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" ~13.

Let {Sn} be a renewal process, that is, Sn =

X.1 where
i

1

Xl,Xz,... are independent identically distributed non-negative

random variables with finite mean u and distribution function F.

Also, let f be a non-negative, bounded, Lebesgue measurable function

on [0,). If F is non-singular, then the following dichotomy holds.

(o]

Either E( 2 f(Sﬁ)) < ® or 2 f(Sn) = a.s.‘according as"f f(t)dt is
n=1 n=1 0

finite or infinite. If F is arithmetic with mass concentrated on

-0,,2},... , then the same dichotomy holds. The criterion is then
i : 0
- the convergence or divergence of z f(Ak). Analogues of these results
- k=1

hold if {Sn} is a random walk with drift. There also is an analogue

for Brownian Motion. In particular, if {S(t): t > 0} is Brownian

Motion with drift u > 0, then E(J £(S(t))dt) < = or [ f(S(t))dt== a.s.
. 0 0

according as f f(s)ds is finite or infinite. In the'épecial case
f = IA’ the indicator function of a Lebesgue measurable set A, the
above results deal with the number of visits of {Sn} to A and the

amount of time {S(t): t > 0} spends in A.



In the case ) f(Sn) = » a,s., Chapter II discusses the

“n=1
n .
existence of a rate of divergence for | £(s,). If Fis non-
k=1 ' ,
L x+M

singular and there exist M and § > 0 such that f f(t)dt > ¢

Lo . X

n
| ) £(S.)

- k=1 k a.s

for all x > 0, then —————— ° 7" 1 as n » «=. Analogues
— un >

1
m jo f(t)dt

of this rate theorem for the arithmetic case and for random walk

and Brownian Motion are also presented.



CHAPTER 1

. .
This chapter considers the convergence or divergence of

an infinite sum of values taken at an infinite sequence of

random points. The random sequence of points Sl’SZ"“’Sn?"'

will be a renewal process, that is, Sn = 'gl Xi where the Xi's
are non-negative iﬁdependent identically égstributed random
variables;v Let F be the common distribution function of the
Xi's (calléd the waiting time:distribution of the renéwal process),
and assume that u = E(Xi)‘< ©. Also assume that the function f

is a Lebesgue measurable function defined on [0,$)_and satis-
fyihg 0 f;f < B.

The iﬁfiﬁite-sum under consideration is Zl £(S,). The
event { Zl f(Sn)_= w} is a permutable'event. ngo by the Hewitt-
Savage Z;fo-bne law either ) £(s) = = a.s. or ) £(S) < = a.s.
We will show that under very weak assumptions on F that this
dichotomy'has.é simple equﬁyalent‘dichotomy. Namély; Z f(Sn)
is finite a;s; or infinite a.s. according'és fwf(t)dt.iQ'finite
or infinife. in fact, this dichotomy is even gtronger as‘is
indicated by Theorem 1. Later we will show-that‘analogous
results hold for random walk and Brownian motioniproéesses.

This problem has been considered before by Chung and Derman

" ([2]) and latef by Stanley Sawyer (unpublished) in the special .




case f = IA’ the indicator function of the Lebesgde measurable

0

set A. In.this case ) £(S,) is the number of renewals in the

set A and'f_f(t)dt =‘mA, the Lebesgue measure of A. The result
then says tgﬁt the number of renewals in A is either finite or
infinite a.s. according as mA is finite or infinite. Chung and
Derman obtain this result with the assumption that F has a bounded,

. : . . . .. .T :
continuous density which is in L~ for some r > 1. Sawyer assumes

only that F has a directly Riemann integrable density.

Theorem 1. ~Let {Sn} be a renewal process with waiting time
distribution F and finite expected waiting time u. Let f be a

Lebesgue measurable function on [0,~) satisfying 0 < f <B.

(a) If F is non-singular, then [ f(t)dt < implies that

o©

E(Z'f(Sn)) < o and [ £f(t)dt = » implies that Y £(S) = = a.s.
0 _

. (b) If F is an arithmetic distribution with its mass con-

centrated on the points 0,X,2X,... then Y f£(Ak) < « implies that
- k=0 »

=3

B( £(5)) < = and ] £OK) = = implies that ] £(S;) = = a.s.
- k=0

~The prdbf of the theorem requires a fundamental result of

renewal theory. Let U(x) = ) F*M(x). This function provides
L n=1 ‘ o

'a measure (the renewal measure) on [0,) defined on intervals by
U((a,b]) ) = U(b) - U(a). Throughout the paper, for any increasing
function D and any Lebesgue measurable set S, we denote the

measure of S induced by D as D(S).

_Rénewal Theorem. If F is arithmetic with mass pk'at Ak, then U

is purely atomic with mass u = Z p;n at Ak, and uk'+-%-as k > o,
R n=1 .



“»\k’ If F islpot arithmetic, then for any h > 0 U(feh,t] > %

as t +» ., (seé [5], p-347.)

Proof of Theorem 1, Z £(Ak) < =, f £(t)dt < =
K k=0
In the arithmetic case u > %u So Uy is bounded, say by M.

=]

) X f(xk)
n=1 k=0

. - EC] £
n=1

£(Xk )u

kEO k

<M ] Of(Xk),
k=0

which is finite if Z fFOk) < o,
4 k=0

The same proof works in the case that F has .a density which
is suff1c1ent1y well-behaved to.prov1de a bounded renewal density.
However, wé need not require this much of F. The following
lemma shOWS‘thgt under a much weaker condition on F, the fenewal

‘measure is essentially a measure with a bounded density.

Lemma 1. If F' is bounded away from zero on some interval, then
the renewal measure can be written’as a sum of two measures, one

. ' f_ finite and the other with a bounded density.

Proof of the lemma.

Assume that F'(x) > a > 0 for x € [a,a+h]. ‘Let

X . S
g(x) = o Ip, opy(®, 6() = fog(t)dt,‘and H(x) = F(x) - G(x).

H is an increasing function:



Yy
F(y) - F(x) - [ g(t)dt

H(y) - H(x) =
X
: ¥
> F(y) - F(x) - [ Fr(t)dt
X
>0
Ux) = § PP = I G+ HE)M™
n=1 n=1
- won . n-i
=11 G et
n=1 j=0 J
. G*M(x) + ) " (x),
I n=1
T e n 1 wnei
where M(x) = ) ) (He*I 1" (x).
n=1 j=1

- X
G*M(x) has density f g (x-y)dM(y), which we will now show
C 0 -

is bounded;
X . ,
[ g(x-y)dM(y) = « M[x-a-h,x-a].
0 i

U(Z,vvz+ }21-) = G+M(z,z+ -}-21-) + z H*n(;,z+ %)

> GeM(z, 2+ 0
h v
i+ 7 X ‘
S [ g(x-y)dM(y)dx
. A 0"
W
=a [. “ M(x-a-h,x-a)dx
Z

oh h
—7-M(z-a- Euz-a),

| v

since x € {z,z+ %J implies that [x-a-h,x-a] D [z-a-

By applying this inequality, we have

Z

h,z—a].



X . |
0 | » |
h ' 2
< UG 3,0+ UCxxe M1 =2 ute L Dy,

By the Réhewal‘Theorem, U(x- %3x+ %J'is bounded. Therefore

G*M has a bounded density. It remains only to show that
S D e
2 H "(x) is a finite measure,.
n=1 '
i) < ) HEN" < -,
.n=1 n=1

since H(x) = I-¢h < 1.

[+

Proof of Theorem 1, f f(t)dt < =
0

[= <]

We now assume that F is non-singular, that is, f F‘(t)dt > 0.
. o 0
Clearly we may truncate F' so that its integral is still positive.

In particular, let V(t) = F'(t)I (t) for an M so that

{x:F'(x) < M}

© o

X .
[ Vv(t)dt > 0. Now let D(x) = F(x) - [ V(t)dt.
0 _ R 0

. *Zi ; X <2 X ’ £ '
F7 o) = [ V°(t)dt + 2f F(x-t)dD(t) + D*“(x)
0 0 -

and therefore (F*z)'(t) z_V*z(t). Since V is bounded V*2 is

. ‘ *2 .
continuous, and (F 7)' therefore is bounded away from zero on.some

interval. The following equality allows us to exploit. this fact.

-2

EC )
n=0

£(s)) = EC§ £(s,) + ] E(£(S, ) IS, )
‘ n=0 n=0

EC } h(s,))
n=0

where h(s) = £(s) + [ f£(s+t)dF(t). [ h(s)ds < « if [ £(s)ds < =,
0 0 0



«\\\and S2n is a renewél process with waiting time distribution F*z.

So we may assume'without loss of generality that the wéiting time
distribution F has (almost everywhere) a derivative whiéh is bounded
away from zero on an interval. Lemma 1 now applies. Suppose the
decompbsition prbvided is U(x) = fx W(t)dt + Z(x) with d <W<A

‘ 0
and Z(») < =,

E( zl f(sn)j  ) jo £(s)dF*(s) = fo £(s)dU(s)

n

[ £(s)W(s)ds + [ £(s)dZ(s) < A [ f(s)ds+BZ(=),
0 0 0

which is finite if [ f(s)ds < =.
0 .

