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I. INTRODUCTION
Let X be an observation (possibly multivariate) which is to be

classified into one of M classes w P Suppose further that

10"

Pl""’pM are the prior probabilities of classes w

M
1000 oWy and that
pi(x) is the probability density function of X given that it belongs

to class w, - Unclassified observations then have the mixture density
M
p(x) = izl P.p; (x). (D
An arbitrary classification rule may be described as follows: classify

1’ M

which partition the observation space. (We do not here consider rules

X as belonging to class Wy if X falls in Fi, where TI',,...,[,, are sets

which allow refusing to classify.) Let_Ii(x) be the indicator function

of Pi,

Ii(x) 1 xc¢ Fi’

0  otherwise.
Then the probability of correct classification for an X from class w, is
Py = { p; ()dx = [T, (X)p; (x)dx (2)

1

and the probability of correct classification for an unclassified

observation X is

M
p. .= ) P (3)

iPei-

Estimation of P. (or equivalently, of the probability of error,
1 - pc) from sample data is of considerable importance in situations
where direct calculation of the P.i is difficult and Moﬁte Carlo
methods must be used. Two familiar methods for estimating p. are random
sampling and selective (stratified) sampling [1, Sec. 5.4; 2; 3, p. 255].
In both methods, the statistic for error is based on the number of

correctly classified samples. In the case of selective sampling, however,

the number of samples used to estimate error from each class must be



within the control of the statistician, and the prior probabilities

Pi must be known. In this sense, it is sometimes said that the first
method employs unclassified samples, and the second method, classified
samples. This distinction is somewhat academic in view of the fact
that the true classification of each sample must ultimately be known
in order to determine the number of misclassifications.

In a different approach to estimating P> Fukunaga and Kessell [4]
extended the use of the'reject function of Chow [5] to an unbiased
statistic for error by using the posterior probabilities p(wiIX) at
each sample X. However, knowledge of the priors Pi and class densities
pi(x) is required, although estimates of these quantities for a specific
recognition problem have been employed with apparently good results
by fhe same authors [6]. This method uses unclassified samples from
the mixture density, as does random sampling (although, unlike random
sampling, the class assignments are never required).

The relationship between the posterior random sampling statistic
of Fukunaga and Kessell and selective sampling deserves.some attention.
In many situations where Monte Carlo procedures are usually required
for estimating P, (arbitrary Gaussian w55 for instance), the statistician
can control the selection of the samples. An example might be computer
simulation. In such cases, the requirement that each sample come from
the mixture density may require more computation, since this implies that
one must'randomiie, according to the priors, on the class labels W -
Also, selective sampling results in variance no larger than random
sampling [2], as does the posterior random sampling statistic [4].

But the relationship between the former and the latter has not been
established.

Since it is economically desirable to use unbiased statistics for



P, with minimum variance, we will examine the variance relationships
among several statistics employing both classified and unclassified
samples. A new statistic for P, which uses both posterior probabilities

and class assignments will be introduced.

‘II. COUNT ESTIMATORS
The standard estimator of a probability is simply the proportion
of observations falling in the event in question. Suppose then that
Xl""’XN are unclassified samples, i.e., independent random vectors
each distributed according to p(x). The proportion of correct

classifications ﬁl is an unbiased estimator of P, having variance
2,~, 1 2
o (p) = (P.-p.)- (4)
In planning a simulation experiment, we can choose instead to

distribute N observations among the classes, taking Ni observations

see oy Xs are

from class ws s where I Ni = N. Suppose therefore that Xi iN
i

1

independent random vectors each distributed according to pi(x). The

proportion of the Xij correctly classified,

N,
n 1 et
Py © N Z Ii(xij)’ (3)
ij=1
is an unbiased estimator of Pei- Hence by (1)
~ M -~ "
p= ) Pip; | (6)
i=i
is an unbiased estimator for P, having variance
2
M P,
2.~0 1 2
0“0 =) §— PPy Q)
i=1 i

How shall we distribute the N observations among the classes? A
common choice is to make Ni = PiN, proportional to the prior probabilities.

Call the resulting estimator of form (6) ﬁz. Note that ﬁz is just the



overall proportion of observations correctly classified - that is,
ﬁz is the same function of the observations as ﬁl, but is obtained

from a different sampling design. By (7) we obtain

M
2.4, _ 1 2
o (b)) = izl P, (P Pei’)
M
_ Ll 2
= 5P, igl P.p.; ) (8)

Comparing (8) with (4) and applying the fact that for any random variable
Z

B(Z%) > D) | (9
to the random variable taking values P.; with probabilities Pi’ we see |
that oz(ﬁz) f_cz(ﬁl) as expected [2].

