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SUMMARY

ESTIMATION OF A LINEAR TRANSFORMATION: LARGE SAMPLE RESULTS

The present paper provides large sample strong consisténcy and
distributional results for the maximum likelihood estimators § and &2 of
the regression slope matrix B and error variance in the multivariate "errdrs
in variables" regression model introduced by Gleser and Watson (1973), and

generalized by A. K. Bhargava (1975). 1In Bhargava's model, n independent

observations xi = (xii, xéi) are taken on pairs of random vectors xii: px1
and TR rxl, r < p. It is assumed that for each i = 1,2,...,n,
i?(XZi) = Bgf(xli) and that Xs has a (p+r)-variate normal distribution with

covariance matrix 021p+r' We wish to estimate B, 02, and jfo i)’

i=1,2,...,n. Under a reasonable assumption concerning the sequence

fifoli)}, we show that B and r-l(p+r)02 are strongly consistent estimators

of B and 02, respectively, as n >~ *. We also obtain the limiting distributions
b o L. -1 ~2 2 .

of n“(B-B) and n*(r " (p+r)o“-09). Using these asymptotic distributions,

approximate confidence region procedures for estimating B and Uz'are suggested.

In the course of our derivations, we establish large sample strong convergence

and distributional results for the noncentral Wishart distribution.

AMS 1970 subject classifications. Primary 62H10, 62E20; Secondary 62F10,
62F25, 62H25, 62P15, 62P20. C

Key words and phrases. Linear functional relationship, regression with
errors in variables, asymptotic distributions, strong consistency,
approximate confidence regions, principal components, noncentral Wishart
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"ESTIMATION OF A LINEAR TRANSFORMATION:

LARGE SAMPLE RESULTS1

by

Leon Jay Gleser
Purdue University

1. Introduction. It is well known that the presence of errors of

- measurement in the‘independent variables in univariate linear regression
(i.e., one dependent Qariable) makes the ordinary least squares estimators
inconsistent and biased. Models of regression which incorporate "errors
in variables" have been studied, and an extensive literaturevexists which
deals with maximum likelihood and generalized least squares estimators of
the parameters of univariate '"errors in variables' regression models
[Madansky (1959),vMoran (1971), Sprent (1966), Williams (1955)]. Less is
known concerning the estimation of the parameters in multivariate "errors
in variables'" regression models, although Gleser and Wafson (1973) have
considered maximum likelihood estimators (MLE) of the parémeters in a
multivariate "erfbrs in variables" regression model in thch the number of
dependent variables equals the number of independeht variabies. Recently,
A. K. Bhargava (1975)‘has found the MLE of the parameteré in a multivariate
"errors in variables'" regression model in which the numbei r of dependent
variables is no greater than the number p of independent variables (r <p.
It should be hotgd that many of the papers dealing with "errors in
variables" regression models speak instead of "estimating linear functional
relationships" or, in the case of Gleser and Watson (1973) and Bhargava
(1975), of "estimating linear transformations". Becausé the present paper

is concerned with the model discussed by Bhargava, we have adopted his



terminology for the sake of continuity. The refercnces at the end of this
paper, particularly Moran (1971), should be sufficient for the reader to
track down related papers.

The model which we adopt in the present paper is the following. We
is

observe n independent pairs of random vectors xi = (xii, xéi), where X5

px1l and X: 9 is er,_r <p, i=12,...,n. We assume that

. X . E.. e.. :
(1.1) . xi - ~11) - 211 + ~11 - Ei + ei’
X4 &2 €5
where
1.2 823 7 B &y

1=1,2,...,n. We also assume that the vectors €. i=1,2,...,n, are
i.i.d. with

- | 1 - 2
(1'3) g(fl) = 9: -g)(?lsi) =0 Ep_'_r:'

i=1,2,...,n. For the purpose of inference, the common distribution of the

ei's is assumed to be multivariate normal. The parameters B: rxp, oz > 0,

-~

and 3TL pxl, i é 1,2,...,n, are assumed to be unknown, and are to be

estimated.

