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Abstract

An algorithm to compute the probability distributions of the
successive generation sizes in a Galton-Watson process is presented.
The distribution of the number of offspring of each iﬁdividual is
assuﬁed to be of phase type. A probability distribution is of phase
type if it can be identified as the distribution of the time till
absorption in an absorbing finite Markov chain with appropriate initial
conditions. kA detailed analysis of the error due to truncation is given,
as well as an application in a problem related to the M/G/1 queue.

A second algorithm deals with the distribution of the maximum
generation size before extinction. Several theorems on probability

distributions of phase type are proved.



1. The Probability Distributions of Phase Type

In computational probability problems it is frequently desirable
to have available a versatile class of distributions which may be
concisely represented, which satisfy simple recurrence relations, in
addition to having algorithmically useful properties under the operations
of convolution and mixing. The probability distributions of phase type,
which were discussed in [8], have many such properties in addition to
the ones proved here. In the present paper, the computational advantages
of these distributions in the study of the Galton-Watson process will be
examined.

Let a denote an m-vector of probabilities and e an m-vector with

e.=1, for i=1,...,m. We define o by « =1-a e, and assume that

1 m+1 m+1 -
o > 0. The matrix T of order m is substochastic and such that I-T is
nonsingular. The vector I? is defined by I? = e-Te.  The matrix T° of

order m has m identical columns given by I?. The matrix A is diag(al,az,..

A probability density {pk} on the nonnegative integers is of phase type

es ).

m

and has representation (a,T) if and only if

(l) po = am+l,

P = @ k-1 0 for k > 1.

It is shown in [8] that all probability densities on a finite number
of nonnegative integers and all generalized negative binomial densities
are of phase type. It is further shown that all right shifts, all finite

mixtures and all finite convolution products of distributions of phase

type are themselves of phase type and appropriate repfeSentations for these

are constructed. It is easy to see that {pk} is the probability density

of the time till absorption in the (m+l)-state Markov chain with transition

probability matrix
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and initial probability vector (o, o The condition that I-T is

m+l)'
nonsingular guarantees that absorption into the state m+l is certain for
any initial probability vector. For purposes of representation of the
density {pk} we may further assume without loss of generality that the
stochastic matrix Q = T + (1—am+l)'lToA, is irreducible.

There is a completely parallel development for probability
distributions of phase type on the nonnegative real line. In this case
we consider an (m+l)-state Markov chain in continuous time with
infinitesimal generator

T T1°

(3) B = .
0 0

The matrix T now has negative diagonal elements and nonnegative off-diagonal
elements. The matrix T is nonsingular and T e + I? = 0. The probability
distribution of the time till absorption into the state m+l with initial

probability vector (a, am+1) has a jump of a at zerc and a density

+1

component given by
(4) @(u) = o exp(u T)I?, for u > 0.

Phase distributions on the positive real line play only an incidental Tole
in this paper and except where indicated, we shall consider only the
discrete case.

Countable mixtures of probability distributions of phase type are
generally not of phase type, but the following positive result is of some

interest in the Galton-Watson process.



Theorem 1

Let {pk} be a density of phase type with representation (a,T). Let
{sk} be of phase type with representation (8,S), where the order n of the
matrix S may be different from that of the matrix T. If P(z) denotes the
probability generating function of the density {pk}, then the mixture {vk}
of the successive convolutions of {pk}, whose probability generating

function V{(z) is given by

(5) V(z) = SO +

He~18

s, Pv(z),
v=1
is itself of phase type. A representation (y,K) with K of order mn, of
the density {Vk} is given by

-1
ne1S) s

' o)
(6) K—T®In+TA®(In—a
where ® denotes the Kronecker product of matrices, and by the mn-vector v,

given by

-1
(7 x=oe®B(, -0 45

The corresponding vector E? is given by

o o) -1.0
(8) _i_(_ - _'I; ® (In - C‘m"‘ls) _5__ E)
and Yon+1 is given by
-1.0
(9) Ymn+1 = Bne1 T %mel E-(In - OLm+ls) S
Proof

The probability generating functions P(z) and S(z) of {pk} and {sk}

are given respectively by

(10) P(z) =a . *+zall -z T)"11°,

m+1

S(z) =8, +z B8 -z s)"1s°,

n+l

and hence
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(- V() =8 .+ ] o,

n+l
1.0 v v v+l ] -1.0
)7 s+ ) Y (Mol L [z a(I -z T
— . j m+1 —'m -
v=0 j=0

=8 + 8(I v-3+1

[0 - O
n+l m+l =*"'n m+1

The first two terms yield Yo+l It therefore suffices to show that

10 v v vl j | 1.0
(12)  zy(I -zK K = vZO jZO Cy o, (2 200 - 2 )T

v-j+1 o}

Observing that

(13) [z (I - 2 SO ol A o [z(I_- 2 T)“lTOA]t(Im- z )L 1°,

for t > 0, and interchanging the order of summation, we write the right

hand sum as

(o]

a9y I ] Thad | zafza - 2 7 a - 2 10 g 837 S0
j=0 t=0 J mrl o= m - = =
Since
R N I_orr o t-2
1s) 1 O e,y 87 = e, 81T

j=0

the sum reduces to

(16) [ za [z (I -z T)-lTOA]t(Im- 2z T) 170
t=0
-1 -1..t -1 .o
BIT, - o 817 H[L -a S]7'8)° [T -a .s]7's
= z{a ®B[In - am+ls]-1} -y {z(Im -z T)*l °A ® (In - am+15)'1s}t .
t=0
-1 o) -1_.0
{(Im -z T) " ® In}{l @[In - ocm+15] S°1,

by repeated application of the property

(17) (LOM(K®N) = LK @ MN,

of the Kronecker product.

Finally

B S

8 sVs°.

\Y

s°.



[ee]

18) [ fz(1_ -2 )7 11% ® (1, -

1ot -1
L oS TSI, - 2T @I )

-1
=L -z (I 2 A ® (- o, 97N (@ -z el

5y gyt

(8]
{(Im-— zT)®In— zTA®(In—am+l

[1 am+153’1s]”1 =[1 -z K]"l.

o
mn—zT®1n~zTA®(In-

We now turn to the discussion of the existence of the matrix inverses,

used in the preceding manipulations. Since I - T and I - S are nonsingular,

-1

and since the matrices T and S are nonnegative, the inverses [In - S]

o
m+1

and [Im -z T]_l, !zl_i 1, exist. This implies the validity of the series
representation in formula (15). The validity of the matrix series in

formula (18) is shown if the spectral radius of the nonnegative matrix

-1

(I, - T)_lTOA QI -« S) °S is less than one. Since

m+1

(19) (Im -1

the matrix (l-o )_l(I —T)-ITOA is substochastic. The matrix (l-a_ )
m+l m m+1

S)—1 is clearly also substochastic, so that the spectral radius of

(1

-1, . . .
(l—am+l)(In~um+IS) S is strictly less than one. The mn eigenvalues of

Q,

n m+l

S)—ls are the products of the

the Kronecker product (Im~T)_1TOA @)(In-a
..1(

~

m+1

Im-T)"lTOA and (l-o 1

eigenvalues of the matrices (1-a ;) a . .S) °S.

m+l)(In' m+1
All these products are less than one in modulus, which proves the desired
result. The properties of Kronecker products used here, may be found in
Marcus and Minc [4].

Theorem 1 may be used to compute the probability density {vk} %

recursively for given representations (o,T) and (B,S). It also has the

following consequence of interest to the Galton-Watson process.



Theorem 2

Consider a Galton-Watson process in which the number of offspring
of an individual has the probability density {pk} of phase type with
representation (a,T), with generating function P(z), given by formula
(10). The probability generating function Pn(z) of the number of
descendants in the n—t; generation of a single progenitor is then given
by the n-fold functional iterate of P(z). It follows that the corresponding
probability density {pk(n)} is of phase type and has the representation
[a(n),T(n)], where the order of the matrix T(n) is m". The vector a(n) and

the matrix T(n) are recursively defined by

O (o] - N
r_r_ H 0 (1) - U'm_,_l:

°(1)
T(a+1) = TM) @ I, + T°) AM) @ [1, - ()T 7T,
) - P @ [T, - o1,

a(mel) = a(m) @ all, - «® @117,

Cm+) =+ %) o [ - o«®mrl're,

m+1

for n > 1. A(n) is a diagonal matrix of order n™ with the components of

a(n) on the diagonal.

Proof

Immediate by repeated application of Theorem 1.

Theorem 2 generalizes the classical result [2], that in a Galton-Watson
brocess in which the density {pk} is geometric, or more generally where
P(z) = Py + (1~p0)pz(l~qz)_l, all the successive generation sizes have a
geometric disﬁribution. If m > 2, the algorithmic utility of the
recursive formulas (20) is limited due to the rapid growth in the order
of the matrices appearing in the representation. A feasible algorithm

to compute the densities of the successive generation sizes is given below.



The last of the formulas (20) is computationally useful, since ao(n) is
the probability that fhe population is extinct by the n-th generation.
The sequence {ao(n), n > 1} is the probability distribution sequence
of the time till extinction.

The following result is useful in certain computations related to
the M/G/1 queue. Let X be the length of a random time interval with
probability distribution F(-) with Laplace-Stieltjes transform f(s).
Consider a Poisson process of rate XA, independent of X, and let N be the

number of arrivals in the Poisson process in [0,X].

Theorem 3

If the random variable X has a (continuous parameter) distribution
of phase type on [0,»), with representation (o,T), then the random
variable N is of phase type on the nonnegative integers with the

representation (B,S), given by
: 0 1
(21) S=A(A1I -T) 7, B=a (Al -T) 7,
and correspondingly
1.0

22)  s°= (a1 - T7hr°, B = . +a (I -T M

Proof

The probability generating function K(z) of N is given by
-1..0
(23) K(z) = £f(A-2z) = a1 * o (AT -Az I -T) T,
for |z] < 1.
The function K(z) may be rewritten as
(24) K(z) = o 1 gﬁAI~T)°lI? + z g_A(AI-T)‘l[I-xz(xl-T)"li'l(AI—T)‘II?.

