known that‘(see Rinott [79]) if ¢(x1,...,xk) is a symmetric

Schur-concave function and (X],...,Xk) is a multinomial random
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vector with parameter N and P, then EE{¢(X],...,Xk)} is Schur-
concave in p.
Now for a fixed x, the second summation of the right hand member
of (3.2.21) can be expressed as
_ X

Py
(3.2.23) J(r-x)! 1 ( t'},J
BRI ) BN

) = Ep{w(Y] 3o e sYk_] )}

where

1 if C3 ]qu Y; < x+1

<J<k-1

(3.2.24) w(y],...,yk_]) =
' 0 if c, max y. > x+l,

T1<j<k-1"9
and (Y1,...,Yk_]) is a multinomial random vector with parameters
~r-xand p = (pk-l,l""’pk-],k-1)' Since ¢ is a symmetric Schur-
~ concave function, it follows that'EE{¢(Y],...,Yk_])} is Schur-
concave in p. ‘In other words, if we fix Sk-1 and Atk then
'pé(cs|R9) decreases when A[k-]] > A[k]‘ Hence the least favorable
configuration is of the form (0,...,0,1,8X,...,61) where A > 0,
§ > 1. It should be pointed'out that the probability of a correct
se]ection.under the configuration (0,...,0,A,6A,...,§A) does not
depend on the unknown parameter A. Also when k = 2; the infimum
takes place when the two processes are identical. However, whén k > 3,
the infimum of P(CS|R9) does not necessarily take place at the configuration
of the type (0,...,0,A,...,1) as shown by the following example.

First of all, we need some algebraic concepts. Let
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(3.2.25) P(x) = aoxn + a]x""] toota gx tag

be a polynomial of degree n. The coefficients apsdys. .52, are

assumed to be real. The discriminant of the polynomial p(x) is

defined to be

P X an-1 n
0 a a a 0. 0]
0 -1 "n ) (n-1) rows
(3.2.26) D(p)=| . ' o '
0 o ... ... - 0 ao... an J

0 0...0 L n rows

n-1}

In particular, when p(x) = aox2 * a;x t+ a,, then D(p) = a? - 4aga,.
It is We]]-known that (see [65]) if the polynomial b(x) with real
coefficients, not having multiple roots, then D(p) > 0, if the
number of pairs of complex conjugate roots of p(x) is éven, and

D(p) < 0, if this number is odd. Moreover, D(p) = 0 if and only if
p(x) gas multiple roots. Now we consider the case when k = 3, ¢ = %

and Z X(1) ty) = 6 under the configuration

(3.2.27) (x,62,81), A >0, 8> 1.

i
- g

Let x = (1+26)']. Under the configuration (3.2.27),
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3
PY‘(X(3)(t0)+] z_% 1'2?)((2 X(.i)(to)l_iz_lx(i)(to)=6)

(3.2.28) P(CS|Ry)

1-(3-2x) - (12 ()

p(x), say.

The derivative p'(x) of p(x) is a polynomial of degree 5. It follows
that p'(x) has at most two pairs of complex conjugate roots. Direct
computation shows that the discriminant of p'(x) is negative. This
implies that p'(x) has three real roots. Since p'(%)pf(]) < 0 and
p'(x) < 0 for all 0 < x < %Ty there are at most two real roots lying

in the interval (%T‘ %). Moreovgr p'(%%?)< 0 < p'(%%?-+ 11]64)’ and

p'(3) > 0> p'(3). Now
P( )= 0.980578 < p(1) = 0.9805795 < p(0) = 0.984375.

This implies that the infimum of p(x) takes place for some x in the
closed interval [%373 %%§-+ TT%BIJ' This shows that the least
favorable configurqtion is of the type (1,81,61), where 1< 8.

The next theorem shows that R9 is a monotone procedure.

Theorem 3.2.3. Procedure R9 is monotone.

Proof. Llet 1 <i < j < k.
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(3.2.29) P(ﬂ(i> is selected|Ry)

='Pr(x(i)(t0)+] > Cq max X | Z X(R (t =r)
= ¥ ' r '
! xi+xj,x1,...,x1_],xi+],...,xj_1,xj+],...,xk)
X:tx. k x
i % L
Prag*rs)) 7 PLr
LEI
2#3
AX. -5+
I PLi] (s,x1 X;-S 1),
PLiT*PL5]
where s = max{(1+c )" ]{c (x +x )-1}, ¢cq max x -1} and
9 9 g Y
L#J

I (-) represents the incomplete beta function, and the summation
extends to a]] k-tuples (x], ..,xk) of nonnegative integers such
that Z] X; =rand x; >s. A sihi]ar expression for the probability
that ;(J) is included in the selected subset can be obtained by

interchanging the roles of x; and X in (3.2.29). From the fact

that
I (s,xi+x.-s+T)_i I (S’Xi+x'_5+1)’
PLi] ! PLi] !
PLiT*PL4] PLiT*PL4]

the result follows.

Theorem 3.2.4. For a given P*, let Pf = %E%t-and let ¢, be the

9
Cqr-1
9
largest positive number such that ) ( ) ——-< PT, then
i=0

inf P(CS|Ry) > P*.
194



Proof. For any A = (A],...,Ak) € Q,

| k
p (X(k)(t0)+1 > Cg _max X(j)(t0)|iz]x(i)(t0)=r)

P_(CS|R,) =
A (1R o 7 1<j<k-1

. . ' k
=‘1-P,p(X(k)(‘co)+1 < ¢g 12§§k-1x<j>‘to)|4§1X<1>(to>=r>
kel .
1= 4 PeX i (B*T < eg¥(5)(t) L1 X4 (tg)=r)
[cglr‘—]:|
o
ki]{ gg (T (DK i ML )iy
L (S I FTR CS AT
cgr—l
[Txgg—]
>1-k-1) 7 (ML
’ i=0

|v

|v

=

1-
J

= p*,

1

(C) PROCEDURE R‘0 AND ITS PROPERTIES

Suppose fhat the Poisson processes are observed at successive
intervals of time, t = 1,2,... . Observe the processes until time
tO, the smallest value of t, say, when the number of arrivals from
one of the processes is equal to or greater than N. Let I denote
-the set of values of i for which Xi(to) > N and J the set of values
j for which Xj(to) 3_N—c7 where Cs is the constant associated with

R, defined in (3.2.1). Clearly I cJ. For each j € J, let t; be
0

the time such that Xj(tjo) 3_N-c7 and Xj(tj0-1) < N-c5, and let

m, = N-c7-Xj(tj0-1), ng = Xj(tjo)—Xj(th—l). Similarly for each

ie€l, let m% = N-Xi(t0-1) and nj = Xi(tO)-Xi(tO'])' Let U(m,n)
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denote the mth smallest observation in a sample of size n from a

uniform distribution on the unit interval (0,1). Now we compute

tjo-l + U(mj,nj) for j €4
(3.2.30)

U;

ty-1 + U(m%,n%) for i €1
and propose the following selection rule:

R10: Select process "j (j €J) if and only if
(3.2.31) Uj < min U;
i€l
Note that U% and Uj are simply the waiting times for N and
N-c7 arrivals from the processes s and T respectively. To see
this, observe that if n is a random variable distributed according

to the Poisson distribution with mean A, then for any given value of

m,

8

(3.2.32) P (U(m,n) < t)

n t .
“A A n! =1 n-m
€T WnIEmT [ X (1))

1]
Nt~

n=m

Gm(At), 0<t<l.

Thus, the arrival times for a Poisson process can be generated from
the observed number of arrivals during the successive unit time
intervals and random observations from a uniform distribution. It

follows that for any A € g,

Pg("(i) is selected]R]O) = Pg("(i) is se]ected|R7).

Hence the rule R]0 is strongly monotone in T(4) for al1 1 = 1,...,k.
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#}

In particular,

]

, < k-1
(3.2.33) 1gf P(CSIR]O) 6{1-GN(t)} dey_. (t).

7

w—r

E—sgp E(S[Ryq)-

3.3 SELECTION PROCEDURES FOR THE PROCESS ASSOCIATED WITH A[]]

For the analogous problem of selecting the process for which
the mean waiting time is largest, we propose the following subset

selection rule.

(A) Let N be a fixed positive integer. We observed the processes

until, say to, that min Xi(to) = N.
: 1<i<k

R]]: Select the process m; if and only if

(3.3.1) Xi(tO) 5_N+c]1,

where 1 is thé‘smallest non-negative integer such that the basic
probability requirement is satisfied.