Now let us adopt a more compact notation. Let

. - AU TR SPIRRE S
T \% X21 X2z v+ Xgp
! 211 %12 vt G

¢ In
-

3 (n

2. g1 22 +-- Epp
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E) 11 %12 ' Sn

E2 $21 %22 *** S

where El’ ?1, E are pxn; EZ’ EZ’ E are rxn; and r < p. In terms of these
matrices, our model becomes

(1.4) X =

+ E,

3§

=]

(1-5) :1’

1
-]

2

. where the columns of E are i.i.d. with mean vector 0 and covariance matrix

GZI L]
~ptr

Let

(1.e) . : W= XX'.

Let d1 >2d,>...>d >d . .>..>d > 0 be the (ordered) eigenvalues of

2=""=p — ptl—""—Tp+r
W, and let '
[ Pnax O :
(1.7) ? = ) : = d1ag(dl,d2,...,dp+r),
~ ~min

where Pmax = dlag(dl,dz,...,dp), Pmin = d1ag(dp+l,...,dp+r).

Finally, let

G G ‘ :
J11 212
G = i (ptr)x(p+r), Gyp* Pxp,
| ) Gy Gy |
satisfy ~ ~
(1.8) G'G=GG"=1_ _,
~ e p*r
(1.9) W = GDG!'.

]

~n

That is, G is an orthogonal matrix whose ith column is the eigenvector

corresponding to di’ i=1,2,...,p+r.



Theorem 1.1 [Bhargava (1975)]. Under the assumption that n > p+r and that
the common distribution of the columns of E is multivariate normal, the MLE

of B, El, and 02 are respectively:

~

R = '1__|'11
(1.10) B =Gy 613 = ~(G32) Gy
g = ' '
(1.11) 21 = %8105 CuabaiXe
- - ' - t
= (I, = G1p8120%; - G1565,%5s
and
(1.12) 5% = o lper) Ytz p. .

~Mmin

In Section 2, we show that § and r-l(p+r);2 are sequeﬁces of strongly
consistent estimators of § and 02, respectively. Our results are obtained
without assuming that the common distribution of the columns of E is the
multivariate normal distribution. All that is needed is that
(1.13) A= 1limn " E

~ o ~

exists and, in the case of the strong convergence of B, is positive definite.

? [1D>
e (13>

1 i is not a sequence of consistent estimators of A.

However, at least one sequence of strongly consistent estimators of A does.

Interestingly, nt

exist, as we show in Section 2.

. L Loa
Section 3 considers large sample distributional results for n<(B-B) and

2

p - a
n?(r 1(p+r)o2 - ¢7). 1If the elements of any column of E have finite fourth

1
]

. w .
moments, both n?(B-B) and n?(r 1(p+r)or2 - 02) are asymptotically normal.

The covariance matrix of the asymptotic multivariate normal distribution of
3 . . . .

n%(B-B) is determlped in the special case when the columns of E have a common

multivariate normal distribution; and a strongly consistent'sequente of

estimators of this covariance matrix is established. These results lead to



an approximate lérge sample 100(1-a0)% elliptical confideﬁcg region for g.
In Section 3, we also obtain an approximate large sample 100(1-a)%
confidence interval for 02.

The method of proof that we use in Sections 2 and_3 (particularly
Section 3) makes use of explicit representations of our estimators in terms
of weighted matrix sums of the elements of W, and thus requires us to
establish strong consistency and large sample distributional results for
the elements of this matrix. We do this both under general assumptions
about the common distribution of the columns e €ysene of E, and under the.
- particular assumption that the columns of E have a common multivariate

~

normal distribution. In the latter case, W has a noncentral Wishart
distribution, and our results in Sections 2 and 3 provide large sample
strong consistency and distributional results for the noncentral Wishart

matrix.

2. Strqgg Consistency. We begin by investigating the strong convergence

of W.

Lemma 2.1. Assume that €15 €55... are i.i.d. with common mean vector 0 and

~ ~

. . 2
common covariance matrix o I . Let

p+r
2.1 e () P),

where A is defined by (1.13), and is assumed to exist. Then

(2.2) lim n W = @, a.s.