It suffices to show that formula (24) is a valid representation of the

generating function of a density of phase type. Since T is a stable



matrix, whose inverse exists, the matrix AI - T is nonsingular. In order
to show that A(AI - T)_1 is substochastic, consider the probability Aij
that at the first event in the Poisson process, the Markov chain of
phases is in the state j # m+l, given that at time Ovit was in the state
i # m+l. The matrix A = {Aij} is then clearly substochastic. It is

explicitly given by
(25) A= re ™M e gy = a1 - oLl
Furthermore
-1 -1.0 _ -1 0
(26) AAT - T) e+ (AI -T) "T = (Al - T) (Ae + T) = e,

. o
since I = - T e.

Finally the matrix I - A(AI - T)-l is nonsingular, since
-1 -1 -1
(27) I -X(AT -T) "= (AT -T) "(AI - T -l = ~-(AI -7 T,

and T is nonsingular,

The probability density {hk} of N is given explicitly by

(28) h, = a

. +a (1 - )70,

m+1

h = ¥ aar - K10, for k > 1.

k

In the context of the MX/G/I queue with group arrivals, we consider the
case where at each event in the Poisson process, a random group of
customers arrives in the queue. If the probability density of the group
sizes is also of phase type, it follows from Theorem 1 that the
corresponding random variable N again has a density of phase type, since
its generating function is given by K[®(z)], where 9 (z) denotes the
probability generating function of the group sizes. The representation of
the density of N can readily be constructed from that of K(z) and ¢ (z)

by application of Theorem 1.



Formula (28) permits a particularly simple recursive computation of
the density {hk} and therefore of the stationary queue length distribution
in an M/G/1 queue in which the service time distribution is of phase type.
In [8] it is further shown that the stationary distribution of the FIFO
waiting time is itself of phase type and may be éomputed by solving a

linear system of differential equations with constant coefficients.

2. The Successive Generation Sizes in a Galton-Watson Process

Except for particularly simple densities of the number of offspring:
per individual, the probability densities of the successive generation
sizes are not easily computed: If {pk(n)} is the probability density of

the size of the n-th generation, then we have

(29)  p (L) = p,

Pv(n) Pév), for k > 0.

pk(n+l) = 0

AY

Ihe~18

Even if the original density {pk} is concentrated on the integers 0,...,M,
the density {pk(n)} will be concentrated on the integers 0,...,Mn. For
larger values of n, this will require a truncation of the density {pk(n)}
with a resulting error which will be propagated in the computation of
{pk(n+l)}. This is a fortiori the case when the density {pk} does not have
a bounded support. The rapid growth of the number of points in the support
of {pk(n)} also appears to exclude the use of the fast Fourier transform as
a feasible computational technique.

If the density {pk} is of phase type, it is possible to construct an
algorithm which, at least for subcritical processes, is highly efficient
and accurate. The main ingredient of the algorithm is a recursive p?ocedure
for the compufation of the density of finite mixtures of the general type

(30) T =ag+a p+a, EFZ) Fook Ay EFN)’
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where Eﬁk) denotes the k-fold convolution of the probability density oS
and aj, 0 < j <N, are probabilities whose sum is one.

The probability density r is itself of phase type and we now
construct its representation. Let the density p have the representation
(a,T), where T is a matrix of order m. The density r will be represented
as the probability density of the time till absorption in a Markov chain
with Nm+1 states. For notational convenience we label the absorbing state 0
and the transient states 1,..., Nm. It will be further convenient to think
in terms of an urn model, in which at time n=0, a random number J with
P{J=j} = aj, 0 < j <N, of particles are placed. At time 0, we also "start"
a Markov chain with m+1 states and transition probability matrix B, given
by formula (3). The initial state is chosen with probabilities Opseees

m

a1 If the state m+l is drawn, a particle is removed from the urn and
a new independent multinomial trial is performed. This is continued
until either the urn is empty or until an initial state other than m+l is
selected. This procedure determines the content of the urn at time n=0+.
If at time n=0+, the urn is not empty, we consider the Markov chain B at
successive time points n=1,2,... As long as states other than m+l are
visited, no particles are removed from the urn. Whenever the state m+l
is reached, a particle is removed from the urn and an "instantaneous'

[}

sequence of multinomial trials is performed with probabilities Upseres Oy

LT Whenever the state m+l appears a particle is removed from the urn.
The absorbing chain is restarted in this manner until the urn becomes
empty. In order to construct the representation for r, we consider the
number Jn of particles in the urn at time n+, and the state In of the
Markov chain B at time n+.

Clearly 0 <J <N, and 1 <I_<m. IfJ =0, I 1is not defined.
- "n — —'n n n
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We shall say that the Markov chain, associated with r (the large chain)
is in the state (i-)m+j, 1 <1 <N, 1 < j <m, at time n, if and only
if.Jn =i, In = j. It is clear that r is the probability density of the
time until the urn becomes empty.

If we denote the representation of r by (y,T*), then y is given by

VLo, for 1 <i <N, 1<j <m.

(30) a o g ;

Ta-mej T Yij o

I o~2

v=1i

N
Yo = z a a’
0 v om+l®
v=0

The matrix T*, which is of order m N, is of a block lower triangular

form and may be written as

[T 0 0 cee 0]
T°A T 0 cee 0
_ o o
(31) T* = am+lT A T A T ‘e 0
2 .0 o] 0
am+1T A am+1T A T A e 0
N-2_ 0 N-3..0 N-4_0
m+lT A am+1T A am+1F A cen T
aad o
. *o . . 0 : 0 N-1 .0
The corresponding column vector T ~ is given by [T, a1 T,... o] T].

The computation of the distribution of the density r is now equivalent
to that of the probability distribution of the time till absorption in the

(m N+1)-state Markov chain

(32) p* = ,

with the initial probability vector (yo,xj. Consider a sequence of

vectors v(n) = {Vo(n), Xﬁl)(n),..., XFN)(n)}, of dimension m N+1, defined by
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(33) vo@ =y, wP,....xMor =y,

0

N v-1 _(v) o}
vo(n+l) = vy(m) + ] o v T,
v=1

. . N .
VW = vt ] e p My,
v=1+1

for 1 <i <N, and n > 0, then it is clear that the sequence {vo(n), n > 0}
is the probability distribution corresponding to the required density. The
recurrence relations (33) may be easily programmed for numerical computation.
Since vo(n) tends to one, the sum of the other components of the vector

v(n) tends to zero. In particular we have XFN)(n+1) = XFN)(n) T = ay g_Tn+1.
For larger values of n, the recurrence relafions (33) involve many
computational steps‘whiéh contribute only negligeable amounts to the

terms vo(n). Many of these steps can be eliminated at the expense of a
small error but with a significant reduction in computation time. This

aspect is discussed below, but for use in the sequel, we first compute the

inverse of the matrix I - T*.

Theorem 4
The inverse J of the matrix I - T* is a block lower triangular matrix

whose entries are given by

(34) J(i,i) = (1-m) 7L, for 1 < i <N,

i

J(i,3) = p(1-m) 7%, for i > > 1.

The matrix D = (I—T)—ITOA, has identical rows, all equal to a.

Proof
Since (I—T)_II? = ¢, it is clear that D has the stated property.
The diagonal blocks of (I-T*)J are all equal to I. Computing the off-

diagonal blocks we obtain for i > j > 1, that



13

. i-j-2 . .
. .. -j-1 -1 -j- -1 -
(35) [(I-T*)J](1,3)=—a;+i TOA(I—T) - Vgo a;+i VTOADﬁI—T) +(I-T)D. (I-T) 1.

Since T°AD = (l—am+l)TOA, it readily follows that all the off-diagonal

blocks are zero.

Remark
We further note that since gﬁI—T)—1§_= u, the mean of the density p,

it follows that D e =1ue.

2.1. Adaptive Trimming

In the recursive computation of the vectors v(n) by means of the
recurrence relations (33), the sums of the upper components of the
nonnegative vectors Xﬁi)(n) for n large tend rapidly to zero. It is
to our advantage to reduce the value of N for appropriate values of n,
thereby saving a significant number of arithmetic operations in the
computation of r.

In a first method, we determine for each n > 0, the index

Nl(n) = max {i: !ﬂl)(n)'g‘z_e} and implement the recurrence relations
i

for n+l with N replaced by Nl(n). If we denote the reduced matrix
following the first trimming by T*(Nl), then the amount of probability
neglected in the tail of the distribution after the first trimming is

given by

N .
(36) " Tae -y T e = Y v mye < e,
i=N_+1

1
Continuing this procedure until Nl(n) reaches zero, we obtain the
computed sequence {vo(n), n > 0}, which is nondecreasing and satisfies
vo(n) E.Vo(n) for alln >0 and 1 - vo(w) < ¢ N. An upper bound on

the error in each of the density terms is 2 ¢ N, but this bound is very

conservative.
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The first trimming method is undesirable in repeated applications
of the algorithm, as needed in computations for the Galton-Watson process,
since the computed density corresponding to {;O(n)} plays the role of the
mixing density a for the next generation. The number of terms computed
varies from one generation to the next and the accumulated error grows in
a generally unpredictable manner. Moreover the computed distributions are
defective.

A more conservative trimming procedure is the following:

Let NZ(O) = N, and determine for each n > 1, the index Nz(n) by

(37)  Ny(m) = max (i ] (G-i+D) v myee 5 €3,
lii_<_N2(n—1) j>i

where Xﬁl)(n) is the computed value of Xﬁl)(n). If the set in braces
is empty, set Qo(n+1) = 1, and stop. If Nz(n) = Nz(n-l) > 1, implement
the recurrence relations (33) with N = N2(n). If Nz(n-l) > Nz(n) > 1,

replace the vector v(n) by the vector

N,(n-1)
N ~(N,(n)-1) 2 nps
(38) . K(l) (n),..., v (I‘%), z V(l) (n)s _(_)_,-"’_O_}
i=N2(n)

and implement (33) with N = Nz(n). This method has the advantage that
no probability is "lost" in the recursive computation in the sense that

for all n > 0, we have that

~ N ...
(39) vo(n) + Z Xﬁl)(n) e = 1.
i=1

The computed values vo(n) now satisfy vo(n) 3_v0(n), for all n > 0, and
the computed sequence {vo(n)} is a probability distribution concentrating
on a finite number of nonnegative integers,

An appropriate measure of the truncation error is the quantity

oo

8

(e8]

(40 a(e) = ] Wyme-vym1= T [evgm] - ) (1-vym].

n=0 n=0 n=0
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We see that A(e) is the difference between the exact mean of the desired
distribution {vo(n)} and the mean of the computed distribution {;O(n)}.