By using similar arguments as given in Section 2, .one can show
that the procedure R]] is reverse strongly monotone in (4) for all
i=1,...,k. This implies that the infimum of P(CS|Ry;) takes place
wheh all the process are identical. 1In fact, the infimum of

P(CSIR]]) is gfven by

' . T k-1
(3.3.2) 1gf P(CS[Ryp) = é Gy (t)dGN+c]](t).
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Also, one can show that

(3.3.3)  sup E(S|Ry;) = k inf P(CS|Ryq).
y 1 0 1

(B) Suppose we use the same stopping rule as mentioned in (A), we

can define a selection rule as follows:

R]Z: Select process s if and only if
(3.3.4) Ti(N) > ¢y 12§;k Tj(N)
~ where 0 < 12 < 1 is chosen so that the basic probabiiity requirement
holds. | :
Note that this reduces to the problem of se]ecting a subset of
k gamma populations which includes the one with the smallest value of
shape parameter. We briefly state below some known results. For

more details, one can see [34].

(i) Rule R]2 is reverse strongly monotone in (1) for all

i=1,...,k.

(i1) sgp E(S|R12) = k igf P(CSIR]Z)

(C) If the processes are observed at successive intervals of time
t=1,2,... . We observe the processes until the first time

‘to, say, when min X.(t
1<i<k .

X;(t;) >N and Xi(t5=1) < N, d = 1,0,k Let m; = N'Xi(ti'])

0) > N. Let t, be the time such that

and n; = Xi(ti) - Xi(ti'])' As in the previous section, we

compute
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(3.3.5) Ui = ti-l + U(mi,ni), i=1,...,k,
and propose a procedure R13 as follows:

R Retain process m. in the selected subset if and only if

13° i

(3.3.6) U:. > ¢ max U.,
T8 ek

where 0 < Ci3 < 1 is the largest value for which the p*-condition
is satisfied. Since Ui is distributed as Ti(N), hence the rule R]3
is equivalent to'R]Z. It should be pointed out that a rule similar

to R13 has been studied by Goel [29].

3.4 APPLICATIONS

(A) A sequential (inverse sampling) subset selection rule for

the most probable multinomial event.

Let X = (X],...,Xk) have the multinomial distribution

k x.

(A1) P=8) = (0 ey
22 i=

where x = (x],...,xm), and let P17 22 PLK Henote the ordered
values of PyseessPy- The subset selection problem for the multi-
nomial distribution has been considered by Gupta and Nagel [44],
Gupta and Huang [39] and Panchapakesan [70]. A related problem

has also been discussed by Alam, Seo and Thompson [2], Bechhofer,
Elmarghrabi and Morse [12]. In [39] and [44], the aufhors
considered the single-sample subset selection rules. The procedure

given in [70] is based on a completely sequential sampling scheme
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in which one'observation is taken at a time from the given
distribution until the highest cell éount is equal to a fixed
number N, say.

We consider below a variation of the sampling scheme in [2].
Our sampling scheme is given as follows: Let a positive integer
N be given, and let NysNys... denote a sequence of random observa-
tion taken from a Poisson distribution with mean A. 'Having observed
these number, taken n; observations from the given ﬁu]tinomia]
distribution for the ith experiment, i = 1,2,... . Let ; denote -
the cell corresponding to py, and let Yij”denete the cell count in
m; out of nj observations. Stop sampling as soonias the total
count from any cell is equal to or greater than N. Let to denote
the stage at which the experiment terminates, and let
X.(t) = 2 Yij' Then Xi(t0'1) <N fori=1,...,k andei(tO) >N
for some i. 'As in Section 3.2, let I be the set of values of i for
which Xi(to) > N and J be the set of vé]ues of j for which
Xj(to) > N-c; where c, is the selection constant assbciated with
rule R7. Take the similar random observations from the uniform
distribution on the unit interval (0,1) and obtain the statistics
U% and Uj as defined in (3.2.30). Based on the statistics
U%'s and Uj's,'we select the cell according to the rule RTO' Then
the problem reduces to that of selecting the Poisson process with
minimum mean waiting time. To see this, suppose the parameter n

in (3.4.1) is a random variable distributed according to a Poisson

distribution with mean A. It is easy to show that the cells
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frequencies X],...,Xk are independently distributed according to

the Poisson distribution with mean APps-e-s2Pys respéétive]y. It
follows from Theorem 3.2.1 that the least favorable configuration

is (%3...,%), dnd the infimum of P(CS) is independént on the paraméter
A. Moreover supremum of the expected subset size is obtained when

all the cells are identical and is equal to k igf P(CS). It should

be pointed out that when A - 0, the rule reduces to the one

proposed by Panchapakesan [70].

(B) A sequential (inverse sampling) rule for selection procedure for

k binomial populations

Let n ST be k independent binomial populations with

120
parameters Pps--ssP respectively. To select a subset of the k
popu]ations'which contains the pqpu]ation associated with the
largest p;, Gupta and Sobel [48] proposed a single-sample procedure
which is based on the statistics max X,-X,, wheré X; represents

1<j<k -
the number of successes in n independent trials from populations =

i

Recently, Gupta, Huang and Huang [41] proposed a conditional procedﬁre

for this problem and géve a lower bound for the inffmum of the

probability of a correct selection. It should be poihted out that

a related problem has been considered by éobe] and Weiss [91]. '
Suppose the number of observations taken at each stage from the

k binomial populations, is a random variable distributed according

to a Poisson distribution with mean A. Using the same sampling

procedure and selection rule as mentioned in part (A) of this
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section, the problem then reduces to that of selecting the Poisson
process with smallest mean waiting time. It follows that the
infimum of the probability of a correct selection and'the supremum
of the expecteq subset size take place when all the hopu]ations are
identical. Also the inf P(CS) and the sup E(S) do not depend on the
common unknown parameter p and the mean A. Moreover, the se]ection

rule is strongly monotone in T(§) for all i = 1,...,k.



CHAPTER IV

SUBSET SELECTION PROCEDURES FOR
FINITE SCHEMES IN INFORMATION THEORY

4.1 INTRODUCTION

In probability theory a complete system of events A],..,Am
means a set of events such that one and only one of them must occur
at each trial (e.g., the appearance of 1,2,3,4,5 or 6 in a throw of
a die). In the case m = 2, we have a pair of mutually exclusive
events.” If we are given the events A]’AZ""’Am of a complete
system, together with their probabilities P1sPps---sPp (pi > 0,

m
) p; = 1), then we say that we have a finite scheme
i=1

A, A A
(4.1.1) = (1 ¢ my
P] P2 Pm

Every finite scheme describes a state of uncertainty. We have

an experiment, the outcomes of which must be one of the events

A1,A2,...,Am, and we know only the probabilities of these outcomes.

It seems obvious that the amount of uncertainty is different in
different schemes. Thus in the two simple alternatives (see

Khinchin [57]),'

70
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i

A A A
2 1
) (',
0.5 0.5 0.99 0.01
the first obviously represents much more uncertainty than the
second; in the second case, the result of the experiment is
"almost sure" A1, while in the first case we naturally refrain

from making any predictions. The scheme

(Al Ay
0.3 0.7

represents an‘ahount of uncertainty intermediate between the
proceeding two.

For many app1ications it séems desirable to introduce an
ordering so a§ to compare the amount of uncertainty between two

different finite schemes. For example, Shannon's entkopy function

m
(4.1.2) ' H(p],...,pm) = . 121 p; log p,

can serve as a measure of the uncertainty of the finite scheme
(4.1.1); (we always take p log p = 0 if p = 0). For general
properties of enfropy function, see Shannon [87] and Feinstein [25].
In one of his SeVera] papers, Rényi [77] obtained a characterization
of Shannon's measure of entropy for generalized probability distri-
butions. Vincze [98] and Perez [72] have discussed some problems

of statistical decision theory from the point of view of information
~ theory. For resu]ts which simplify and extend Shannon's original
work, see Csiszar [20], Arimoto [3], Kendall [56] and Lee [59]. The

applications of information-theoretic concepts to physics, chemistry,
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and various branches of biology and psychology have‘been discussed
by Brillouin [17] and Quastler [75], [76]. In [38], Gupta and Huang
have investigated a selection procedure for the entropy function
associated with the binomial populations. Gupta and Huang studied
the subset selection problem for the selection of the population
associated with the largest unknown entropy function which is
equivalent to the selection of the binomial population associated
with min |P1 - %1. They also proposed a general selection procedure
by us!%%ithe generalized entropy function introduced by Arimoto [3].
In this chapter, we partially order the parameter space by
means of majorization and propose a subset selection rule based on a
Schur-concave function. In Section 4.2,some properties of the
selection procedure are discussed. The infimum of the probability of
a correct selection is shown to occur when the k given finite schemes
are identical. A method leading to a conservative solution for the
selection constant is also given. An upper bound for the expected
subset size is given in Section 4.5. In Section 4.7, we discuss an

application to teéting of homogeneity. Some related problems are

also discussed in Section 4.8.

