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The organizers 6f this conference have made a selectien of recent
"influential statistical ideas, and have asked us to present an ex-
position of the two topics of the title. The emphasis of the first

of these is to be on the use of llmlt theorems other than the central
1lmlt theorem in large sample comparison of tests, in contrast with

‘the now more familiar "local" comparison treated by Pitman, Wilks,

Wald, LeCam,‘Neyman, Weiss, and Wolfowitz, among others. The.non-
local comparison of tests was developed by Chernocff, Hodges and Lehmann,
- and'Bahadur, producing a striking result in a paper of Hoeffding

(1965). Empirical Bayes procedures were introduced by Robbins (1955).
LARGE SAMPLE COMPARISON OF TESTS

Introduction

We begin with a simple testing model: one observes independent and

identicallytdistributed random Variebles xl,...., Xn. The probability

density function of X is unknown, but belongs to a known class
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{f,, 6 € 0} labeled in terms of an index set 0. For example, © might

be the upper half-plane and f(e, o™ the normal density with meap g
14

and variance 6". Or the class {f } might consist of every symmetric

density and 0 = (8',9), where 6' is the median of fe and g the denSUw
of the "error" xl - 8', symmetric about 0.
It is desired to test the null hypothesis that 6 € O for G <o

against the alternative that 6 € 0 - 6 For 51m91101ty, we shall

_assume throughout the first two sectlons of this paper that (1) the.:

parameter space O is a subset of Euclidean k-dimensional space; (2)

GO = {0 },.sd that we are testing the simple null hypdthesis Ho- 8= ed'

(3) all crltlcal regions considered are defined in terms of sums of
iid random varlables standardized to approach a normal distribution
{(under 90) by the central limit theorem. (The central limit theorem
is not used in approaches that involve a computation like Eq. (2].)
Given a sequence of critical regions {Tn}, we hgve two probabilities

of error: the signifiéance level or probability of erroneous rejec-

tion of HQ
= con €
o Pe [(X1: ‘ Xn) Tn]
0
and the probability of erroneous acceptance of HO when an alternative
6 is true -
: =1 - e 8
Bn(e) 1 ?6[(x17 ’ Xn) € Tn] : . e # 0

Suppose we have two competing.fémilies of critical regions for
the same problem. (We say "family of critical regions" because the

region actually used depends on the sample size n and the level o

. selected. Thus, one might compare-—as Hoeffdlng did--the x and

likelihood ratio families for a multinomial testing problem.) = How
shall we compare their performance? Given sequences {Tn} and {T'}

of critical regions, if Tn has an = ¢, and Bn(e) = B for a fixed
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alternative 6 # 60, we may ask how many cbservations m are required
for the critical region T‘ to attain aé = o and BA(G) = B. The ratio
n/m is the eff1c1ency of {T } relative to {T }. Unfortunately, this

relative efficiency usually depends on several of o, B, © 8, and n.

’
1t is therefore natural to seek some large sample Smellfgcatien by
‘jnvestigating the behavior of the error probabilities as the sample
size n increases. In addition to identifying good statistical pro-
cedures for large sampies, such studies may suggest the form of good
procedures for small n.

Any reasonable sequence of tests has the property that as n in-
creases and the level o remains fixed, the probability Bn(e) of erro-
neous‘acceptance approaches zero for any alternative 6.  Thus, some
‘quantity (¢, B, oxr ©) in additioh to n must change as n increases,
and various approaches to large sample comparison of tests can be
distinguished by the constraints placed on tpese quantities.

We wish to stress two themes in the development of this area:
First, the use of tools other than the central limit theorem to-
compare tests. (This may be called the “mathematlcal front.") Second,
establishment of the large sample optlmallty of procedures based on
likelihood, in this caee the likelihood ratio (LR) family of tests.
(This is the "likelihood front,"lon which there have been significant
. advances in the theory of estimation as well as testing.) When the
. alternative as well as the hypothesis is. Smele, the Neyman—Pearson
'Fundamental Lemma, of course, states that any LR test is most power-
ful of its level for any sample size. Large sample optlmallty of LR
tests (as of the analcgous max1mum llkellhood estimators) has -since
been establlshed with respect to a number of criteria. Hoeffdiﬁg's
contrlbutlon was to show that even ‘families of tests that dlffer by
1little from LR tests and that are asymptotically-equlvalent to them
in_one sense (Pitﬁan‘efficieﬁey) may be infetior iﬁ another sense,

in large samples.
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" Approaches to Large Sample Comparison

