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ABSTRACT

In the present paper, it is shown that for estimating the mean g of
a normal distribution N(e,aez) with known coefficient of variation /E,
Khan's [i] minimum variance estimator éLU among all unbiased estimators
linear in the sample mean x and sample standard deviation s is
inadmissible under squared error loss. The estimator 61 MMs which has
uniformly minimum risk among all estimators linear in x and s is obtained.
An admissiblerBayes estimator 68 of ¢ under a natural prior is also obtained,
along with simple upper and lowerabounds, §B+ and éB—’ for éB which closely
approximate 68 and which resemble in form the maximum likelihood
estimator of 6. All of the estimators obtaiﬁed are shown to be B.A.N.
The domination of 6LU by éLMMS in terms of risk under squared error is

shown to be a consequence of a general inadmissibility of unbiased, scale

invariant estimators of scale parameters under squared error loss.
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1. INTRODUCTION AND SUMMARY

If we Sample from a normal distribution N(e,oz) and attempt to estimate

6 under a squared-error loss function, it is known that the sample mean x

is an admissible estimator for 6 (and also is UMV uﬁbiased). Howevér,
suppose that we sample from a normal distribution in which it is known that
02 is a fixed given multiple, 02 = aez, of 62, ahd the unknown mean 6 is
positive (6>0). ' Put another way, suppose that the coefficient of variatioﬁ
/a of the normal population is known. In this situation, Khan [1] found an
unbiased estimator éLU of 6 wﬁich is a linear combination of the sample
mean x and the sample stan&ard deviation s, and which has minimum variance
among all unbiased estimators linear in x and s. Since Khan's estimator
' does_not»equal X, his result shows that X is inadmissible as an estimafor
of the mean g of a normal distribution when the coefficient of variation
is known.
We note that in the model N(e,aez), the parameter g acts as a scale
parameter. Typically, in point estimation problems involving a scale

parameter (and squared error loss), admissibility and unbiasedness are

~incompatible, in the sense that unbiased estimators are usually not admissible.
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this paper is based was supported by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under Grant AFOSR-72-2350B at
Purdue University. The United States Government is authorized to reproduce
and distribute reprints for government purposes notwithstanding any
copyright hereon. '



This fact suggests that Khan's estimator is itself inadmissible. In
Section 2, we find the estimator, eLMMS’ which has minimum mean square
error among all estimators that are a linear combination of x and s. Since

# 8,.., our results demonstrate the inadmissibility of The esti-
LU Y L

O mms v
mator éLMMS is no harder to compute than éLU’ and has a simple risk function.
It also trivially follows from the characterizations of éLU and éLMMS that

eLMMS
has shown that éLU is best asymptotic normal (B.A.N.); in Section 2, we

has a uniformly smaller variance than éLU’ We note that Khan [1]

show that eLMMS is also B.A.N.

Although the simplicity of éL recommends it as an estimator of @,

MMS

it is very likely that éLMMS is itSelf inadmissible within the class of all

~estimators of 6. This conjecture arises by noting that 6LMMS is a linear
combination of the minimal sufficient statistics in a non-linear parametric
problem. On the other hand, Bayes estimators against.priors which put
positive probability on every open set are known to be admissible. Thus,

in Section 3 we are led to consider the Béyes estimator'éB,against a certain
prior, the inverted-gamma prior, which is customarily used to represent
prior opinion about the variance of a normal distribution, (The fact that

6 > 0 precludes using a normal prior for 6.) The estimator éB cannot be

expressed in closed form, but is easily computed using continued fractions.

Further, we find two closed-form estimators §B+ and éB- which closely bound

A

GB above and below, respectively. ,Thé form -of each of these estimators

resembles that. of the maximum likelihood estimator éMLE' It is shown that

"all three of these estimators, éé, éB+’ and éB are B.A.N.