4.2 SELECTION PROCEDURES

First of all, let us recall the definition of majorization.
The vector x = (x],...,xm) is said to majorize the vector

¥ (y],...,ym) if
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Z X[m+1 i1 2 Z YImt1-51° forr = 1,...,m-1, and

. m
Z"m Loy

In this case, we denote x >y or, equivalently, y -<§.'
Note that in general this is only a partial order, but when

m= 2, it is a linear order defined on the simplex

S = {(31332)1 81 + a, = constant}. For if a = (a],az),and
b = (b;,b,) are two points in S with a) > a5, by > b, then
a > b if and only if ay > by.

Also reca]] that if a function ¢ satisfies the prdperty that
“(x) < @ly) (¢(x) > ¢ly)) whenever x >y, then ¢ is called a Schur-
concave (Schur-éonvex) function. Functions which are either Schur-
concave or Schur- convex are called Schur functions. Note that a
Schur function is necessarily permutation invariant; that is

o(x) = ¢(x') whenever x' (xa],.. m) and (CIN ..,am).1s a
permutation of (1,...,m). Furthermore, all funct1ons of the form
E] g(x ), with g concave (convex), are Schur-concave (Schur—
;onvex) functions. In particular, H(p],...,pm) is a Schur-concave

function.

A ... A
Now Tet m, = ( 1 ™, = 1,...,k, be k independent

Piv - Pip m
finite schemes where each p,; > 0, ) p.. =1, i
1] — j=1 1]

1,...,k. We
say that scheme m is better than scheme 5 if Pi = (pi];...,pim) <

Pj = (pj],...,pjm). Since entropy function H 1S'Schurfconcave,
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hence p, < p; implies that H(p;) 3_H(pj). However, one entropy may
arise from two different or non-comparable vectors. This is easily
seen from the following argument: the entropy of (%3 %30)'15 log 2.

If we consider vectors of the form (x, 1553 155) with %—5_x < 1, then
since H(x, 1553 155) is continuous in x and H(%3 %3 %) > log 2 >
H(1,0,0) = 0, hence there exists a number x, %—< x < 1 such that

H(x, 1553 l%£)-= H(%a %3 0). C]early vectors (x, 1553 155) and

_(;3 %3 0) are noncomparable in fhe sense that one does not majorize
the other. Therefore if we know only the entropy of the scheme (4.1.1)

and we take n independent observations from this scheme, we are still

not able to compute the probability of an event say, Ai =3, 3, > 0,
m
i=1,....,mand } a; = n. Bearing this in mind, it is assumed
j=1 .

that among the k given schemes, there always exists oné scheme which

s better than the others. This is equivalent to saying that there

exists some i sdch that p, < Bj for all j, 1 < j i_k. This

population is called the best population. If there are more than

one "best" population, then we assume that one of them is tagged as

the best. Our goal is to select a nonempty subset if ihe k schemes

with the guarantee that the basic probability requirement is satisfied.
Suppose now we take n independent observations from each of the.k

schemes. Let X{j denote the number of outcomes of jth event in scheme

e We propose a class of selection procedures Rq;as follows.

R¢: Select scheme s if and only if
X, X, X X,
(4.2.1) oL, 1 > max @=L, M) g

| AN AL
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where ¢ is a Schur-concave function. Further, the selection constant
d is chosen to be the smai]est non-negative number such that the

- basic probability requirement is satisfied. Note that when m = 2 and
¢ is taken to be the Shannon's entropy function, (4.2.1) reduces to
the procedure proposed by Gupta and Huang [38]. Furthermore, besides
the work of Gupta and Huang [38], very little 1iteratﬁre on ranking and
selection prob]éms in information theory is available. In this chapter,
we concentrate on the cases m > 3 which are also more practical and

useful.

4.3 SOME PROPERTIES OF THE CLASS OF SELECTION PROCEDURES RQP

Let 2 = {w = (py>...,p,): there exists some i such that

Bi <Pj Vj}, and Jet
(4.3.7) P@(iqu) = P@(Se]ect ms with giqu); i= 1,...?k.

Theorem 4.3.1. For any Schur-concave function ¢, and 1 < i <k,

(1) Pw(iqu) is a Schur-concave function of R; when all other
components of w are fixed. | |
(i) Pw(iqu)'is a Schur-convex function of B; (3 # 1) when all

other components of w are fixed.

Proof. Since -

X X, X;:v = X,
. - il im jl jm,y
(4.3.2) P (i[R) P@(cp( e L )3]2%( W=y o) -d)
k X X X
~ J1 jm 1 m
‘Z n P ((P( n °? ‘' ) < n n )+d)
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PPi((Xi]s---sxim) = (x1""’xm))

where the summation is over-all m-tuples of nonnegative integer such

m
that _Z] X; = n. Note that (4.3.2) can be rewritten as follows:
'I=
(4.3.2) P (i[r) = Epi{¢i(xi],...,xim)}
k
= Epi{jg] 'J’J(X-'] 9ore 9X1m)}

j#i
where
(4.3.3) wj(x],...,xm) = EEj{I }

- X X, X X
Jl m ] m
{(P(—n—,...,—‘r]]—) < (P(n—,...;n—)"‘d}

where (X ,sz) represents a multinomial random vector with

2],.--
parameters n and p , and I, represents the indicator function of A.
Since for any j (j # i), wj(x],...,xm) is a nonnegative Schur-

concave function, it follows that o wj(xl,...,xn) is Schur-concave.

, T j=1
k . . j#.i R £
Hence EEi{jE] ¢j(x11""’xim)} is Schur-concave in Ei' This proves
J#i
part (i).

Part (ii) follows immediately from the fact that while keeping
(x],...,xm) fixed, wj(x],...,xm) is a Schur-convex function of R;-

This completes the proof.

Corollary 4.3.1. 1If Ri < By then Pw(iqu) 3_Pw(j|Rq).

Proof: Let w* be obtained from w by replacing p; by p. and all
Proof u z pj by p; an

other components of w remain fixed. Then
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p (1|Rq) > P *(1qu) (by Theorem 4.3.1, (i)

Py (3IR)

|v

Pw(j|R¢) (by Theorem 4.3.1, (ii)).

By applying part (ii) of Theorem 4.3.1, it follows immediately
that the worst configuration of the probability of a correct se]ectioh

occurs when all the parameters are equal. In other words; we have

Corollary 4.3.2. Inf P(CSIR¢) = Inf P(CS|R¢)
- Q
0
where 9 = = (9, ..sp)s p = (p],...,pm), P >0, i=1,...,k,
P;

and =11.

i

nes-13

1
Next let us show how to obtain a conservative value of the

selection constant.

Let t = (t4,...,t;), where 0 <ty <kn, i=1,...,mand
m :
.Z ti = kn, and Tet

* . k
_ _ n
(4-3-4) M(k,d(P)sEsmsn) = z .E (S-],...,S- )
= im
where the summat1on is over the set of all m-tuples (51], "’Sim)
-k
such that 0 5_s1j <n, i=T1,...,ky j=1,...,m, izl ij = tj, and

S S S. .
(4.3.5) L‘,...,—""')Z max (=L, -m) gy

for some constant d(;) depending on t. It is easy to see the

following lemma.