We will mentlon three approaches. The earliest of these was to Study
the relative eff:.c:.ency of tests when o is fixed (or @ ¢ and .
O < o < 1) and the alternative 6 varies with n in such a way that
B8(8 ) - B for a fixed B, 0 < B < 1. In the cases we_are discussing,
' en l:nust; ‘approach- eo at rate n ~1/2 to obtain nontrivial o and B. fThjg
"local comparison” was systematized by Pitman in the one-dimensionay
case and bears his mname. The central limit theorem is the essential
| ma.themat::z_cal tool in studying local alternatives ‘Early work in this
setting is attributable to Wilks;: Wald‘s definitive paper (1943) es-
tablished several optimum properties of the LR and related families,
' Further work cirr -local Properties is contained in the work.of ‘LeCam,
Neyman, and Weiss and Wolfowitz; this :mcludes the more complex case
of com_posn.te null hypotheses, various: optimality criteria, and families
of procedures other than LR tests. We omit details, as local compar-
isomns are not our concern here. ’

(We remark that some of. these last—mentioned developments are
-counterpart:s of the asymptotically efficient estimation results for
Bayes and maximum likelihood estimators (LeCam, Wolfowitz), which are
Jrel evant to the discussion in the section on the st‘ar';dard"Bayesian _
model (vide infra), and for Wolfowitz's 'maxiinum probability estimator.)

Otherxr . compa.rn.sons of tests leave the alternative 0 fixed. Cal-
culation of the probabilities of error can then no longer be handled .-
by the centxal limit theorem, but requires results on probabllltles
of large dewiations. (If t: is a normalized sample mean, so that t
converges imn 1a.w to the standard normal distribution by the cestzal
limit theorem, {tn a_an} is a large deviation of t if n 1/2 a +a
for O < a < =, In this case, the central limit theorem says only
that =P ttn > ar;] approaches 0', which is uninformative. We want
to know the speed with which this probability approaches 0.) Crémer
began the study of this probabilistic problem in 1938, and the 1it-
erature now con,tai_.ns_ many sources for both order results (of the
Eorm :ngl log P, c) and asymptotic, results (of the form pn/cn + 1)
for probabilities of large deviations. Only order résults are re-

quired for the large sample comparisons of tests done to date.
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Chernoff (1952) first used probabilities of large deviations to
compare tests. We will mention'two contrasting "fixed alternative"
approaches. Hodges and Lehmann (1956) fixed 6 and ato <o < 1) and
studied the rate of convergence to 0 of sn(e). In the usual cases

-nc(6) [1+o (1)] for all o l[1]

Bn(e) ='e
so that an asymptotic relative efficiency can be defined as the ratio
of the indices c(8) for competlng families of tests.

Beglnnlng in 1960, R. R. Bahadur produced an extensive theory of
large sample prppertles of statlstlcal procedures, which he recently
summarized in a monograph, Bahadur (1971). His approach to tests
can be stated as follows: 'fix 6 and B and study the rate of conver-
gence of un to 0. Again, one usually obtains
- e—nb(e)[1+o(l)]

Q

o for all B o | Bt

so that an asymptotic relative'efficiency can again be defined.
Bahadur's approach has borne more fruit than has that of Hodges and
Lehmann for two reasons. First, it is easier; Eq. [2] reguires an
order result:for'probabilitiesAbf large deviations under 60, whereas
Eq. [1] requires a similar result under the alternative 6. The Bahadur
lndex b(6) has therefore been computed for many more families of tests
than has the Hodges—Lehmann index c(8). Second, we have done Bahadur
an injustice to have descrlbed his work in thlS framework. His basic
idea was to study the behavior of the actually attained level of the
test as a random variable. This natural "stochastic comparison" of
tests turns out to be equivalent to the_nohstoehastic comparison based
on Eq. [2]. Bahadur has shown'in some generality that LR tests have

maximum b(8) and are therefore asymptotically optimal by his criterion.