The estimator ﬁz would have minimum variance among estimators of
the class (6) if only the Pi were known. Since the‘pi(x) and hence
(in theory) the P.; are known, the optimum choice of Ni is proportional
to the product‘of the prior probability Pi and the within-class standard

1
deviation o, = (p pciz)2[7]. (This is trivially obtained by applying

ci”
the Lagrange multiplier method to minimize
M P?c?
2. i’i
0(p)=ZN
i=1 i

subject to the constraint Nl LI NM = N). Let ﬁs denote the estimator

of form (6) with

This optimum estimator has variance
M
2.~ 1 2
o“(pg) = (1 Pyo;) (10)
i=1
and cz(ﬁs) 5_62(52) by another application of (9). The estimator 53 is of
theoretical interest only, since Monte Carlo estimation of P. is unnecessary

when the P.; can be calculated.



IITI. POSTERIOR PROBABILITY ESTIMATORS
A different approach to estimation of p. was discussed in the
unclassified samples case by Fukunaga and Kessell [4]. We will
extend their idea to classified samples and obtain further variance

comparisons. First notice that
M

P, = izl jpixi(x) p; (x)dx
M
=[ 1 1,60 %) p(Idx = E[QMO)]
i=1
where
M
A = izl L (x) plo;|x)

is the function which is equal to the posterior probability p(wilx)
of class wy when x falls in Fi, i=1,...,M. From (11) it is clear

that an unbiased estimator of P. from unclassified samples xl""’XN is

QX,).

21
Py =N )

It~

i
Clearly

2

() = @ =3 @@H-PD.

Since 0 < Q < 1 always, E(Qz) < E(Q and hence from (12), (4) and (11),

02(54)_5 cz(ﬁl). In fact, in [4] it is shown that for maximum 1ikelihood

rules,
2 » 2. 1
N[o"(p;) - 07 (p,)] > 5(1-p)-
This can also be shown by noting that in this case,
2 1 2 2
0% (py) = §IE max” pu, [X) - pl,
i

and that in Figure 1,

M+1 1 2 1
e max-ﬁimax,ﬁ-imaxil,
so that

2 . 1, M+1 1 2
0" (py) < glGFIpe -3 - P 1

I' maximum likelihood.

(11)

(12)



With classified samples xil""’xiN for i=1,...,M and ENi = N we
i .
can estimate the conditional expected value E(Qlwi) (that is, the

expected value of Q(X) when X has density pi(x)) by

N
1
T Z Q.(X..)-.

M
P, = -21 P, E(Qlw,) (13)
- |

we have a class of unbiased estimators of P. given by
p = z Pi (N— Z Q(xlj)) _ (14)
i=1 i oj=1 _ :

with variances

[\ ]

M P; '
of B = ] 7o' @luy) (15)
i=1 i :

=P

where 02(Q|wi) is the variance of Q(X) when X has density pi(x).

Special cases are again of interest, the most prominant being the
case Ni = piN. The estimator of form (6) for this allocation of
observations is ﬁs. Just as ﬁl and 52 are the same function computed
from different sample designs, so ﬁs is just the mean sample Q and hence

equal to ﬁ4 as a function of the N observations. We obtain from (15) that

M :
0% (Bg) = v L PE@ ) - B@lap?
M
1 2 2
=g BQD - I P, EQlw)%. (16)

i=1
NS
Applying (9) to the second terms of (16) and (12) in the light of (13)
shows that oz(ﬁs) 5_02(ﬁ4). o .
The optimal choice of Ny is proportional to P, o(Q|wi). The

corresponding estimator of form (14) has minimum variance in that class.

Denoting this estimator by ﬁé,

M
o’ (By) = ﬁa(_il P,o(Qlu;))?
il



2.2 - 2.4
and 07 (pg) < 07 (pg) by (9).
IV. COMPARISON OF VARIANCES

If we use ﬁi << ﬁj to mean that ﬁj dominates ﬁi in the sense of
having variance no greater than the variance of ﬁi for all choices of M,
Pi’ Pi and pi(x),.then Fig. 2 summarizes our results to this point.

It is natural to hope that ﬁs >> 52' This is false, for we now give

an example to show that no uniform dominance exists between ﬁs and ﬁz.

Consider the two-class problem with wl # w, both real numbers

0 f-mi <1l,Xa Bérnoulli variable with density

pi(x) =0, x=0
= 1-wi x =1,
and P1 = l-P2 = P. There are only four possible classification rules.