We shall now obtain an estimate of the quantity A(e), and to this end
we first make a number of preliminary observations. Let the first trimming
occur after the computation of Xﬂn) and let it reduce N to N'. The
modified vector defined in (41) may then be written as Xﬁn)ZN,, where

the matrix Z , is defined as an N x N matrix of m x m blocks, with

N!

(41) ZN,(i,i) = Im’ for 1 < i <N
ZN,(i,N') = Im’ for N' <i <N
ZN,(i,j) = 0, for all other pairs,

The mean M of the density r is given by

(42) M= y[I - T*(\)] Te
n-l g n -1
=y - kZ T+ (N) e + y T* (N) [I-T*(N)] "e.
=0

Following the first trimming, the mean of the computed distribution

is reduced to

ol n -1
(43) M =y I T (N)e + y T*' (N) Zyo [1-T* ()] e
' k=0

Using the expliicit form of the inverse, cbtained in Theorem 4, we obtain

that
RSN )
(I—T)'lg +ue

(48 (-] le= @D Tler2ue :
(-1 "le + (N-1) ey

so that
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!(I_T)-;E
D le+ e

(45) 2, [1-T* ()] Te = X
(1) e+ (V-1 w e

(I—T)‘lg_+ (N'-1) u e

o®
L

o

It follows that

NIND )
(46) M- M1 = U Z iv e <ue.
i=1

Since the computation after the first trimming is similar in nature to
the original one, we see that the mean of the computed distribution differs

from the mean M by at most N u €, so that

(47) A{e) < Ny e.

Remark
It is of course possible to implement the original recurrence relations

(33) up to the smallest index n* for which
n*
(48) ) [1-v_(m)] > M-e,
n=0 0
thereby guaranteeing that the mean of the computed distribution differs from
the exact one by at most €. The advantage of the adaptive trimming
procedure lies in the progressive reduction of the number of operations

involved in the recurrence relations (33), which is particularly significant

for stable Galton-Watson processes.

2.2. The Successive Generation Sizes

The probability densities {pk(n)} of the successive generation sizes
of a Galton-Watson process, in which the density {pk} is of phase type, may

be computed by repeated applications of the algorithm developed above for
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the mixtures defined by formula (30). We note that the recurrence
relations (29) are valid for a single progenitor. If there are v
progenitors with probability a 0 < v <N, then the first equation in

(29) should be replaced by

N
_ Vv
(49)  p,(1) —vzo a, Pys
3 (v)
pk(l) = 2 a Py o for k > 1.

The computation of {pk(l)} is clearly of the type defined by formula (30).

It results in a computed density {pk(l), 0<k<N }; which plays the

1
role of the density {av} in the computation of {pk(Z)} and so on. By
using the second adaptive trimming procedure, discussed above, we may

use the computed means Ml(n), n > 0, of the successive generation sizes

to keep track of the accumulated truncation and trimming errors. The

means M(n) of the exact distributions are of course given by
N

(50) M(n) = z va, un, for n > 0.
v=1

For Galton-Watson processes for which p is significantly less than
one and the maximum initial population size N not tooc large, this method
permits us to study the successive generation sizes until the extinction
probability po(n} becomes close to one. Computation times are generally
small, on the order of a few seconds per generation. If p is close to 6ne,
and a fortiori when p is greater than one, the support of the successive
computed aensities increases with n and the computation time per generation
increases quite rapidly.

We also note that this computational method needs to be only
trivially modified to handle cases where the probability den;ity of the

number of offspring depends on the index of each generation. Immigration

or removals from the population can also be studied by routine modifications

of the algorithm.
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The mean 1 alone does not provide much information on the size of
possible large excursions of the Galton-Watson process before extinction.
It is possible in many cases however, to compute the distribution of
the maximum generation size before extinction. The appropriate algorithm
is discussed in Section 4.

The matrix T is usually very sparse and a major reduction in the
computation time can be achieved by writing special purpose routines to

compute the products Xﬁl)(n) T in the last formula (33).

3. A Galton-Watson Process embedded in the MX/G/l Queue.

Consider an MX/G/l queue with group arrivals and let the probability
generating function of the density {ak} of the group sizes be @(z), with
©(0) = 0. The arrival rate (of groups) is A and the service time
distribution is denoted by H(°) with Laplace-Stieltjes transform h(s).
If the mean service time is p and the mean group size is n, then it is
well-known that the queue is stable if and only if Anu < 1. Stationary
distributions of the relevant queue features exist if and only if
Anue < 1,

Let t=0, be the beginning of a service and let the queue length

£(0) at t=0, be equal to i Let T1 be the time when all customers

0
present at T0=0, have been served under the FIFO discipline and let
E(Tl) denote the number of arrivals during the interval (TO’TI)'
Similarly T2 is the time when all E(Tl) customers present at time Tl+
have been served and g(TZ) denotes the number of arrivals in (Tl,Tz).
This construction is repeated to yield a bivariate sequence of random
variables {(Tn, g(Tn), n > 0}. We shall agree that if E(Tn)=0, then
Tn+l is the time when the group of customers, who arrive during the idle

period starting at 15, have completed service. The marginal sequence

{é(Tn), n > 0} is known to be a Markov chain on the nonnegative integers.
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[3,7]. Its transition probability matrix U is given by

[ 1 1 ' ]
aO al 3.2 3.3 e e

Py Py Py P
s us [p@ D D O
(3) p£3) p§3) p§3)

wd

where {pk} is the probability density with generating function
P(z) = h[x-2 @(2)], {pﬁv)} is its v-fold convolution, and the density

{ai} is defined by

(52) al = ] a, péj), for k > O.
j=1

The probability generating function A(z) of {ai} is clearly given by
(53) A(z) = @{h[A-1 @(2)]}, for |z| < 1.

We note that if H(:) is a (continuous) distribution of phase type
and {ak} a (discrete) density of phase type, then by Theorem 3, {pk} is
of phase type, and by Theorem 1, {ai} is of phase type. Representations
for {pk} and {aﬁ} may easily be constructed from those of H(+<) and {ak}.
Assuming henceforth that Anp < 1, we proceed to discuss the stationary
density {ﬂk} of the recurrent Markov chain U. The quantities L k>0,
satisfy the system of equations
pSJ)

=T, for v > 0

(54) m.ooa'l + Z i
. v
j=1

J

Denoting the generating function of {ﬂj} by m(z), we obtain

(55) w(z) = w[P(2)] - wo[l—A(z)], for |z| < 1.
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Theorem 5

The probability generating function w(z) is given by

(56) m(z) = 1-{1+ } [1-A[P.(0)]]} " Y [1-A[P ()11, for |z| < 1,
j=0 . v=0 v -

where Pv(Z) is the v-th functional iterate of P(z), PO(Z) = 7.

Proof

Replacing z by Pn(z) in (55), we obtain

(57) m[P (2)] = w[P 1 (2)] - my [1-A[P_(2)]], for n > 0,
and hence

n
(58)  w(2) = w[P . (2)] - m, _ZO [1-A[P;(2)1].

J:

Since P'(1l) = Anu < 1, we know that Pn(z) + 1, for all 0 <z <1, as n

tends to infinity. The series of analytic functions

«©

) [1-A[P, (2)]]
j=0

converges uniformly for all 0 < z < 1. This follows from the Lebesgue

dominated convergence theorem, since

(59) 1-A[?j(z)] < 1-A[PS(0)] <

A
(v
-

where

6. = [H%'A[Pj(z)]]z=1 n(mn It

J

The second inequality in (59) is obtained by noting that the graph of
the convex increasing function A[Pj(z)] lies for every in 0 < z < 1, above
its tangent at z=1.

Passing to the limit in (58), we obtain

(60)  w(2) = l-my ] [1-A[P;(2)]],
J=0

for 0 < z < 1. By analytic continuation, the same formula is valid for

I T L L R
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lz] < 1. Setting z=0, in formula (60) we obtain

(61) my = {1+ § [1-a[p, (011371
j=0 .
Remark

We note that

(62)

il ~1 8

0

j
is the mean number of generations till extinction in a Galton-Watson

process with offspring density {pk} and initial population size density

{a/}. Applying the second inequality in (59) we obtain

k
2

. Anu

and hence
1-Anv
(64) "o Z Tomu (e
By differentiating k times in (60), we obtain the explicit formula
(65) mo=m_ ) P(i,k), for k > 1,
k 0 320 —

where P(j,k) is the probability that there are k individuals in the j-th
generation of a Galton-Watson process with offspring density {pk} and
initial population density {ai}. The initial population is counted as

generation 0.

3.1. Computational Aspects

The density {wk} may be accurately computed for queues for which the
underlying distributions are of phase type, by means of the recursive
algorithm developed in Section 2; this at least if Anu is not too close
to one. The quantities Pj(O) can be efficiently computed by successive
substitutions in the probability generating function,.but each step involves

two matrix inversions. The value of Ty is computed in terms of the Pj(O).
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The term-wise sums of the densities {P(j,k), k > 1} over the index j are

formed and serve in the computation of w,, for k > 1. It is advisable to

k,
compute m, separately and to a high accuracy. If the value of To is

essentially correct, we may use the normalizing condition £ = =1, to

k
determine the number of generations needed in (65) to obtain the probabilities
Mo k > 1, to a sufficient degree of accuracy. The computation of the

density {ﬂk} is of interest in the numerical investigation of the priority

rules discussed by Nair and Neuts [5,6].

4. The Maximum Generation Size before Extinction

The random variable Y = max{Xn, n > 0} of the successive generation
sizes before extinction in a Galton-Watson process has been discussed by
J. Bishir [1] and E. Seneta [9].

