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A probability distribution is called infinitely divisible if for each

n=2,3,... it can be represented as the n-fold convolution of some
probability'disfribution. Equivalently, a random variable is infiniteiy
divisible if for each n it can be represented as the sum of n independent
identically distributed random variables.

The class of all iﬁfinitely divisible distributions has a prominent
place in Probability Theory,gbeing, in fact, the class of all possible
limit laws in the celebrated (generalized) Central Limit Problem. See, for
example, Levy (1937), Gnedenko and Kolmogorov (1954), or Breiman (1968).

The Normal and Poisson laws are the most notable ekamples of infinitely

divisible distributions. Another is any compound Poisson distributionf—i.e.
any distribution of a sum of."Pqissonly—many" independent, identically
distributed random variables. In fact every infinitely divisible distri-
bution is a limit (in the usual sense) of compound Poisson distributions.
See, for example, Feller (1971) PP. 557.

In the speciallcaSe of distributions concentrated on the non-negative
integers, the situationvis much simpler because then every infinitely
divisible distribution isiitself compound Poisson. See Feller (1968)

pp. 290. We shall give a new proof of this fact as part of the following--



Theorem: Let X_Eg:g.non-negative integer-valued random variable.
{
Then the following are equivalent:
\ i
(a) X is infinitely divisible;

(b) The Aj's, j=1,2,... which satisfy the system of equations

' \ s k
n - kP(X=k) = 7}

jrs P(X=k-j) k=1,2,...
j j

1 .

are all non-negative;

[--]

‘(é) X can be repiesented as Z i Zi where the-Zi's are independent
: i=1
Poisson_random variables with parameters Ai > 0 and

) Xi = X < », (Hence, necessarily, A = -&n P(X=0).)
i=1

(d) X has the compound Poisson distribution represented by

5 —
z Uj where N is independent of the Uj's and Poisson with
j=1 .
parameter A = -2n P(X=0) and the Uj's are -independent and

identically distributed with P(U=1) = A;/A 1 =1,2,...

In the proofvwhich follows, propérties (b) and (c) of the Theorem—F
which have inherent interest--provide the link between (a) and (d).
Equivalence of (¢) and (d) is well-known. (See, for example, Feller (1968)
pPp.: 217.) It is eSsentially the statement that, in "Poissonlyfmany” multi-
nomial trials, the numbers of occupancies of each of the cells are inde-
pendent Poisson random‘variables; Equivalence of (a) and (b) was shown by
‘ Katfi (1967). His proof uses generating functions as does the usual proof
that (a) implies (d). Ours does not, which may provide some satisfaction
tQ'the many probabilists wheo try to avoid them wheneVei they can. The
deepest facts we use are that the mean of a sum of randoﬁ variables is the
'sum of the means and the (unconditional) mean is tﬁe’mean of the conditional
mean. | |

Proof of the Theorem.

(a) implies (b): By hypothesis, for each n, X can be represented as



X=X ,+...+X the X l's being independent and identiéally distributed.

nl nn’ -

Let X n0 be a random varlable independent of the X 's, is=

with the same distribution. Let IA denote the indicator function of the

set A. Then for k = 1,2,...,

1 )

=k} = ¥xax

xniI{X+X 00

n0

I ~13

i=0 =k}v

.,n, but

Taking expectations of both sides of this trivial identity, we have:

k k
(2) (n+1) Z P, =5)P (Xek- J) k z P(X ;= J)P(X k-j).
= : i=0

Of course

P(X ;=0) = [P (x=0)]1/™

SO P(X —0) + 1 as n + », Hence, by induction on k in (2), 1i

sides of (2), which gives (1).

(b) implies (c): Since in (1), non-negativity of the Aj's implies

Xk < P(X=k)/P(X=0) so ZAj < », and since, for any non-negative, summable

mn_mnP(Xn

sequence of Aj's, there is at most one probability distribution which

satisfies (1), it suffices to prove that (c) implies (1).

.Taking expectations of both sides of the trivial identity--

*ix=piz =k} ZijI{zizi=k}

--we have (using '"mean = mean of conditional mean')

k .
= ] Z j2P(X-j2.=k-jz)P(Z;=2)
- j=1 z>1 J )

(ignoring some of the zero terms).

17K

exists for each k=1,2,... . Call the 1imit Ak' Now take limits of bofh



Now we exploit the Poisson distribution of Z,:

J

.
zk?e 321 z>1

zp(zi=z)

A.P(Z.=2-1).
J-( J )

. Also,

) P(X-jZ, = k-jz) P(Z; = z-1) = P(X=k-j).
z>1 I J . :

)

Substituting.back,into (3) yields (1).

The usual proofs of (c) implies (d) and (d) implies (a) are quite

routine and cannot be improved upon.
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