Lemma 4.3.1. For any t = (t],...,tm) with O j_ti < kn, f = 1,...,m

m
and iz]ti = kn, let v € g,



- Xy X X.
‘ ¢kl km 1
(4.3.6) P (q—,...,—) > max (=, ...
M(k’d(g)st,msn)
N ( kn '
- )
t] ce tm

Theorem 4.3.2. For given P* and for each t= (t1,.,.,tm),

m
O<ty<kn,i=17,...,m, J t. = kn, let d(t) be the smallest
i=1 |

constant such that

kn

(4.3.7)  mlkod(t)stmn) 2 (¢ 7y

) P*,
m

If d = max{d(t)}, then
: |

inf P(CS|R ) 5 P,
Q ¢ =

Proof.

n

X X
_ k1 km
PQO(CSIRq) =P (g{—...,——) > max p(——

2

X X
) PQO(qx—%lu...,—%m) > max

(§
- P X;: =t
=1 9!

X X X,
(4.3.8) > J P (oKL, . KOy, pay gL
0

k
is= 1,...,m)P(.Z]in =tg, 1= T,...,m)

J..

78
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where the summation is over the same set of all m-tuples of nonnegative
integers as defined in (4.3.5). By (4.3.8) and Corollary 4.3.2, the
proof is complete. |

For m = 2, and if ¢ is taken to be the entropy function, some
tables for the selection constants are available in [38]. For the
functions ¢(x) = x(1-x) and ¢(x) = min(x,1-x), tables for the

selection constants are given at the end of this chapter.

4.4 SPECIAL CASE, m = 2

In this section, we are going to make fdrther 1nvestfgation of
the selection procedure R¢. Since when m = 2, we know that
Py <P, if and only if q(B]) 3_q492). Also in this case, the
ordering becomés Tinear. Hence to order the schemes in.terms of

majorization,_we may order them by means of «p). Furthermore, the

v%s Dﬁl) depends on the parameter only through

@p,1-p). For simplicity, we write ¢(p,1-p) = ¢ (p) and

X
n

distribution of

’ ﬂﬁl) = q(%){ First of all, we prove the fo]]owing'theorem.

Theorem 4.4.1. Let (X],...,Xm) have multinomial distribution with
parameter n and p. For any constant c, PE(q(ﬁl3...,ﬁm) > ¢) is

Schur-concave in p-

Proof. Define
X X
. 1 m
{ 1 if q(ﬁ—,...;ﬁ~)_i c

(4.4.1) ¢C(x1,...,xm) = 0 otherwise.
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It is easy to see that ¢ is a Schur-concave function. It follows

that E_{¢ (X],...,Xm)} is Schur-concave in'p. Since

prrc
X Xno '
P{q(ﬁ—3...,ﬁ—)'3_c} = Ep{¢c(xl""’xm)}' The proof is complete.

Corollary 4.4.1. If X is binomial random variable with parameters

n and p, then for any constant c, P{q(%)_i c} is nondecreasing in .
Let fe(x) be the density of q(%) with 6 = ¢(p). The following
theorem shows that the family {fe} has a monotone 1ikelihood ratio

in x. To show this, we prove, first of all, the following lemma.

Lemma 4.4.1. Let O <Py 2P, 5_%3 and let

Cnex - Ay(x)
Aj(x) = pi(1-p )" + pIT*(1-p.)%, 4 = 1,2 Then K%TIT is

increasing in x for x ¢ (0, %).

Proof. For any x ¢ (0, 1)

d, {AZ(X)}-— ] 1Py, (1-p1) (1-p,) L ((1-p3) (1-p,))""2% -
dx R T T R TOR k) PPl T=py ) (1-p )3 {1y ) (1-py

pz(]'p])

Hog P1{1-p,

(P]pz)n-zx

+ ﬁ}Y;}KE(;Y (P15 (1-p) (1-p,) ¥4 (p, (1-p))"2% -

(1-p7)(1-p,)
N=2X4+; 1 2
(P](]'Pz)) }og p]pz

> 0.

Hence the result follows.
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Theorem 4.4.2. - The family {fe} has a monotone likelihood ratio

in x.

Proof. Suppose 8y = q(p]) j_q(pz) = 8,. Since

Pp{qK%J = ¢} = P]_p{q(%) = ¢}, hence we may assume that

0<py2p, f,%‘- For any 0 < y j_q([gi), let x be the number =

such that 0 j;x j_g-and q(%) =Y. Then

T0,0) (3 105(1-p,)" X + pX(1p,)%) Ay(x)

(4.4.2) - - ,
Fo, V) G (1-p)"* + pIX(1p )%y~ ATKT

By (4.4.2) and Lemma 4.4.1, the result follows.
Let us discuss the prbb]em related to the probabi]ity of
complete ranking of k(k > 2) populations. To do this, we show

firct of all the following result.

Lemma 4.4.2. If X],...,Xk are k independently distributed random
variables with parameter e],...,ek respectively and with densities
having monotone Tikelihood ratio property, and if a and b are two

(extended) real numbers such that a < b, then

(4.4.3) P.{a < X] <eeez Ky 5_Xi+]§,..§xk<b}i P.{a < X] Seee< X

X541 <-..2 X < bl

provided that 8 < 8441

Proof. Let gi(x) be the density (probability mass function) of Xi’

and Tet
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Ai(x) = Pr{a < Xy geees Xi_p < X}

(4.4.4) B.(x) = P.{x < Xi < Xi,q <evu2 X < b}
B?(x)'= Polx < Xjpq 2 X5 2 Xj4p Sevnz X < bYL
Then
©bb b : :
(4.4.5) B.(x) = [ [ [ ... fo(ufo (V). fp(x )dudv ... dx,
Xuv X
k-1
© b b b .
3_){ 5{ . )f( frep (W (v)oo f(x )dudv ... dx,
- k-1
= B¥(x)

On the other hand,

Pr{a < X.l oo Xy 2 Xy 2

B,y AiKi1)B3 (X500
> Eei-]{Ai (Xi-])B."i‘(Xi-])}

=P da <Xy <2 Xy 2K 2.8 X < b}.
This proves the lemma.

Remark 4.4.].‘vIt should be pointed out that the above result will

no longer be true if we weaken the condition by replacing condition
"having monotone likelihood ratio property" by "which is stochastically
~increasing". For example, let X] and X2 be two independently

distributed random variables with mass function defined as follows:
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l 0 1 2 3

1 1

1 1 1

NI0 7 7 3

Clearly X2 is Stochastically larger than X]. But

= Pl < X5 < X < 4},

oojw

: _ 1
Pr{]<X]iX2<4}_I<

Theorem 4.4.3. If X],...,Xk are k independently distributed randqm

variables with barameter e],...,ek such that 8y Z...2 8 respectively,
and with densities having monotone 1ikelihood ratio property, and
if a and b are two (extended) real numbers such that a < b, then
1 _"ak_ -
Pla < Xy 5"'5-Xk < b}

(4.4.6) Pula < X, <...< Xy < b} <Pda<X =<...<X <b}c<

where (a],...,dk) is any permutation of (1,...,k).

Proof. Define a mapping among the ordered k-tuples as follows: Let
T(i,j) be the mapping that interchanges the positions of X; and Xj;
that is, T(agsa )X <o.ox X << Xy oo X} =

)7 ey = i~ iT T %
<eonx X <ii< X <o..< X ). It s easy to see that any
C!-I_ - Qs = _Cl.i— —ak

ordered k-tuple {Xa <...5_Xa } can be obtained by applying finitely
k

{X

1
many times mappings of the form T(31’31+1) with By < Bi+1 on the

ordered k-tuples {X] <...§{Xk}. By Lemma 4.4.2, whenever we apply

T(B." B'i"']) on {XB] <. < Xsk}’ the pr‘obabﬂ'ity

Pola < XB] 5,..§_Xsi f'XBi+1 Seeo2 Xgg < b} will decrease to
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Pr{a < XB] 5,;.§_X81+] 5-XB- 5,..5_X3k < b}. This proves the theorem.

Corollary 4.4.1. Let a and b be two (extended) real hUmbers such

that a < b, and let X]""’Xk be k independent bindmia] random
variables with parameter (n,p]),...,(npk) respectively. Write

ei=(p(p1')’ ié],...,k. If 67 265 2...2 8y then-
X, Xy %a; -
(4.4.7) P.{a < @) <...< @(==) < b} < Pla< o) ...