For each k > 1, the system of linear equations

(k) _ (1) (k) 1 -
(66) y; o= X P, Y, Tt Py for 1 < i <k,

v

0~ =

(1) ()] ana

has a unique solution [y1 seees Yy

P{X0=i} ygk), for k > 1.
1 1

(67)  P{Y < k} =
i

Il o~
I

For a subcritical or critical Galton-Watson process the distribution of

Y is honest, but for a supercritical process we have

P{Xo=i} pl,
1

(68) P{Y < w} =

nNe~18

i
where p is the probability of extinction for the line of a single progenitor.
Bishir's paper does not enter into the construction of an efficient
algorithm for the computation of the distribution of Y. The examples of
highly subcritical or highly supercritical cases, presented in [1], are
somewhat misleading in assessing the computational effort involved. We

examined the following two methods for a large number of examples:
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4.1. The Gauss-Seidel Method

For each k, the system of linear equations (66) satisfies sufficient

conditions for the convergence of the Gauss-Seidel iterative method. It

(k) (k) (k) | (k)

is easy to show that the quantities Y5 satisfy Yi o2y, 2. 3_yk s

(k)

since Y is the probability that a Galton-Watson process with i progenitors

becomes extinct without exceeding the population size k. After solving the

system of equations for k, it is convenient to use the (k+1)-tuple

y§k),..., yék), yﬁk), as a starting solution for the computation of the

(k+1) (k+1)
1 seees Yo o

For Galton-Watson processes which are close to critical, and in

quantities y

general when systems in excess of k=75, need to be solved, the computation
time for the Gauss-Seidel method becomes substantial and exceeds one minute

of central processing time on a CDC 65000 computer.

4.2. The Gauss Elimination Method

Writing the system (66) as
S (1), ) _ i
(68) Lo, =~ 5 ) vy = pgs 1<ic<k,

assume that the system has been reduced to upper triangular form by
elementary row operations represented by the lower triangular matrix Kk'

The resulting system is written in the form

(69) b, y00 =

3

where Hk is upper triangular with Hk 11 = 1. The system (69) is readily

solved and P{Y < k} is computed.
The appealing feature of this method is the easy computation of the

matrix H and the vector This is described in the following

k+1 Sx+l”
algorithmic steps to go from k to k+l:

Step 1: Compute Pryre
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Step 2: Compute péii, for j = 1,..., k.

. k+1 (k+1) .
Step 3: Compute the terms Py and Py » for 1 < i < k+1.

Step 4: Left-multiply the vector computed in Step 2 by the matrix
Kk’ to obtain the first k entries in the (k+1)-st column of Hk+l'

Step 5: Perform Gauss elimination on the row computed in Step 3,
to obtain the (k+1)-st row of H,,, and the (k+1)-st entry of
Skl

. (k+1) .
Step 6: Compute Y3 » for 1 < i < k+l.

Step 7: Compute P{Y < k+1}. If P{Y < k+1} is sufficiently close
to the probability of eventual extinction, stop. If not, set

k equal to k+1 and go to Step 1.

This method is much faster than the Gauss-Seidel method, but may be
sensitive to the accuracy problems usually associated with Gauss
elimination. The strong diagonal dominance of the coefficient matrix in
the system (68) suggests that these problems will be minor. Both methods
were compared in single precision on the CDC 6500, which is a computer
with large word length. Even in examples where k ran up to one hundred,
all computed probabilities agreed to at least four decimal places, but on
computers with a shorter word length it is probably advisable to perform
the latter method in double precision.

For the computation of P{Y < k}, k > I, there is no particular
advantage in assuming that {pj} is of phase type, except for the easy
computation of the terms of the density. A minor drawback of the Gauss
elimination lies in the substantial storage requirements. If we allow
values of k up to one hundred, two storage arrays of size 10000 are
required, one to store the quantities {pgj)} and the second one to store

the entries of the matrices Kk and Hk'
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5. The Probability of Eventual Absorption

It is well-known that the probability of extinction of the lineage
of a single progenitor is given by the smallest positive root p of the

equation

(70) z=0a +za (I-zT) ! 1O,

m+1

and that p=1, if and only if u = gﬁI—T)—lg_f_l. For u > 1, we may compute
p by successive substitutions or more efficiently by Newton's method.
Since the derivative of the right hand side is given by
-2 0

(71) P'(z) = a(I-z T) " 1°,
the successive Newton approximations are given by

-1,.0 -2..0
+zvgﬁI—ZvT) I_—zvgjl—sz) T"]

(72) zv+l=[1-g(1-sz)‘zz?]’l[am+l

B -2.,04-1 2 -2, 0
= [l—gﬁl—sz) T ] [am+1—zvng—zVT) T T]

Since the function P(z) is convex increasing the sequence {zv}, 0 <z <1,
always converges to p. Caution is needed when u is very close to one,

since in this case the first factor in (72) becomes very large. Note that
l-ng—T)—ZI? = 1-y. In all other cases Newton's method converges rapidly.

Each iteration may be most efficiently computed as follows:
i ' -1
Step 1: Compute (I—zVT) .
-1
Step 2: Compute ng—sz) =Y.
-1
Step 3: Evaluate u = X(I—sz) .

Step 4: Evaluate I—E_I?, and the second factor in (72) and compute

z .
v+l

G
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Remark

The preprint of this paper is available as a Technical Report,
which contains FORTRAN programs to compute the distributions of the
successive generation sizes and of the maximum Y, in addition to sample
output and information on computation times. This document may be
obtained from the Department of Statistics, Purdue University, West
Lafayette, IN, 47907.

The author expresses appreciation to Professor Herman Rubin and to

Mr. Charles Carson for helpful discussions.
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Appendix I

This appendix contains the FORTRAN program for the computation of the
distributions of the successive generation sizes in 2 Galton-Watson process
in which the number of offspring of an individual has a probability density
of phase type. A sample of the output 1s also given.

This program requires 45000 words of central memory on the CDC 6500.
The computation times are very substantial for supercritical processes.
For subcritical processes, the computation time is modest, unless the
initial population size is large with high probability. In this case,
the distribution of the number of offspring in each generation of a single

progenitor can be computed and the fast Fourier transform can be used to

evaluate the distribution of each generation for the given initial conditions.
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PFOGPEM CONYI(INPLT s CUTPUT,TAPEE=INPUT) 29

R ¥RANR

P 3

¥ THIS PRNOGRAM WAS WEITTEN Y PSNE, MARCEL Fo NEUTS TC

* IMPLEPFENT THE NUMERICAL CCYPUTATIONS CF THE DISTRIBUTIONS

* OF THF SUTCESSIVE GEWERATION SIZES IN A GALTON-WATSON PRO-

* 0ESS, DISTUSSEN T THI »ioTe

3

*¥# SIMT COUPUTATIONAL PROILINS RPELATED TC THE GALTCN - WATSON
¥#% DPOICESS ‘

¥

* PUPDUE MIMEC SERTES - DEPARTMENT OF STATISTICS - 1975
WEST LAFAYETTF Ix. 434

¥
%

Xy xrERy

* K ¥ K ¥k kK K kK X ¥ X Kk x &x K

¥ ¥ & &k K X & kK K N X

*x ¥

X ok X ¥ ok X

COMMON/BL/NZAT 3 A (20T ) sMeBCyB(20)5R1(32C0) 4XKG4T7 (21,
1TE22423) 3 TRIMGTUSToVLESVYL303) 3 VIZ00422)5Y(300),%X(29),
17023 AMEAN G THF AL 4RME AN ZNCOMP

READ(S,257°7%) TRIM,TEST

TRIM A0 TEST AR PAFAMETERS USFDC IN TRUNCATING THE COMPUTED
OICTRTBUTTIONS. THZ VALUE 9.003¢1 IS RECOMMENDFD FOR RQOTH

V3 IS THE TNITTAL TERPM OF THE COMPUTEN Dt NSITY

VY (o) CONTAINS TH- QTHE?2 TE29MS OF THE COMPUTED DISTRIPUTICH
OR DENSTTY

THE AR?AY Y{l,.,.) IS US
VEI)y WHICH ARIST IN T
OF INTEREST

THZ APRAYS X(a)sY () AND Z{.) ARE INTESMEDIATFE STORAGE
A2FAYS, WHICH SERYE SEVERAL PURPCSFES IN THE COURSE OF THE
PEOGRANM. THe L= PARTICULAFR USES ARE CLEAF BY EXAMINING THE
SONTEXTS IN WHICH THEY ARE USED,

O FCR THF STORAGE 3J3F THE VECTORS

HE 9FCURSIVE COMPUTATION OF THE DENSITY

30 READU(E41071) 11911y KG

M

KG

IS THE MAXIMUJ4 NYM3EE OF INDIVIDUALS IN THE ORIGINAL
SEMERATION. IF THuErRE IS CNLY CNE PFQOGENITOR, SET N=1,

IS THE ORDER OF THzZ HMATRIX T ARISIAG IN THE REPRESFNTA-

TION 0F THE DISTRIBUTICN OF THE NUPMPBER CF CFFSPRING OF AN
INATVIDUAL,. THIS JISTRIAUTION IS ASSUMEDN TO BF OF PHASE TYPF
IS THE MAXIMUM MUMREF CF 5S5FENERATICAS FOR WHICH IT IS
NZSIRABLE TO CCMPUTE THE OENSTITY, FOR SUPER-CRITICAL
PRCCESSES THI ACGMPUTATION TIME IS SUBSTANTIAL IF KG IS
LAFGE,

IF{Z0F,5) 31,32

32 CALL SFCONDA(TD)

A,

READ(541072) A7, (401),I=1,MN)

A(I)s I=1se0ssNy IS THE DENSITY CF THZ INITIAL PCPULATION

PEAD(R,1002) BRI, (BOIY ,I=1,M)

Ce BUI)y I=teeasgty IS THE INITIAL DENSITY NEEZOQED IN THE
REPRESINTATIION OF THE OTNSITY OF PHASE TYPE, BC IS ALPHA(SU®R
Me1) IN THE 7PAPF2 AND THZ 2(I) ARE THEZ CCMPONENTS CF THE VECTCR
ALPHA USED IN THE PAPER,