Proof of Theorem 1, X f(xk) = =
: k=0

-
t

 Let En = {QéQ : &k such that Sk =-An}, where Q is the underlying

probability space on which {Sk} is defined.
(1) L f(s) 2] fOmMI; .
, n
By considering the last renewal atvxn,
P(En)

k=>\n,X > 0)

i
Ne~18
e
=
N

_2 P(S, = A)P(X; > 0) = P(X; > O)u_.

Since u, > %-as‘n -+ o, by the Renewal Theorem, there is a ¢ > 0

and an N such that

(2) P(En) > ¢ for n > N.

e



We can now apply a generalization of a lemma due to Spitzer

(191, p. 317).

Y ,... be a sequence of non-negative random

| Lemma 2. Let Yl?-2""’ n
e . E[(SY.) .
variables. If E( 2 Y.) = o and lim = < lﬁ, then
yop i n->e n , = C
(E(} ¥,))
P Y, =) > e
Proof of Lemma 2
k k
Let B = { )Y >e ]EY, for some k > n}, e < 1.
i=1 i=1 .
n 2
P(Bn E) > - LR (by Holder's inequality)
’ 2 .
E[(EY;)"]
n n 2
{EQQY)-E(}Y,T )} noo,
= - T 2 ()" ———
E[(}Yy)"] E[(}Y;)7]
[ n n b .
P(EYi =) > P(ZYi > € EEY.1 i.o.) (since EY, = «)

=P(N B ) = 1lim P(B, )

‘n=1 ™€ N0 ’
: n
2
2 (EYy) 2
>(1-¢)” lim ————— > (1-¢)" ¢

N it 2
T ELQY; )
Therefore P(ZYi = ) > c.

Now we will verify that the conditions of Lemma 2 are satisfied

with Yn = f(An)IE , and the result will follow from (1).
n



E(} f(An)Ié ) =) fFQAN)P(E ) > ¢ ) f(xnj = o
..n '

by hypothesis..

. L1 L
By (2),'P(EiEj) f_P(Ei) f-E'P(Ei)P(Ej) if j > N.

n
) £(A)E(Xj)P(ELE.)
j=1 )

n '2 n
E[C ] £ )T ]
i=] 1 =

n

i=]
n 2 - i
(Zaf(xi)xﬁl) ) f(xi)f(Aj)P(Ei)P(Ej)
i , i=1 j=1
N-1 N-1 _ n n ‘
) FOL)E(NJ)IP(ELE) ) ) £fO1)E(AIIP(ELES) |
i=1 j=1 I jorj >N ' J
- R . 2 ' S
(2 EEQDT ) I 1 £ODE0HIPEIPES)
iorj >N ) _ 3"
2,20
. (N-D)7BT 1
(o}

n . 2 - .
0 Ef(AM)Ig ) o
n . 2
i E() f(xl)IEi)
Letting n + », Tim
e

I A
Q)

n
¢) Ef(Ai)IE.)
1

By Lemma 2 and (1), P(Z f(Sn) = o) > ¢ > 0. By the Hewitt-

savage zero-one law, z-f(Sn) © a.s,

fl
8

Proof of Theorem 1, [ f£(t)dt
: 0
We now assume that F is non-singular. However, noting that

Z f(Sn) 3{Z>f(82n) and that S2n is a renewal process with waiting
time dist-ibution F*z, we may, as beforz, assume without loss of

generality that F' > o > 0 on [a,a+h]. .



‘The proof of the infinite part requires a result due to
Doob ([3], p. 323). First-we will define an objeet which

appears several times in the paper.

Definition. If Yi5Y55eens Yoo is a sequence of random

variables and'ﬁz,j%,...,j%,... is an increasing sequence of sigma-

fields such that Y is & -measurable, then (Y, 4}  will be
' n=1 :

called a stochastic sequence.

Lemma 3 (Doob) If {Yn,jg} is a uniformly bounded, non-negative
: n=1 _ .
stochastic sequence, then Z Y (w) converges for almost all
n=1

w €Q for which z E(Yn+1LSﬁ)(w) converges, and conversely.
. n— o

By the lemma it is sufficient to show that X E(f(Sn+l)|Sn)=m
a.s \
. “ s +h ‘
Z E(f(Sn+1)|S ) = Z j £(S +t)dF(t) > a ] f f(t+a)dt.
Sy .
Let A = ((n l)h Eh— and E_ = {wen: Tk such that Sy € An} .

2

| v

a Z( min fs £(t+a)dt) I

(3) E(£(5_,1)1S,)
z p+1 | n SE U

©

a Z(IA5+1 f(t+a)dt)IEn

1Y

We can now épply Lemma 2 to conclude that the last series is

0

infinite a.s. if f f(t)dt = ». The same proof as in the arithmetic

case works. The cruc1al facts are that X fA ftt+a)dt = «, which
. n+l

is obvious, and that P(En) > ¢ for some ¢ > 0 and for n sufficiently



In this case the process Sy =

10

'large. By considering the last visit of {Sk} to An,'we have

_‘rzl / Anp(sr+k €A

*T
P(E) i ko= 1,2,...|Sr—s)dF (s)

T P, > MaEtT(s) = pox, > yu ).
rel An T+1 2 1 2 n

|v

By the Renewal Theorem, there is a ¢ > 0 and an N such that

P(Eh) >c for n > N. So by Lemma 2 and (3),

P(Z E(f(sﬁ+1) SA) = @) > ¢ > 0, and hence, by the Hewitt-Savage

zero-one law,lz E(f(& ) Sn) = ® 3.5,

n+l

| The Random Walk Case

The assumption of Theorem i that Xi > 0 will now be removed.

i
n
) X, is called a random walk,
=1

and the Xi's'are called the step sizes.

1

Theorem 2. Let {Sn} be a random walk with step size distribution

F and expected step size p, 0 < y < =, Let {Lk} be the sequence
of strictly ascending ladder epochs. Let f be a Lebesgue meas-
urable function defined on (-m,m),énd satisfying 0 < f < B.

(a) If F is non-singilar, then

L -1
©" I 0 ) @

( 1) [ f(s)ds < ®and B( [ [ £(s)ds) < = imply E( | £(5 ))<=,
o n=1$ T n=l -

n

L-1 w _

(i1) EC ] [ f£(s)ds)== implies E( [ £(5)) = = .
n=1l S n=1 :

n

(iii) f f(s)ds < = implies Z f(Sn) < ® a,s.
' 0 n=1

(iv) [ f(s)ds = « implies ) £(S) = = a.s.
0 n=1



(b) If F is arithmetic with mass concentrated at the points

0,+A,£2X,..., then

L,-1 -1
o 1 ©
( i)~ Y f(Ak) <~and E( )} )} f(Ak)) < « imply E( ) £(S,))<>.
k=0 .. n=1 sn _ n=1 v
L=l -1 k=3 . |
( ii) E( ) ) £(Ak)) = « implies E( ) £(5)) = =.
n=1 'sn n=1
oo. kz_x . o .
(iii) ) £(Ak) < = implies £(S)) < = a.s.
k=0 ‘ _ : n=1
(iv) ¥ f(Ak) = @ implies £(S,) = ® a,s,
k=0 n=1
Proof:

The proofs of the non-singular case and the arithmetic case

are the same. We will consider only the non-singular case.

o . © Lk+1
ECY £(S)) = ECLEC [ £(s)|S. )
: n=1 k=0 n=Lk+1 'k
4) © '
= E( ] g(5, ),
k=0 k
where .
- Lie1 Ly -
g(s) = E( ] £(5)ls; =s) = E(] £(s+5)).
n=L. +1 k n=1 o
, k o
g f_BE(L1) < o since p > 0, and {SL } is a renewal process

, k k=1 ,
with expected waiting time uE(Llj < @, (See [4], p. 380.) It

is also easily seen that {SL } has a non—siﬁgular waiting'time
k

distribution, if F is non-singular. Thefefore, from (4) and

Theorem 1, E( } £(S)) < = if and only if [ g(s)ds < =.
=l 0 g




Ly

[ g(s)ds = [ EC ] f(s+5.))ds
0 : 0 n=1 :
L
(5) = E(X f £(s)ds)
- n=1 Sh
Li-1 o
= E( Z j £(s)ds)+E(L, -0 f(s)ds+E(f £(s)ds)
. n= n L |
1

(i) and (ii) follow from (5) and the fact that
E(Ll) < o, | | B
(iii). By the Strong Law of Lafge Numbers the- number of
visits of {Sh} to (-»,0) is finite a.s. So, for the purpose

of proving (iii), we may assume that f(x) = 0 for x < 0. With

this assumptlon (5) 1mp11es f g(s)ds < E(L )f f(s)ds < =,

-}

[ g(s)ds < = 1mplles E( Z f(S )) < =, and hence

2 n=1
L £(S) < = a.s.
n=1 _ - -
(iv). By Theorem 1, ] £(S_) > ) £(S
[ £(s)ds = =.
0 L

Applications

As was mentioned at the beginning of the chapter, the special

case f = I, provides some Enteresting results. Let

N, = nZI I4(S,), the number of visits of {s,} to A. e

Corollary 1. Let {S_} be a renewal process with waiting time

distribution F and finite expected waiting time u. /
(a) If F is non-singular and A is a Lebesgue measurable
set, A C:[Q,m), then m(A) < = implies E(NA) < o and m(A) =

implies N, =

= © a.s.
A




(b) Let F be arithmetic with mass concentrated at the
points 0,A,2A,... and let A < {0,A,2A,...}. If A is an infinite

set, then'NA = o a.s.