My % X
o) < b} < P.la < CP('n—) Seees ‘P(n—) < b}

where (a1,...,ak) is any permutation of (1,...,k).
We state without proof other properties of the selection

procedure R .
P

Lemma 4.4.3. Let @ = {8 = (6,...,8), 0 <8 j_q(%)}.v For any

6 € @0 and a given constant d > 0,

(4.4.8) Tim P (CS R ) = 1
1in Po(CSIR

Lemma 4.4.4. Let 6 > 0 and let &(s) = {g = (e],...;ek),

e[k] Z-G[k-]] +8}. If0<dc< %—6, then for any Q'E e(s),

(4.4.9) Tim'Pe(ICDIRq) =0

n-)m -
where ICD means incorrect decision, i.e., to include any non best

population in the selected subset.
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Corollary 4.4.2. For any 8 € &(8) and 0 < d < %—6,

(4.4.10) lim E.(S|R ) = 1.
w8 Re

Where S is the total number of population that are included in the

selected subset.

4.5 . EXPECTED SUBSET SIZE OF THE PROCEDURE

Consistent with the basic probability requirement, we would
Tike the size of the selected subset to be small. NoW'S, the size
of the selected subset is a random variable which takes values
1,2,...,k. Hence one criterion of the efficiency of the procedure
R(P is the eXpetted value of the size of the subset.‘v
Let A be a'positive number such that 0 < a < q(%u,..,%),
and let p = (p1,..,pm) and g = (9q,...,9.) be two vectors such that
q(p],...,pm) = A and q(q1,...,qm) = q(%3...,%) - A. Let
2y = {u = (Ei""’Ek)’ P<p; <9 Vi}. Then we have the following.

Theorem 4.5.1.

X
x )0 Py Lz '(y](g),...,ym(z))

(4.5.1) sup E(S|R ) < k{z*(, f
Q 4 1°° % i=1

A
yi(’-‘)]k-l

m
I q.,

171 :

i

where the sum 1* extends over all m-tuples x
m

negative integers for which J X; = n and the sum »** extends over
i=1

(y],...,ym) as in 1* satisfying the additional condition

(x],.;.,xm) of non-



17 Yp X1 Xm
'n—-',...,n—) < (p(n——,....,-n—) + d.

Proof. For any w € QA,

(4.5.2) E (S|R )

w P
k X, X, imy
_ 1 im ! —Jmy
- P (glmsees ™) > max  o—Ln,...,2) - d)
iy ol IRV "
k n m ) X
= ¥ ) 1op, M P (A <
i=1 Xips--+9Xsm 2=1 1<j<k = |
J#i
X X,
il im
WL, Hmg))
since
X. X, X X n my
S o 41 dm
(4.5.3) Pg(q( s s ) < e ) Hd) E'z**(y1;---sym)i£191

X. X. X. X
Also Pg( —%13.;.,—%90 5_q(—%l3..;,—%m)+d) is a Schur-concave

function in (xi],...,x. ). The result follows.

m

4.6 SELECTING A SUBSET WHICH CONTAINS ALL
- POPULATIONS BETTER THAN A CONTROL

In this section, we discuss a related problem of selection

using the same notation as described in Section 4.2,'1ét
| A] - Am |
T = ( s i=0,1,...,k,
. . Pi1 ==+ Pinm -

be k+1 independent finite schemes. The procedure described in this

86

.i
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section control the probability that the subset contains all those
populations better than the standard (Ei < po), with the probability
of a correct decision to be at least P*. |Let xij deﬁote the number
of outcomes of jth event in scheme i J = Theoom, i = 0,1,...,k.

Let (X%],...,X%m) denote the events associated with the‘scheme

T(§) with pi for which p' <pg, i = 1,...,ry where ry represents the .

number of schémes better than scheme o We discuss-the following

cases.

CASE (A). KNOWN CONTROL

We assume Po is known, and propose a class of procedures as

follows:

R&: Select scheme s if and only if

X; X -
(461 b ™ 2 lpgps-.eapg q) - -

Let P, denote the probability of a correct decision. Then.

: r ' )
(4.6.2) P, = 1 P (i1 ——X"'")><p< ) - ¢p)
] . ] .i=] r CP n L BUIE N I ) n - po]’-o.’pom C]
X X .
1 0 . k
> Pl > gl - o)

| n Xk
{z*( )T p.}
S ERETES S 01

where the sum z* is over all m-tuples (x],...,xm) of nonnegative
m X

. v _ ] m

integers such that .z X; = n and qxﬁ—,...,ﬁ—o z_q(pO],...,pOm)-c].

=1
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CASE (B) UNKNOWN CONTROL

Assume that (pO]""’pOm) is unknown. We propose in this case

the following procedure:

R%: Retain in the selected subset those and dn1y'those

scheme s for which

X, X, X X '
(4.6.3) L L L L L Y

- where c, is a constant such that 0 < c, f_q(%3...,£).
The probability P2 of a correct decision is given by

,l"-l '

' X! X X
il im 01 Om
121 Pr(q{—ﬁ—,...;7T— > —TT“""_E_) - c2).

(4.6.4) Py

Y Y X X
1 m 01 Om k
{Pr((P(h—'s---"h—) Z_ (P(T’---’—'n—') - cz)}

lv

where (Y],...,Ym) is a multinomial random vector with parameter
n and py and (Y;,...,Y ) and (Xgys- -~ s Xgp) are'sFochasticalTy
independent.

For a given fixed vector t = (t;,...,t ), let cé(;) be the

smallest numbervsuch that
(4.6.5)  M(2, ¢o(t),tsm,n) > (t 2n . ) '.5‘P_
1?

Let c, = max{cz(g): ti is a nonnegative integer, i =

we have Py > P*.
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4.7 APPLICATION

A, ... Am

let m = (! s = 1,2,k
Pi1 ==+ Pyp

be k independent finite schemes. In some practical situations,
one wishes to know whether these finite schemes are significantly
different or not. That is to decide whether the componénts of thesé
k finite schemes differ only by permutationsT Or équivaient]y, one
wishes to test the hypothesis HO: the set of vectors |
{(pi1""’pim)’ i=1,...,k} differ only by permutations.

Suppose we are allowed to take n independent observations
from each of the k schemes. Let (Xil""’xim) be the data obtained
from the ith scheme, where Xij represents the total number of outcomes
of the jth event in the scheme Mo Intuitively, we reject the hypdthe—
sis whenever there are significant differences among the values of
q(f%ly...,—%md, i=1,...,k. In other words, we reject the
hypothesis if

. . X X; Xs
(4.7.1)  max (b0 opip A1 i
1<i<k 1<i<k n

where ¢ is chosen such that the probability of rejecting the
hypothesis under H0 is no more than a preassigned vé]ué a. A
‘conservative constant ¢ can be obtained as follows.

For a given a, 0 < a < 1, let ¢ be the selection constant

such that

. [0 )
(4.7.7) | 1gf P(CSIRq) 21 -r.
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- Then under HO,»

. . X, X.
1 im . il im
P_( max LA™ o nin ——s.ees——) > C)
Mcick = " "ok " n
X. X. X. X. o
= Pr(q(—%l3 .,—%m) < max —%l, ..;ﬁ?n) - ¢, for some j, 1<j<k)
' 1<i<k
X X X. X. y
kl km il im R
<k P (d—s...,——) < max H——s...,—) - C)
AR l<ick-1 . " noto

k{1-P_ (CS|R
< ki 90( Lg

4'/\

k(1-(1 - )

4.8 SELECTION PROCEDURES FOR THE LEAST -
UNCERTAINTY OF SEVERAL FINITE SCHEMES

Suppose the k independent finite schemes are such that one
of them has the least uncertainty in the sense that the corresponding
parameter vector majorizes the other parameter vectors. fhis
implies that the associated measure of uncertainty H}has the
smallest value of H],...,Hk. Suppose that we take n independent
observations from each of the schemes. Let (Xil""’xim) be the

data obtained from scheme Tis and let y be a Schur4conVex function.

We propose a selection procedure as follows:

Rw: Select scheme s if and only if

X; X . X,
(4.8.1) (b, Am) 5 max (A, Am g
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Note that if ¢ is Schur-convex then -v is Schur-concave.
Hence by letting ¢ = -y, the above procedure can be rewritten
as follows: Select scheme T if and only if |
X, X, X, X,
(4.8.2) gL, M) o min S 00m g
n’ =", n n
1<j<k -
By using similar arguments as in the previous section,
it can be shown that the infimum of the probabi]ity of a-correct
selection occurs when the k given schemes are identical. Moreover

results parallel to R(p follows with obvious modifications.