IFIKG.EN.0) Kf=1
DO 1 T=14M



QEAD(S,1002) (T(Isd) ad=1sM) 30

T, ) IS THE (I,4J)-COMPCNENT GF THFE MATRIX T ARISING IN THE
REFRESENTATION OF THIZ DISTRIBUTICN OF PHLESE TYPE,

X ¥ ¥ X

U=1,

* X

CCMPUTATION OF THF VECTOR TISUPER 1)
1¢M
2 v )
i

*

PRINT=-0UT OF TH- NATA

PEINT 1003

NL=1

PRIMT 100644 H0 AL (I 4A(T)I=14N)
PRINT 100%

PRINT 1':”]4,"’”,*“0,(IqP(I),Izin)
PRINT 1025

INCIDENTAL CCMPUTATION OF THE MELN QF THE RISTRIBUTICN OF
PHASZ TYPF, NOTZ ZFFICIENT USE CF ARRAYS,

* # k X

N0 3 I=t1g4™
OFPINT 100Lg I TLUL)Y 5 (JyT(TIsJ)y s=1,i4)
X(I)'—"in

3 T(I.IV=T(T,I)~-1.

LTHEZA1 IS A LIARAYY ROUTINE . TO SOLVE THE SYSTEZM OF LINAR
EOUATIONS T7=X

LR SR S

CALL LINENLIT eX97920 9494, LL)
IF(LL.=G.C) GC TO &
50 170 332
4 =0,
nn 5 I=1,M
T{IsI)=T(I,T)+1.
ZoUsU+B(II*Z2(T)

¥ TMEAN IS THE MEAN OF THE DISTRIZUTICN OF 2HASE TYPE

X
TMZAN=
¥
¥ COMPUTATICN OF THE MEAN CF THE FIRST GENERATICN SIZE
¥ SOMZ FLEMENTARY OIAGNCOSTIC TESTS CN TEHE DATA
*
Uzin"AC
AMEAN=C,

AMEAN IS THE MEAN OF THE DENSITY AT,A(1) yoees8(N)Y -~ IN THF GALTCM
WATSON PROCESS, IT IS THL CXPo72d NUMBER GF PRCGENITCRS,

RMEAN IS THE MEAN OF THE FIRST COMPUTFD DINSITY AND LATER THAT
CF THF SUICESSIVE GENERATION STZES,

X K &k X K K i

NN A T=1,eN
U=U=A(I)
6 AMEAN=AMEAN+I*A(T)



PMEANZAME AN¥ THEAN . 31
PEINT 10074AMTAN, THELN, RMEAL
91 (1)="70
PEINT 1016,TRIM,TEST,KG
N6 7 122,303
71 (1) =1 (I=-1)*R)
IF(B1(I)eLT 1.E=15) 6O TO B
7 CONTINUE
8 CALL SECOND(TI)

3
* SUR20UTINZ INIT COMPUTES THE INITIAL CONDITICNS USED IN
* THE RFCURSIVE SCHEIME TO SVALUATE THE MIXTUFE OF SUCESSIVE
* CCHVOLUTIONS DISCUSSED IN SECTION 2 CF THT PAPE®,
'3
CALL INIT
D0 9 KG1=1,%06
PPINT 1308,4561
»*
* SURROUTINE MIXT SVALUATES THE DISTRIRUTION CF THE MIXTUPE
* 3y IMPLEMENTING THMF RECUPSIVE CGMPUTATION DISCUSSED IN SECTICN
* 2 OF THE PAPSR,
%
* NCOMP IS THF HIGHEST INTEGTR INM THE SUFPORT OF THE COMPUTED
¥ DISTRIBUTION OF THE MIXTURE,
» .
CALL MIXT
UX=1o=-VVINCIMP)
X
* PRINT-0UT OF THF DJISTRIBUTICN OF THE MIXTUFE, 1.E. THE
¥ CISTRIBUTION OF THT KG1-5T CENFKATICN,
2
PPINT 1004sNDS VIS (T3 VVII),,I=z1,NCCVMF)
*
* COMPUTATIOSN OF THE MEAN OF THE CCMPUTED DISTRIAUTION ANMD
* CF ITS DENSITY
x

RMN=1 =¥]
NX=NCOMP =1
DO 12 Ji=1,1X
J=NCO+¥P-J1+1
RMN=1 =YV (J) +~MN

12 YW =vv i) -vviJ=-1)
RMN=1.-VV{1l)+~MN
YV AL1)=VVi(1) =-v°©
PRPINT 1311

PRINT-0UT OF THFE DENSITY

x

PETINT 10343N3 9 VC s (T 4VVII) T=1,5,NCCMP)
PIEANZ AMEAN*THEAN**KGY

PSINT =0T QF THS EXAGCT MEAN, THE COMPUTED MEFAN AND THF
PERCEMNTAGE ERROR BETWEENM 20TH, :

+ & Kk %

PPINT 1012,HFAN,RMN
DERD={00.*(1,=RMN/RHEAN)
PRINT 1014,PE2F
TF(KGL,ENKG) GO TO 13
N=NCOMP

* WITH THS PRESAENT DIMENSIONS ONLY DENSITIES WHOSE MAXIMUM
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* SUPPORT POINT D082 NOT OXCEEDN THREEZ HUNDORED CAN BE HANDLED.
3
IF{N.EQ,300) 50 7O 13
»
* INTERCHANGE OF THF COYFUTED DJENSITY WITH THZ DENSITY 4(.)
* FCR CCMPUTATION . OF THE HEXT SENERATICN,
X

AC=VC

N0 11 I=1,NCOMP
11 4a(I)=vVv (1)

HaN+1

A(N) =UX

CALL ZECOMD(T4)

TE=TL-TZ

PREINT 1003,75

T2=T4

CaALL IN
9 CONTINU

30 10 3

T

T
F

STATEZEMENTS NefFO£Q T3 TIME THT EXSFCHTICN OF THE ALGORITHM,

TC PEPFORM EXITS IM CASES CF CESTAIN EFRORE AND TC RETURN TC
THZ INITIAL READ FC<x THr NEXT SHT OF TATA IF THERST

IS ONE PRESENT,

* X o« K Kk X

17 2EINT 1713

¢ CALL SECOND(T2)
=T2-T1
1=T2-T7

PEINT 1099,U1
PEINT {71€&,U
30 To zr

SALL EXIT
PEINT 1010

N W
b

* THF SCRMAT STATEMINTS

1007 SCRMAT(2F7,.3)
1001 FORMAT(IGL,1%2,14)
302 FORMAT (EF7,.5)

1003 FORMAT(*4i*//3X*3EFEATED MIXTURES CF THE SUCCESSIVE *
1*CONVZLUTIONS OF 4 PROBARTILITY */3X*OINSITY CF PHASE *
1¥TYPE*//3X*THD TWNITIAL MIXING DERNSITY A25A(1) 56009 ?
1*4(NY*/7)

1006 FOPMAT(3X8{IasF345))

100% FORMAT(///3X*THE INITIAL FPOEARBILITY DENSITY 2C0,B{1),.*
1% eees P (MI*//)

1CLr FORMAT(///73IX*THL PHAST MATRIX*®//)

1CC7 FORMAT(///3X*THE ~EAN OF THE MIXING DENSITY =*FQ.5//
13¥*THE MTAN OF THZ FHASE CENSITY =*FQ,5//3X*THE MEAN *
1%0F THZ MIXTH=E = >)

16CR FORMAT (*1*//7 IX*GUN

1CCa FORMAT (//3X*C0MPUT

10146 FCRMAT (///3X*1NPUT

1011 FORMATI(4IL/))

1012 FCOREMAT (//3X*THFE XACT MEAN =*¥FGQ,E//3X*THE APPROXIMATE *
1¥MZAN =%F3,5)

15613 FORMAT (#2#3X*¥TH:Z CAFPAZITY OF THE STORAGEZ ARRAYS IS *
1¥EXHAUSTED®)

{10146 FNRYMAT(//3X*¥THE PFEPCENTAGE ERROR IN THE COMPUTED MEAN =%
1F9.5)

ENT

ATION MNL*TZ2/77)
IcN TIME FOR THIS GENERATION: =*F8,4)
F

Fg
£
AT

EREOR*)



1315 FOPMAT(//3X*¥TPIM =*F15,3,SX*TSST =*%E11,3//3X*NUMBER OF =
1*GENERATINNS ==13)

1016 FORMAT(//3X*TOTAL PRCCESSIMG TIME FOR KG GENFSATICNS =%
1F2.4)
FHO
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34

SUBROUTINE THIT IthIALIZES THE ARRAYZ FOR THE RECURSIVE

DPISCUSSED 1IN

o~

3

ECTICON

2

CF THE PAPER

COMWON/Ri/N,AC,A(jﬁﬂ)o%sBG,B(?Q)q91(330)9K59T0(20)9

YE=A0

N0C 1 I=1,N
VE=VI+A(IN*31(1)
YIN)Y=4a(M)
IF(N.ZCL1) GI TI 6
N1i=N=-1

30 2 T=1,N1

J=A(I)

I1=T+1

00 3 NU=I1,.¥
U=U+B1 (NU=-I)Y*a (NU)
Y(I)=U

00 4 T=1,N

U=y 1(I)

N0 & J=1,M
VITsJ)=U*30J)
RETHRY

ZND

1T(23420) s TRIMGTEST S VO VVIIBL) o V3T L423),Y(30L) X (28),
1Z(27) G AMEAN,TMFANyRMEAN ZNCOMP
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SHAPOUYTINF MIXT ' 35

SURROUTING 4IX¥T cVALUATES THE DISTRISUTICON OF THE MIXTURE

BY THE REZURSIVE HFTHOD DISCUSSED IN SECTICN 2 OF THE PAPER

COMMON/RL/NZ AT 3A(30C) 949300 B(20)421(35C) 4KG,TN(Z0),

1T(205270) g TRIMGTEST V2 YVI3I0E) S VIZCCa20) s Y (ICO) 4 X {25,
17020) g AMEAN,, THTAN o~ MEAN 4y NCOMP

QUANTITY XX XFEPS TEACK OF THE TCTAL AMCUNT OF FRCBARILITY

ALREADY COoMPYTEDY OF THE CINSITY OF THE MIXTURE

XY=V(

NC 1 NY=1,20)

A0 2 NUS1 M

J=0.