Corollary 2. Let {Sn} be a random walk with step size distribution

F and expected step size p, 0 < p < », Let Ly

be the first
strictly ascending ladder epoch.
(a) If F is non-singular and A is a Lebesgue measurable

set, then

| L -1
. . 1 .
(i) m(A A(0,%)) <~ and EC ] m(A N (S5 ,0))) < = imply
n=1 -
E(N,) < =,
: L-1
(ii) E() m(A N (S,,0))) = = implies E(N,) = .
_ n=1

(iii) m(A N (0,#)) < = implies N, < = a.s.

A

(iv) m(A N (0,%)) = = implies N, = = a.s.

(b) For any set C < {0,*X,#2A,...} let M(C).denote the
number of members of C. If F is arithmetic with mass concentra-
ted at the points 0,+A,+2X,... and A € {0,%A,%2A,...}, then

- L;-1 |
( i) M{Xk€A: k > 0} <= E( ] M{rkeA: S, <Ak <0} <«
imply E(NA) <,
Ll-l

( ii) E( ) M{Ak€: s
n=1 . n

| A

Ak < 01) = w impliés‘E(NA) - =,

(iii) MDK€A: K > 0} = = implies Ny = © a.s.

If we spécialize further to the case A = (-»,0), then NA
is the number of visits below zero by a random walk with

positive drift. (1) and (ii) of Corollary 2 now combine to give:



E e §

Corollary 3. Let {Sn} be a random walk with expected step size u,
0 < p < «, and either non-singular or arithmetic step size
distribution. Let L1 be the first strictly ascending.ladder epoch.
' , Ll—l :
E(N < o if and only if E S < oo,
MNe o)) <= y if BC ) I8,
. We now use Corollary 3 to provide an example of the fact that,
although the number of visits below zero by a random walk with
positive drift is'finite a.s., the expected number of such visits

may be infinite.

! | .,
Example. Let p = E(X,) > 0, E((X)?) = =, and X; < 1. X, < -/t

L,-1 '
implies ) s | > %—. Therefore
. n=1 .
Ll-l 7 - Ll—l .
E2 Y Is D =/[PC ) Is | >=dt
n=1 N 0 n=1

> (X% > t)dt
-0
= E(DH) = =

/'
'1

So by Corollary 3, E(N(_°° 0)) =

The Brownian Motion Case

Theorem 3. Let {S(t): t > 0} be Brownian Motion with drift

u > 0 and f a Lebesgue measurable function defined on (-»,») and
satisfying 0 < f < B. [ f(s)ds < = implies that E(J £(S(t))dt) < =,
: 0 0 - '

[+ -] [

and f f(s)ds = ~ implies that f f(S(t))dt = = a.s,
0 _ 0
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~-_Proof:
o © n+l
J£(S())dt = ) [ £(S(t))dt
0. . n=0 n
n+1 o o :
f  £(S(t)) < B. So by Lemma 3, [ £(S(t))dt = = a.s. if
n , 0 : :

| 20 E(f2+1f(5(t)jdt|8(n)) = » a.s.
n= :

(>33

1 g(sm)),

o n+1 ,
(6) )} E(J  £(5(t))dt|S(n))
' n=0 " n : . n=0
where i :

n+l
g(s) = E(f £(S(t))dt|S(n)=s)"

1 :
E(J £(s+5(t))dt).
0 .

By definition of Brownian Motion, S(n) is a random walk with step

oo

sizes normally distributed with mean u. If f f(s)ds = «», then

© ) 1 l] = )
(7) [ g(s)ds = [ E(f £(s#S(t))dt)ds = E(f [  £(s)dsdt)
: 0 0 0 0 S(t)
-.z_f‘f(s)ds.- BE( sup |S(t)|) = =,
=0 0<t<l

since E( sup 1S(tj|) < w. Therefore, by Theorem 2 (a) (iv) and (6),
S 0<t<l .

- [ £(S(t))dt = » a.s. if [ f(s)ds = w.
. 0 o 0
Taking expectations in (6}, we have

(8 E(f £(S(t))dt) = E( } g(5.)).
0 n=0

As in (7), if [ £(s)ds < =, then

f g(s)ds f;f f(s)ds + BE( sup |S(t)]) < .
0 70 0<t<1



=)
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Letting L1 be the first strictly ascending ladder époch of

"S(n),

Ll—l Ll—l

0
E( Zi [ g(s)ds) < BE(C } [sm),
n=

S n=1
n

which is finite, by Corollary 3, if N =71 (S(n))
) (_m,O) n=1 ('?’0)

 has finite expected value. Since S(n) is normally distributed

it is easily shown that E(N(_°° 0))= z P(S(n) < 0) < =. So, by
: ? n=1

Theorem 2 (a)‘(i) and (8), [ £(s)ds < = implies E(J f(S(t))dt)<=.
: ) 0 0 5

In the special case £ = I,, A a Lebesgue measurable set,

A)
J £(S(t))dt = m{t > 0: S(t) €A},
0 v

or the amount of time spent by the process in A.

Corollary 4. Let {S(t): t S_o] be Brownian Motion Qith drift
u>0and A a.Lebesgue measurable set. m(A n (0,5))-< % implies
E(m{t z_Oﬁ ‘S(t) €A}) <=, and m(A n'(O,w)) = o implies
m{t > 0: S(t) €A} = = a.s. .

Corollary 5. If {S(t): t > 0} is Brownian Motion with drift ﬁ,

1

-© <y < o, then for any ¢ » ¢

E(ﬁ{?: §%£l € (u—e,u+s)c}) < w

Proof:

Emit: S8 ¢ Llely = Emit: S(t) - (u-e)t < 0}) < =, by

Corollary 4,-since S(t)-(u-e)t is Brownian Motion with drift e>0.

By symmetry, we also have E(m{t: §%El-> p+e)} <o,
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CHAPTER I1I

v
-]

In Chapter I it was shown that Zf(Sn) =« a,s5. if and

(o)

only if f f(t)dt = @, This fact suggests the following
0 : ,

[s.2]

question: In the case f f(t)dt = «, does there exist a rate
0 -
n
of divergence for Z f(S.) in terms of the partial integrals of
, . j=1 .
f. The answer, in general, is no, and a counterexample is
provided below. However, if in addition to the assumptions of

Theorem 1, f is not allowed to be small on progressively longer

intervals, then there is such a rate of divergence.

Theorem 4. Let {Sn} be a renewal prdcess with waiting time
distribution F and finite mean p. Let f be a non-negative,
bounded, Lebesgue measurable function.

(a) If F is a non-singular distribution, and there exist

: - x+M .
M and § such that [ f(t)dt > 6 > 0 for all x > 0, then
X ’ ‘
Jecs, |
£(S.)
J 3:5: 1 asn > w, !

-

un
L ftyae
Y7o

(b) If F is an arithmetic distribution with mass py at

Ak, k=0,1,2,..., and there exist m and & such that
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S S _ n
) f(s+xk)P;m > 8§ > 0 for s=0,1,2,..., then zf(sj). a.s. 1.
=0 *

k - _ - 1iun] o
L , 5.l f09)
i=1

Before beginning the proof of Theorem 4 we will show that
the additional assumption on f is needed. Let some waiting

times Xi have an absolutely continuous distribution with
= E(Xi) =0 (Xi) = 1. By alternatively taking f 'to be 0 and
then 1 on progressively lohger intervals, it is pdssible to

n
2

construct a function f such that
: : n
[ £(t)dt-

0

> 1, £(x) = 0 for

x € [nz,n2+n], and f(x) = 1 for x € [n2+n,n2+3n] for an infinite

number of n. For such an n

2
n +n n
I £05)) I £(s )'
3=1 j=1__’
P = - > 1
2 .2 i
n +n n

[ f(t)dt f £(t)dt
0- . 0

Z_P(S 2 € [n2+n,n2+2n], S ,. = n2+3n)
n n“sn

‘p(s‘

L€ [n%+n,n%+2n]) P(S. < n)
‘n o n -

) 2
5 y I S. -n

p(1_5:117r———-5_2) P (~—=

| v

< 0)
= =

# 0 as n > » by the Central Limit Theorem. So in this case

n
Zf(sj)

5 does not even converge in probability.
[ £v)de
0

* [k] denotes the greatest integer less than k.




The following theorem is the basic tool for the proof of

"Theorem 4,

Theorem 5. Let {Yk,ji} be a non-negative stochastic sequence.

Assume that there exists a distribution function G satisfying

P(Yy j_CLEi;]) > G(c) for all ¢ >0 and k > 1
and
| (1-G(c))de < =,
-0

3a.5.