Hoeffdings' Contribution

. Hoeffding (1965) considered. several éesting problems involving the

multinomial distribution with k cells and unknown vector & =

(eln ...,»ek) of cell probabilities. We will dlscuss only the problem of

i
ig
!
i
i
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-testing the simple null hypothesis 6 = 6 for a fixed probablllty
vector 6 . Hoeffdlng made an advance on both the mathematlcal
front and the LR front. Mathematically, he built on work of Sanov
to give an order result for probabilities of large dev1at10ns in
this k-dimensional multinomial case. Previous comparlsons Of testsg.
had used such results only for sums of univariate random variables,
On the LR front, Hoeffding succeeded in distinguishing the large
sample performance of the LR family of tests for ¢ = 6 from that of
the familiar Pearson x- tests for this problem. If X for 1 ="

=

l, ..., k is the proportlon of n observations falllng in the ith

cell, the LR test is based on the 1nformat10n—dlstance statlstlc

2 s ors s
The X~ statistic is of course

N
o
>

I
<D
—~

.These tests had long be treated as being asymptotically qulvaLent_

2
because of thelr equ1valence under local comparison. Qn is the

domlnant term 1n the Taylor s serles expansion of L about 6 ZnL

and nQ have the same x 11m1t1ng distribution under the null hypoth-

esis; the two families of tests have the same large sample performance -

agalnst local alternatives.

P ; ' The spirit and nature of Hoeffding's comparison ean be demonstrated
SH— . with minimal mathematics in the two-cell (k = 2) case. This we do

h . in the next section, which may ‘be omitted without loss of' continuity.
Here, we content ourselves with observing that although Hoeffding's
Precise comparison was not one of those discussed above, he implicitly
showed that the LR and x families have the same Hodges-Lehmann per— )
formance for all alternatlves 9, but that the LR family has strictly
better Bahadur performance for "most" alternatives. As Bahadur's theory

has become a standard tool in the decade since Hoeffding's work, the
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latter work is now most easily understood in Bahadur's framework. That
‘it could be so understood was shown in detail by J. C. Gupta (1972).
Fixed-alternative comparisons ask more of the x2 test than its
creators probably intended. The coincidence of power results for
'llocal alternatives is closer to the motlvatlon for Q . which involves
the relevance of the expected value of Q and hence of normal theory.'
Nevertheless, this common test has been dlscredlted for 1arge samples
and fixed alternatives by Hoeffding's result.
Progreés on the LR front has, of course,'continued. Brown (1971)
" has shown in considerable genefality that appropriéte tests of LR
tyée (actually LR tests of possibly laréer hypotheses) are at least
"as good as any given sequence of tests in both the Hodges-Lehmann
~and Bahadur senses. The more difficult task of analyzing what makes
an apparently equlvalent test strictly inferior to a LR test for large
samples in the generality of Brown's settlng awalts another advance
‘on the mathematical front--more general large deviation results for
multivariate problems. Herr (1967) has done this in certain multi-
variate normal cases,; but much work remains. It Qould also be valu-
_able to ipvestigate the sample size ;equired for LR tests to be close
to optimal (or, alférnatively, to be superior to‘x2 tests in the multi-’

nomial case).

Hoeffding's Result for Two Cells

To illuminate Hoeffding's discovery that Qi is inferior to I _, we will
consider the special case k = 2. This amounﬁs to observing n inde-

"pendent Bernoulli random variables xl' .o s Xn with 6 ='P[Xi = 1] un-

known. For 0 < p < 1, the test statistics for the hypothesis 6 = p are

Ln = I(i,p) and Qi = Qz(i,p), where X is the sample mean of Xl,_..., Xn
and '
I(8,p) = 6 log S+a- 9) log -9
r 1
' 2
2 0 -
o, py= BB

p(l - p)

s ots i
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The - 1nformatlon distance I(0,p) between two probability vectors there
between (6,1 - 6) and (p,1 - p)] plays a central role in ali large
deviation comparisons of tests.