. n -~ ~

Proof. From (1.4) and (1.6),

lepr o n-lEE' + n'lﬁs' + n Lag

~ o ~a ~ o

(2.3) n W= n”

(1]
¢ (1]
L]



Since the n columns of E are i.i.d. with common mean vector 0 and common

covariance matrix 021p+r’ we have from the SLLN that

(2.4) 1im n"YEE' = 61 . a.s.
N> - ~ptr’
From (1.5) and (1.13),
>. I !
(2.5) lim n~lzgr = [P} & [ ~P) .
' n->e - BJ ~ B
Thus, (2.2) holds if
RIS P . “loc,y,
(2.6) lim n "E'E' = 1lim (n "EE')' = 0, a.s.
n->e R n->e i ~
Let 2= ((§7)), E = ((e;;)), Am) = taiE ((a(“))) Finally, let

n

(n) _ 2,-% C iy s s L .
hij = [kgl (Eik) 1 Eij' Then for all (i,j), i, j = 1,2,...,p+r,

n ' - n 1 _1/7
i?) L Ejpeyy = In PY g
' k=1 - k=1 k

[ v t= I
~
=]
S

ekj.
By (2.5), n-1 Z E ‘ x converges to a finite nonnegative number. But by

Lemma 2 of Gleser (1966), noting that Z (h(n))2 = 1, we have
k...
lim n~ Z h(n) i = 0, a.s.
n#? k=1 J
Thus for all (i,j), i,j = 1,2,...,psr, lim ag?) = 0, a.s.,
e 1

proving (2.6), and thus (2.2).(

Remark. If €15€5500e have common covariance matrix I: (p+r)x(p+r)'and if

=1 . . . "
lim n "E8' = T exists, then a proof identical to that of Theorem 2.1 can be
used to demonstrate that lim n-1 W=2ZI+ T, a.s.

n -~ o~ -



' ' i L
Let v, 3_Y23,..3yp > 0 be the eigenvalues of (£p+§v§)ge(£p+§.§)z’

i .
where (Ip+B'B)2 is the symmetric square root of (Ip+B'B). ‘Let

QY = diag(Yl, Yz,...,Yb) and let ? be a pxp orthogonal métrix satisfying
2.7) (1 +B'B)%%(I +B'B) = yD_¥'.
@. ~p ~ =~ ~Tp o~ o~ ~~Y

Note that if
o -l
(I +B'B) B'(Ir+BB')

%

n‘(" 1} 'éx.

(2.8) I =

]

-~

B(Ip+B'B) 4 -(1,.+BB")

1.
where (Ir+BB')2 is the symmetric square root of (Ir+BB'), then

I: (p+r)x(p+r) is orthogonal, and

021 +DY 0
(2.9) er=r| ~P~ ] -
R 0 o] Ir

We conclude that the columns of T are eigenvectors of ®, and that the

3 > 0.>..,.> > ® :
eigenvalues 61 __92_:. —Pp+r > 0 of arg

0. =0 + Yy - i=1’2""’_p’

(2.10) ) |
) 9 .« = ag > j = 1,2,..-,r._

Lemma 2.2. Under fhe conditions of Lemma 2.1,

U A ' ’
(2.11) iiz n 9 = De = dlag(el,ez,...,ep+r), a.s.

~

gzggg. Under our assumptions about the véctors el, ez,...,'we know that

n 1W is positive def1n1te for all n > p+r [Perlman and Eaton (1973)]. The
ith eigenvalue of a p051t1ve definite matrix is a continuous function of .
the elements of that matrix. Since n- W a.s. converges .to a positive

definite matrix ® by Lemma 2.1, the result (2.11) immediately follows. [



In the following argument, we will need to notationally indicate the

dependence of our sample quantities on the sample size n. Thus, for

sample.size n, let'w(n), ?(n)’ Pégi Dé?%, and
(n) (n)
@ (S G2
A\
21 22

be the quantities:défined by (1.6), (1.7), and (1.9) respéctivgly. ~Further,
let ﬁ(n) be the estimator of B for sample size n given by (1.10).
Lemma 2.3, Under the assumptions of Lemma 2.1, plus the additional

assumption that A is positive definite, we have

(2.12) | o 1n 8@ - B, as.,
tm 3 B
(2.13) Lin n° (G(n))(oéﬁg)(ccn))' - oZ(Ir+BB')'1, a.s.,
| : I, +BB |
M)y @)y (M), _ 201 Jarmy-l
(2.14) | i1@ n (G )(Dmax)(G )' = é + 0 (Ep+§ §) s a.s.