=R
| p~113

(a) Then
k=1

(For i 5_0,_9? is defined to be {¢,Q} so that E(Ykljg)

(®) If, in addition, for some y > 0 E(Y, |#_) >

E(Y, [ %) > ) for k = 1,2,... , then

%
1 a.s.
> 1l as n > o,

o133

-k

n
kzl-E(YkLgi—m)

or in a more convenient form

%
1 a.s.
> 1 as n-» o,

e~

* k

-
BRIV S

Proof:

First cops;der the case m=1. Let Yk = YkI{kak}‘

ne~-1 8

k

(Yk-E(‘{kléfi_m)) 5" 0asn>w,om

1

<

P(Y,#Y. )= ¥ P(Y,>k) < 7 (1-G(k)) < m(l-G(c))d ®.
1 Kk kzl k _kzl _fo C<

1,2,...
E(Yk).)
(or

vy
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Therefore, by the Borel-Cantelli Lemma, Yk=Yk except'finitely

often. Hence _ _ ,

n
-1 5 5 a.s.
= Z (Yk-Yk) 5 0 as n > oo,

Let Z be a random variable with distribution G.

]

E(Z) = [ (1-6(c))dc < =,
0
p D , .‘_ - ;D
;kzl(ﬁ(ykl.%_l) - I:(YkL/k_l)) = szlE({ I{Y >k}|5' 1)

as n =+ o,

it~

1
L Z
25 E(ZI

1 {Z>k}) >0

k
I L
since E(ZI{Z>k}) + 0 as k > @ by the Dominated Convergence Thecrem.

So it suffices to show that

e~

=N ]

(Y, -E(Y ]5* )) 250 asn->e or, |
Ko Kk k-1 ) ] o
;A

by Kronecker{s'LEmma, that 2 ( ” ) converges a.s:

s}

For any stochastic sequence {w jﬁ} z W converges a.s. if

8

z E(W Lgr 1) converges a.s. and z o (W ) < o, (See (5], p. 387).
k=1 k=1 .

k- Tk
kzl B 1) = 0
YV -E(Y,|F ) e i o
I A < ] S B ¢ el ] Lea< ..
2 V2 2
E(T) = E(Yy I{Ykik})’ = fOp(Yk I{Ykﬂd > c)dc
K% k2. : k

<[ P(Y, > /Ode < [ (1-6(¥e))de = 2 c(1-G(c))de
0 0

| 2.2 2 2,
= foc dG(c)+k“(1-G(k)) = E(Z I{Zik}) + kKS(1-G(K))
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12 R
E(Z) < « implies — E(Z2"1 } < ». (See [5], p. 239.)
. kél k2 {Z<k} . o
| 1 2 q [
~5 k°(1-6(k)) < [ (1-G(e))de < =.
1 k™. 0

He~18

k

e E(Y, 1%
Therefore z 02( k k
k=1

k-1

) < =, and part (a)-is proved

for the case m=1.

-The proof now proceeds by induction on m.

R , o .
(2.1) ] |
1 P ) . .
iy kzl(E(Ykl‘gi-m)—E(E Y IE D IE (me1y))-
B 5 - BEOL I DIZ
< E(E(Z) |-'§§;_m) < E(2) < .
So {E(Y ng } is a stochastlc sequence, which is bounded in

Aan even stronger sense than that required by Theorem 5. Therefore
.the second térm in (2.1) converges to zero by épplying Theorem 5 for
the special case (m=1) already proven true. The first term in (2.1)1
converges to zero by the indﬂ;tion hypothesis.. This concludes the
proof of part (a). | : : : 
Part (b)ffollows from part (a) by elementary properties'of

sequences of numbers.

Proof of Theofem 4

We may assume that f < 1.
By'appiying Theorem 5b we will show that it suffices to prove

Theorem 4 with f replaced by a function o which has some useful
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'\“\pr0perties. Let gm(s) = E(f(Sk+ﬁ)|Sk=s). In the non-singular
case, if m is sufficiently large, there exists a > 0 such that
(F*m)' > o on some interval of length M, say [a,a+M].  Therefore,

L a+M
gm(s).= ['f(§+t)dF*m(t) > a f f(s+t)dt > a 8§ > 0
0 a .

n
| ' Ef(Sk) a.s .
by hypothesis. So by Theorem 5b, 3 5 " 1 as n > «=, We also
Jg,, (S,)
un
f(s)d
fO (s)ds | un |
have T R + 1 as n + », since f gm(s)ds >a énand
[ g (s)ds 0 |
0 _
un ' un un un’
|J g (s)ds - [ £(s)ds| =[] E(£(s+S )ds-[ f(s)ds]
0o - 0 0 ' 0’ :
Sm+un un
= |E(f £(s)ds - [ £(s)ds)|
S 0
m
Un+Sm Sm N ,
< [EC(f © Tf(s)ds- fo £(s)ds)I g <un}|+unp(bm>un)
Hn m= )
.:t_ E(Sm) + unP(Sm > un)
.g n -
(5,) T£(5,) -
Therefore, - gtn k a;s. 1 implies that unk- a;s. 1.
1 . 1
- [ d - f(s)d
- fo gm(SJ 5 . J'O (s)ds

In the drithmetic case the same argument shows that we need only

consider

ne~-18

, where gm(s) =

k

' f(s+Ak)p;m. In this case
1 .

gm'Z_G >0 by hypothesis;
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_ So in eithef case we may assume without loss of generality
that f is bounded away from zero, say f > y > O.

Now assuming that F is non-singular and f > y > 0, we continue
to apply the technique used above to replace f by a uniformly con-

tinuous function hm. As in Lemma 1 of Chapter I, F can be written

. X .
F(x) = [ g(t)dt + H(x), where g(t) = F'(t)I{Fl(t)<N}(t) and
0 - J=

: X
HFW) < 1. F(x0) = feqm(t)dt'+ B (x),

. .. m . .
where q (t) = 7} (?)g*J*H*m‘J(t)
J:

*2 % my #§-2  am-j.
g0} Clg 2 SH Ty (D)
BNTE.

and

1 *m

(x) + H "(x).

mG*H*m-

X
B, (X)

. . R *2 . . P L
q, 1s continuous, since g = is continuous. Bm(w) > 0 as m > =, since

H() < 1.

By applying Theorem 5b we have seen that f may be. replaced by

g (s) =~fof(s+t)dF*m(t) =h (s) + % (s),
where
h_(s) =.f6f(s+t)qm(t)dt and 1_(s) = fof(s+t)dem(t).
n - n n n - 1 M ’
' ' - h_(s)ds
2 ) UG I, By J P

1 , S T 1M 1 M
m / Of(s)ds 1g, (5,) th (5) = fo h_(s)ds i-fo g, (s)ds




The first and last factors cbnverge to unity for any m , by the

previous discussion.

n » n
h,(S,) ) - 12, (5,) "Bp(®) By ()
“'n — ny Ty ¢

n . .
len5) - le,(8)

which goes to zeroc as m -+ «, Similarly

The:efore if for the third factor in (2.2)

i
h (S,)
m'k a;s. 1 asn+o,

1 M
—-f h(s)ds
L _

n

Zf(Sk) a.s.
un >

L1 g(s)ds

Wiy

then l1 as n -+ =,

It is easily shown that hm(s) = f f(s+t)qm(t)dt is unifdrmly
. _ 0 _

continuous on [0,«), since f is bounded and qm is continous. So
we may assume without loss of generality that f is uniformly

-continuous on [0,«),

24
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."Existence of a Rate of Divergence

If there does exist a sequence of constants {cn} such that

;1 0 - n : n : :
N {f(s ) 2 1, then Xf(sj(wl)) and {f;sj(wz)) grow at the same

rate for almost all pairs (ml,mz) € 9xQ, where Q is the underlying .
probability space. We will use the converse of this statement to

show that there is a rate of divergence. For any w=(wl,m2) € axQ,

let §;(w) = Sj(mi):and 5} (w) = 5,(w,), so that {5} and {S}} are

independent renewal processes with the same distribution. If

n
f(S.
Y£(S.)

+. 1 for almost every w € QxQ, then for some particular wr €0

n
Zf(sj)

-
'
v

n onc
LES; (o)) FECS; (w))

> 1 for almost every wlaﬁ'ﬂ. That is,

n n -
LE(S (wp,08))  FE(S;(0))

. n
the constants < Xf(S (m*)) serve as a rate of d1vergence
' Zf(s as
Therefore 1t w111 be our goal. to show that ——-—JL—— 5 0 1.
‘ ’ f Sty

The proof of this fact is greatly simplified if the waiting

-times are assumed to have an arithmetic distributioﬁ,'and the idea

behind the proof. for the non-singular case stands out clearly in the

proof of the arithmetic case._

The Arithmetic Case

Let X, = S.-S, . and X! = S!-S! _, where S, and.S., are the
o1 i-1 J j 7i-1 , J J

renewal processes defined above. Now we define a Markov process



’~miMj} and some associated stopping varisbles N, , T, and T .
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k

[+

Let Mo=0, UOnO, DoﬂO angd let {Aj} be a sequence of independent

o | j=1 |
events such that P(Aj) = P(A?) = %—and Aj is independgnt-of

M, M,,... .M,

1) 2, ']’- Let

j-1

: i)
U.= i | _ , D=V 1 _n aC
j {M,_1<03UIM; _1=0,A;}" 7 5Z; (M; ,>03U(M; ;=0,A[}

i=1
Mo Xy if M <0
- __--l : . \
M,y =4 M, xDj+1 if M >0
1 T RS L S JES fe if My=0,
B M j PR

' = i '\‘ I = L= = !
Nk kth j such that Mj g, UNkl Tk’ DN Tk‘
The Markov process {Mj} and its return times to zero {Nk}

imitate the procedure of searching out the increasing sequence of

values which are attained by both renewal processes {Sj} and {S%}.