Analysis of this special case requires only one mathematlcal tool,

an order result for probabllltles of large deviations of bifomial

random variables, obtainable from Cramér's inequality. Specifically,
if B is a binomial random variable with mean np, ¢ =1 - p and
B - np ‘
1
Pn=P["'L177 an-’z]. | b> 0
(npg) 1 S _

then, for p + b(pq)l/2 <1,

1 ‘ 1/2 :

;logpn+-1[p+b(pq)/,p] : [3]

From Eq. [3], one may first calculate that the Hodges-Lehmann

index c(8) defined in Eq. {11 is 1(p,9) for both L and Q , Thue,

the Hodges—Lehmann approach also fails to dlstlngulsh Q from L .
The Bahadur index b(6) defined in Eg. [2] depends on whether

P> 1/20r p<1/2. (When p = 1/2, the tests based on Ln and Qn are

. identical.} For the remainder of this discussion, we assume that the

hypothesized p exceeds 1/2. Another application of Eq. [31 then shows

that for Qn
bQ(e) = I(68,p) . . <6 <p [4]
=I[0 - 2(6 ~ p}, p] B .pfe_.fl'
whereas it is known that for the LR statisfic L
b (8) = I(6,p) - ‘o;efl 5]

The situation is 111ustrated in Pig. 1, where Q (9,p) and I(8,p)
are drawn for p 3/4. Note that I(6,p) is not symmetric about p,
but increases more slowly for § < p when p > l/2. Thus, Eqs. [4] and

[{5] say that b (B) < b (6) for & > P, so that Q is inferior to L
against alternatlves 6 > p.
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Let us now look at this comparison as Hoeffding did. For suf-

ficiently regular sets A, he showed (for general k) that
L iog p1X € al61 » - 1(2,0) | | 6]

where

I(a,0) = inf I(w,0)
weEA

"i{s the information distance of A from 6. Suppose, next, that for ¢ > 0

A(§) = {8: 0*(8,p) > &}

is a x2 critical region and

B(§) = {6: I(6,p) > I(A(S),P)}

is a corresponding LR criEical-regiqn. These regions are illustrated

in Fig. 1.
1 de
Q%(6,3/4)
8 e mm e mmm =2 N mm g mmmmmmm i e
T(A(8),3/8)-=--== === ==mmmm == m == N
wl Lol L Ll 4
0 ‘ 8 3/4

FIG. 1. 1I(6,3/4) and 02(8,3/4).. The hatched region above the axis
indicates the set.A(8) and the marked region below the axis. indicates
the set B(S). S
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Applying Eq. [6] with § = P and A = A(8) or B(S) shows that hoyy,

‘critical regions have asymptotically the same log an, as bot

h are the
same information distance from p.

The LR critical region includes

the x2 region and is thus at least as. powerful. More specifically,

alternatives 8 < p are the same information dista,

nce from~both accep~
tance regions A(G)g and B(G)c :

, and hence have asymptotically the -
same log Bn.

[In this heuristic sketch, we consider only alternatives
in A(6);

this includes any given 6 # p for sufficiently small 8.1

But alternatives 9 > P are strictly closer to the legcceptance region

and therefore Qn has larger log 8
The geometry of Fig. 1 is indicative of the general case. Hoeff-

ding showed that for any k the analogs of A(6) and B(8) have on

finitely many common boundary points, A

ly
one on each line segment join-
ing p = (pl, ceey pk) to the unit vector in the'direcﬁiqn of smallest

components p;- Ln is superior to anfor all 0 not lying on these

line segments, by arguments indicated'abové. When k > 2, the excep-
tional line segments form a small portion_of the parameter space, so
‘that the superiority of Ln is more striking in these cases.

THE EMPIRICAL BAYES MODEL

This interesting model was introduced and first studied by Robbins

(1955). We shall depart slightly from the usual development of back-

ground material by summarizing not only'the standard'BayesianAmodel,

but also the notions of structural parameter models and'adaptive

estimators. All of these possess features reflected in some of the

empirical Bayes concepts, as well as ‘important differences from the
latter. '

For simplicity, we shall describe the ideas only for estimation
problems in the absolutely continuous case. Regularity conditions
‘that are required will not be listed in detail.

. The simplest estimation model is that introduced at the beginning

of the‘first section, except that the object is now to estimate some
furiction ¢ of the unknown @ governing the probability iaw of the Xi'
A common example is $(8) = 8' in either of the examples of the first

n than does Ln for these alternativeg,




§
{
4
|
]

Coniparison of Tests and Bayes Procedures - ' 359

section. An estimator tn is a rule for guessing ¢(0) on the basis of
Xl' cevy Xn. As in the case of testing, it is often difficult to

compute an estimator which is "optimal" in some prescribed sense for

‘a given sample size n. It is again natural to study sequences {t }

of estimators as the sample size n increases in the hope of establlsh~

‘1ng desirable large sample properties.