2. LINEAR MINIMUM. MEAN SQUARE ESTIMATION
We assume that a random sample Xl,xz,...,xn of fixed size n > 2 is
taken from the normal distribution N(e,aez), where 6 > 0 is unknown and

a > 0 is known. Let

n n
=0t Tx, sf=nl Y g-n? (2.1
i=1 i=1
and let
c, = &h/ea @y, (2.2)

It is known (Khan [1]) that T1 x and T2 = ¢, s are both unbiased esti-

mators of 6, i.e.,

EqT, = EqT, = 6; (2.3)
that
2 n-1
2 : - I (=9
.. _ ab - ,2:(n-1) 2 )
Varg T, = —, Var, T, = 0 [ > T - 1]; (2.4)
' r*(z)

and that T1 and T2 are uncorrelated (actually, independent). We remark in
passing that the minimal sufficient statistic for 6 is (x,s), or equivalently
(TI’TZ)’ but that the family of distributions of the minimal sufficient
statistic is not complete. [Rather than use Khan's [1] moré complicated,
proof, we note that lack of completeness follows directly from (2.3).]

From (2.3) it is readily apparent that all estimators of the form
6(a) = aT; + (1-0)T,, -® < g < ®, (2.5)

are unbiased estimators of §. Khan [1] showed that among the subclass of

estimators of the form (2.5) for which 0 < a <1, the estimator



QLU(a) = a*Tl + (l-a*)TZ,

2.n-1
where n-1 I 2 )

2 I,2 EJ - 1
Var T (
a*: 62 = (27)
Var T, + Var T 2 n-1 ? *

61 6 2 (=)

a n-1 2

2. - 1)

n 2 2.n

r (59

has smallest variance (and thus smallest risk under squared—efror loss).

Actually, as we shall see, the estimator (2.6) has minimum variance (and

minimum risk) within the entire class of estimators of the form (2.5).
Now, conéider the class of all estimators of 6 which are linear in x

and s. A typical such estimator can be written in the form
e(al,az) = alTl + a2T2, ' f (2.8)

sinéé T1 = x and T2 =c.s. We now find the estimators which have,
respectively, smallest risk among all estimators of the form (2.5), and
smallest risk among all estimators of the form (2.8). We do this by means

of a lemma which has generality beyond that of the present problem.

Lemma 2.1. Let T1 and T2 be any two uncorrelated and unbiased estimators

of a parameter 6. Assume that the ratios .

- a-2 :
v, = 6 VareTi (2.9

are independent of 6, i = 1,2. Then the estimator,

% V2T1 + v1T2 :
Tw ™ v, (2.10)
1 2

has uniformly (over 6) minimum risk,
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B s A B (2.11)
1 2 :
among all unbiased estimators linear in T1 and T2, while the estimator,
% v,T. + v.T
‘EMMS - v2+t +V i 2’ (2.12)
1 727172
has uniformly minimum risk,
. V.V
* 2 1°2 2 1
R(O, ) =07 ——= ___ _ g , (2.13)
uaass V1tVativy G-+ ien
V2
among all estimators linear in T1 and T2.

Proof. For any estimator T,
2 2
R(6,T) = E,(T-0)° = Var T + (E T-6)°.

. o o _ .2
By the given, EeTl = EBTZ =0, VareTi =0 Vs and T1 and T2 are ungorrelated.

Thus

2 2 2 2
R(e,a1T1+a2T2) = o Var Tl + o, Vare'r2 + 0 (al+a2-1) (2.14)
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and since (2.14) is quadratic in al and ®,, We can minimize (2.14) with

respect to @ a.'n_d-a2 by standard techniques of partial differentiation.

. ) * ok
The resulting coefficients o, and e, that minimize (2.14) are

* . .
a, = vi/(v1+v2+v1v2), i =1,2. The results (2.12) and (2.13) now follow

by substitution and simplification. For the linear combination a1T1+azT2

to be unbiased, we must have @, +a, = 1. Thus, from (2.14), we have that
for any unbiased linear combination aT1+(1—a)T2, R(e,aT1+(1-a)T2) =
62(a2v1+(1-a)2v2). Again, this expressidn is a quadratic in o, and

standard differentiation techniques show that the minimum of the expression



is achieved for a = vz(v1+v2)—1. The results (2.10) and (2.11) now easily

* *
foliow. Since both TLU and TLMMS are independent of 0, the optimality

properties (minimization of risk) for these estimators hold uniformly in
6. Q.E.D.

