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SUMMARY

" On the Distribution of the Number
of Successes in Independent Trials

Let S be the number of successes in n independent Bernoulli trials, whefe pj

is the probability of success on the j-th trial. Let p = (pl, p2,...,pn), and
| (1)
P

~

,for any integer ¢, 0 < ¢ < n, let H(c]p) = P{S < c}. Let be one possible

choice Of.z for which E(S) = A\. For any n x n doubly stochastic matrix II,
1et:p(2) = p(l)ﬂ. Then in the present paper it is showm that'H(clpfl) <

H(clg(z)) f;; 0<c=< [h_- 2], and H(clR(l)) Z’H(C|R(2)) for (A + Ej <c <n.

These results provide a refinement of inequalities for H(clg?'obtained by Hoeffding
[2]. Their derivation ié achieved by applying consequences of the partial ordering

of majorization.
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1. Introduction and Summary .

Let S be the number of successes in n independent Bernoulli trials, where pj

is the probability of success on the j-th trial, 0 < pj <1. Let

(1.1) P = (Pls p2"'-spn)’

and for any integer ¢, 0 < ¢ <n, let
(1.2) H(c|p) = P{s < c}.

For fixed ¢, we are interested in the relationship between H(clp(l)) and

H(Clp(z)), where p(l) and p(z) each belong to the region
n .
(1.3 Dy ={p: Os<py <1, i=1,2....0 ;& p; = A}
That 1s, p(l) and p(z) are sequences of probabilities for the independent

Bernoulli trials each of which result in an expected nﬁmber of successes,
E(S), equal to A.

Hoeffding [1; Theorem 4] has shown that for all p € DK’

(1.4) 0 < Hlclp) < H(cln-l()\, Ayoous)), if0<ce <[n-2],

(1.5) Hic|n LA, ...,0) <H(|p) <1, if [A+2) <c <n,

where
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(1.6) H(c|n’ (x,x,v...,x)) - E @O T a-pt T,

and [x] denotes the greatest integer < x. Hoeffding [1; Theorem 4] also obtained
bounds on H(c|p) for ¢ = [A - 1], [A], and [A + 1]. These will be discussed at
the end of Sectien 3.

To motivate the major result of the present paper, let
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(1.7) p (A

and

A

(1.8) p (M)

(1,1,...,1,» - [Al, 0, 0,...,0),

~ *
where in p(k) there are [A\] ones and n - [A] + 1 zeroes. Note that both p (K)

~

and p{)\) are elements of Dk'

Hoeffding's bounds (1.4) and (1.5), giving the upper bound to H(c|p) for

We have already noted the role p (K) plays in

0<c<[r-2]in (1. 4) and the lower bound to H(clp) for [A+ 2] <c<nin
(1.5). Onmn the other hand we have H(clp(})) =0 for 0 <c¢ < [k - 2] and
H(clp(x)) =1 for [A + 2] < ¢ < n; these, of course, are the lower and upper
bounds to H(clp) in (1.4) and (1.5) respectively.
Now note that for any p € D,, we can write
k - ¥ ‘ ;
(1.9) p (N =pl,

*
where I is an nxn doubly stochastic matrix, all of whose elements are n

Also; for any p p € DX’ we can write

(1.10) p=p( I,

~

where II(p) is an nxn doubly stochastic matrix whose first [A + 1] rows are equal
to p, and whose last n - [A + 1] rows are equal to (n - [A + 1])_1 (1 - Ap),
where 1 = (1,1,1...,1) is the lxn vector all of whose elements are ones. It is

thus apparent that proof of the following theorem would yield Hoeffding's inequalities



(1.4) and (1.5) as corollaries, and would provide a more detailed picture of

the behavior of H(clp)_aé a function of p.

Theorem 1.1.

M ep

Let p 2

and suppose that there_exists a doubly stochastic nxn matrix

T for which

»@

~ ~

(1.11)
Thenip(z) € D, and

(1.12) H(clp(l)) < H(clp(z)), if0<c<[r-2],
and

(2))

(1.13) H(clp(l)) > H(clp if [a + 2] <ec <n.

In Section 2, we apply Ostrowski's [1; Theorem 15] fundamental theorem on
majorization to the prdblem of ordering, over various choices of p € DX’ the
expected values Eg(S) of any function g(k) on 0, 1, 2...,n. The results obtained

in Section 2 are then used in Section 3 to prove Theorem 1.1.

2. Majorization.
A 1xn vector X is said to majorize a lxn vector y if x[1] > y[l]’

+ - > +
1] T *r2l =) T ey izi X412 3% y[1]’ and % Xry7 = 33 (4]
where the x[i]'s and y[i]1s are the components of x and y, respectively, arranged

> > R L]

in descending order (x[1] 2 X[5] 200> X7 and similarly for  the [1] s). The
relation of majorization to doubly stochastic matrices is given by the following
result of Karamata [1; Theorem 14].
Lemma 2.1.

