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Summary

Let X = (Xl,...Xp)t be a p-variate normal random vector with unknown mean -

0 = (91,...6p)t and unknown positive definite diagonal covariance matrix A.

Assume that estimates Vi of the variances Ai are available, and that Vi/Ai is

X, i . Assume also that all Xi and Vi are independent. It is desired to
i

estimate 6 under the quadratic loss

P P
[v qi(si-ei)zjl/[z ini], where q, >0, i=1,...p.
i=1 i=1
| P
Defining W, = V,/(n,-2), W= (W w)t, and || x ||2 = 5 X%/ w5, it is
i e R WL eyt
j=1

shown that under certain conditions on r(X,W), the estimatdr given componentwise
by
2
8, %W = (L-rx,W /]| % [ W, Dx,
is a minimax estimator of 6. (The conditions on r require p,z 3.) Good

practical versions of this estimator are developed and examples of their use

are given.



1. Introduction.
Let X=(X1,...Xp)t be a p-variate normal random vector with unknown mean

6=(® .ep)t and positive definite ¢ovariance matrix *. Consider the problem

10"
of estimating O, when the loss incurred in estimating 6 by 6=(61,...6p)t is the
quadratic loss

L(5,6,$) = (5-0) “Q(s-0) /tx(Q}) .

Here Q is a p x p positive definite matrix and "tr" denotes the trace. Note
that tr(Q$) is just a normalizing constanf.

The above éroblém has been of considergble interest since Stein (1955)
demonstrated that if Q = $ = I (the p x p identity matrix) and if p > 3, then
the usual estimator 60(X)=X is inadmissible for estimating 6. Indeed he found
minimax estimators which significantly improved upon the riék of 60. The
generalization of these results to arbitrary Q and $ was of obvious interest.
For the case of known *, wide classes of minimax estimators have now been
developed. (See Bhattacharya (1966), Hudson (1974), Berger (1974a), Bock
(1975), and Berger (1975).) For unknown $, however, the resulté that have
been obtained are very incomplete. For the special case Q = $-1, James and
Stein (1960) did obtain good miniﬁax estimators better than 50. Bhattacharya
(1966) obtained results for the situation $ = GZB, where B is a known p x p
matrix and 02 is unknown. The subsequentvliterature éonsidering unknown $ has

dealt with one or the other of the above two special situations.
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In this paper, a first step is made in dealing with arbitrary Q and

unknown *. Results are obtained under the assumptions that the X, are

i
' independent and that Q is diagonal with diagonal elements qi'> 0, 1i=1,...p.
Since the Xi are independent, it is clear that $ ='A, where A is an unknown
p x p diagonal matrix with diagonal elements Ai > 0. It will be assumed that
estimates Vi_for Ai are available, where Vi/Ai hes a chi-square distfibution

with n, degrees of freedom. It will also be assumed that n, > 3, that all Vi
are independent of Vj for 1 # j, and that theVi are independent of the Xj.

' .Throughout the paper, E[ ] will stand for the expectation of the argument.
Subscripts on E (usually 0 or A) will denote parameter values under which the
expectation is taken. Superscripts on E will be used to clarify the random
veriable,with respect‘to which the expectation is being taken. When obvious,
no subscripts or superscripts will be given.

For notetional convenience, let W be the p x p diagonal matrix with

diagonal elements W, = Vi/(ni-z). Define»

i
2 1 1 3’ 2 2
I x [lg=x%l v = ) x2/qudl.
i=1
Let |x| denote the usual Euclidean norm of x. Finally, let Xi , i=1,...p,
‘ i
denote independent chi-square random variables wi'th n, degrees of freedom,

and define

T= min . [Xﬁ /ni], and T=T(n1,...n ) =-E[T-1].
1<i<p "i® P

In Section 2, it 1s shown that under certain conditions, estimators of

the form

-2 =1 -1
(1.1) §(X,W) = (I-r(x,W|] x ||w Qo W hx
are minimax and have risks smailer than 1 (the risk of 60). Thus, in combining
P independent normal mean estimation problems with unknown variances it is often

possible to improve upon the risk of the usual estimator.



In Section 3, a simple practically useful version of the above estimator

is developed. Section 4 deals with applications of the theory.

2. A Class of Minimax Estimators.

Theorem 1. Assume § is of the form (1.1), where
(1) 0 < LW < 2(p-27),

(ii1) r(X,W) is nondecreasing in |Xi| for i=1,...p,
(i rE,W) is nohincreasing in Wi for i=1,;..p,

(iv) rx,w|| x |I%2_is nondecreasing in W, for i=1,...p.

i

Then § is a minimax estimator of ©.

Proof: Throughout the proof it will be assumed that all first order partial
derivatives of r exist. The generalization to r merely nondecreasing or
nonincreasing in fhe various coordinates can be done analagously by treating
all integrals as Riemann integrals.