00 3 J=i,¥
U=U+V (NU, J) *¥T 3 ()
Y (N1) =U

U=XX4Y (1)
TF(NGEQL1) 52 TO &
D0 5 J=24N
UzU+Y (J) *R1(J-1)
XX=VVINY)=U
XXX=1.=XX
IF(XXX.LELTEST) 56 T0 5
TF(N."0.1) GO TO 7
IF(N.-Qs2) GC TO 8
Ni=N-?

N0 9 T=1,N1
UsY(I+1)

14=1+?

N0 1€ J1=I14N
UsU+Y(J1)Y*B81(J1-T-1)
Y(I)=U

Y(N=-1)=Y (N)

DC 41 Joi4M

U=9,

SPASSTTY OF THE MATRIX T CAN 7F EXFLOITED HERE, THE NEXT
LINES SHOULT THEN 8F SEFRCGFAMMEC TO USE THE SPAPSITY OF
MATRIX T, ~

NG 12 MU=1,M
J=U+V AN NU)Y *T{NU, J)
X)) =4

DG 13 J=1,M
VAINy oY =X (])
IF(N.EQ.1) GO TO 2¢
N1=N=-1

¢ 14 I=1,4N1

Ji=Y (I)

SPARSITY OF THE YATRIX T GAN QE'EXPLOITED HERE. THE NEXT
LINZS SHOULD THEN 85 REFRCGIAMMED TO USE THE SPARSITY OF
MAT®TIX T,

DO 15 J=1,H
U=u1*20J)

DG 16 NU=1,
J=U+V I 4 NUY*T (NU.J)



* ¥ X kK k Kk X

15 X (J)y =1

0 17 J=1,™
17 VA(I,J)=X1J)
1L SONTINUF
20 CONTINUE

THE SUBRO0YUTINE TRIMS IS CALLEC CNLY AT cVERY M=-TH STEP OF THE
ITERATIVE COMPUTATION. IT IC NOT CLEAR THAT THIS RESULTS IN

A& SIGNIFICANT SAVING IN CCYPUTATIOMN TIME IN GENERAL. BY
MODTFYING THE NIXT TWC LINSS IT IS FCSSIBLF TQ CALL TRIMS
FYERY TIME,

NTST=MOD (NV, )
IF(NTST.E0.3) CALL TRIMS
CCNTINUT

NCOMP=NV

RETURN

)]

O



THE

PL0OC

SUBRAOUTINE TRIMS

SU3ROUTINE TRIMS IMPLEMENTS THE SECOND ADAPTIVE TFIMMING
TDURE NDISCUSSED IN SECTION 2 OF THE PAPER,

LOMMOM/81/N9AUQA(7CC)!MQBJyE(Z“)qpi(SJC)9K09T1(2L),
1T(27,20) s TRIMGTEST, VL,VV(Z“F),V(?EC,?f),Y(3Cﬁ),X(2ﬂ),-

17020) s AMEANGTMEAN 4R ME ANLZNCONMP

TF(NEQ.1IRITURYN

U=U1=U2=0.0

00 1 HNi=1N

NM=N=N1+1

1=0.8

DO 2 j=14M

UI=UL+VINNg )

U2=U2+U1

H=y+ L2

IF(URTeTRIMJOP.NGEQLL)Y 30 TO 4

DC 3 J=igM

VINHN=13J) =Y (NFH=14J) +V (NN, J)

CONTINUF
=NN

RETUOM

£ND '
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REPEATED MIXTURES OF THE SUCCESSIVE CONVOLUTICNS OF A PROSABILITY

DENSITY OF PHASE TYPE

THE INITIAL MIXING DENSITY AGsA(1)seecsA(N)

¢ G.00000C 1 .250039 2 «7500C

THE INITIAL PROBASBILITY DENSITY BOsB(1) 564098 1H)

G 45000 1 .25000 2 +3000¢0

THE PHASE MATRIX

C .oC0C0C 1 10003 2 30000
3 .74000 1 .150€C30 2 +15000

THE MEAN OF THE MIXING DENSITY = 1.75000
THE MEAN OF THE PHASE OENSITY = «83681

THE MEAN OF THE MIXTURE = 1.b4bbkiuil

TRIM = 1.000€-05 ~ TEST = 1.000E-05

NUMBER OF GENERATIONS = 5

38
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Appendix II

This appendix contains the FORTRAN program for the computation of the
distribution of the maximum generation size before extinction in a Galton-Watson
process in which the number of offspring of an individual has a probability
density of phase type. The density of the number of offspring of a single
individual, and that of the number of generations till extinction are also
computed. A sample output is given.

This program requires 76000 words of central memory on the CDC 6500.
This permits to compute up to one hundred terms of the densities of interest.
The computation time is under one minute, and is not sensitive to the order m
of the phase matrix T. This program was validated by comparison with a
different algorithm, based on Gauss-Seidel solution of the successive systems

of equations. The latter procedure requires a much larger processing time.



PROGRAM CONVO(INPUT ,OUTPUT,TAPFES=INPUT} 4

RPIRYRY

THIS PROGRAM WAS WRITTEN 3Y PROF. MARCEL F., NEUTS TC

IMPLEMENT THE NUMERICAL CCMPUTATIONS CF THE DISTRIBUTIONS

OF THE MAXIMUM GENERATICN SIZE BEFORE EXTINCTION AND OF

THE NUMBER OF GENERATIONS BEFCRE EXTINCTION IN A GALTON~-

WATSON PROCESS. FOR CONVENIENCE IT IS ASSUMED THE DENSITY

OF THE NUMBER OF OFFSFRING CF EACH INDIVIDUAL IS OF PHASE TYPE.
THESE DISTRISUTIONS ARE DISCUSSED IN THE PAPER

X X & ¥ &k & K £ &

*#*¥ SOME COMPUTATIONAL FROBLEMS RELATED TO THE GALTON=-WATSON
¥**% PROCESS

s

* PURDUE MIMEO SERIES - DEPARTMENT OF STATISTICS - 1975

¥ WEST LAFAYETTE IN. USA
33

rxnmXRR

COMMON/BL/P1(105) 4P (100+100) sA(10),80,B(20),T0(20),
1T (2028) o TTU2C 420) s E(20420)5F (20520) o X{10608)5Y(28),2(20),
16(100),C(103)»HILCT22003) s HL(L103) s MeNy TESToTESTLsTEST2 s MAXITERSNCRIT

THE ARRAYS P1(.) AND Pleso) CONTAIN THRE RELEVANT TERMS
OF THE SUCCESSIVE CONVOLUTIONS OF THE DENSITY (P-SuU3 K)
EXCEPT FOR INITIAL TERMS THE ENTRIES OF THESE ARRAYS
ARE COMPUTED 8Y THE SUBROUTINES TERM AND NEXT

THE ARRAYS H1i(.) AND H{.s.) CONTAIN THE QUANTITIES OBTAINED
BY APPLYING THE GAUSS ELIMINATION TO THE SUCCESSIVE

SYSTEMS OF LINEAR EQUATICNS WHICH NEED 7O BE SOLVEG.

THE ENTRIES STRICTLY ABOVE THE OIAGONAL IN H{.s.) ARE

THE COEFFICIENTS OF THE MATRICES GOF THE SYSTEMS AFTER
‘REDUCTION TO UPPER TRANGULAR FORM, THE DIAGONAL ENTRIES AND
THE LOWER DIAGONAL ENTRIES KEEZP TRACK OF THE ELEMENTAPRY

ROW OPERATIONS ARISING FRCF THE GAUSS SLIMINATION.

THE ARRAY G{(.3} CONTAINS THE DISTRIBUTION AND LATER THE DENSITY
OF THE MAXIMUM GENERATION SIZE BEFORE EXTINCTION, STARTING
WITH THE GIVEN INITIAL POPULATION SIZE

THE ARRAY Cl,) CONTAINS THE DENSITY OF THE NUMBER OF GENERATIONS
TILL ABSORPTION.

THE ARRAYS Efaselds Flegaldy X(ods Y{alo Z{es} ARE AUXILTIARY
ARRAYS, WHICH CONTAIN VARICUS INTERMEDIARY RESULTS. THEIR
SIGNIFICANCE IS CLEAR FRCM THE CCNTEXT IN WHICH THEY OCCUR.

¥ H K K H# & o KX K oK K KR KK xR K N KKK

MAXITER=40
2
* MAXITER CONTAINS THE MAXIMUM NUMBER OF ITERATIONS TO BE
*  PERFORMED IN COMPUTING THE PROBABILITY OF EVENTUAL EXTINCTICN
* BY MEANS OF NEWTON-S METHOC.
»
TEST=2.0005
NCRIT=
TEST2=TEST/10.,
»
* N IS THE MAXIMUY NUMBER OF INDIVIDUALS IN THE GRIGINAL
*  GENERATION OF PROGENITORS. IF THERE IS ONLY ONE PROGENITOR
* SET N=t
»



* M I3 THE ORDER GF THE MATRIX ARISING IN THE REPRESENTATION 42
* JF THE DISTRIBUTION GF THE NUM3ER ©F OFF3PRING OF A
* SINGLE INDIVIDUAL. THIS OISTRIBUTICN IS ASSUMED TO 3% OF PHASE
* TYFE,
¥
3C READ(551001) NyM
IF(E0F,5) 31,32
32 CALL SECOND(T1)
x
* Als A(IVy I=19eeayN IS THE DENSITY OF THE INITIAL POPULATION
¥
READ(351J32) (A(I),I=1,N)
»*
* BJy B8(I)y I=1yseesM IS THE INITIAL DBENSITY NEFBED IN THE
. REPRISENTATION OF THE DENSITY OF PHASZ TYPZ, BF iS ALOKA(SUR
. M#1) TH THE PAPER AND THE S2€I) ARE THT CC4POMENTS OF THE
* VECTOR ALPHA USFU IN THS 9APER,
x