Proof. Note that’thg columns of g(n) are orthogonal and of length 1 for:all"

n > p+r. Let |
w=(egs8se-0)

be a fixed point in the underlying probability space. For fixed w such that

(2.2) and (2.11) hold, the sequence {g(n)} lies in a compact subspace of

(p+r)2-dimensiona1 Euclidean sbace. Thus, each subsequence of {g(n)} has

a convergent sub-subsequence. Suppose that the limit of this sub—subsequenée

is
v Q Q
q = 211 =12 ) .

Then since for all n,

() o
(n'lw(“)) 511 - 1? -1, (n)
-~ G(n) c.m) (n max)’

21 .21



we can take limits over the indices of the sub-subsequence on both sides of

this equality and obtain [see (2.2), (2.10) and (2.11)]

®<911> _ (% (ozrme).
"\ Vi

Thus, (Qll, Q21) is in the eigensubspace correspondlng to the largest p

roots of ® Since our additional assumption (that A is p051tlve def1n1te)

- 2 2 . .
implies that ep =g +yp >g" = 9p+1, this eigensubspace is unique. Hence,

from (2.8) and (2;9)-there exists a nonsingular matrix T such that

/Q,. (1 +B'B)
(2.15) ~11Y .

Wi

L =4

T.
B(I +B'B) % ~

Again, since

g(m) _ G(n)(G(n))

taking limits on both sides of this equality over the indices of the sub-
subsequence results,-by (2.15), in the limiting value B.. Thus, we have
shown that for every value w such that (2.2) and (2.11) holds, every |
subsequence of {B( )} has a subsubsequence converging to B It then follows
from facts about 11m1ts of sequences in Euclidean space that lim Pcn) = P
for all w such that (2.2) and (2. 11) hold, and thus thatv(2 lg;wholds. .
The results (2.13) and (2.14) follow by 51mllar arguments using the

identities [see (1.9) and (1.10)]

@16 @1 W) e,-1 )
(ﬁ(n) B) (G (n)) (l’l lD(n)) (G(n)) (ﬁ(n) B)l

e +BB(n)')(G(n))(n lnncl’l‘zl

)(G(n)) (I +B(n)B')

and



@an (1,8 @ W) 1,5
= @B (G(n))(n'lD ey a +B'B(“))
. cB(“’ B)* (G(“’)c )(G(“)) cﬁ(“) B),

respectively. O

From (1.11), (1.6), and (1.9), we see that

= G,,D___G?

- (2.18) G11PmaxC11°

>
I

1]
171

It thus follows from (2.14) that’{n-lélii} is not a consistent sequence of

estimators for A. Since A helps to determine the covariance matrix of the -
'asymptotic distribution of n%(é-g), we will need a consistent sequence of

estimators for-e in order to construct an approkimate large-sample cbhfiéénée
region for B. The following theorem, which follows directly from Lémmas 2.2
“and 2.3, both summarizes our strong consistency results for § and r_1(p+r);2, .
and provides us with a strongly consistent sequence of estimators for A; -

Theorem 2.1. Under the conditions of Lemma 2.1,

(2.19) 11m r (p+r)<;2 = 02, a.s.,
. v

so that r-l(p+r)32 is a strongly consistent (sequence of) estimator(S) for

_ o%. Under the conditions of Lemma 2.3,

" (2.20) 1im B = B, a.s.,
. nw ~ ~

and

(2.21) 1im n~1(G 11PaxSly - T et sB )Y =8, a.s.,
- ~ll.imax. 1 ~p ~ - ~ -

" so that E is a strongly consistent (sequence of) estimator(s) for B, and .