=5, -S! . At each j, M,

U D
Note that Mj = Z X, - Z X! j+1

is formed

as follows: .(3)"If Mj < 0 or equivalently SU < S! then add

D.’
XU.+1. (b) 1If Mj > 0 or equivalently SU. > SD.J then subtract
: J J .
- 1 . . - . o - y .
XD-+1. (c) If.Mj = 0 or equivalently SU. = SDR’ then. we choose, with
J J J
‘probability %-eaéh, to either add XU or subtract Xé e In any case
' j j

we seek the next j such that Mj = 0. For at this sequence of return

. . . _ -". L ' .=' .
times to zero {Nk}, MNk = STk ST],< and‘hence STk STﬁ. So we record

another value attained by both renewal processes.
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With these definitions it is obvious that each of {Nk_Nk—i}’
{Tk;Tk—l}’ and {Tﬁ"Ti-l} i5 a sequence of independent identically
distributed random variables. It is also clear from symmetry that

- ' - 1 ) . . .
Tk Tk—l and T!-T 1 have the same distribution.

k "k- _ )
We can now begin the proof. We will show first that
n o
) ) f(8.) *
k=1 j=1, j+1 0 | .
N - 5" 1 as n » «, and then that this .
n k '
11 fep
= j=T?
k 1.3 Tk-1+1 _ n
PG
convergence implies ﬁ———l—-+ 1.
f(s!
IR HCh
Let ¥ be the o-field generated by S ,S.,...,S.. and
k -7 T 1772 T
: Tk k
1 1 3 - £ 3
51’52""’S+" Now apply Theorem 5b with Y, = ) f(Sj). Since
k J=Tk_1+1

£ 2 v >0, E(Y [ZE) 2 BTy (IZ ) = vE(T) > 0. Since f <1,

Y, ST T 1 < N -N, _;» and hence P (Y, E_CLﬁi_l) > PN N f.clji-1) =

P(N1 < ¢). In order to verify all the hypothesis of Theorem 5b, it

Temains only to sﬁow that f P(N1>c)dc = E(Nl) < o,
0

It is easily verified that zero is a recurrent state of the

Markov process, and that the Markov process {IMj|] has stationary

RN
LN

initial probabilities ™o where

(1-p,) °° P
0 1 -]
- . . P N = 1,2,
, N ,
Therefore E(Ni) = —TTfétT- < @
* B i
_ ~ T
If T, = Tk-l’.then . ) +lf(Sj) is defined to be 0.

k-1
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So, by Theorém S5b, we have

o

. Tk
) f(s )
k=l 3=y a.s.
T > 1 as m-~> =,
] k -
kgl E(.;T'Z +1f(sj)|gi-1)
B O
Similarly
m Ti'
R )
k=1 js"{"- +1 . »
-1 a.s. ,
1v : > 1 as m > o,
m 'k
LEC -} f(s*)L,
- =T
k=1 j Tk 1+ )
Tk o
E f S." =
('=T ) " ( J)Lgi—l) h(STk_l), where
1= k-1 | |
Tk Tl
h(s) = E( z : f(S.)|ST =s) = E( 2 f(S+S )).
: . j
. J=Tk_1+1 k-1 j=1

We get the same result for the terms of the other denominator.
T 1 . 1
T1

K
E(C ¥ f(S')[S', =s) = E( ) f(s+S!))
j=T£_1+1 k-1 j=1 J
| T, .
= E( ) f£(s+S,)) = h(s),
=t |
since (Sl,Sz;,Q.ESTl) and (S!,S i, . T') haye the same distribution.
T
E[ ] U SULRICIR R IC
§=Ty _#1 J k-1 k-1
Ty
= E s)lsz L1,
[ =Tz +1f( J)Lgi“ll
k-1
since S, =S
o Tkar Ta
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Combining these results we have

Tm : m Tik
S
} £(5.) Lo £
. j k=1 j=T1 +1
=1 .- _ k-1 a.s. -
T = 7 5 as m > o,
m k.
) {ChE ) Yy £
=t Y kel gemy a1 )
For any n there exists an m so that T"l <p < Tr;wl
T T'
' o
n E £(5;) + X £(8,) + ) £(5))
) £(8,)  3=1 3=T jeTt
£(sH)y '
L £65p) I £
j=1 37
T
m
_T! [ _T
< z fc%j) . le Tm| . Tm+1 Tm
— ¥ L ?
f(s!
EACH)
T
m
T A e - |
Fr— = - 1 435 0 by the Strong Law of Large Numbers.
m m
S,;,,
m
T T
T! T ml o m .
m+%' = =0 = i a_;s. 0 by the Strong Law of Large Numbers.
me m '
m

Zf(s

Lettmg n and hence m -+ = in (2.3), 11m ——-——J— < 1.

=

Zf(s'
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e . . T T! T!
~. . m+ ] m+1 E
n L Ofs) + § £(8) - ) £
ey 5=t 7 gm0 g T
@9 5 o= Thel
S! '
Ly BRI
: 521 j
Tm+1
- T
5 z f(sj) . ’Té+1 Tm+1l _ Tm+] Tm S
- 1
Tﬁ+1 : Tx;1+l ’ Tm+1
. £(5;]
L EEY
n
o ) £(S.) -
Letting n-and m » » in (2.4), lim E—wmmlu~3_!; Therefore
| A I
J
n
Y £(S.) as. |
o 5> 1. This completes the proof of the existence of
E{CH

a rate of divergence in the arithmetic case.

The Non-Singular Case

Now; following the outline of the proof for the arithmetic case,
we will show that_there is a rate of divergénce in the non-sinular cage.
The.Markov process {Mj} and Uj and Dj are defined exactly as before.
However, since the event {Mj=0} may have probzbility zero for all j,
new stQpping‘variables are defined. For any £>0, let»Nk(e) = therkth
 j such that Mj.E [-€,€], and Tk(e) =U

and Ti(e) =D '{Mj}

Nk(s) Nk(e)'

and {Nk(s)} play the same roles as in the arithmetic case. However,
it is no longer frue that each of {Nk(e)-Nk_l(e)}, {Tk(e)mTk_l(e)},
and {Té(e)-Té;l(e)} is a sequence of independent identically distri-

=S = -
T ST MN € [-e,e],

buted random variables. Alsc, we now have § .
: k "k Tk




A T e

~

_rather than ST ES%,. Even with these differences, the situation is
~ - ) .

k X

similar enough to the arithmetic case that the same idea provides a

proof.
Again 1et97k be the sigma-field generated by S]‘,,S>2,...,ST and
. T2 "
Si,Sé,...,S,i,,.’ In this case we will apply Theorem 5b with
| T (e | |
Y, = Y £(S;). Recalling that we may assume 0 <y < f < 1,

J=Tk°1(€)+l

Yk 2 (T (&)-T, _;(€3)v, and hence

{3

E(Yk lgk-r) E(E (Yk I‘gﬁ.nl) Ig}i-r)

iv

YE(E(T) (3-T, _; (8) ”Nk_l(E))Lgi“r)’

Note that T, (e) —Tk"_l(e) is the number of upward jumps of the process
{Mj} between the times of the k-1st and the kth entries of the process
into [-¢,€]. It is clear from this definition, that for e sufficiently

small there»exi_st.s Y(e) > 0 such that E(Tk(e)-Tk_l(E)l_MN e)) > Y(e)

- k-l.(
for all k. Therefore

(2.5) E(Yklljf('_r‘) > yp(e) > 0 for all k and r.

Y, 5_Tk(;)-rk_l(s) < N (€)-N,_(e) implies
P(Yg §.¢L9§-i) > PN (e)-N, _(e) §_c|MNk;1). Let Q(;1 = the first
j 21 such that My € [0,¢].
: p(Nk(sj-Nk;l(e) ilclMNk_1=x) = P(N (¢) E“C!Mozx?‘ s
| ipﬂud.icmwm)fM‘xé[OﬁL

The last inequality follows from the reasoning below.
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- Consider»twb samplé paths of the Markov process-{Mj} which are
identical excepf fhat one starts at ¢ and the other starts at some

x € [0,€]. Reféf to these paths as the e-path and the x-path,
respeCtively..gThe two paths will remain in phasé, that is, the
e-path willlreﬁain e~X units above the x—path; except iﬁ the event
that the e—path>enters [06,e] and the x-path enters [-€,0). For in
this case thé upper path would be headed down and the lower path
would be headed upward. As lcng.as the two paths do remain in phase,
if the e-path enters [0,e] then the x-path must enter [-e,e] at the
same time. So in any case the x-path entérsvt—e,e] no later than

the e-path enfers [0,e], or equivalently, Nl(s) evaluated on any
x-path is less than or equal to Q(e) evaluated on the corresponding
e-path. Therefore P(Nl(e) §_c|M0=x) > P(Q(e) f_CIMO=E) for x € [0,;].