The risk of §, denoted R(§,0,A), is given by

R(&:G:A) = L(G,G,A) = Ee A [(6 -e)tQ(G-O)/tr(QA)].

Eg A

Writing [§-0] as [(X-G)-rll X ||%2Q—1W_1X],,and expanding the above quadratic

expression gives
R(5,0,4)=E, [ (Xx-8) “Q(x-0) /tr(qa) J-E, A[2r||x||&2(x-e)twf1X/tr(QA)]
+ Eg A[rz‘|x||§4xtw'1q'1QQ51w'1x/tr(QA)]
.
-1 - EG,A[2r||X||&2{ /X (X -8 /0, }/erea)]
» i=1

+ Ee’A[r2||X||&2/tr(QA)];



To show that § is minimax, it is clearly only nécessary to verify that
L
-2, 3 : 2 -2
(2.1) Ee’A[ZrHXHW {) %@ 61)/Wi}]-Ee’A[r ||x||W 1>o0.
i=1 -
A simple integration by parts with respect to Xi gives

Bg aL{r| x| 1572, 3{Cx;-0) /8, 1] = £ 'a%i e| %} ;%)) ]

2rX X
0,A 2 4 2 2 '3 ? )
’ “X| IW ’ HXI |_w qiwi HXI IW Xi

Using the above eduality in the first term of (2.1), and noting that
o)

[Xi X r(X,W)]_Z 0 by assumption (ii), it is clear that § will be proven
i

minimax if it can be shown that

X A 2

eri
;)"‘ L 2]20
AT

1

(

p

5 Lr
(2.2) Eq A[( ), ) - 3

o g w i
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1

At this point, the following equality is needed:

2
rA 4A.1X 24
i T i i o)
(2.3) BEg L — 51 =E [ —— - 3 " {5 X, 0 1]
A lIXIIf,W]1 AT @ Rl @ x| 2 M

Proof of (2.3): Let U be Xﬁ, g: Rl - R1 be an absolutely continuous function,

and g' denote the derivative of g (where it exists). Efron and Morris (1974)
noted that an integfation by parts will prove

(2.4) E(ug()] = nElg() ] + 2ElUg' (V) ],



providing all integrals exist and are finite. In each of the integrals of
(2.4) make the change of variables Z = cU/(n-2) (¢ > 0), and define

h(Z) = g ([n-2]z/c). Noting that g'(U) = ch'(Z)/(n-2), (2.4) becomes
E[(n-2)Zh(Z)/c] = nE[h(2Z)] + 2E[zh'(2)].

2 .
Since Wi(ni-Z?/Ai = Vi/Ai is Xhi’ it follows that

(2.5) Ee’A[(ni-Z)wih(Wi)/Ai] =E A[n h(W, Y] + 2E A[Wih' (wi)].

0,

Choose h(Wi) = r(X,W)/(lIX'lé Wi), which under the assumptions on r is absolutely

continucus unless Xi =0 (which of course has measure 0). Noting that
: r |
2rX
?‘l'(W)=- E + 1 L {a r(XW)}-
i 2 2 4 2 oW ? ?
il ws o Ll W Llxl 2w |

the expression (2.5) reduces to (2.3).
Inserting the expression given by (2.3) for Eq A[rAi/(llxllé Wi)] into
’

(2.2), and collecting terms, gives as a sufficient condition for minimaxity
2pr-r r {2 [ i XJZ'. } | 4 p Ai }
(2.6) E, [ - + A,] - { (z71) }11>0.
6,A 2 4 -2 1 3 2 L -2 aw
k2 (il o x| (ny2)

¥y W i=1

Notice that {58— r(X,W)} < 0 by assumption (iii). Hence (2.6) will be satisfied if
i

P n,A X2
(2.7) Eg 5 {2p-r- zLi-—l——)]]>0
||X|| ||X||W i=1 2]q W
and hence if p 9
(2.8) E {2p-r & ( max j'i)(r- X)”>0
8, A ||X||2 I‘X||2 1<1<p [n -2]Wi L

11‘111
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Since 2 Xi/(qiwi) = ||X|| » it can be concluded that § is minimax if
i=1

-2 _ nghy
(2.9) Ee,A[r||X||W {2p-r-4(1 f?i%f ; f;;:ijﬁ;)}].z 0.

For notational convenience, define

W) =4 ax A /[(n,-2)W,]}.
& 1 Smi <p {ni i ( ny 1]}

Note that g(W) is nonincreasing in Wl, and by assumption (iii), r(X,W) is

nonincreasing in Wl. Hence {2p-r(X,W)-g(W)} is nondecreasing in W

X
Assumption (iv) states that {r(X,W)lle‘&z} is also nondecreasing in W, .
Hence -
w . W "W

1 =2 - P | -2 1
EAl [rHXHW {2p-r-g(W)}] > (E‘,:1 [Ijllxl |w D (EAI[Zp-r-g(W)])- .