The Standard Bayesian Model .

The Bayesian model adds two assumptions to the estimation problem

described above: (1) that the parameter 0 can be regarded as a random
variable, and (2) that the prior distribution G of this random vari-~

able is known. Note that the value of 6, once it is chosen according

' to G, remains the same in the density fe of each xi.

Bayes' theorem combines G with the observed data to produce the
posterior distribution of 8. Comparison of estimators in this model
is Based on the posterior expected loss R(tn,G) of an estimator tn'
A Bayes estimator té n of ¢(8) is an estimator that minimizes this
expected loss. For example, if (as in the examples of the first

section) a reai parameter_¢(6) is to be estimated and loss is measured

" by squered error, then ta n is the posterior expectation of ¢(6).

. 14
A feature of interest to us in this Bayesian formulation is that

the desired performance of the Bayes procedure is relatlvely insensi-

tive to sllght errors in the specification of G. More preCLSely

R(t}, .C)

—Cln ; | [71
R(ex G) - ‘

is close to 1 when G is close to G' (under reasonable regularity con~

dltlons, as usual). Thus, u51ng t*, n when the actual prior law is G
. .

{close to G ) is almost as good as using the Bayes procedure t*,n re-
lative to G. This is just the asymptotic optimality of Bayes estlma-
tors referred to in the sectlon on 1arge sample comparison of tests
(vide supra)

- If the Bayesian- model as stated above is correct, there is no
dlsagreement about uSLng tx o One source of controversy arlses be-

Cause ‘doubt may be thrown on the 51mple-m1nded form assumed for {f }
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! or for the assumed loss function, or on the stated aim of the infer. tc
oo ' ence [estimation of ¢(6)]. Another source of controversy lies ip t
: 8 the Bayesian assumptions (1) and (2). "Bayesian statisticians feel
5 that a description of rational thought legltlmlzes the use of 3 sub~ -
jective guess for G in the absence of knowledge of an actual, G; others o
disagree strongly, but we need not discuss thlS controversy in detall 0
here. _ 'P
The Empirical Bayes Model i a
We now turn to Robbins' model. We are faced with a sequence of in- co. 2
dependent estimation problems, each of whlch must be acted on as it 3
arlses._ These problems are, however, related as follows-- the observed : i
i Xi.ln the ith problem has denSLty fe once 6 is glven, but the 6
g i

L

B ' ]
are themselves 11d with unknown dlstrlbutlon G. So at the nth infer- '

ence, we have avallable xl' ey X and we can hope that if n lS

large some 1nformatlon about the unknown prior law G can be wrung-

from the past observations xl[‘..., xn—l' If we knew G exactly, we

A AT A R

Frs Tt

would estimate en by té ;(X ), and in the absence of such exact know-

ledge it seems reasonable (as discussed below in the section on adap-

tive estimators) to use this estimator with G replaced by an estimator

of G; this is Robbins’ proposal, which we now describe in further detail

One can construct an empirical Bayes estimator of 6 by (1) find-

ing ‘an estimator Gn (X roeevy x

estimator t' dgf'tf (x). One thus acts as if Gn—l wers the known
n Gn l'l . : ’ )

prior law. If the estlmator G -1 of G is a good one, then on the

) of G; and (2) u51ng the Bayes

‘basis of Eq. [7] we expect that for large n ]
. | | (8]
R(tn,G) .
*
R(tGll,G)
is close to 1. Robblns found appropriate G -1 for several problems

and established Eq. [8] in these cases. Thus, we do as well asymp-
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totically in estimating en when G is unknown as we would if we knew
the prior law G.

The proof of Eg. [8] in various settings and the study of ‘the
rate of convergence to 1 of the ratio in Eq. [8] has produced a body"

of literature by Hannan, Johns, van Ryzin, Samuel, Gilliland, and

others. One can expect further research to yield reasonably efficient

procedures for small n.