The condition that the v, are independent of 6 (see (2.9)) holds in
any problem (including the present one) in which 6 is a scale parameter

for the distributions of T1 and T2. In all such problems, we see from the

* *
does not equal TLU (indeed, T can be described as

*
Lemma that T LMMS

LMMS

* *

a shrinking of TLU toward 0), and that TLMMS has strictly smaller risk
*
than TLU' The difference
R(O,T. ) - R(O,T . ) 0’
> - ’ =
LU LMMS CVL + —lﬂ(l s L + _}a
1 V2 Vi V2
* *
between the risks of TLU and TLMMS is most positive (i.e. most in favor
o*
of TLMMS) when either v, or v, are large, while this difference is
negligible when both vy and v, are small. The ratio -
G5+t 1)
6,T. 0,T 1%
1 2

. *
shows a similar trend, being largest (favoring TLMMS) when either vy or v,

is large, and'being near 1 when both v, and v, are small.

1 2
In the present N(e,aez) problem, we see from (2.4) that
2 n-1
. I (=9 .
) _ {n-1) 2

Vi Vo T [ > 7 1]. (2.15)
Since both vi and v, tend monotonically to 0 at rate n-1 as n »> o, we see

. ~ . %k A * .
that there is little choice between eLU = TLU and %J@M; ='RMMS in large

samples, while use of QmMS is clearly indicated when n is of small or

moderate size.



Since

vV, +Vv

~ 1 ~
= )b
%MMS v1+v2+v1v2 LU
and
vV, +v
tin oG- 1 = o,
e 1 27172

it follows that nl/z(%MMS

(2.16)

~ P ' '
- BLU) + 0. Since Khan (1968) has shown that

eLU 1s B.A.N., we conclude that quwws 1s also B.A.N.

We could have also shown that %WMS

by noting from (2.11), (2.15) and (2.16) that

Remark 1:

A 1 ~

Sams = € vy
L 102
V1+V2
1 8
Var.p Lu’
» 1+ 62LU)
6

and using the following general lemma.

L.emma 2.2.7

has smaller risk than éLU

If T is any unbiased estimator of a parameter 0 whose variance

Var, T has the property that v = 6'2VareT is independent of 6, then T is

inadmissible under squared error loss,

the biased estimator (1+v)_1T.

and is uniformly improved upon by -

2

Proof. Since
1 1.2 1
R(B’IIV'T) = (I:VJ VareT + (1176 - 8)
- v . e2 + (liv _ 1)262
(1+v)
2 v 2

=9 I_TV-<9V=

R(6,T),



the inadmissibility of 6 is established. Q.E.D.
Lemma 2.2 is constantly rediscovered in the literature in various
contexts. For example, using Lemma 2.2, we can immediately conclude that

. ) 2 . . .
the unbiased estimator 52 of the variance o~ of the normal distribution

is inadmissible, and [since Var ) 52 = %02/(n-1)] that
? Z (Xl';()z
1 _ 442 _n-1 2 _ =l
( 77% T nAl _ n+1
1 +
n-1

is superior to 52 in terms of risk for all 02. In general, Lemma 2.2 shows
that any unbiased estimétor T of a parameter 6 whose distribution involves
8 as a scale parameter must be inadmissible.

Remark II: Once we note that 6 acts as a scale parameter for the N(e,aez)

distribution, we might think of transforming the data x Xy by taking

12
logarithms. (In analysis of variance problems, where the situation that

the standard deviation is a fixed constant multiple of the mean is observed,
this logarithmic transformation is frequently utilized to '"normalize" the
data.) The logarithmic transformation, if well defined, changes scale
parameter problems to location parameter problems. However, since the xi's
can be negative, the logarithmic transformation is not well defined in the
present problem. Taking logarithms of lxil may reduce the data too much to
retain efficiehcy in estimation of 6, whilé taking logarithms of x; (the’
positive part of X;) gets us into complicated distributional problems
involving truncated normal distributions when 6 is small, and also may

lose much of the information provided by the data. In any case, the location
parameter of the distribution of log X4 when X5 is positive, is log 6, and
the loss function customarily used for iocation parameter problems is

squared error loss in the location parameter, log 6, which does not directly



indicate loss in estimating 6. For these reasons, we have not investigated

the transformation approach to estimating 6 in the present problem.