Since the Wi are independent, it is again clear from assumptions (iii) and (iv)

1) W
that EA1[r||X||%2] and EA1[2p—r-g(W)] are nondecreasing in W Hence
1 1

-
W W W

1 -2 1
EA§{<EA1[rI|x1|W D (& (2p-r-g (0 D]

- W, W W, W e
2 @ 2l X 2D @,y 2T20erg 0D
s 2

b

Continuing in the obvious manner verifies that

(2.10) Eg’A{EX[rl|X||&2(2p-r-g(W))]}

By A{E3lr| x| [1*D @T2p-r-g 0 D)}

v

- Eg,A{(EX[rl‘X|I&Z])(ZP-EX[r]_4T)}.
(The last step follows since nyA/[(n-2W,] = [vy/4n )17 = 1] /n,17, and
‘ i
henee EX[g(W)] - 4E[T_1] = 47.) Assumption (i) ensures that r‘|xll%2 >0 and

that (2p-EX[r]-4T) > 0. From (2.10), it is thus clear that (2.9) is satisfied,

and hence that § is minimax.“



Obviously, unless (p-2T) > 0, assumption (i) and hence Theorem 1 is
vacuous. Unfortunately, verifying this inequality is calculationally fairly
difficult.- Section 4 deals with the calculation of T. The following theorem
shows that if p > 3 and the n, are large enough, then indeed (p-2T) > 0.
Theorem 2. Assume p > 3. There exists an N such that if n, >N, i=1,...p,
then (p-2T7) > 0.

Proof: Since p > 3, it clearly suffices to show that lim sup T(nl,...np) <1.

N0

»
From the definition of T, it is clear that T-qlf ZJ (xﬁ /ni)-q. For q > 1, -

. i
Jensen's inequality thus gives . i=1
@an 9= @Dk Er Y < ) Blod /).

i
i=1

An easy calculation shows that

2 -q qr '
E[(x, /n)) %1 = (/DT (5 - 9/T().
i

Together with (2.11) this gives

n n
Qri _ iy911/q
[(ni/2) I'( ” q) /T( 2)]} .

~1w

(2.12) T<§

i=1
For fixed € > 0, q can be chosen large enough so that (2p)1/q <1+ €. For

fixed q, it is straightforward to verify by Stirling's approximation that

ni ni
(ni/Z)ql"("E - /T ~1 as n, ~ =

Combining these two observations with (2.12) gives the desired result. ||

At this point it should be mentioned that condition (i) of Theorem 1 is
undoubtedly stronger than necessary. An examination of the proof of Theorem'l,
specifically the passage from (2.7) to (2.8), leads one to think that T could
.be replaced by something much closer to one. Indeed, one would guess that T

could be replaced by

max E(ni/Xi ) =  max [ni/(ni-Z)].
1<1i<p i 1<1i<p
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Unfortunately, we were unable to verify any such better condition. The proof
of Theorem 2 does indicate, in any case, that if the n, are large (relative to

p), then little is lost by the rougher bound.

3. The Choice of r.

When it comes to suggesting an' estimator to use in practice, the choice
determined by r(X,W) = ¢, 0 < ¢ < 2(p-2T), is attractive because of its
simplicity. (It is trivial to verify that thé conditions of Theorem 1 are
satisfied for this choice of r.) The trouble with constant r, and many other
simple choices, is that the resulting estimator has a singularity at zero.
Such estimators can usually be considerably improved upon. Attfactive methods
of eliminating this singularity are discussed in Berger and Bock (1975). The
simplest for use in this paper is the use of "positive part" versions of the
estimators. If § is given componentwise by ai(X) = ¢i(X)Xi, the positive part
version, S(X), is defined by Ei(x) = ¢:(X)Xi, where + stands for the usual
positive part. |
are independent with

i
densities fi(xi-ei) which are symmetric and unimodal, if the loss is a diagonal

In Berger and Bock (1975) it is shown that if the X

quadratic loss and if the estimator, §, is diagomal (i.e. 5i(X) = ¢i(X)Xi),
then the positive part version, E, has smaller risk than §. These conditions
are clearly satisfied for the situation of this paper. Hence the estimators
§, given in (1.1), can often be considerably improved upon by using E; defined

componentwise by

5, KW = [1 - r@,w/([x]]; qiwi)]+xi.



