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1. Introduction. Let Xt’ 0 <t < », be standard Brownian motion. It has
recently been proved that there exist absolute positive constants Ap’

0 <p < », and ap, 1 <p < », such that if T is stopping time for Xt then

(1.1) Efx;|P _<_ApETP/2, 0<p<ow,.

and

(1.2) a ETP/2 < E|X.|P, if 1 < p < o and eTP/2 ¢ o,
2 == P

For the exponents p > 1 these inequalities are due to D. L. Burkholder in
[4] and P. W. Millar in [11]. Inequality (1.2) was extended to the exponents
0 < p <1 independently by Burkholder and R. F. Gundy in [6] and A. A. Novikov
in [13]. The paper [5] is a good general source of information about these
and related results.

Here a proof of (1.1) and (1.2) is given which yields the best possible
values for the constants ap and Ap' For p = 2n, n an integer, they are .

*2n and zgg, where z* and z are the smallest and largest

2n 2n 2n

positive zeros of the Hermite polynomial of order 2n. For P = 4 this has

respectively z

already been proved by Novikov in [14], and is is well known that the best

values for a, and A, are 1. Bounds for ap and Ap may be found in [5], [6],
[8], and [14]. The constants found here will be shown to be best possible

in inequalities related to (1.1) and (1.2) involving stochastic integrals,

stopped random walk, and Haar series.

1Supported by an N.S.F. Grant.



For example, let ?y5 Poseee be the complete orthonormal system of Haar

functions on the Lebesgue unit interval. Let A, A be real numbers,

1, 2,‘...
such that ) A,p. converges. Let f = Y A%, and S(f) = ( Z (A.9.)5)=.
. iti . i'i . i'i
i=1 i=1 i=1
Then there are constants dp and Dp such that

o]

1 1
(1.3) J e)Pax < b [ s(£)Pax, 0 <p < =,
0 Po
and

| 1 1 1
(1.4) dpj 1£]Pax < [ s(H)Pdx, if 1 <p < = and [ S(H)Pdx < =
0 0 0

For the exponents p > 1 these inequalities are due to R.E.A.C. Paley [12],
who proved an equivalent Walsh series form. Marcinkiewicz [9] noted the
Haar series version. For the exponents 0 < p < 1, inequality (1.3) was
proved by Burkholder and Gundy in [6]. It will be shown that if p > 2 the
best constant for dp is the same as the one we find for ap and for 0 < p <2
the best constant for Dp is the one found for AP. We have no idea what the
constants are for the missing exponents.

Let Dp(x), -© < x < o be the parabolié cylinder functions of parameter

p, and let M(-p/2, 1/2, 22/2)

= M (2) - go(-zzz)’“cg) E-D&-2&-n+1)/2m

m
be the confluent hypergeometric function. See‘[l] as a general reference
for these functions. We noée that if n > 1 is a positive integer the zeros
of M2n and D2n are exactly the zeros of HeZn’ the Hermite polynomial. Let
z* be the smallest positive 0 of Mp and let zp be the largest positive 0 of

Dp' We prove the following theorem.



Theorem 1.1. The largest possible value for a_ such that (1.2) holds

*P
for all stopping times T satisfying ETP/2 < o iE.pr or p > 2 and zg for

1 <p < 2. The smallest possible value for Ap such that (1.1) holds for

. ) *
all stopping times T ié_zg for p > 2 and zpp for 0 < p < 2,
The examples‘which show that the values for ap(Ap) given in Theorem 1.1
cannot be replaced by larger (smaller) values will be based on some results

of A. A. Novikov and Larry Shepp on square root stopping boundaries. For

p = 2, these are Novikov's examples. Let

t, = inf{t > 0: |th = a/t+1}, a > 0,
and

s_ = inf{t > 0: X_ = a/t - 1}, a > 0.

a t

*

Shepp, in [15], proves that Etz <o if a < z__ and that E Etg* =, p > 0. Novikov

2p
2p
proves in [14] that ESE < o if a > 22p and ESE = o, p > 1/2. Noting that
, 2p
t. >t a.e.'as a + z*_ we get that lim EtP = o, so that
a z* 2p a»z¥ a -
~2p 2p
: 2P /EeP - 15 2 P/peP = ;2P s
llmafz* E’Xt | /Eta = 1lma+z* E(a (ta+1)) /Eta = z2p s P>
2p a 2p
Similarly,
. 2p,;.P _ .2p
11ma+z EIXS | /Esa = zZp’ p > 1/2.

2p a
Together, these supply all the examples needed.