READ(Z41302) 3L (B(I)sI=1,M)

¥
* THE MATRIX Ty WITH ENTRIFS T(I,J) IS THE “ATHIX ARISING
* IN THE REPRESENTATION OF THE DJENSITY OF SHAST TYPE, WHICH
* IS THE DENSITY OF THE NUM3ER OF QOFFSPRING OF A SINAGLE INDIVIDUAL.
x .
* THE FOLLOWING J0-LCOP ALSC COMPUTES THIZ VICTOR T(SU3:-2 7)
»
J0 1 I=1.M
READ(Z 41002) (T(IyJ),yd=1,M)
U=1.,
DC 2 J=14M
2 U=sU=-T(I, N
1 TCtIy=U
*
* PRINT=-0UT OF THE NATA OF THE ORQOBLEM
%
2EINT 10103
NE=0
PREINT 130Gy (I A1) +I=14N)
PRPTINT 124958
PRTANT 1\:‘0‘4,4:,"3»9(I’j(I)QI:iqM)
PET AT 1Q3¢
JC 3 I=14M
PEINT 49CasiluaTIUIY 2 (JeT(IsJ) g J=14)
X(I)==1,
I THUI,IY=T(I,1)-1, "
»
* AT THIS STAGE THZ VESTOR 7 = (I=T)*¥(-1)*yECTOR(Z) IS SOMPLTFC
»*
CALL LINEOQL(T XyZ 42 gMeleLl)
IF(LLLEQ.G) 50 TJ ¢
>0 TO 33
o U=g,
Uif-'ia-BO
AIC 5 I=14M
Ul=u1-8(I)
T(ILI)=T(IyI)+1.
s
* COMPUTATION OF THE HZAN TMEAN OF THE NENSITY OF PHASE TYFPE
¥ ~

5 U=sU+B(IY*7(1)
IF(AB5(U1Y.6Ta1e2=5) GO TC 33



THMEAN=U | 43
PRINT 10t1,U
Jz1i.
20 © Izlo"l
6 U=U=AC(D)
IF(ABS (U)eGTelez-5) GO TO 33
IF(TMEAN.LTs1.Cd01) GO TO 7

THE SU3ROUTINE NEWTON COMPUTES THZ PRCBASILITY OF EXTINCTION
OF THE LIME OF A SINGLE PROGENITOR. NCTE THAT WE SET

SHO EQUAL TO ONE IF TMEAN IS LESS THAN 1.5€01 IN ORDE® TO
AVOIO NUMERICAL PROBLEMS IN TFHFE NEWTCN ITEZRATIONS FOCOR
PROBLEMS WHERE THMEAN IS VZRY CLOSE TC ONE

LIS BEE SR R R 1

CALL NEWTON(RHO)
IF(NCRPIT EQe1) CALL EXIT
YY=0, i
NG 18 J=1.N

18 YY=SYY+A(JY¥RHO**
GC TO 8

7 RHO=YY=1.,

YY IS THE PROJBAJILITY OF ZVENTUAL EXTINCTIOMN FOR THE GIVEN
INITIAL CONDITIONS

® H X X

8 PRINT 10L9,YY
TESTL=YY=-TEST
,1(1)=13¢
P1(2)=80**2 .
oC 9 J:17H
U=0.13
J0 10 I=14M

10 U=U+S(I1)*T(I,J)

3 Y (Jy=y

FOR CONVEMIENCE THIZ FIRST TWC TERMS CF THZ DINSITY AND OF THE
SECOND COMVOLUTION ARE COMPUTED HERE, EXPLICITLY. THE TONVENIcNG
IS IN THE INDEXING FOr THE SUERGUTINE NEXT.

X K kK ¥ %

U=0.93
Ui=3.¢C
JO 11 I=1.H4
UJi=U1+3(IY*T0 (1)

11 U=sU+Y (D) *T0(D)
Pl1,1)Y=01
Pl1,2)=U
P(2y1)=2.%23%U1
PL2,2)=2.%BI UL **2

THE NEXT 15 LINES COFUTE THE SCLUTICM OF THE 2X2 SYSTEM,
WHITH CORRESPONNS TO K=2y AND PETAINS ITS TRIANGULAR FORM
ANS THE COEFFICIENTS CF THE ZLEMENTARY <CA OPERATIONS IN

THE APRAY Hle9e)s THc MODIFIEC FOFM OF TH® RIGHT HANB VECTOR
AFRPZARS IN THE ARRAY H1(.).,

* ¥x Kk & X & X

H{ls1)=U=1e/ (1 -F(141))
H4(1,2)==-P(1,2)*U

s Hi(L)y=RP1(1D)*U
lelt‘P(ZoZ)'U*P(l,Z))‘p(ZQj.)
H(?2,2)=U1=1./U1
H(24,1)=U*UL*” (2,1)



X & K X ¥ X X %

X & *¥ x & X

¥ Kk &k X

* X

¥ k& ok %

¥ & Xk X

HIL2)={(PL2) +F (2,1) *H1 (L) >yt
XA{2)=H112)

X(1)=H1 (1)=H(1,2)* X (2)
HE=YMTHE (2 4N)

J-—l.'\'
JO 12 I=14NHM
1? U+sA (DY *X (1)

GO1) END 5(2) ARE THS FIKST Twh TS
<z EXTINCTICHN,

THZ AiX L) GENERATION SIZE 2FF(

5102) =
SOLY=30% A1) /(1. =P (1,1))
IC 13 KP=3,14¢

<F1=K7-q

THE SUBROUTINT FILL CCHMPUTES TH:

THT TRANSITION PRURBASILITY MATRIX,

CCHAZRTS GIveEN IN THZ SUBROUTIN:
CALL FILL(KR1)

THE SU3ROUTINE TRIANG PERFORMS GA
SYSTEM OF LINEAR ZQUATICNS CORRES
ALSO UPDATES ALL THE INFCRMATION
ARPAYS .,

CALL TRIANG(KR)
IF(NCRIT.EQe1) GU TO 15
NM=MING (KRyN)
U=0.13
00 14 I=1,NM

14 J=U+A(I) *X(T)

G(KR) IS THE TERM WITH INDJEX KR O
MAXIMUM GINERATIOM SIZE REFCRE EX

G(KR)I=U
IF{UGT.TESTL)Y G35 TO 15
13 CONTINUFE

PFINT-0OUT OF THE CISTRIBTION CF T

15 PPINT 1007
PRINT 1004y (I5G(1)s1=14KR)

COMPUTATION AND PRINT=-0QUT OF THE
OF THE MAXIMUM GENERATION SIZE

D0 16 I=24KR
J1=KR~TI+?
16 GATI1)=G(I)-G(I1-1)
CPRPINT 1708 ,
PEINT 10349 (I4G(L)3I=14KRY

COMPUTATION AMD PRINT-0UT OF THE
TILL EXTINCTION, RY A IANS JF THE

CALL ABSORBIRHO,NV)
PRINT 1014
PRINT 19964 (I,CUI)4I=14NV)

IS OF THE DISTRIEUTION CF

(KR+1)}=ST R0W ANT COLUMN OF
FOR FURTHER DETAILS SEE
LISTING ITSELF

U3S ELIMINATICN TO SOLVE THE
PONDING TC K=KR, 17
\)TOQE' I“ T"‘!r. H(o’l, AND Hl(o,

F THE OICTRIBUTION CF TH-7
TINCTION,

HE MAXIWMUM GENERATION SIZE

DENSITY OF THE DISTRIBUTICN

DISTRIBUTICN CF THE TIME
SUBRCUTINE ABSORS

44



X ¥ K X%

PRINT 1315 45
PRINT 1C0Ls"H09PL(1) 4 (1,2 (141),I=1,KR)

PRINT=0UT OF THE OENSITY OF THFE NUMBER OF OFFSFRING OF A

SINGLE INDIVIDUAL. SINCE THIS DENSITY IS ALREADY COMPUTED

BY THE REPEATED ESARLIER CALLS ON THE SUJRIUTINE TERM, NO

FURTHER COMPUTATICN IS REIQUIRED HERE,

IF(NCRIT.EA.1) CALL EXIT
IF(KRLT.18d) GO TC 17

PRINT 1013
CALL =XIT .
17 CALL SECOND(TZ)
J=T2-T1
PRINT 1C12,U
50 T0 3¢
31 CALL =ZXIT
33 PRIMT 1010
CALL =XIT

THE FORMAT STATEMENTS

1001 FORMAAT(2I3)

1002 FORMAT(EF7.3) :

1003 FORMAT(*1*//3X*THE OISTRIFUTION OF THE MAXIMUM CF A *
1*GALTON-WATSON PROCESS BREZFORE EXTINCTICN*//3X*THE *
1*NUMBER CF OFFSPRING OF C2CH INDIVIOUAL HAS A ¥
1*PROBABILITY MENSITY OF PHASE TYPeE®//73x*¥THE INITIAL *#
1*FPOPULATICN SIZE HAS THE CENSITY A{1)seaaA(N) GIVEN BY*//)

100 FORMAT (3X48(I44F845))

1005 FORMAT(///3X*THE INHITIAL FRGBABILITY DENSITY 30,8(1),*%
1% eaey3(MI*//)

1006 FORMAT(///3X*THE PHASE MATRIX*//)

10057 FORMAT (*41%//3¥*THE OISTRIRUTION CF THZ MAXIMUM *
{*GENFRATION AMONG THOSE G-W PROCESSES WHICH 3ICCME *

1/ 2X*EXTINCT SVENTUALLY*//)

1008 FCRMAT (*¥2%/3X*THE DENSITY OF THE MAXIMUM CENERATION SIZE*/ /)

1009 FORMAT (//3X*THE PROBABILITY OF EVENTUAL FEXTINCTION =*Fq.%)

1510 FORMAT(///3X*INPUT ERROR¥*)

1311 FORMAT(//2X*THE 4EAN NUM3SR OF OFFSPPING PER INDIVIDUAL =%
1F7e4)

1412 FORMAT(//3X*THE TOTAL COMPUTATION TIMZ FOR THIS CASE IS*
1F9.4)

1013 FORMAT (*¥2*3X*THE CAPACITY OF THE STOPAGz ARRPAYS IS *
1*EXHAUSTED*®)

1014 FORMAT (*1%//3X*THE QISTRIFUTION CF THE hUMBER JF *
1*GENERATIONS TILL ZXTINCTION®/3X*WITH THE GIVEN *
1*INITIAL CONDITIONS A{1)yeeosA(NI*//)