TABLE 1

Table of values d needed to satisfy the P* condition of the
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selection procedure R¢ for k = 2(1)5, n = 2(1)10, and ¢{x) = x(1-x).

The top number is the smallest value of d satisfying the requirements

of Theorem 4.3.2 for P*

0.75, the second for P*

0.80, the third

for P* = 0.90, and the bottom for P* = (.95.
n
2 3 4 5 6 7 8 9 10

0.250 0.222 0.188 0.160 0:139 0.123 0.125 0.124 0.120
0.250 0.222 0.250 0.240 0.222 0.204 0.125 0.124 0.160
0.250 0.222 0.250 0.240 0.222 0.204 0.140 0.222 0.210
0.250 0.222 0.250 0.240 0.250 0.245 0.234 0.222 0.210

3 0.250 0.222 0.188 0.240 0.222 0.204 0.188 0.173 0.160
0.250 0.222 0.250 0.240 0.222 0.204 0.188 0.173 0.160
0.250 0.222 0.250° 0.240 0.222 0.204 0.234 0.222 0.210
0.250 0.222 0.250 0.240 0.250 0.245 0.234 0.222 0.240

4 0.250 0.222 0.250 0.240 0.222 0.204 0.188 0.173 0.160
0.250 0.222 0.250 0.240 0.222 0.204 0.188 0.173 0.160
0.250 0.222. 0.250 0.240 0.222 0.245 0.234 0.222 0.210
0.250 0.222 0.250 0.240 0.250 0.245 0.234 0.222 0.240

5 0.250 0.222 0.250 0.240 0.222 0.204 0.188 ‘0.173 0.160
0.250 0.222 0.250 0.240 0.222 0.204 0.188 0.173 0.160
0.250 0.222 0.250 0.240 0.250 0.245 0.234 0.222 0.210
0.250 0 0.250 0.240 0.250 0.245 0.234 0.222 0.240

.222
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TABLE II

Table of values of d needed to satisfy the P*-condition of the
selection proceddre ch for k = 2(1)5, n = 2(1)10, and ¢(x)=min{x,1-x}.
The top number is the smallest value of d satisfying the requirements
of Theorem 4:3.2‘for P* = 0.75, the second for P* = 0.86, the third
for P* = 0.90, and the bottom for P* = 0.95. |

2 3 4 ) 6 7 8 9 10
0.500 0.333 0.250 0.200 0.333 0.286 0.250 0.222 0.200
0.500 0.333 0.500 0.400 0.333 0.286 0.250 0.222 0.200
0.500 0.333 0.500 0.400 0.333 0.286 0.375 0.333 0.300
0.500 0.333 0.500 0.400 0.500 0.429 0.375 0.333 0.400
3 ] 0.500 0.333 0.250 0.200 0.333 0.286 0.250 0.222 0.200
0.500 0.333 0.500 0.400 0.333 0.286 0.250 0.222 0.200
0.500 0.333 0.500 0.400 0.333 0.286 0.375 0.333 0.300
0.500 0.333 0.500 0.400 0.500 0.429 0.375 0.333 0.400
4 0.500 0.333 0.500 0.400 0.333 0.286 0.250 0.222 0.200
0.500 0.333 0.500 0.400 0.333 0.286 0.250 0.222 0.300
0.500 0.333 0.500 0.400 0.333 0.429 0.375 0.333 0.300
0.500 0.333 0.500 0.400 0.500 0.429 0.375 0.333 0.400
5 0.500 0.333 0.500 0.400 0.333 0.286 0.250 0.222 0.200
0.500 0.333 0.500 0.400 0.333 0.286 0.250 0.222 0.333
0.500 0.333 0.500 0.400 0.333 0.429 0.375 0.333 0.300
0.500 0.333 0.500 0.400 0.333 0.429 0.375 0.333 0.400
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CHAPTER V

ON SELECTION AND RANKING PROCEDURES FROM THE
NEGATIVE MULTINOMIAL DISTRIBUTION AND SOME RELATED PROBLEMS

5.1 INTRODUCTION

We consider a sequence of independent trials, in each of

which the event Ai occurs with probability Py (i =.0,1,...,k;
k
_Z P; = 1). Let Xi be the frequency of Ai before the rth appearance

0" Then (X1""’Xk) has the negative multinomial distribution
K X
(r+ } x:) j
(5.1.1) P(X, = x X = x) = I B
ol ] ]9---’ k k P(Y‘) po 1=_| Xl

This model has been proposed and used in the statistical theory
of accident proneness, absenteeism and contagidn.

Recently some selection procedures have been proposed and studied
by Gupta and Huang [39], Gupta and Nagel [44] énd Panchapakesan [70]
for the multinomial distribution. However, very little work has
been done on the selection problem for the negative muTtinomial
distribution. In this chapter, some selection procedures for the
negative multinomial are proposed -and studied. Let p[]] 5,..5_p[k]
denote the ordered values of the Py- Given any P*, %—< P* < 1, we
want to select a subset of these k events such that the subset

contains the one corresponding to the parameter p[]] with probability
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at least P*, no matter what the configuration of Pys---sPy is. We
denote this by CS. Therefore we are interested in defining a

selection rule R such that
(5.1.2) inf P(CS|R) > P*,
Q

where @ = {(p],.;.,pk): P; >0, 0 < igl p; < 1}. Hefe we assume
that the parameter Py and r are known. In Section 5.2 two
unconditional rules are prbposed and studied. Conditional procedures
are considered‘in Section 5.3. An inverse-sampling procedure for
selecting a cell in a multinomial distribution is studied in

Section 5.4.

5.2. UNCONDITIONAL SELECTION PROCEDURES R.. AND R

10 N

To select a subset that contains the cell with Towest P> we
propose two unconditional procedures. We observe the vector

X = (X],...,Xk). First of all, we define a rule as follows.

Rg: Select n. if and only if

(5.2.1) X; < ¢ min X, +(c-1)r
T gk Y

where c > 1 is-the smallest number such that the basic probability -
requirement is satisfied.
Before we investigate the least favorable configuration of

P(CS), we derive first the following useful lemma.



Lemma 5.2.1. Let X = (X],...,Xk) have the negative multinom
distribution
K X
e s e kopy
(5.2.2) P(x],.f.,xk) = ) Po igl Y;T

with 0 < py < 1, and let ¢(x],...,xk) be a symmetric Schur-
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ial

concave function such that E¢(X],...,Xk) exists, then,E¢(X1,...,Xk)
is Schur-concave in (p1,...,pk).
Proof. Let w(pl;...,pk) = E¢(X],...,Xk)
w o T(r+x,+...+x, ) :
1 k' r
= Z * Z p ¢(X 9. s X )
0" v Lo T(r) 0%y k
1 k
X
k p;'
o
Ci=1 X
Suppose p; > p,,
( ) ¢ ol
o o T(r+x +...+x X; X P
§_L_Qp__= Z... ] k pr¢(x se X )(_]_._2.)]‘[ —1l_
P12 x%0" Tk %0 rir) 01 %k ey by 4oy Xy
® o T(r+x,+...+x,)
1 k! r
= : Pald(X;+1,XnsenusX,) -
x.=0 x. =0 r(r) 0 1 2 k x.
1 k i
( 1, Do
(X sXoHT, ... 4X n —.
1°72 k7521 %!

Since ¢(x]+1,x2,...,xk) = ¢(x],x2+1,...,xk) if X] = X5, We can split

the above summation into three parts, namely sum over the ca

x] > Xos x] < Xy and X1 = Xy Then we have

ses when
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F(r+1+x]+...+xk)

W _ 9y _ ,r -
ap ap Po ) T(r) {¢(x1+1,x2,...,xk)
1 2 - X7> X9
X.
i
¢(X-I ,X2+],...,Xk) H x—l
:] -i'
(r+]+x]+...+x )
¥ p Lee-l T(r) {¢(X]+1,x2,...,xk) -
X<,
X.
k pi1
¢(x],x2+1,...,xk) E] —;T'
P P(r+1+x]+...+xk) X] Xy X, _ :
=Py l---] k (py'Py" ooy ){¢(x]+1,x2,...,xk)-
- Xp>Xg r(r) n X; !
i=] 6 (X7 %p#T 5000k )
" P(r+1+x]+...+xk) Xo Xy Xpe
*+ Py ) 3 (p] Po oDy ){¢(x2+],x],...,xk)-
X1>Xo r(r).n Xi!
=t $(Xp X1+, 0% )}
T{r+l+x, 4.0 04x,.)  Xo X, X X, - Xo Xq X X
_ 1 k 2.3 k 173 k
- Po é-;iz p (P] Py P3™. Py =P17P5 P3 se e Py )
1772 r(r).n1 xi! ‘
":

(¢(x]+1,x2,...,xk) - ¢(x],x2+],...,xk)).