Similarly for x € [-¢,0],
PN, (): < cMy=0) 2 P(R(e) < e[My = -¢),

where R(e)=the first j > 1 such that Mj € [-€,0]. By the symmetry
about zéro.of the Markov process,P(R(¢) :_CIMO='€)=P(Q(E) f_c]M0=a).

Therefore
(2.6) POY, < el ) 2 P(QLe) < c[My=2).

In order to éomplete the: verification of the hypotheses of Theorem 5b,

we need only show that f {1-G(c))dc < «, where G{c) =.§(Q(g) f.ClM0=€):
0 .

or'equivaleﬁtly, thét E(Q(e)]M0=e) < »,
If F is aon-singular, {Mj} has a stationary distribution w with

density -
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~ . 2“ 5 yi(}
T (x) = » ﬁ_
LFCx) » y <0 . (See [6], p. 11.)

If 7 is used .as an

(i.e. P(M0 <e) =

0, ¢

v

i3

Let H{x,y)

\'

> E(Q(e) 1!

initial distribution for the Markov process

m{c)}, then

E(Q(e) [M, € [0,€]) (See [1], p.123.)

iqeys2y My € 102D

g 1T Vi €
BN g 0y523 M) M) 11y € (5e1).

P(M, < x, M, 5_ylM0 € [0,e]).

._.f f ' E(Q(E)I{Q(€)>2}IM1=X,M2=)’)dH(X,}’)

-0 ~

[ [ o EQe)Mp=x,M,=y)dH(x,y)

x,y € [0,¢]

Eor e sufficiently

g (2+E(Q(e) |M =?))dH(x,Y)-’
€ c 0

X,y [0,€]

small H(x,y) has a density which is :positive

if x is in a certain sub-interval of (-~,0} (in particular, those

values which can be reached by the process in one downward jump

from any point in [0,¢ and y is in a certain intsrval of the form .
Yy P y. .

[e,e+a] (in particular, those values which can be reached from [0,¢]

by one downward jump followed by an upward jump). Thérefore from the

integrand of the last integral, we have E(Q(e)|M0=y)_< « for almost

every y € [eg,e+a].

y > & implies Q(y) < Qfe). So EQQU)|M,=y) <

' E(Q(e)|M0=y) < ﬁ, and hence E(Q(y)lM0=y) < @ for almost every y > 0

in a neighborhood of zero. This is sufficient for cur purposes; that
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Tds, theihypothéses‘of Theorem 5b are now verified for
T () .
Y, = ))  £(8.) and almost every €>0 in a neighborhood of zero.
. j=_Tk_1(€)+_1
So, by Theofem 5b, -we have for any r (the g's are omitted to

simplify the notation)

m Tk
) Y f£i8.)
, k=1 j=T, ,+1 s
2.7) T_ 5 1 asm-> »

e 1 el
EC £(50155 )
k'lv' j=Tk_1+1 J k-1

By symmetry, for any r

1

m Tx

L1 sy

, k=1 j=T} ;+1 J as.
(2.8) T 51 asm-> o,
Fec 1 esnlg )
E( ' :
k=l j=Ty 41 O KT

k-1

1

! We will now show .that the ratio of the denominators of (2.7) and

(2.8) can be made arbitrarily close to one by taking r large. First

set
- ‘ '
Gi 5 (c) = P(My f_clMons—s') and
: r-1 N
S T . »
r - .
(2.9) h(r,s,c) = E( ) £(s+S;  + i Xi)|MN” =c).
) - = +1 r-1 4=T_ ,+1 r-1
r-1 r-1 : ,
Y
- (o8 I
E‘i:T ! +1f(Sj)l9i"r) i gr(STk-rsuTﬁ—r?’
k-1 :

"where



il
o]
~
~3
iy
s
[€9)
;4
(¥l
—3
L]
[74]
[¢p]

g,.(s,s")

-E('f £(s+8.) [M_=s-5")
.j=2+1g30_

A
LI}
m
~~
o
~
~13

£(5+S.) | Y|M =s-51)
21 3 MNr—l 0

W
h(r,s,c)dG; 5 (c) .

n S
P - ] .

~-E

Now consider the denominator of (2.8).
T

!
' k
EC ) f(S3)|ST =s, St, =s')
3=Ty _;*1 Tk-r k-1
T
T
=E( ) f(s'+S!)|M,=s-s")
) +1 ] 0
J=T._ ,
o . .
. € I ). - s_sl
= [ E( Y o f(s'est, + ) X!) M =¢)dG (c)
- =g §=T! _+1 Tr-l i=T? 41 ° Nr—l r
_ -1 r-1 :
T : S
. € T % -y 4n5-s"
= E( . I fls'ssy, + X)) M = -c)d6 T (o).
-€ J—Tr_1+1 r-1 1=Tr_1+1 r-1 -

The last equality follows from the symmetry about zero of the Markov
process and the symmetry in the roles of {X;} and {X} .

The last expression will be shown to be approximatély

8 Qe [] :
f h(r,s,-c)dGS s (c). Since f can be assumed to be bounded away
-g oo ’ )

from zero and uniformly continuous on [0,x), and



. ;\|(5 1 +S,i,

, )-(s#ST-l )| < 2e, we have for any 4 > 0 and ¢ sufficiently
r-1 r-l '
small :
Cf(seSp ¢ i X,)
_ : » r-1 i=1 1+1
1 - A < — ; Link <1+
~f(s'+S), + X.)
Tryg=1 " +1 !
r-1
T .
€ - T - s-s'
[ EC ] f(s+S, + i X.)[M, = -c)dG. 7 (c)
. T . 1 N : T
-€ J=Tr_1+1 r-1 1=Tr—1+] r-1
1-4c¢%< . — — < 1+4
€ R j sog!
[ EC ) f(s'+sh, + % XMy = 2067 (<)
-e  j= . +1 r-1 i=T_ . +1 r-1
CTr-1 r-1
o q,.(s,s')
li- A < <1+ 4,
—e_(s,s') —
T
where
: o T . . :
K s € T s-s'
q,.(s,s") = [ E( y £(s+S;  + i X; )My = -c)dG_"7 (c)
T -g  j=T_ ,+1 r-1 i=T_ .+1 =~ ~r-1 _
: r-1 , r-1 :
.‘ . e - '
-=.f h(r,s,-c)dGi S (C) ]
and . o !
. - T - . _
e.(s,s') = [ E( ] f(s'+s1, + i X)) My = -e)d6_ 7 (e) .
: - -E j=Tr_1+1 r-1 i=Tr_1+1 -1 :

1

m

D T - |
% : <1+ A fore
m ;

o

=1 _ k-r

sufficiently small.
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s-s' . . e e
~ For large r, Gr is approximately a symmetric distribution

. . € et
function, so that (s,s') = h(r,s,—c)dGs s (c) is approximately
at q. T PP
- E .

: . € et .
equal to gr(s,s') = f' h(r,s,c)dGi S (c) for large r. This fact and
- - -€

(2.10) combine td give the desired estimate of the ratio of the
denominathSjofl(2.7) and‘(2.8). The following lemma makes these

- approximations rigorous.

Lemma 4. There exists a stationary distribution I for the Markov

o

such that there exists a B8 > 0 and an n < 1 such
r=0 . ' o '

~ process {My 3
by
that
2.11)  |P(M, € A[M =s-s') - T(A)]| < 8n¥
) | MN_r-‘l M, <

for any Borel set A. Furthermore 1 is a symmetric distribution.

232255 By a‘Theorem of Doob ([3], Case (b), p. 197) if a MarkoQ process
has stationary transition probabilities P(A|x), whose absolutely con-
tinuous compbnent has a density p(y|x) such that p(ij) > o >0 for

éll x in the state space and y in some interval, then there exists a

I and an n < 1 such that |P(r)(A|x)—H6A)| :'Bnr for all A and all x

in the state space. If we apply this theorem to thé Markov proéessv

{MN }  we obtain (2.11). The theorem applies to this process if
r r=0 . ‘

dGj (c)
de

is bounded aﬁay from zero for x,c € [-¢,¢c].

Recall that F'(x) > a > 0 for x € [a,a+h]. Without loss of

generélity we may assume that a > 0. For x < 0, ¢ € [-¢,e], and

h}'

e < min {2, &
2’ 9



B R T - O o
"‘ZTP(MNI E.[c,c+A]|M0—x) z-Z'P(leZ’MZ Ev[c,CfA]lMl—x)

L e e

N P(x+X1 > e,x+x1-Xi € [c,c+4])

[F(y+x-c)-F (>i+x? C°-A) 1dF (y)

"
N Ly
—

©  y+X-C

f F' (w)dwdF (y).
€-X y+X-c-4A

D>
—

>

[y+x-c¥A y+x-c¢ ] C:[a ath] if and only if a-x+c+d <y < a+h X+cC.
a> 2 and c > -~ 1mp11es €e-X < a-x+c+A. Therefore
y+x—c‘ a+h—x+c : , \

o PmadRy) >5[ andF(y)
~ =X Yy+X-C-A a-x+c+A

DIH

a+h-x+c
>af F'(y)dy .
z;a-x+g+A

'a+hég¥c Z.a;h—s >a+ §g- © and

a4x4c¥A-§ha+3e j;a + %—.
T R a + §h
ath-x+c .- . . : 9 2 5h
of By zef o Frydy 2 o7 ()
a7x+c+A . a+ 7

v

—-P(MN € [c c+A][M =x) __d2(§29 for x <0, ¢ E'[-E,e].