A naturallway to find the best possible value for, say, Ap’ is to find_
the time T which maximizes ElXT|p/ETp/2 and then evaluate this quotent. 1In
fact this is a natural way to try to prove (1.1). Unfortunately, such times
do not exist. However, under the constraints T > 1, ETp/2 =M>1, the

time which maximizes the above ratio does exist and is of the form

=3
i

. ,
inf{t > C(M,p)t=}, if 0 <p < 2,

|v
—
T

and

]
[}

. L
inf{t > 1: |X B(M,p)t2}, if 2 <p < o,

| A



where C(M,p) and B(M,p) are constants. As M » «», C(M,p) ~ z; and
B(M,p) ~ zp and the ratios EIXTMlp/ETﬁ/Z approach z;p, if 0 < p <2, and
zg, if 2 < p < », which can be shown to imply Theorem 1.1. This is the
proof used in this paper as initially submitted. The referee, to whom I
am indebted, and who wishes to remain anonymous, suggested a proof which
is shorter and mdre direct. His proof will now be givén,

2. Proof of Theorem 1.1. We concentrate for the time being on Ap’
p>2. It has_already been shown that no smaller value than.zg will do fo:
Ap. To show thét zg is an acceptable value for Ap it will be shown that

if C > zg and T is a bounded stopping time then
(2.1) E(x [P - ct®?) <o,

Now define f(t,x) = 1x|p - Ctp/2 for t > 0, -» < x < ». Suppose for a
moment that the truth of (2.1) is known. Define v(t,x) = SupTEJEt,xf(T’ET)’

where J is the class.of all bounded stopping times and Et x denotes

expectation taken with respect to Brownian motion started at time t and
height x (EO,O'iS shortened to E, as in (2.1)). Clearly v(t,x) > f(t,x),
and v(0,0) = 0. It is not hard to show that v(t,x) < « for all t,x, that v
is continuous, and that v(t,X{), t > 0, is a supermartingale, which is

equivalent to Ve * %—vxx < 0, at least where v is smooth enough.

ConVersly, suppose that there is a function u(t,x), -» < x < ®, t > 0,

such that lim_, ,u(t,0) = 0, u(t,x) > f(t,x), and u(t,X{) is a supermartingale

t+0
(under Pa b for all a > 0,b). Then if y is a bounded stopping time, and € > 0,

>

P - cyP/?.

u(e,0) 2 E_ o ulv,X) > B fOnR) = B (X

> 3

Since u{e,0) > 0 as € - 0, this gives the truth of (2.1) for all bounded
stopping times T.
Thus (2.1) for bounded stopping times T is equivaleﬁt to the existence

of a function u with



these properties. We will actually exhibit such a function u. The function

constructed will satisfy

(2.1) ' u(t,x) > £(t,x),
and

1
(2.2) Ue * 3¥xx =0,

or, more precisely, u, will be continuous and u . will be defined and
continuous everywhere except the lines x = :k/f for one number k and will

be bounded on compact sets, and (2.2) will be satisfied everywhere except
théselines. This is sufficient to guarantee that u(t,Xt) is a supermartingale,

since u grows no faster than a polynomial in x and t. By Brownian

scaling we can look for a function of the form u(t,x) tp/ZV(x/Vf). If

we call g(x) = Ix|p - C, then (2.1) and (2.2) become

(2.3) V(x). > g(x),

and

(2.4) v - xV' + pvV < 0.
2

Let ¢(z) = éz /4Dp(z). Then ¢ satisfies ¢" - x¢' + p¢ = 0, since

Dp(z) satisfies y" + [p + 1/2 - x2/4]y = 0, and
o(x) = < - Eiglll- P2y O(xp-s) as x - o,

(Equation  19.8.1, p. 689 of [1]). Let F(A,x) = X (x) g(x). For » =1,

it has a root larger than Zp' This is because F(l,zp) cP - Zg > -0,
while F(1,x) is negative for large x. As A increases from 1, F(x,A) 1is
positive for large x, and thus a new root appears. If A is very large,
F(x,\) is positive for all x 3_zp. Let A* be the largest A such that

F(x,\) = 0 for some x € (zp,w), and let k be one of these roots. Then

F(A*,k) = 0, F*(x*,k) = 0, and F'(2*,k) > 0. Now define V(x) by g(x) for



|x|] < k and by A*¢(x) for |x| > k. Then V is differentiable and twice
differentiable everywhere but k. By construction V' - xV' + pv = 0 if

|x| > k. All that is left to show is g" - xg' + pg < 0 for |x| < k.