Since (x +],x],x3,...,xk) < (x]+] x2,x3,...,xk) and
p?]p;?‘ - p:zp: = (p]pz) z(p 1 p;]-xz) 20 if xg 2 x,. It
follows that —%;- 5g5-> 0. Hence this proves the lemma.

Now Tlet X(1) be the unknown statistic associated with'p[i],

i=1,...,k. For any configuration P = (p1,.h.,pk), let
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(5.2.3) PE(i) = PE("(i) is selected|R).

Let (x],...;i.,...,xk) denote the (k-1)-tuple obtained by deleting

i
the ith component from (x],,..,x ...,xk), and let

1 if cmin x; > X; -(c=1)r

1<J<k J=
(5.2.4) h_ (X7,..,X ) il
2. XyseesXsseasXy,) =
xi, 1 ! k 0 otherwise.

Then hxi is a symmetric Schur-concave function of (Xl""’ii""ka)‘
Furthermore, given X(i) = X the (k-1)-dimensional random vector
(X(]),...,X(i),;..,x(k)) is distributed as negative multinomial with
parameters r+xi_and (p[]],...,ﬁ[i],...,p[k]). By Lemma 5.2.1,

given X(i) = Xis Ehxi(x(l)""’i(i)""’x(k)) is Schur-concave in
(p[]],...,ﬁ[i],..,p[k]). Since P(CSIR]O) = PB(]), and

(p[]]sp[]]s'9p[]]sq) > (p[2]""p[k]) whenever (k-2)p[]] + q =

Z p[1] and p[]] < q. Hence we have shown the‘fikst part of the

fo]]ow1ng theorem.

Theorem 5.2.1. The least favorable configuration of the parameters

for the rule Ry is of the form (Ps...5p»q), where p < q, (k-1)p + g =
1-py. Furthermore, if k = 2, then p = q = %(1-p0).

Proof. To complete the brodf, consider the case k = 2, then

[C(t'l'r r] ¢
C w f DT Py
(5.2.5) P(CS[R;q) = tz()%%%’)'—,f); po(1-pg) _ZO () p[1]+p[ ] }

i=
( Pr2] yt-i

Pr17*P2]
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It follows that the infimum of P(CSIR]) takes place when P[1] = Pr2T°
1
f(l'po) .
By using the fact the conditional distribution of (X],...,Xk)
given ) Xi = t is a multinomial distribution with parameters t
=1
and (1—1—3...,—35—), we conclude that R, is a reverse monotone
-po ]"'po .'
procedure. Next let us show how to obtain a conservative value of

the selection constant.

Theorem 5.2.2. For a given P* and any t > 0, let P?.= 1 - %—%tw let

t-crtr  c(1+t)+r(c-1)
15w w0 2P

c(t) be the largest value such that I

where Ip(a,b) is defined to be 1 if a < 0. If c = inf{c(t)}, then
t>0

igf P(CS|R;q) > P*.

Proof.

P(CSIR]O)V P(X(]) < c min X(j)+(c-1)r)

2<j<k

]_p(x(]) > cx(j)+(c-1)r for some 2 < j < k)

|v

k
l-jzz(l-P(X(]) g_cx(j) + (c-1)r))

k o
2-k + jZZ tZOP(X(j) z_ﬁ-q§%r1x(1) t X(5) = IPX )X 5)=t)

2-k + (k-1)P%

[v

= p*

Thus, the proof is complete.
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Let 2 be the set of k—tup]es in the parameter space for
which P[1] > & >0, where 0 < § < %—(1—p0). We discuss the expected

subset size as follows:

Theorem 5.2.3.

(5.2.6) sup E(S[Ry) < ki(=2 )" + sup g(t) (1-(-Z50)")

1

ct+%c-]}r
[ +C ] . 1-pn-8

. ty, 8 i 0 "\t-i
where g(t) = 120 (i)(]_po) (]_po yet,

Proof.

k
Ba, (SIR1p) = |1 P(X(q) < e min X(gyr(e-1)r)

k
1
;'E:T-izl j;1 P(X(i).f_cX( yH(c=1)r)
k oo
- T L4 L Py = < stt{e-l)r ”Ixm+x ()P Xy +
_ j#i t=0
*g) =¥
Kk ® p Prs1*tPrs:
_ 1 (r+t) 0 ro "LITV0G] Gt
= t
FT ik st oo™ T By PonTRg
‘ k : p '
] T{r+t) 0 r
Kk j§1 ] +26) ' Z o) rteyer Gormpi7or)

PLiTPLT Lt
Po*PLi7*P4]
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k Py
1 28 \r

= Gs +26)" + sup g(t)(1 (5 285"

This completes the proof.

Next we propose another unconditional rule as follows
R]]: Select ms if and only if
(5.2.7) X, 5_;%7-.;, X;+(c-1)r.
j#i
In this case

k
Pa(CSIRy ) = PL(X(q) 5_E§T-§ Xy + (c=1)r)

: k
= I HmaT b P12, sy

where the summation is over all pair of non negative integers (x,y)
such that x 5_%%1 + (c-1)r. By using the similar argument as in the
prbof of the second assertion of Theorem 5.2.1, we obtain the following

theorem.

Theorem 5.2.4.

pO)X((k ])(] po))

. ‘ = v I(r+x+y)
(5.2.8) 1gf P(CSIRyq) = ] F(r)xTy] Po(%

where the summation is over all pair of nonnegative integers (x,y)

such that x §_E¥T-+ (c-T)r.
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By using a similar argument as in the proof of Theorem 5.2.1,

we have
(5.2.9) PB(n<i) is selectedIR]])

) 1 [ct+(i:}léc-l)r] e
- LA eaegtc T (el

J:
Priq 4+ =
(1 - #—‘—1)':'5’}.
—pO

It follows that

(5.2.10) PE(n(i) is selected|R1]) Z_Pg(n(j) is se]ectedIR]])
whenever i < j.

5.3 CONDITIONAL PROCEDURES R,, AND R

12 13
Rip: Select m, if and only if
o k
(5.3.1) X; < ¢ min X;+ (c-1)r, given % X; = t.
1<j<k

It has been pointed out that the conditional distribution
’ k

of (X],...,Xk) given % X; = t is a multinomial distribution with

parameter t and ( ] se s k ). By using an analogous argument as
1-pg*" " *1-py . .

in the proof of Theorem 3, we conclude that the conditional procedure
R3 is reverse monotone and the least favorable configuration of

P(CS|R12) is given by

P, 2«=],...,k—]

(5.3.2) PLal ~ { 1-(k-1)p, &= k.
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Theorem 5.3.1. For a given P*, (%—< P*¥ < 1), let c(> 1) be the

smallest number such that

[t-(ggl)r]

ty 1 _ 1-P*
iy W EwEr

Then inf P(CS[R;,) > P*.
: |

Proof. For any p €a,

k : ’
PP(X(]) <c min X(j)+(C-])r|2§] X(Q) = t)

P (CS|Ry,)
p 512 2j<k

k
1-Pr(X(]) >c ZT;nk X(j)+(c-1)r|% X(Q) f t)

fv

k k
1-j§2 Pr(X(]) > ¢ X(j)+(c—1)r|§ X(z) = t)

. k .
> T{(k'])Pr(X(]) >CX(2)+(C—])FI§ X(l) = t)

‘ [t-§221)r]
21D I () ;—t
j=

> (k1)

= p*,

Let us denote by o(8), the space of all parameter vectors

(p],...,pk) such that Pr1] >8> 0. Then for any p € o(s)
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k k
21 Pr(x(i) < c min X(j)+(c—])r|izl X(i)ft)

E =
p*IR12) 1<j<k

i

-k k
ct+(c-1)r -

| A

— 1+c

[ct+§$;12r]t . g
N ()87 (1-8)"7",
1=.