Etz;zg) | A= vn (Gll DuaxCis - | -%(p+r)n3?p£p+§|§)-1).,.

-~
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is a strongly consistent (sequence of) estimator(s) for é.

Remafk I. Weak consistency results (i.e., convergence in probability) for _
§ and r'l(p+r)32 haveibeen obtained previously by Gleser and Watson (1973).
when r % p, and by Bhargava (1975) in the general case r < p. Their prdof
of consistency for r-l(p+r)32 is given under slightly weaker conditionsb
[nf2§1§i = o(1)]_than the conditions of Lemma 2.1, but théix proof of.the |
consistency of”ﬁ reﬁuires the condition (1.13), and also has a theoretiCai
gap [noted in Gleser and Watson (1973)]. The full strength of the almost
sure convergence results given in this section are not really needed for
deriving the large-sample distributional results of the next section.
However, the methods and conclusions in this section are of interest in
their own right (particularly Lemma 2.1 and the proof of Lemma 2.3), and
Theorem 2.1 may be of use in future work concerning the construction of
asymptotically consistent and efficient fixed-diameter sequential confidence
regiqns [see Gleser (1965)] and asympfotically optimal Bayesian sequéntial
regional estimators [see Gleser and Kunte (1976)] for B. |

Remark II. We once again call attention to the fact that no argument in the

present section requires us to assume that the common distribution of

€15 €550e0s is multivariate normal.

3. Asymptotic distributions. We begin by finding the large sampl?'

. . . -
distribution of n 2(W - ¥ (W)). Let e' = (el,ez,...,e r) be a random

p+
vector having the same distribution as €15 €yseeese (the columns of E).

We assume that jf(e‘il) <o, i=1,2,,..,p+r. Let

(3.1) b35kg = f(eiejekel), i,j,k,2 = 0,1,2,...,p+r,

with the understanding that eg = 1. Thus,

I
¢Oiii = jf(ei) and so forth. Now,

let



®x1 tx1

ek - '6152 Ek = E]fz R k = 1,2,."...,n'.' '
e. E.
k(p+r) k(p+r)

Note from (2.3) that

' 2 -1__
S FW = (oL, T EE,
and thus that

iy ) -
n” W -£W) =n TEE'-noZIp+r+EE'+EE')

(3.2)

where %k = ((fkij))’

2 .
(3.3) “kij = %ki®kj " % %1 * ki * Cnifkj

and Gij is the Kronecker delta. The matrices Zl’ 22""’ are mutually

statistically independent (but not identically distributed) with
jéTZk) =0, k=1,2,...,n, and
4

kij?Zkitj) = %a5irgr " O 9458

cov (z 5% 50 * Ski%oijgr

* Siirfoijir * Fxifoirgry * Skioiryi
+ GZ(E
Let

. n
‘ = 14 -1
(3.5 “(,0), @30 THRRT L coviag ez g0

R S EUR E UL TG LIFTIL L AL IR

12
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Then for all (i,j), i'in; i,j,i',j' = 1,2,...,p+r; we have
K ' = ¢ T T b ..
(1,3),(1',3") = ®i53050 1575050 7 SirPoigze * B5e%04540

+E,0 *E b, o (T, 6.
(3.6) i Oi’jfj Joi'j'i ji'uii

+ Tii-'ajj' + Tji'(sij' + 1J' J:
where the existence of
(3.7) £, = limn Z Es T,. = limn~ Z £k

1 e k=1 1) e ki kJ

is guaranteed by (1.13).

Theorem 3.1. Under the assumptions that (1.13) exists (and is finite) and
that jfTe ) <®, =1 2,...,p+r the elements on and below the dlagonal
(the subdiagonal elements) of n~ (W - &P(W)) have a 11m1t1ng JOlnt
(p+r)(p+r+1)/2 ~dimensional normal dlstrlbutlon with mean vector 0 and
covariance matrlx.ff— ((Kcl’J),(l,’J,)))

Proof. Let W = ((wij)). Consider any linear COmbinatipn

-4 ) Lk th |
| n 1; €555 = Hu;5)) = n i_§j kZI ©i5%ij
.8
o = n"% E () c..z,..)
k=1 igj 1 kij

. -4
of the subdiagonal elements of n *Ww - ¥ W). we recognize this as a

normalized sum of independent random variables, Using (3. 3), (3.4), (3.5)

H

and the assumption that the fourth moments of ¢ exist, it is straightforward

to prove that

n . 2
plim [ Z var( J ©55%43)1" kg ( Z ©55%44)" = 1.