3. A BAYES ESTIMATOR

If we were considering estimating the mean o for a general normal
populatidn N(e,oz), the customary approach would be-to make use of a
(conjugate) normal prior for 6. In the present case, however, 6 is positive,
and a prior normal distribution for 6 does not make much sense. Noting
again that 0 acts as a scale parameter for the N(e,aez) distribution, and
thus that 6 can also be regarded as a measure of variation, we are led to :
consider using a.claSS of prior distributions, the inverted gamma distri-
butions, which have previously been used in estimatiﬁg variances of normal
populations. Thus, consider a prior density y(6) for 8 of the form
-r-1 e—w/e W

r(r) ’ ,
V(o) = (3.1)

il if 9 >0,

0 s otherwise,
where w > 0 is a given positive number, and r > 0 is a given integer. Since
this density assigns positive probability to every open set in the parameter

space ® = (0,~), we know that the Bayes estimator,

6g = E(0|x,....x ) = E(e]%,sD), 62

n

will be admissible under squared-error loss.

The joint density function of x, 52, and 6 is

g(x,52,0) = y(8) £(%,5%[e), | (3.3)

where
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(52)(n-3)/2 nn/2 exp - n2 [(i—6)2+52]

= 2 2ab
f(x,s%|0) = , (3.4)
r&Y var (0?2

for -» < x < », 0 < s2. Since
* - 2
f 8 g(x,s",68)ds

6, = E(eli,sz) = 2 ,

B 2
| g(x,s*,8)de
0

we obtain, after simplification of the integrals,

oo _l 2
Jo f n+r-2 - 2 (T—z) dr
8p = 0 : (3.5)
; sr-1 - & (r-2)?
[l -7 ()T
0
= ner-1 (%)
where t = 6-1,
n n
u=al ) xi, oz o= (=W + a1 ) xi)(u)—l/z. (3.6)
i=1 i=1

Two useful recursive methods for calculating hn+r-1(z) can be obtained
through use of integration by parts. Both recursive solutions always
converge, but the first relation gives faster convergence when z > 0, and

the second converges faster when z < 0.

. _ 1 - , ,
Relation I hi+1(Z) = -ijq—(?)—*’—;, - ‘ (3.7)
Relation I1 h, (z) = (F'E"TET" )%, (3.8)
o i+l

We remark that these relations hold and yield recursive solutions even when
the parameter r > 0 of the prior (3.1) is not an integer. When r is an

integer, the initial value for (3.7) is

_ , |
h, (2) =.(/§E-¢(z))/(/ff 20(z) + e 2 /2), S - (3.9)
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where ¢(-) is the cumulative distribution function of the standard normal
N(0,1) distribution. Also, when r is an integer,and z < 0, we can use

(3.8) to write hi(z) as an infinite regular continued fraction:

hi(z) = [aéi), a{l), a(l) agi),...] (3.10)
- (1) 1
-ao +a(i) : .1 s
1 a§1)+

where for k > 0,

1
=(k+1)
2. i+22-2
|z] S G, ko, __
ad) - (3.11)
: 10
2. i+22-1
IZI I (m), k even,
=1
while aéi) = Iz[/i. A proof of this assertion appears in an Appendix.
We note from the definition (3.5) of hi(z) and from Liapounov's
inequality (Loéve [3; p. 172]) that
h, (z) > h 1(z), all i > 2, (3.12)
Applying (3.8) and (3.12), we find that
(i-1)h2(z) + zh.(2) - 1 < 0 < ih2(z) + zh (z) - 1
i i -7 = i ’
from which ﬁe conclude that
1,-2 z,2 4, . 1,.-2 4
S5+ /(;J + P f_hi(z) A G (——-9 Y- (3.13)
Let S
1/2
~ _u -z Z 42 4
- =~ (@eT + '/(n+r-1’ M o (3.14)