Of  interest to many observers will be the extent to which Bayesians

are able in practice to depart from the standard Bayesian model with
a subjective guess of G, and can insteéd imbed the problem at hand

as the nth one in the empirical Bayes model, to yield and use a more
formally described guess én—l' To non-Bayesians, Robbins' model will
seem much more acceptable in many practical settings than the original
Bayesian formulation. For exémple, Xi might be an observation of some
bioclogical characteristic of an organism at location i, governed by a
pafametet ei of which diétiibution G is characteristic of the species
but is unknown. Or X, might be the result of a diagnostic test on
individual i made at ; preventive medicine clinic run for workers in

a 1arge'plant, and ei an igdex df the underlying condition having an

unknown distribution characteristic of this population of workers.

Structural Parameter Models

- Robbins' model may be compared with one which had already been the

subject of a large body of literature by 1955,‘estima£ion of structural

parameters. This is a non-Bayesian framework.

~ Here again the observations Xl' ceur Xn are independent, but the

density of Xi is indexed by'(a,ei). The structural parameter o is to

‘be estimated, while.ei is an incidental parameter which varies from

Observation to observation. 1In the most common example, the xi'are
points in the plane dgrived from an unknown line o by adding indepen—f
dent error vectors with zero means. to points on o with abscissas 8, -
This simplest lineéﬁitting situation is illustrated in Fig. 2. One

approach to the structural parameter problem is to consider the ei to
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FIG. 2. The structural parametez model with o an unknown llne, and
observatlon X determlned by adding a random error vector € to the

point on o w1th abscxssa ei.

be independent random vériables with the same law G. Indeed, the
term "structural model" is sometimes reserved for this case. Such
models have been studied by Geary, Reiersol, Wald, Neyman and Scott,
Wolfowitz, and others. A suxvey of thelr work is given by Moran (1971)
The frameworks of the empirical Bayes model and the structural
pafameter model have been exhibited in Fig. 3 to point out their

considerable similarities. The dlfference between the models lies’

primarily in the inference to be made.
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EMPIRICAL BAYES MODEL

xl, ey xn independent observations
¥X. has parameter 6,

i . i

ei' ooy en iid with law G unknown

xi has marginal density

fG<(X? =j fe(x) 4G (8)

Use X.s esss X to estimate 0 -
1 n n

STRUCTURAL PARAMETER MODEL

Xl' cees Xn independent obserxvations

X. has pa
X, s parameter (a,ei)

91, ceet en iid with law G unknown

Xi has marginal density

‘fa’G(x) =f £(x|a,8) aG(6)

Use xl' ceos xn to estimate o

FIG. 3. .Comparison of the empirical Bayes and structural parameter
models for estimation. :

Adéptive Estimators

"The methodology of estimation used in the empirical Bayes setting is

related to a methodology arising in the example 0 = (6',g) of the
first section and which can also be employed in the structural para-
meter model. If we knew g in the nonparametric problem given in the

first section, we could use some. known good estimator, e.g., Pitman's

r

"location parameter estimator tg n (say), for estimating 6'. The form
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of this estimator of course depends on g. Because we do not know g,
we flnd an appropriate estimator g of lt, based on X_, X

1 2.‘..'X and
then use t. to estimate §°'. ThlS rough recmpe requlres care ip

9,0

ltS execution, but such an approach has been carried out in various

settings by Weiss and Wolfowitz, LeCam, Hajek, and others. Under suit-

able assumptions on the unknown g, one can flnd an estimator of the

form t. or someth;ng similar, whose accuracy is asymptotically the
9,0 . '
same as that of the tg,n we would use if we knew g. o

The spirit of this approach, of constructing procedures by adapt-
ing their form to what the data seems to say about the error law, is
also used in a number of small sample-size stu&ies of "robust" esti-
mators. ‘ : |

Empirical Bayes estimators make use of adaptive estimation in
the estimation of G by é . It is also clear that a possible approach
to the construction of “good" estlmators of ¢ in the structural model
is to first estimate G by some G (x ooy Xn), tnen substitute Gn
into the estimator tG,n of'a that we would use were G known. In some
of the work in this setting, G is only estimated implicity; in other
work, explicit estimates are glven {e.g., Wolfow1tz s minimum distance
estlmator) _

Thus, the empirical ﬁayes model is not only connected with the
Bayesian formulation of inference problems but is tied in epirit'to
structural models and adaptive estimators. One may even ask if there
are some practical structural parameter problems in which the succes-
sive ei are of enough interest to be estimated along With 0. Empirical

Bayes methods can then be used.
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