Lettlng A > 0

BT IS | |
o -—%E—f-__ 2(529 >0 for x <0, c € [-¢,¢].

dcX (c) _
By a 51m11ar argument it follows that éc is bounded away

. from zero for X >‘0 and ¢ € [-e,e]. This proves the first part of

" the lomma.




Rt

sy b(MN 5_c|M0=sfs') P(-My 5_6|M0=s'isj
‘ r o S )

P(MN 3-;c|M0—s';§).
T

Letting r + =, we have N{-¢,c] = N[-c,e]. So N is symmetric.
Now we can show that
e (s, - Tq (5,8
£ . ,-5=-s' € nS=s'!
= lf h(r,s,c)dGr (c) - f ‘h(r,s,—c)dGr (c)]
-€ o -€
is Small if rbis large.
h(r,s,c) :’E(Tr-Tr_1|MNr-1=c) < E[Q(e) [My=e] < =,
Let B be an uppéf bound for h and let

n-1." Bk

. (r,s ) = ) 1 ' )
: Qn Z0 ez EE-< h(r,s,c) < (k+1 }

€ ot € '
1] M50 (@ - [ Q (s @] B s (0= B

et A o -€ E:

g € . t € .
[ Q(r5,0d67° () - [ Q (x,s,0)dI(c) |
-€ : -€

n-1-

onal ;

- 1 e onltte: & <nr,s,o ¢ By,
k=0 :
Rl o g (m-Un . r B r

] B Bmebn e By,
k=0 . '

lj Qn(r s, c)dH(c) - f h(r s,c)d(e) | < f —-dH(c)

:|w

Therefore

€ el € | .
If h(r,s,c)dGi s‘(c) - f h(r,s;c)dn(c)|‘< 2B + —%(n—l)nr
R . - .



First take n large and then r large. We have

=

sy
P4

€ et N o
I hizis,e2d6) 7" (@) - | nix,s,c)di(e)] <
-€ - -€

for sufficienfly large.

By the same argument we have

€

e s .
If h(rjss“c)dﬁi_siic} e f h(}_"’s,—c)dn(c)l l%
- -g »

for r sufficisntly large.

o o AL N1 S
Therefore for r lavge

| € cuct , € o g !
|gr(s,5')-qr(s,5')|=|fw€h(r,s,C)dG; ® (C)-f_sh(r,SnC)dG; ()|

€ € .
< e+l h(r,s,c)dn(e)-f h(r,s,-c)di(c)| = e',
: - -€ .

since Il is symmetric about zero.

h(r,s,¢) 2 E((T-T, )My =c) > vi(e) > 0, by (2.5).

r-1
. 7 . € S-5' :
g (s,5") [ hr,s,0)d67° (o) '
1 |s| =£ -1 <« —S— =2
q.(s,s") € ot — y¥(e) .
J h(r,s,-c)d6 " (c)
g >

for the appropriate e€'. Therefore

m
L g5 5%, )

{2.11) 1-4A 5'rm1_ r-k Tk < 1+4 .
Ya(s. ,s%, )
k=1 ¥ Tr—k frex

From (2.10) and (2.11), for any A > O there exists €

small and r large so» that for all m

40



T Tk M
E FI8YIE5 ) =
kgl (3= iz°+‘ I L Te(sy L8y )
¢ v . . A o ?i‘w
(2‘12) ,_Le'd = A;ll 7;«,7) KT |
m k T
1yl @ z e (u ,S%' )
kZIE(}=T'z +1f(dJ)L”k-r) k=1 ¥ Tk-r Tk-r

£ [(1-0%, (1+1%],
>Tm mo T | m Ty '
, crat _
£(S;) kZl jeT ! ¢1f(s?) kZIE(i=T‘2 Liitsj)Lgi'r)
I -1
' - O
Tm m Tl‘g m Tk
£8P TEC 1 fGPIFY L PERACH
1= = i = = =T} .
j=1 k=1 j T’k__l+l k=1 j Tk_1+1
To )
¥ E( DR {C IR
kel geT el KT
4 ' ' 1
‘, , n Tk
) E( Y} fSHIZ )
k=l j=Ty j+1 ) k-t
By (2.7), (2.8), and (2.12)
T T
m m
) £(5,) y £(S)
lim =1 ) )
1"Aim+oo, T -— < lim 57 - < 1 + A
m nro M
§ O£ y f(S%)
j=1 . j=1
From inequalities (2.3) and (2.4), in order tobprove
n
Zf(S ) m a.s ‘*;w»l a.s
- + 1, we need only show that g+ [ ' 1 and - Jr::“ L
Xf(s') m 23

41



- Without the arithmetic case assumption we no longer have ST =S5
‘Tk'Tk p} and {T2-T _{} 272 no longer independent sequengesu
- 8 St
T L
_m m
[0 ST S.. -8
T T m IS
oL m . m Cm e
Fir = —=2 — and l s < >0
Ti S ‘ &7 I = &
m T Pt T
_._!E m m
T
m
. ' TW-
Therefors by the styong law of large nugbers s > 1
. n
et §

We have alruady shown 1nd11ect1y (sue page 31 ) that the

" hypotheses of Tﬁeorem b are %atlsfled for Y Tk ke 1 Therefore
| ""/
(kaTk-i

E(T k-l’MNk_l)

)

N lasm-> o,

o~
i1 i ~3
_b—'
W
w

=
—

Yv(e) < E(T,-T, 1IMNM) 525(Q(e)|M0=s) implies

T .
- E(T, - )
k=1 K k-1 MNk=1 a.S.
- e N 1.
Y OBE(T,-T, ;M. )
LI S A
\
Therefore ?jl =1,
m
yffs ) . _
So we have shown that H"J'Mm'. -1 and Kence that there does
Zf{&%}

TR



v
_exist a rate of divergence for i f(Sj).

pad

IE@IRate of Divergence

We have now demonstrated the existence of a sequence {cn}

n
1 a.s. A .

such that~gn z f(Sj) S 1. Purthermors it i3 obvious from
T . '

their construction that Y < Cn < n under the assumption

y2Ef<L

n 3
E{CHE |
] } =0 for 2 »

cn- 1 E
{E— Lf

()

L)

Ek} 8

=

since in this case

13} T
{=1 £(8) » a} ¢ {} £(S.) > n} = 3.

n
1 P :
Therefore-z— g I(Sk) is a uniformly integrable ssqusnce, and hence
n k=1
L %'E(f’s }) -1 as n » «
c Yk .

n
So the sequence E E(f(Sk)) serves as a rate of divergence. We will_

n
L E(£(5))
now show that -——-e—wmeeo. =+ 1 in the non-singular case, 30 that

i n’;ﬂ‘ﬁ
= | f(s}ds-
uly
un »
the sequence E—f f(s)ds also serves as a rate of divergence. The
° . )
same argument will show that m E f(Ak) serves as a rate of
k=1

divergence in the gwithmetic case.

o ] n
First, et U(s) = § #™(0) and U (1) = § #F¢)

i Ly

k=1 «51
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1 Mz n 1 Hii *
= [ £l)dt - ) R(F(S)) = < [ £(t)dt - [ £(£)dU (t)
"o k=l 8 "0 o
, hm un
(2.13) = (ﬁ-f Fle)de - [ £(t)du{ty)
0 0

s

un un e
(f £myau(e) - [ £(e)eu_(e))-] £(t)du_(t).
v ' o B un n

We will now show that each of the three teyms of the last expression
is o(n).
By the Renewzl Theorem, for any h and € > 0 there exists a J(e)

. . h . .
stich that for © > J(e]ﬂlu(t+h9t) - E{ < €. bSince we also have

0<f <1,
1 Mm un .
(2.14) |= [ f(edde- £ame)| < J(e)sune for n > J(e).
H 0 0 .
un . un © Bh *k
[ f)du(e)-f £(e)du_(t) = Y [ f)dR (o)
0 - 0 k=n+1 0
< 3 P(8, < wun)=E( } P(S, < un{s )
k=n+1 k=n+1

5L F*J (un-5_))=E(U(un-5 ))

p
’1

By the Renewal Theorem, there exist constants c, and c, such that

u(t) 2 cy¥e,t for t > 6. Thersfore .
un LR
(2.15) | f)Au(t)-f () _(t)] < ¢, +c B(|S -un]).
0 : 0 n -1 72 !
(-4 . n )
£y (0) < ] p(s, > un)
un : k=1
n-1
<1+ E(] P(S, > unlg ).
, k=1
For ¥=1,2,...,n-1
P(5, > Un|5n%$)=P(Xk+1+,;,+Xn < s-pn) = F*" 7 (cpn)

R RN A I oTeesmm o o e - -



-So

©o ¥ !
[ £(tddu (t) <1+ E(
un ' k

o1t

F*n—k(Sﬂmun))

' (2.16) !