Do k=1 i<j 1 i<j
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It then follows from Raikov's Theorem [Gnedenko and Kolmogorov (1954; p. 143)]
that |

L ' .
(3.9) k§1(1§; 45730 * NCO, igj i,gj, ©13%1050 45,9, G0
Since (3.9) holds for all linear combinations (3.8), the.conclusion of the
theorem follows. O |
Remark. Our implicit assumption that the covariance matrix of e is szp;f o
is unnecessary for fhe proof of asymptotic normality. If the covariance
matrix of e is § = ((oij)), then the same conclusion holds, except that

I replaces 021p+r in the formula for #’(W), and in the formula for

K(i,j),(i"j,) in (3.6) we have

(), @31 T P37 %i3%g * Bieloggyr * Fedosen

Si%0ivjr5 * E5%0ivg0a t (Ty509540

).

Tii'ojjl + Tjiloijl + Tij'oilj

Corollary 3.1. If e €ys..0, are i.i.d. multivariate normal with mean

1’
vector 0 and covariance matrix Z, and if (1.13) exists (and is finite), -

=i
then the subdiagonal elements of n 2(W - nZ - EE') have a limiting JOlnt

~

(p+r)(p+r+1)/2 variate normal distribution with mean vector 0 and covariance

matrlxji? ((K(I,J) G, ,))) given by

“(1,3), 13" T %ii%5 0 T %3005 * T550%540

¥ ToogOuy + T..yOu., + .o
11'°JJ' TJl'QlJ' T

1§91

2
hen ¢ = 'L,
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=%, ,6.., + ) +0 (

(3010) 11' JJ' 1J| 1 J

11'

“(1,3),GE",5N

+ Tii'sjj' + Tji'aij' + 1J' 1, )

Proof. . Because €15 €500 are i.i.d. N(Q,E), we have

0, ifi=0,1i'=0, j =0, or j' = O,
ijiryr =

O..y0::y% O0..,0.,. + 0,.0.,.,, otherwise.
ii' jj 13' 13 1) 1) '

The result of the Corollary now is a direct consequence of Theorem 3.1.
We note that Coréllary 3.1 gives'the asymptotic distribution of thé
noncentral Wishart matrix in cases where the noncentralii& parameter is:
O(n).
To find the asymptotic distribution of n%(é-g), it is sufficient to
note that (1.9) and (1.10) yield the representation:
(L_,B') [n"2(W-200) ] (B,-1) "
(3.11) ~P~ ~ T T

= +B'§)(n G 2(B B)'

11 ~nax. 11)n

- n (B B) (n~ lg I +BB ).

22~m1n~22)(

Assuming that A is positive definite, and using (2.13), (2.14) and (3.11),

. [T
we conclude that n?(B-B)' and

~ o~

: : - - -y
(3.12)  F = -a l(Ip+B'B) 11,8 [n7E - £0)] (B, 1)
have the same asymptotic distribution. Since the elements of F are linear
-y : '
combinations of the subdiagonal elements of n 2*(W- ¥ (W)), we conclude that

when the assumptions of Theorem 3.1 hold and A is positive definite, the

oA
elements gf_gf(g-g)' have a limiting rp-variate normal distribution with 0

mean vector and a covariance matrix that can be calculated using (3.6) and

(3.12). Since the covariance matrix of the limiting distribution of



16

L oA . .

n*(B-B) under the general conditions of Theorem 3.1 involves fourth-order

cross moments of e, and thus is both complicated and hard to estimate, and
since we are primarily interested in the case where el, €,5.0. are i.i.d.

N(O GZI ), we content ourselves with the following.