Since g(x) = |x|p - C, this amounts to verifying g''(k) - kg'(k) + pg(k) < O,

which holds because

0 < FU(A*,K) = A% (K) - g" (k)
o = ket (k) - pArECK) - g"(K)

= kg' (k) - pg(k) - g"(k).

This completes the proof. It is not difficult to show that the function
u(t,x) = tp/ZV(x//E) is the least super parabolic majorant of f(t,x).

| To show that the value for Ap, 0 <p < 2, is z;p, we again need to show
that if C > z;p then there is a function V satisfying (2.3) and (2.4).

%3 %zz). As before, ¢" - x¢' + pp = 0. Consider

Again let ¢(z) = M(- %p,
*

F(x,0) = 2(x) - g(x). Then F(z},1) = cP- zpp > 0 for all A, while

F(0,-C) = 0. Also, F(x,0) > 0 on [O, z;]. Thus there is a largest A, say

A*, such that F(x,)) = 0 for some x € [O,Z;], and a corresponding value

k € [O,ZE] satisfying

F(A*,k) = 0,
F'(A*,k) = 0, and
F"(A*,k) > 0.

We now define V(x) = A*¢(x) for |x| < k and V(x) = g(x) for |x| > k. To
verify V"' (x) - xV'(x) + pV(x) <O for\xlz_k the same trick as before works

for p € (1,2), while g"(x) - xg'(x) + pg(x) < 0 for 0 < p<1,x#0.



The other cases will be sketched briefly, since most of the details
are similar. We note that the truth of inequality (1.2) for any value of
ap implies that this inequality holds for all stopping times T satisfying

ETp/2 < », For, using inequality (1.1), ETP/2 < implies

lim E|X

where ~ denotes minimum,

|P 5_APETP/2 < -,

Tt
so by an inequélity of Doob (see [7], Chapter VII, Theorem 3.4, and page 354)
P« : b _ P
EsupthIXTAtl < @ and thus lim EIXT“tI = EIXT| .
*
To show that zpp is an acceptable value for ap, 2 < p < e, it can be
*
shown that if c < zpp there is a function V(x) satisfying V(x) > ¢ - lep
and V" - xV' + pV < 0 at all except one point x. The form of this function
* .
is V(x) = ¢ - Ix[p if |x| >k (k< zp ) and V(x) = A*M(—p/2,1/2,x2/2) if
x| < k. |
For ap, 1 < p <2, the form of V is V(x) = ¢ -‘|x[p if |x| < k and

x2/4
V(x) = A*e Dp(x) if |x| > k.

3. Other martingalés. Let Xt’ t > 0, be standard Brownian motion and

let f(t,p) be a non-anticipating function satisfying f f(t,w)zdt < ® a.s..
0
Then there is a standard Brownian motion Zt’ 0 <t <w, and a stopping time
T = Tf for Zt sﬁch that T and f f(t,w)zdt have the same distribution and
o 0

Zt and f f(t,w)dXt have the same distribution (See McKean, [10]}, p. 29).
0 .

Thus (1.1) implies

(3.1) Blf fe.wdx, P < AE( £(t,0)2at)P/?, 0<p< e,
0 0 ~
while (1.2) gives

(3.2) a E(f £(t,0)2at)P? < E|J £(t,0)dx [P, if 1 < p < = and
0 0

E(f £(t,0)%dt)P < =,
0



et e

where any values of Ap and ap such that (1.1) and (1.2) hold suffice here.
. ® 2 .
Since for any stopping time T we can write T = f 1[0,T]“(s)ds, where I 1s
0

the indicator function, and X, = { I(0,T)dX,, Theorem 1.1 implies the
0 .
following theorem.

Theorem 3.1. The best possible values for ap and Ap in (3.1) and
{

(3.2) are those given in the statement of Theorem 1.1.
Next discrete martingales will be considered. If Zt’ 0 f_t < w, is a
standard Brownian motion and if T = inf{t > 0: thI = a} then Et_ = a.

Symmetry also gives E(Ta|ZTa = a) = E(Talzra = -a) = a. Now let dl’dz""’dn’
be any martingale difference sequence such that each di takes on only a

finite number of values and also such that P(di‘= aldl""’di-l)
= P(di = -a|d1,...,di_1) for each of these values a and all i. Let Wt,

0 <t <, be a standard Brownian motion which is independent of (dl""’dn)'

Define Ti’ 0 < i < n by putting T0 = 0 and, for i > 0, saying that

T. = inf{t > T, |w
i i-

1
on {ldil = a}, so that

t_wT. n
1—

n
_ 2

(3.3) E(Tnldl,...,dn) = -Z df.

i=1

d -
Also, (W, , WT - WT ,...,WT - WT ) = (fl, f2""’fn) where fk = d1+...+dk.