1515 FORMAT (*2%//3X*THE DENSITY OF THE NUM3IER OF QFFSPRING *
L*¥OF EACH INDIVIDUAL*//) :

END



*x x ¥ ¥

*x %

SURPCUTINL TEPM{XX)

46

THE SUBQOUTINE TErM EVALUATES THE NEXT TERM OF THF DENSITY P
INJIVIDUAL. THS COMPUTATICA

CF THE NUYRER OF (FF3PRING CF A SINGLF

IS

OF

|V

Y MEZANS OF THE
PHLSE TYPE,

STANDASND RECURRENCE

RELATIONS

FOR A DENSITY

CC%MOJ/GL/Pi(iCD),P(iiﬂ,liﬁ’yA(iC),BG,B(ZG),T?(ZG)@
1T(23,23),TT(ZL,ZJ)sE(EDqZS),C(EOyZO),X(iﬂU)qYlZC)gZ(ZG),

lG(i?U).C(153),H(1;0,13@),P1(199)9#;N97€3T,TESTiqTESTZ,MAXITEPqNCPIT

3C 1 J=1,M
U:C.j

00 2 I=14M
UzU+Y(I)*T(I,)
Z(J)y=

U==C,.0

0C 3 I=1,4
UsJe 7 (Y *700 1)
Y(IY=7(1)

XX¥=t

RETURN

ZND



SU320JTINF NEWTON (RHG) : 47

THE SU3ROYTTIND NEWTO.4 COMPUTES THE PRCBARILITY OF ZXTINCTION
FGR A SUPZR-CRITICAL CALTON-WATSON PRCCESS WITH A SINSGLE
PrROGENITOZ, NOTZ THE EFFICIENT PLANNING OF THE COMPUTATION
AHICH IS 3IASED NN THE REFRESENTATION CF THE PRC2AIILITY
GENERATING FUNCTION FOR DENSITIEZS OF FHASZ TYPE, .
SUOMMON/ZBL/PL(LCU) o P (17041 0G)sA(1C)sB0,B(20)5,T0020),
1TU20420) o TT (20923 9E(239235) 3F(2234520) 93X (135),Y(20),2(25),
1G0100) sC(LUN) g HILOG130) g HLCLDBC) oM 9Ny TEST G TESTL S TFST2 4 MAXITERGNCRIT
20 4 1.M
L Z(IyI)=1,
Z1=1,
DO 1 I=1,4M
1 Z21=24=-8¢(1)*TJ(])
71=39/71
DO 2 ~N=1,MAXITER
DO 3 I=1,4M
N0 3 J=41,.M
3 TT(IyJ)z"Zl"‘T(IvJ)
DO 5 T=1,M
S TT(I4I)=14TT(ILI)
CALL LINEQL(TT £4F420aMsnt,LL)
IF(LL.EQ.C) GG TO 6
5C TO 33
A D0 7 J=14M
U=daed
DG 8 I=1,M
5 UsU+BII)*F(I,4J)
7 X(J)y=u
B0 9 Jj=1+M
J=d.8 B
O0C 10 I=14M
14 UzU+X(IY*F(I,J)
Q Z20J)y=y
Ji=1.
DO 11 I=1.1
11 Ui=U1-Z(I3*T7a(1)
30 12 J=1.M
U=0.4
DO 13 I=14M
13 UsU+Z(T)Y*T(I, )
12 X (J)y = .
U=0.0 ’ : N
DG 14 I=1,4H .
16 U=U+X(IV*T5 (1)
U=Rg=-u*Z1%*2
72=4U/41
IF(ASS(72=-71).LT.TEST2Y GC TO 15
2 I1=1712
PRINT 1C07,MAXITFR
NCRIT=1
RETURN
165 RHG=2Z2
RETURHN
23 PRINT 1001
NCRIT=1
1000 FORMAT(//3X,I3,*ITERATICNS ARE NCT SUFFICIENT TC MEET*
1* THE CONVERGINGY CKITERICN*)
1301 FORMAT (//3X*¥5INGULAR MATRIX ENCCUNTERAD*)
END

LR B T SR

et

1" e



SURROYTINE FILLI(K) 48

¥ THE SUBROUTINE FILL CCMPUTES THE (K+1)=5T COLUMN AND THE
¥ (K+1)=-ST R0OW OF THE 3ASIC CCEFFICIENT MATRIX

X
COMMON/ZBL/P1(103) 4P (107910C) yA(18)48B0,B(27),TC(25),
1T (20520 sTT(20420) 5E(2042C0) sF(20528) o XL1TGI) oY (20)5Z(2C),
160108) sC 103 g HOLO0 4132 9o HI(100) sMoN 9 TESTHZTESTL 4, TEST2 ,MAXTITERGNCRIT
K1=xX+1
PL(K1)=PL(K)*B(
CALL TeRPM(IXX)
P(14KL)=XX
»*
* COMPUTATION 8Y. 4EANS OF THE DEFINITICN OF THE CONYOLUTION
¥ PXJDOUCT OF THE ZNTRIZS PlI4K+1) FOR I=1425eae9K
3

30 1 I=2,K
I1=T-~1
U=P1(T1)*P(1,K1)+30%P(T1,K1)
DO 2 HU=1,4K

2 UsU+P(1,NUI*P(T1,4K1-NU)

1 P(I,K1)=U

COMPUTATION 3Y {ZANS OF THE DEFINITION OF THE COHYOLUTIGN PRCIUCT
CF THE ENTRIES P(<+#14J)y FOF J=132500a9K+1

x k X ¥

D (K1y1)=37#0(Ky1) P (1,1) %21 (K)
IC 3 J=2,K!

J1=J-1

=P (1, J) *P1(K) #8,#P (K, J)

00 & NU=1,J1

JTU+P (1, MU ¥P (K, J=NU)
2(K1y ) =U

RETUR
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SUBRCOUTINE TRIANG(K) 49

THE SUBROUTINE TRIANG PERFORMS THE ADDITIONAL ROW OPERATICNS
NECESSARY TO SOLVE THE LINZAR SYSTEM, CORRESPONNING TN THE
INDEX Ky ARISING IN THE CCMPUTATION CF TH: DISTRIAUTICN OF THE
MAXIMUM GENERATION SIZE BEFORE EXTINCTIOM,

SOMMON/BL/PL(100) ,F(10G412C) A010)533,B(20),T3(20),
1T(23,?3),TT(ZQ,ZU),E(ZJ;ZT),F(ZDyZG),X(idd)gY(ZO)qz(ZG),
15(100),C(lCO),H(ltU,lOD),Fi(lG?),M,NqTE?T,TESTi,TFSTZ,MAXITERoNCEIT

Ki=K-=1 ‘

THE NEW 27W TO0 Bz REIJUCED IS STOREND IN SCRATCH ARRAYS

0C 1 J=1,K1
XJ)y==P { J4K)
ClN==P(K,J)
J=0.0

THE 00=2 LOOP COMFUTES THZ K=TH COLUNMN OF THE H{.e.) ARRAY

NC 2 I=1,4J

UzU+HJy IV*X(I)

H{J,X)=U

DC 9 I=1,K1

9 X(I)=2,.0
CHAKY =1 4 =P (KyK)
H1 (K)Y=P1 (K)

N

THE D0-LOCPS Z-6 CARRY QUT THE ELEMENTARY RCW OPERATIONS

D0 3 I=1,K1

U=Cc(I

D0 & J=1,T .
L XN =X{))=-U*H(I, )
I1=T+1
N0 5 J=114K
SIY=C Y)Y -UrR{I,J)
H1I(K)Y=HL (K)=tJ*H1 (D)
U=C (K}
H(KyK)=1,/U
H1(K)=H1(K) /U
3C 6 I=1,4K1
& H(KsIV=X(T)/U

w N

COMPUTATION OF THFE SOLUTICN T THE TRIANGULAR SYTSM OF
FOUATIONS ,

X{K)=+41(K)
O0C 7 1I1=1,4K1
I=K=-11
U=H1(I)
DO 8 I2=1,I1
UsU-H(I,I+I2)*x(1+12)
7 X(IY=U
RETURN
EMD

o o}
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SUBROUTINE A3SORBARHG,NV)

THE SU3ROUTINE A3SOR3 COMPUTES THE DISTRIZUTION OF THE

NUM3ER OF GENERATICONS TILL XTINCTICN. FO2 SUPER-CRITICAL
GALTON=-WATSON PRGCESSES WZ GBTAIN THE PROBABILITY THAT THE
PRCCESS 8FECOMES EXTINGCT AFTER J GENERATIONS. THE NDISTRIBUTION
CF THE TIMc TILL ZXTINCTLION IS DEFFCTIVZ IN THIS CASE.

COMMON/BL/PL(103),PL12042130)4AC(10)30,B(20),T2(20),
1T(23920) 9 TT (20 42C0) 9E(25928) 9F (284520) X (130),Y{28),52(20),

16G(100) yC(100) +HOL0C9130)sF10109) g MeN,TESTSTESTL,TEST2 ,MAXITERGNCFIT

7X=3¢0

(=]

TTUIZJ)==7X*T(Jy1I)
TTCIsIV=1.4TT(I,1I)
CALL LINEQI(TT 43sY920+Ms1,LL)
IF(LL.EQ.T) GO TO &
NV=NU=-1
G0 TO &
4 U=30.3
0CG 5 I=1.H
5 UsUu+Y (D) *T0(ID)
IX=80+7ZX*|
U=3.10
DG 8 I=1,4N
8 UsU+A(II*(ZX**]I)
C(NUY=U
IFCARS (RHN=ZX) LT.TEST2) CO 70 7
CONTINUC '
NV=NU
U=0.0
DG 9 T=1,4N
3 UsU+A(TI)*30%*]
c(1) =
RETUR
END

[AV]
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