“ptr
Theorem 3.2. If €15 €y5... are i.i.d. N(O 021 ), and if (1.13) exists
and is p051t1ve definite, then the elements of n (B B) have a 11m1t1ng

joint rp-variate normal distribution with zero means and covariance between

the (i,j)th and (i',j')th elements given by:
2.2, -1 N | -1, .
(3.13) LT LI AT - AT BB

Proof. The asymptotic normality follows from the preceeding arguments. The
formula (3.13) may be obtained from (3.10), (3.12), and straightforward
calculation. In the computation, it is helpful to note that if T = ((rij))’

is defined by (3.7), then

_ I I\ '
(3.14) T=("P] a ~P . O

~ ~

We note that from (2.14) and (2.22),
lim A (n e )A = A_l(A + 02(1 +B'B)_1)A-1, a.s.
Tveo 11 ~max., 11 - - I BV

and from (2.12),

lim (I_+BB') = (I_+BB").

e ~T b

It then follows from Theorem 3.2 that an asymptotic 100(1- a)° elliptical

confidence region for B is:
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| TR B, 150
B erln(LeB) T Aoy 0,61 B )

~

(3.15)
< r'l(p+r)02xip[1-a]},

where x [l-a] is the 100(1-a)th percentile of the xzp distribution.

Turn1ng next to the question of the asymptotic distribution of

Y o9 A _

nz(r 1(p+r)02-02), we note from (2.16), Lemma 2.3, and Theorem 3.1 that"
n"lp = el ey (B,-1) ("MW (B, -1y (1_+BB") L (G e o @™,
-min = J22%.r <9 g Mg R SR 22 P |

Since it also follows directly from Lemma 2.3 that

Lin (1_+BB")"! (c! -1

52" o
n->o

Gy (L,#3B")

= (Ir+BB')'1, a.s.,

we conclude that
n-ltrlgmin = tr[(£r+§§’) (B -1 )(n W)(B -1 )(I +BB') ] + o (n” ),
or that
n (e ) 8%-o%) o e (1,088 5@, 1) (1700 #00)1 8,11, 880 7S 4 0 ).

It now follows d1rect1y from Theorem 3.1 that the limiting d1str1but10n of
2(r (p+r)g -g ) is univariate normal with zero mean, and a varlance

involving B and the fourth-order moments of e. [Note. To obtain this result

we need not only the assumptions of Theorem 3.1, but also the assumption

that A is positive definite.] 1In the case when the ei's are i.i.d.
2
N( [ 3¢ Ep+

and we obtain the result:

), the variance of the asymptotic distribution greatly simplifies,

Theorem 3.3. Under the assumptions of Theorem 3.2,

~ L -
(3.17) nir L (par) 2-?) > N0, 20% Yy,
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Thus, an approximate 100(1-a)% confidence interval for oz.is
2. |2 -1 2 3, -1 .
(3.18) {o”: |0 - (nxr) trgminl 5_(2x1[1-a]/rn) (nr)‘ tr?min}'

Remark. The methods:of proof used in this section differ from those
usually used to prove asymptotic normality of principal components [see
Anderson (1963)] or of factor loadings [see Anderson and Rubin (1956)]
.There is, of course, considerable resemblance between the model (1.4) used
in this paper, and the kinds of estimators derived, and the models and
estimators of principal component analysis and of factor analysis. Indeed;.
a first step in computing § and 82 is to §btain a principal components
breakdown of the cross-product matrix w; but we must note that in’our model,

. . . . . 2 .
W is noncentral Wishart with covariance matrix parameter o I , while

~p*r

principal components analysis deals with a central Wishart matrix with a
general covariance matrix §. The analogy of éur model to factor analysis
with fixed factor values [see Andersoh and Rubin (1956) and Lawley (1953)]
is much closer, although our model makes very restrictive assumptidné'aﬁout '
the form of the factor loadings and error covariance matrix. Even though

it is probably possible to obtain our large sample results by specializing
the more general résults of Anderson and Rubin (1956), our approach in this
section has the advantage of directness. Further, the representations which
we have used may yield information about the accuracy of our large samplé

approximations in finite samples.
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