1/2 / )
B+ ~ —_7_'(n+r‘23+ G 29 YW

D>



12

It follows from (3.5) and (3.13) that

by < 8y < By, . (3.15)

As can be seen by inspection of (3.14)}, when n+r is large, éB— and éB+ are
very close to one another in value, and hence very close in value to éB'

We note that whenw = 0 and r = 1, éB- = éMLE’ while when w = 0 and r = 2,

A

eB+ = eMLE’ where

X+ [4a52 + (1+4a)(i)2]1/2 , - (3.16)

OvmLe = 7a

is the maximum likelihood estimator of 6. Further, it is easily shown that

for fixed w, r; and 6,

= plim vn(6,, - 6

B+ eMLE) =-0 (3.17)
oo

plim /n

n-eo

(Op_ - Oypp)

is B.A.N., it follows from (3.17) that 6, and

Since it is known that 6 B-

MLE

6B+ are likewise B.A.N. Finally, application of (3.15) allows us to

“conclude that éB is B.A.N.

The risk functions of éB—’ éB+’ éMLE’ and 68 cannot be expréssed in
closed form. However, since éB is known to be admissible (provided w > 0,
T > 0), we knoW that there must be a region of values of 6 for which
R(e;éB) < R(e’éLMMS)‘ The shape of the prior distribution (3.1) suggests
that this region of 6-values lies near 6 = 0. Since éB— and éB+ are
close to éB when n+r is large, we would expect that bofh éB- and éB+ would

also improve “P°“76LMMS in some region of 6-values, when moderate sample

sizes are used.
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APPENDIX
For positive constants ays 2y, Ayseeerdn, We define a finite continued

fraction to be

1
cm = [aoxal’- > ] - ao + 1 >
" a,+
2 .
1
+ —
a
m
while for the sequence 85> 8y, 85, of positive constants, a regular
continued fraction is defined to be
c [a,,a,,a ] = a, + 1 = lim ¢
0) 1’ 29"‘ 0 1 ms
a, + Mmoo
1 a2+

provided the limit of <h exists. From Khinchin [2; pp. 6, 10], we have the

following results.

- Theorem. For ¢, to converge to'c, it is necessary and sufficient that
the series ) a, diverge. Further,
k=0

(a) Ci S Ciuo if 1 is even,
(b) cj Z_Cj*z, if j is odd,

(c) cy cj’ if i is even and j is odd.

| A

To demonstrate that (3.10) holds when z < 0, we note from (3.8) that

1

i+l

_Z _ 1
i 1 z
i(—= - —)
(1+1)hi+2 i+l

z—
- T = ..
1

hi(z) =

Continuing in this fashion, we find that for all m > 1,

(i) {1
h. = 1 ,al1

veea), e a2y 1. (A1)



a(i) are defined by (3.11). It can be shown that the

(i) (1)
where ay 7,23y

3e ey

series defined by (3.11) diverges. Thus, our Theorem shows that

(),

@ _ &
0 n (A.2)

lim [a

exists. Therefore, given € > 0, there exists Me such that m > M€ implies

that

W<t | (A.3)

(i) (1) € (i)
Icm—Z - cm-lI =7 lcm—l )
Choose m > Me to be even. Then by our Theorem, part (a), the fact that

z < 0, and (A.1), we have

(1)
hi (2) > ;75 (A.4)

and similarly by part (b) of our Theorem,
(i) _
h, (z) < e '. (A.5)
However, by part (c) of the Theorem,
(i) (1)
c 5 f-cm—l’ (A.6)
and thus by (A.3) - (A.6),
; (i i i i
@ - M) < h@ -] ) - @)
(i (i) (i) (i
A e e LS I [P

Since e 1is arbitrary, we conclude that hi(z) = c(l).
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