The vector x majorizes the vector y if and only if there exists an n x n

doubly stechastic matrix II such that y = x II.
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The follbwing result, originally due to Ostrowski (see [1, pp. 30-337]),

relates majorization to the ordering of the values of functions F(z) over

regions of n-dimensional Euclidean space.

Lemﬁa 2.2.

Let F(z) be a function defined on n-dimensional vectors z = (zl, zz;...,zn).

~

For any i, j, 1 # j, and all z in a region D, suppose that

. OF  OF
(2.1) (zi - Zj) azi - azj ->- 0

whenever z, > 2y If x, y € D, and if x majorizes y, then

(2.2) F(x) 2 F(y).

A function satisfying (2.1) over a region D is said to satisfy a Schur
condition on D.

Let g(k) be any funqtion on O, i,...,n, and let S be the number of successes
in n'independent Bernoulli trials, where pj is the probability of success on the

j=th trial. Let
(2.3) h(p) = Eg(s),
fof E,= (pl, p2,...{pﬁ). Th;n h(E? is a funcfion defined over the region
D={z: 0<2z,<1, 1 = 1, 2,...,n}.

Lemma 2.3. , ’ _ : ,
" For any two components p, and pj, i < j, of p,

- [n®  awm - g
(2.4) (p; - pj)\ B, T ) (py = 2" By £G]p™) 200,




where for any function s(k) defined on the non-negative integers
(2.5) Bs(k) = s(k +2) - 2s(k + 1) + s(k)

is the second difference of s(k), where Bij is the 1 x(n - 2) vector formed by
deteting the i-th and j-th components of p, and where

(2.6) f(k|piJ) = probability of k successes in the n - 2
© trials other than trials i and j;

for k=0, 1,...,n - 2.

Proof. 7
We adopt the convention that f(k|pij) =0 for k <0 ork >n - 2. Under

this convention,

P{s =k} = (1 -p)( - pj) f(klgfj) + (py + Py~ 2p1p ) £k - 1|p13)

(2.7) i-
| + Py pj f(k‘- 2'2.3)'

Using (2.7), we find that the left-hand-side of (2.4) 1is
dh(p) oh(p)

api - apj

) . n .
(2.8) (p; - Py = Dy 8(0) BE(k - 2]pHd).

It is now easily shown that the right-hand-sides of (2.4) and (2.8) are equal.
Q.E.D.
As a corollary of}Lemma 2.3, we can prove a result earlier obtained by

Karlin and Novikoff [4].

Corollary 2.1.

Suppose that g(k) is convex on 0, 1,...,n - 2, in the sense that Ag(k) >0,

S e @ _

k=0, 1,...,n0 - 2. If and if p p(l)H, where Il is any n x n

A
doubly stochastic matrix, then p(z) € D, and



2.9) - h(p(l))<h(P(2))

Proof.

Since Ag(k) >0, k=0, 1,...,n - 2, -h(g?satisfies a Schur condition,
as can be seen from (2.4). Hence, Lemmas 2.1 and 2.2 imply that
-h(p(l)) > -h(g}z)), from which (2.9) immediately follows. Q.E.D.

Karlin and Novikoff [4] proved Corollary 2.1 in a somewhat different way.
Their proof however, embodies the ideas underlying the usual proof of Lemma 2.2.
' From>Cor011ary Z.i and the arguments in Section 1 relating any p € D, by

doubly stochastic matfices to Ef(k) and éfl), it follows that for any g(k)

convex on O, 1,..?,n - 2, and any p € D,,

(1 - 8)gAD) + sg(r 4 1]5
< h(p) = Eg(s)

(2.10) S
< kst O a-brok

n

where 8 = A - [A].
.
The result (2.10) implies that E|S - bl , for any a > o and any real number

b, is highest over DX when S has a binomial distribution with parameters n and

- * '
t A (i.e., p=p (A)), and lowest when

~

S - {[A + 1], with probability 6,
[A), with probability 1 - §

(i.e., p=p (A)). The upper bound in (2.10) was first obtained (using a

different method) by Hoeffding [2]. The lower bound in (2.10) can also be obtained

by the methods in Hoeffding's [2] paper.

3. Proof of Theorem 1.1.

For fixed integer ¢, 0 < c¢c < n, let

3.1 g (k) = {o if g f'i

INIA
=0
IA
=]



Then

(3.2) H(c|£) = E(g(5)).

Note that gc(k) is not convex on 0, 1,...,n - 2 when ¢ < n - 1, so that we cannot
directly use Corollary 2.1 to prove Theorem 2.1. Instead, we make use of Lemmas

2.1 to 2.3.