These can be described by T'., the set of observations which will lead

l,

to classification as Wy, as follows,

§;: T = {0}
8,0 Ty = {1}
8,0 T, = {0,1}
64: Fl = ¢.
Consider first the rule &, which always classifies X as w In this case

3 1°
= 5 - - = 3 = r ‘ 2 ~ —
P, = P, P,y = 1, P.y = 0 and hence P, = P by (6). Thus o (pz) = 0, and

indeed any estimator of form (6) has variance 0. Turning to ﬁs, note

that
wlP
QW)=M%U=°)=qﬁ@ﬁﬁﬁ
(1-wl)P
QL) = plw X =1) = (T-w )P+ (1-u,) (1-P)

Hence Q(x) is not constant and we see from (16) that therefore
oz(ﬁs) > 0 = oz(ﬁz). Thus ﬁs does not dbminate ﬁz. Notice in particular

that if P is large enough, specifically, if



w 1-w

P 2 2
—= > max{—, —=
1-P wl l-w1

then 63 is the Bayes classification rule in this example. So ﬁs is

},

not even always preferable to 52 when the optimum classification rule
is used.

To show‘that ﬁz does not dominate ﬁs, consider the classification
rule 61 and the caselP = 1/2, wy = 1/2, w, = 0. Computation shows that
in this case N 02(52) = 1/8 while N cz(ﬁs)

1/72. A similar absence of
uniform dominance applies to ﬁs and ﬁ6’ as can be demonstrated by the

same pair of examples.

V. EMPIRICAL RESULTS

The lack of a definitive relationship between ﬁz, the selective
sampling statistic, and the posterior esfimators leads us to the
consideration of test cases. Since ﬁl’ 52’ ﬁ4, and ﬁs are likely to
be of most interest in simulation experiments, we will consider only
these four statistics,

Consider the problem of estimating P, for a multiple-hypothesis
testing problem involving three equally-likely univariate-normal
classes with unit variance and means 0.0, 0.5, and 3.25. Initially,
assume that a decision rule which is optimal (in the sense of error)
is desired. The corresponding rule and the densities as well as the
posterior probabilities are depicted in Figure 3. The decision boundaries
are 0.25 and 1.875, and P. is 0.6761. -

In the experiment to determine the relative effectiveness of
the four statistics, the sample variance for each was computed for
500 trials, using 30, 60,..., 570, and 600 computed generated pseudo-

random numbers (each set included the previous). Two different sets



of numbers were used, one for ﬁl and ﬁ4, and another for ﬁz and ﬁs. In
the former case, sampling from the mixture density was simulated by the
additional step-of choosing pi(x) according to the priors Pi’ again, by
using pseudo-random numbers. In the latter case, an equal number of
samples were generated for each pi(x).

The results for this optimum rule are given in Figure 4. Since
o(ﬁl) and o(ﬁz) can be computed exactly, their values are included (dashed lines) for
comparison purposes. In this case, we see that both pbsterior statistics
perform significantly better than the counting statistics, with the
selective postérior statistic somewhat better than the posterior statistic
employing unclassified samples.

In another experiment, the same procedure was repeated, using
a new set of pseudo-random numbers for a suboptimal decision rule.
The same three densities were used, but the decision boundaries Qere
changed to -0.5 and 2.5. 1In this case, P. = .6335.  The results are
given in Figure 5. Sample variance for each statistic increased

slightly, but the observations made in the first experiment still apply.

VI. SUMMARY

Variance relationships among several estimators of probability
of correct recognition P.: employing both classified and unclassified
samples, were discussed. A statistic for P. based on a stratified
(selective) sampling design and posterior probabilities was introduced.
Experimental evidence of the utility of this statistic was presented.
A possible drawback in the use of estimators using posterior probabilities
is the requirement that class density functions must be known. However,
the use of density estimation methods, and the fact that in many Monte-
Carlo studies, densities are known, tend to point out the uscfulness

of these statistics.
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FIGURE CAPTIONS

Figure 1. Upper. bound on max2 p(wi|x)
i

Figure 2. Dominance relations among estimators of pc'
Figure 3. Optimum rule for three normal classes
Top-mixture density and decision rule

Bottom-maximum posterior probabilities

Figure 4. Sample standard deviation of four estimators of P.

for an optimal rule - pc=.6761

Figure 5. Sample standard deviation of four estimators of P. for

a sub-optimal rule - pc=.6335
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