<=

TS - co+e | -
<1+ BQUCS un)) < lecgrc, E(|sn un|).

Combining (2.13):through {2.16)

, hn n
|= [ £{tyae- § Bre(s V)
3 k=l - L. 3
5 : j,;ﬁmJ{€)+un€+l+2¢1+2CZEiiSn-un|]+uS as e,
L EBLE(S 1)
k=1 -
n
L B(E(5, )
Since € is arbitrary Ei&;@wmw»ma- » 1
L1 fya
"

This concludes the procf of Theorem 4.

The Random Walk Case

With an additional assumption, Theorem 4 can be extended to

the random walk case.

Theorem 6., Let {Sn} be 2 random walk with step size distribution F

and mean p, 0 < u < =, Let {L}} be the sequence of strictly
. di
o L.-1

1
ascending ladder epochs, and assume E( ] [S.]) <= Let £be a
j=1 -

non-negative, bounded, Lebssgue measurable function on (-eo,).

(a) 1f F-is a non-singular distribution, and there exist M
pig !
and & such that [ f£(t)dt > 6 > 0 for all x > ¢, then
X



R e

n
_ X £(
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5.)
s J .
j=1 a155 1 23 B o
un "

1
- £f(s)ds

(b) If F is am arithmetic distribution with mass p at Ak,

k=0, #1, #2,... , and there exist m and 8 such that

Z‘f(s+kk)p;@ > § > 0 for s=0, *1, *2,... , then
k=0 < » .
YOE(R.)
= i 2.8,
Gy SRS B
1
m I £(3))
j=1

v

Proof: The proofs for the arithmetic and non-singular cases are
the same. We will consider only the non-singular case,

_ L, .

- As in the beginning of the proof of Thecrem 4, we will show

that f may be assumed to be bounded away from zero an(O,m).- By the

n .
same proof . » 1 as n + =, where g, is now defined by
- I (s | |
Ba(s) = ECESI8) =) = [ £(s+0)ar™" ().

A3 before, there exists m and y > 0 such that £, > v. Wz slso have

un
£(s)ds

e | . |

—5 + 1 asn->®, since [ g(s)ds » yn and

J g, (s)ds 0

4]



un - un ‘ . o.m Hn _
| g, (s)ds « [ #(sias] = fegf £(s)ds - [ f(syds)]
o 0 5y 0

0 Jin
[E(f £{s)as - | f(s)ds)1

Sm m+sm

(2.17) | w8 ‘ Sm
+ |5 £1s)ds - [ f£(s)ds)I
un , 0

A

ts <03l
m

p
I +unP{S >un
{8 <pn}’ unP (8 >un)

BRI E’S% « unP{S_>un),

-y t ”“} Hab( m kn)
ety L IEBY |
Thevedors —wwW£~wwm~«» Sy dmplics n~w1¥;~wuw» = i, and we may

;L
G'! g(s)ds | = £{s)ds
S0

assume without loss pf generality that 0 < v < §# < 1.
Let {Lk} be the sequence of strictly ascending laddsy g£pochs,

and let
L1
=s) = E(

SLk | JZI

Lk+1
)

h(s) = E( £(S,) £(s+5.)).

j:L +1

k
0 < y-E(Ll) < h(SLk) f_E(LIJ < o,

Therefore, by Thaovem 5b,

j<1_ 9 k=0 Jelyel a.s.

5 il Mmi_ﬂ
&2
iy
. ~~
) )]
—
1
4
¥
~~
‘)"\
sl
~—

I~
. =2
~
93]

o

Let 0 = :(Ll)“ {S, } is a renewal process with expected

Lo k=Q

waiting time 9u. Applying Theorem 4 to this renswzl procsss and the

 function h,
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m .
| MRICHS
(2.19) k=0 T k -~ a;S' 1 as ;- o,
l RV Y
ai-for h(s)ds

The number of visits of'{Sn} to (-«,0) is finite a.s., since
4 > 0. So we may assume that £(x) = 0 for x < f#, since a finite

number of tevms f(Sk) does not change the rate of divergence of

n
Ef(sk}u With this extras assumption we will show
p&ia
[ hisdde
- >

{(2.20) T . 1 asm~>> o,

ef f(s)ds

0

uém 1em L1 ufm : uom
|/ h(s)ds-8f  £(s)ds| = |EC ) [ £(s+5.)-0] f£(s)ds)]
0 0 j=1 "0 3"

T
L Sj+P9m 10

_ . |
< lECY ¢ £(s)ds-[  £(s)ds))|

, 8, <0. IfS, <- uom,
1’ % = j H

S.+uém - u6m uem _
[J 1 f(s)ds-[  £imdas| = [ f(s)ds < |5, ]
S 0 0

j
j

M <L

If -u9m :,Sj <0,

S.+ulm 1om uom
I/ 7 £(s)ds-[  iis)ds| = £(s)ds < |s.] .
Sj ¢ ‘ Sj+u9m I

For j = Ll’

SL +ugm Vo .
ee(|f 1 E(syas-f  f(syds{) < B(S, I
5, 0 L

1

}+uSmP(SL >pém) .

<Q 2 {2
{VL B 1




Combining

. . L-‘l
u8m ubm 1 ‘
|/ n(sd-ef £(s)ds|  E( ] |S.|)+E(S, )+umP(S, >yom)
. j L L
0 0 j=1 1 1
- < -
Hgm - 92'\7]1
of  £(s)ds HE
+ 0 as m > o,

This proves (2.20).

{(2.18) through {2.20) imply

D=2
5 1 as m -+ o,

For any n there;exists an m such that Lm <n< Lm;l’ and for
b =S M

such an m .
L 1 uem uLm+1 ‘
= £(s)ds ([ £(s)ds+f f(s)ds)
M7 <-.“ 0 uom
n - Lm
£(S. '
LGy ] £655)
1: uem '
= £{5)ds
H fo . ILm+1-gm' v -
< T + : + 1 28 m + oo,
: “m T ‘
£(8,
3 (*’33
n .
1im  LECS))

Therefore -
: Moo, yn -
= [ £(s)ds
H 0 ]

If Om < n < @(m+1)




s o L@ :
Zf(S.;) ,Zfé_,’:}‘;) l@:{m-&]’,)_l‘,]l
-_ﬂ_{ElL—— _i. 1‘(\!‘{‘ + Vgnﬂ Ii > 1 as m -+ .
% .r f(S)dS ‘ %— f f(‘i}ﬁl_ '
0 0

Therefore lim —— e < 1.
e 1 (h

The Brownian Motion Case

Theorsm 4 also has en saslogue for Browniar Motion.

Theorem 7. Let {S(t): t > 0} ke Brownier Motion with drift u > 0.

Let f be a nam-~negative, houndsd, Lebesgue measurable function on
X+M .
(-»,) such that there exist M and § such that [ £(t)dt > § > 0

X
for all x 3_0, Then

n E
[ £(s(t))dt
S0 -

: , 3> 1 asn > e,
1 M

= [ f£(s)ds

¥ o

Proof: Since m{t: S(t) < 0} < » a.s., we may assume withcut loss

: x+M :
of generality that [ f(t}dt > & for all x.
X
n . n  k+l
[ £(8(e)de = ¥ [ £(S(r))dt .,
o k=0 k
Let.
k+1 1 1
g(s):E(f -f(S(t]}dt/S(k):s)=E(f f(s+S(t))dt)sf E{f(s+8{tY))dt.
k 0 G

Let Qt(x) be the density {or S(1). Since S(z) is normally distributed
with mean t, there exicts o > 0 such that Q_(x} » » Ffor t € {0,1] and

x € [0,M]. Thersfore, for all & € [0,1]




g4

e 5+M
E(f(s+8(1)))=] £(ex)q (e > «f  £()dx >« 5> 0.
. w : s

So, by Theorem 5b,

n n-1 k+l

[ £(s(t))de 5 f £(5(t))dt

0 () a.s. _

(2.21) - = = p,a . 5" 1 as n > o
. N o

RAEI) Led Es)a]E)

k=0 ’ k=0 k

in the proof of Theovem % we verified that 3)ll the hypotheses

of 1h@ﬁi$m & ave zatlstied for vhe random walk {51k}}. Therefore

\

) £(5(k))
2.22) K= Oun ~ 5% asn o
& f z{slds
un :
[ £(s)ds B un
(2.23) _%n e+ 1 35 @ > @, sinca f g{s)ﬁsvz ayun and
[ ges)ds | 0
0 :

un un 1 un »i un
|[ g(s)ds-[ f£(s)ds| = |E(/ [ £(s+S(t))dsdt-f £(s)ds)]
0 0 00 0

_ 1 S(t)+un

= e(f £(s)ds- f f(s‘db)dv)l
0 St}
1 ! :

2 (5O Lijg gy |sn)d0)

< E( sup [S(t)]) + wn E(m{t € [0,1]: |S(t)] > un}).
ALY ' - '

(2.21) through (2.23) imply

n

[ E£(s{x))as

g - a;s, 1 as n =+ w;
1 un .
= [ f(s)ds

L
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