First note that.for c<n-1
l, k = ¢,
3.3 g (k) = {-1, K=c-1,

0, otherwise.

Thus, from Lemma 2.3,

a-H(cl,EL) Bﬂ(clg))

.4 (py - pj)'( op, 2, =- (py - pJ.)2 (f(clgij) - £(e-1]p" .

Now, Samuels [6] has shown (using a well-known inequality attributed to
Newton) that if f(k) is the probability of k successes in m independent Bernoulli

m
trials, and if k;b k f(k) = T, then £(k) is increasing in k for k < [T] and

decreasing in k for k > [T + 1]. Hence, using the characterization of f(k[ iJ)

~

given in (2.6), and noting that :gi kf(klg}j) =\ - P; - pj, we have that (3.4)
is non-negative for ¢ > [A - Py - Pj + 27 and non-positive for ¢ < [A - ﬁi - Hj]'
Since 0 < Py + pj <2, all 1 # j, this result means that for all |3 € Dk’
i1s < 0 for ¢ < [A - 2] and > 0 for ¢ > [X + 2]. 'Thus, the bounds (1.12) and ;

(3.42

(1.13) in Theorem 1.1 follow by a direct application of Lemmas 2.1 and 2.2. Q.E.D.

Remark I.

Hoeffding [2; Theorem 4] also showed that for all p € D,,

(3.5) 0 su(r - 1]]p) < HAA - 1T, A,
"~ and

(3.6) gCr + 12070, A,..0) < HAA + 1]]p) < 1L



It might be thought that more detailed results for the cases ¢ = LA-1], ¢ =
similar to the reéults in Theorem 1.1, can be obtained. That is, we might

suspect that p(l) E'DA, p(z) = p(l)H for doubly stochastic H; implies that

~ ~

(3.7) H(TA - IJIR(D) <u - 1”?,(2))’

), @),

v

(3.8) m(r + 11|p a(lx + 11]p

[a+1],

The inequalities (3.7) and (3.8) do not, however, always hold. Inequality (3.7)

(1)

holds 1if p is restricted to belong to the subset

D" = {p: p €Dy; [l-lls[k-pi-pjjs[x+1], all i # i}

M ¢p0

of Dk’ as can be seen from the proof of Theorem 1.1. (Note: 1if p X

and p(z)

~ ~

(1)

(3.8) holds if p is restricted to the subset

1

D, ={p: p€Dy; NI<[r-p -pIsa+1], all 4]

~

of DA'

That (3.7) does not hold in general can be seenzby letting n = 4, p

(1, 1/2, 1/4, 1/4), and

=

1}
O O
O O Nt it
[N e Nl

(3.9)

[l =N Ne)

Here, A = 2, 2 = (3/4, 3/4, 1/4, 1/&), [A - 1] = 1,

~s

and

69

m(a - 1lp) = 52> 58 - - 11,

256

= p(l)ﬂ, Il doubly stochastic, then p(z) € DAO.) Similarly, Inequalityb



That (3.8) does not hold in general can be seen by letting n = 4, p(l) =

(;/4, 0, 3/4, 3/4), and [ be as in (3.9). Here A = 7/4, p>) = (1/8, 1/8, 3/4,

~

374, [A + 1] = 2, and

a + 11pP) = 2 <8< u+ 11,

Since Theorem 4 of [2] does not even show that H([A]|p)is bounded by the
values of H([h]lp) for P = p'(k) and P = (A), it is unlikely that an ordering

2
2 )) ( ) = (l)ﬂ that always goes in the

~ ~

between H([K]Ip( ) and H(EKJIP

same direction for all p(l) € Dh’ all doubly stochastic II, can be demonstrated.

(D (2 )y

Indeed, it is easy to find examples in which H([k]|p ) < H([k]|p

, and

examples in which H([h]lp(l)) > H([K]Ip(z)).

Remark 2.

Hoeffding [2; Theorem 5] also showed that if 0 <b < A <c <n, then for

all p € D,,
% *
H@Q<M)-Mb-ﬂgu»
(3.10) < P(b <8 <c}=Hc|p) - HD - 1]p)

< 1.

Correspondingly, as a cofollary to Theorem 1.1, we can establish the following

"~ result.

Theorem 3.1.

Suppose 0 < b < [A - 1] and A+ 2] <c<n. Let p(l) € D, and let

p(2)= p(l) II, where T is ann x n &oubly stochastic matrix. Then

~ ~

@ Help®) -1k - 1]p?) <uces™) - ue - 1M,
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Remark 3.
For the possible statistical applications of the results obtained in this

paper, the reader is urged to read Section 5 of [2], and also the comments in

[3] and [6].
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