For practical purposes, it has already been indicated that the choice
r(X,W) = ¢, 0 £ ¢ < 2(p-2T), is desirable because of its simplicity. The
positive part vefsion of such a choice seems to provide a simple, yet quite
good minimax estimator. Though such an estimafor is probably not admissible,
it is unlikely, as in the corresponding situation with known variances, that
admissible choices of r would be significantly better. The desired minimax

estimators are thus given componentwise by

(3.1) s‘i:(x,W) = [(1-c/ (] |x]| lf: qiwi)]*'xi, for 0 < ¢ < 2(p-2T).

In actual applications, it is clear that the abové estimators should be
centered at what is considered, apriori, to be the "most likely" parameter
value 90. This will result in a minimax estimator where the major improvement
in risk (over the usual estimator 60(X)=X) is at 60. The centered version of
5c is simﬁly

c .
(3.2) X,W) = § (X-eo,W) + 90.

8

0

Finally, the question of choosing ¢ arises. It is reasonable to choose c
to minimize the.risk at the "most likely" point 90. It is easy to see that

¢ = 2(p-27) is the desired minimizing value. This choice of ¢ also gives rise

to tﬁe most attractive looking risk function, in the sense that the region of

considerable improvement seems to be largest. In conclusion, the recommended

minimax estimator for practical use (among the class covered by Theorem 1) is

" 2(p-2T)
69 .
0

4. Applications.
To apply Theorem 1, it is clearly necessary to determine
r =21 = B[ min o /mp 7ML
1<i<p 1

It can be shown that if the n, are even, then

i
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(m,~j(i))
2 2 : m (m-J (k) ~2) !mkmk
4.1 1= II " : ,
k:i ik (mi-J(i))! (mk_l)!m(mﬂl(k)-l)
P
— <
where m, = ni/2, m= :_ m, , Jk) = 'ZJ j(i), and the inner summation is over
i=1 ifk

all combinations {j(1), j(2),...3(k-1), j(k+1),...i(p)} where the j(g) are
integers between 1 and mz inclusive. The calculation is relatively
straightforward though tedious. It is based upon observing that Fi’ the
c.d.f. of Xﬁi/ni, can be expresséd in terms of a cumulative sum of a Poisson
distribution.

Tables of T are clearly desirable. The difficulty in constructing such
tables is, however? obvious - the parameters p, n,, n2,...np are all_involved.
As a compromise between completeness and conciseness, a table (table 1) is
included only for ng=m, = ... = np = n. Recall that (p-2T) must be positive
in order for Theorem 1 to guarantee the existence of minimax estimators better
than 50. For exaﬁple, if p=5, then n must be at least 8 for the theory to»
apply. |

If the n, afe not all equal, and it is not desired_to use the exact
formula (4.1), the following two bounds on T might prove ﬁseful. The first
bound follows from the observation that

T'; =  max [ni/X2 1< 2, max [ni/X2 1,
n n,

1<i<p i alljieﬂj

where the Qj are disjoint sets of integers whose union is {1,2,...p}. Clearly

s _ , 2
4.2) T< /) T ., where Tj = E [ max (ni/xni)]'

all j le

The second possible bound on T was conjectured by the referee. It is that

(4.3) T(nl,...np) < T(n*,...n*), where n* = min n,.
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Unfortunately, we were unable to prove the above bound. Since intuitive
_ c;nsiderations and numerical calculations indicate it is valid, however,
it seemed desirable to include it.

As an example of the use of (4.2) and (4.3), assume that p=10 with

n;=25 for 1 < i < 8, n,=30, and n_=5. From (4.2), with Q= {1,2,...9}

9 10

and Q, = {10}, it follows T < T+ T, Clearly 7, = E[5/x§] = 5/(5-2)

By (4.3), Tl.s T(25,...25) = 1.67 (from the table with p=9 and n=25). Hence

1.67.

T <3.34.

The obvious examplé of the above theory which should be mentioned is that
of combining p completely independent normal mean éstimation problems. Thus
suppose that for j=1,...p, we observe a random sample Yi s Yg ,...Yi. of size
mj from a normal distribution with unknown mean ej and unknown variance oj.
Assume that the observations are all independent. This problem can be put

into the setting of Section 1 by letting

mJ mj
- o . bl . —_
X, =yl =L ). vi, v, =521 (¢J._ vH2 A - o?/m., and n. = m.-1.
j m i’ ] j m, o i j i i k|
I 4= I a1

(Note that it is necessary to have mj.Z 4 to ensure that nj~2 3.) As an

example of the improvement in risk (over the usual estimator 60) that can be

=27
obtained, the risk of the estimator 5§(p 27) was calculated for p=4, m1-m2=m3=m4=17,

and o§=qj=1(j=1""4)' Figure 1 depicts this risk (as a function of |9!). The
constant line c=1 is the fisk of the usual estimator Y = (YI,QZ,...§p). Clearly,

significant savings are achievable.
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