-1 2 1 n n-1
n

Now (3.3) gives ET] < E( ]

. |
di)q if q<1, and ET9 > (E ] di)q if q > 1.
i o i=

1 1

Thus, using Theorem 1.1,

P _ P %P P/2 P g T ghyP/2
(3.4) E|f | _E|an| <z, ETT <z E(Y dDY5,

and similarly
n
Z di) i_Elfnl R L 2.<p <=

3. *P
(3.5) zp E(_ .

i
Equations (3.4) and (3.5) and an easy approximation argument (omitted)

~ive tha fallnwino theorem.

1| = a} on {Idil = a}. Then E(Ti'Ti-lldl""’d )=a

2



Theorem 3.2. Let dl’ d2,..._E§.§_martingale difference sequence

satisfying P(d_ > ?‘dl""’dn-l) = P(d_ < -a|d1,...;dn_1) a.e. for each

integer n and each positive real number a. Suppose Zdn converges, and

. - (pdE
put f = 121 d., S(f) = (2d])%. Then
(3.6) E|f|P < z;P ES(£)P, 0<pc<2,
and
(3.7) z;P ES(£)P < E|£|P, if 2 < p < » and ES(H)P < =,

Inequalities (3.6) and (3.7) are true in much greater generality‘if the
constant Z;P is allowed to be replaced by absolute constants, the best

values of which ére not known. See [4] and [6]. In pafticular (3.6) and

(3.7) show that an acceptable value for Dp in (1.3) is é;p, 0 <p<2,

and for dp in (1.4) is z;p, 2<pc«< wi As a special case of these inequalities

we get that if Xl, X are independent identically distributed random

g3

variables with P(Xi = +1) = P(Xi = -1) = 1/2, if Sn-= X1+...+Xn, and if N

is a stopping time for Sn then

| | . -
(3.8) E|SN|pizpp NP/ 2, 0<p <2,

and |

(3.9) Z;p ENP/2 < E[s [P, if2 <p < = and ENP/Z < .

To show that the constants z;p are the best possiblé iﬁ (3.8) and (3.9)
(and thus also in (1.3) and (1.4)), examples are needed. All cases are
essentially the same, so an example is given to show that Z;S in (3.9),
p = 3, may not be replaced by a larger value. Let Wt, 0 <t <= be

standard Brownian
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motion, and let T be a stopping time in L~ such that EIWT|3/ET3/2 < z;3 + E.
We can take T to be a truncation of tzg (defined in the.introduction). Let
v,(8) ='inf{t > 0: |wt| = 6§}, and, if i > 1,
v;(8) = inf{t > v, (8): lwt-wvi_1(6)| = 8}. Let N(8) = N = inf{i: v,(8) > T}.
Then since IWVN(S) - WTI < &, we have '
(3.10) : E|W > Eelw.|% as s » 0,

VN(G) T

and also, since T € Lm,"
. 1 p [+
(3.11) ‘ 11m6+0E suPijij(G)lwtl < o for each p > 0.

Now let 8g> 8p5--- stand for the martingale O, wﬁin(Vl(G):VN(G)),

. . 2 _ 2
wmin(V2(5),vN(6)),... Then lim, g, = g, and izl(gifgi_l) = 6°N. Thus,
since SupOj;ij(6)|wtl > supi|gi|, (3ﬁ10) and inequality (3.5) imply
1im6+0 E(62N)p < o for each p > 0. Since 62N -+ T in probability

(see [3], ch. 13), this last fact gives

(3.12) Es2N(6)3/2 > E13/2 a5 § » 0.
Now O, gl/G, gz/G,... = hl’ h2,... is fair random walk up to the stopping
time N = N(8). We have hN =W /8. In view of (3.10) and (3.12), we
vy (8) '
have
. 3, .3/2 _ 3,..3/2 _ *3
limg o E]th JEN°/“ = Elel JET < 2.° + e,

the examples desired. The following theorem summarizes these results.

*
Theorem 3.2. The inequalities (3.8) and (3.6) do not hold in general if_zpp is

replaced by a smaller value. The smallest possible value for Dp’ 2<p<w,

*
in (1.3) ig_zpp. The inequalities (3.9) and (3.7) do not hold in general
. .
if_zpp is replaced by a larger value. The largest possible value for.dp

: “p
in (1.4), 0 <p < 2, ig_zp .
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