Hence
ct+(c-1)r
(ett{e-T)ry

| b toi
Q?gg E(slglz)_g k ) ()6'(1-6)""".

i=

|A

Next we propose a conditional procedure as follows:

Ry3: Select m. if and only if

c : -
(5.3.3) X; j_E:T-og. Xj+(c-])r, given -Z Xi = t.
o J#i i=1 S
It is easy to see that (5.3.3) can be rewritten as follows:

(5.3.4) X, 5:(k‘]&fﬁfz(c‘])r) .

k
Since the conditional distribution of X; given ) Xi =t is a
B i=1
binomial distribution with parameters t and ]_; . It follows that
0 :

for any parameter vector (p],...,pk),
(5.3.5) P(n(i) is se]ectele]3) 3_P(n(j) is se]ectedIR]3)

whenever i < j. And
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(k-1) (ct+(c-1)r)
P T ] £y 14 k=1yt=1
(5.3.6) igf P(CS|R;5) = iZO (I G

5.4 SOME RELATED SELECTION PROBLEM

The problem of selecting the particular one of the k
multinomial cells with the highest probability was ‘mentioned
in Section 3.4, and a subset selection rule based on inverse
sampling procedhre in which the number of observations at each
stage is a random number taken from a Poisson distribution. In
this section the subset selection rules that use inverse sampling
termination rules together with the vector-at-a-time sampling rule

will be considered.

SELECTING THE MULTINOMIAL CELL WITH THE HIGHEST PROBABILITY

Observations are taken one at a time from the multinomial
distribution until the count in any one of the cel]s}reaches M.
Let X],...,Xk be the cell counts at termination of sampling. Of
course, one of the Xi is equal to M. Panchapakesan'[70] has

proposed the following rule:

R]4: Select the cell with the count Xi if and only if

(5.4.1) X; > M-D.

It is shown in [70] that the infimum of the probability of a

correct se]ettion P(CSIR]4) when rule R14 is used is attained

1

,F3...,%) where r > 2 is

for a configuration of the type (0,...,0
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the number of non-zero cell-probabilities. An asymptotic result of
P(CS|R14) was also discussed in [70]. In this section; we are
going to show that the least favorable configuration for the rule
R is (%3...,%). To show tﬁis, let X; be the count associated with
the cell n,, and Tet Y§i)(M-D) denote the count of " before the
(M-D)th appearance in e i, d=1,...,k, j#1i. If the‘ce11-
probabilities associated with = is 6., i = 1,...,k, then
(Y%i)(M-D),...,ng%(M-D),Ygi%(M-D),...,vﬁi)(M-D)) has the negative
multinomial distribution ' |

. F(M'D"'.Z_.Yj) y.
(5.4.2) Pr(Y§1)(M-D) = yge 31kl - P(MJDTJ#1 e?‘”j;iejJ.

On the othér hand, the rule R]4can be rewritten as follows:

Select the cell ms if and only if

(5.4.3) max Y1 (M-D) < M1,
1<k !
J#i

. ' vii) e
Let "(i)vbe the cell corresponding to e[i] and let Y&jg(M D)

denote the count of m(5) before the (M-D)th appearance in ()" Then

P(CS|Ry4) = P(_ max vggg(m-o) < M-1)

1<j<k-1

M1 M=T T(M-DHy+oo by, ) k-1 Y;
1 yi!

=]

M-D
Ork]

Y170 ¥ 1700 (M-p)

1
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k-1
- o Cry™ -
S woT Jo,., - =] T dy,
1 e 7, e o

®[k] O[k] i=1

(5.4.4) = B(M’;.

(by Theorem 2.4 of [68])

where |
P(a]) - P(ak)
oeeesdy) = rla;+..%a,)

B(a

It follows that the infimum of P(CS|Rs) occurs at the configuration
1 1 '
(Eﬁ---9§)-

In other words,

. _ - =y =1
(5.4.5) 1gf Po(CS[Ryg) = P(X > M-DJo=...=0, = 1)

where o = {g = (615-"’9k): 0<6;<T, 8y *...t 8, = 1}.

To investigate the properties of the rule R5, let us intro-

duce some definitions. Let ¢ € @, and define
(5.4.6) P (1) P (w(1) is selected|R).

From (5.4.3) and Lemma 5.2.1, it follows that Pe(i) is a Schur-
concave function in (e[]],...,e[i+]],e[1+]],...:e[k]) when e[i] is.
fixed. |

We say that the given vector X = (x],...,xn) weakly majorizes

the vector x' =(ﬁ,”.am if

j .
iZ] x[n-i+]] z-iz] X[n-i+]]’ q = ]9"°’n;
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in symbol, 533W§H

A random vector X is said to stochastically
weakly majorize random vector X' if f(X) is stochastically larger
than f(X') for every nondecreasing Schur-convex function f; in

symbol, X > St.m, X'. The following result is established by

Nevius, Proschan and Sethuraman [67].
Lemma 5.4.1. The following statements are equiva]ént:

(ii) Ef(X) > Ef(X') for every nondecreasing Schur-convex
function f for which both these expectations exist.

Now let (X],...,Xn) have negative multinomial distribution

X
. P(r+x]+...+xn) n e,
(5.4.7)  P(Xy=x15...,X =x) = 8] ) n](x r)s

= E -] = -] i =
and let N (1+_Z] Ai) . ej Aj(]+iz] Ai) . Aj % 0, j=1,...,n,

then (5.4.7) can be rewritten as fo]]ows

r(r+ Z n -r-.g X; xi
(5.4.8) P(X;=x»....X =X ) = ———?1—7———-(1+ Ly) ‘f] I (

i=]

Nevius, Proschan and Sethuraman has also shown that if X, has a

negative multinomial distribution with density (5.4.8) and

4_3_3 L', then X > _Ft m’X '

k-1
) Let us write e[i] = (1+.§ A%)'],
= ] i =
e[j] A (1+ z x ) s J = 1,...5k, J #1; and let e[1+]]

k-1
(%1 A")'], og7 = M1+ Z]Ag)“ j=T,.u0sk, § # i+1. Then
i .
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(Y%};(M—D),...,Yggzl)(M-D) Y(1)(M-D),.. g;g(M D)) has a negative

i+]
multinomial distribution given by (5.4.8) with. A; replaced by A
and r by M-D. Simitarly (v{11D(wop),.. gl;‘)(m 0),v{irmn),...

é;;])(M D)) has a negative multinomial distribution with parameters

M-D and A" = (A],...,Ak). It is easily seen that A" 5_5_ At

Using the fact that - ) < M-1] is a nondecreasing

I
[max(x],...,xk_]

Schur-convex function and Lemma 5.4.2, it follows that
(5.4.9) Pe(i) §_P6(1+1), i=1,...,k-1.

In other words, R]4 is montone.

Next we discuss the expected subset size of R5; For fixed

- fa. M-1-D
M and D, let 2y = {e: °I11 >~ xm-1)-p?- Suppose ¢ € 25

_ 8 (1)
EQ(SIR]4) f 121 (?;¥ Y: /(M-D) < M-1)
'k .
< b Pl L Ve < ko)
1= J#1

k. (k-1)(M-1)
Loy §O (MOI1) (1-0,)Y
=1 y=

I, (M-D,(k-1)(M-1)+1)
1

e

It
I ~x
I

= Q(e), say.

By using Ostrowski's theorem, it is easy to see that Q(e) is a

Schur-concave function in g when ¢ € 7. This implies. that
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9. 8 1 \
1 k
It should be pointed out that when k = 2, the upper bound given

in (5.4.10) is an exact bound.

The average sample size E(N) for the procedure R5 is given by
‘ k
(5.4.11) E(N) = M+i§1 P(E(i)){j;i E(X(j)IE(i))},

where E(i) is the event that the count in the cell n(%) reaches M
first and E(X(j)[E(i)) is the conditional expectation of the count

in cell (3) given that E(i) occurred. It is to be noted that the
expressions for E(N) obtained in [18] for several configurations of
the cell-probabilities are directly valid here because it depends
only on the sampling scheme and not the selection procedure used.

For the configuration By =...= 6, = %3 Panchapakesan [70] has

. shown that

k-1 |
] I g,yi)M']y¥'2
(5.4.12) E(N) = M#M(k-1)k BTy L+ T
k-1

I dy.,.
1 i

In particular, when k = 2,

(5.4.13)  sup E(N) = ME2MI, (M+1,M-1)
Q —
2

It is easy to show that when k = 2,

(5.4.14)  sup E(S|Ry4) = 21,(M-D,M).
& 2
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