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1. Introduction.

Let LETTIRL be k independent normal populations with means Hyseoesby
and variances o?,...,ci, respectively. Our interest is to select a nonempty

subset of the k populations containing the best when the populations are
ranked in terms of (i) the means s when oi = 02, known.or unknown, aﬁd
(ii) the varianceé cf, when the M, are known or unknown. In most of the
earlier work (see, for example, Gupta [4], [7]), it is assumed that the
number of observations from each population is the same. Very little work
has been done in thé_case of unequal samples. Sitek [13] proposed a procedure
for the normal means;vhowever, his result is shown to be in error by |
Dudewicz [1]. Recently, Gupta and Huang [8] proposed a pfocedure which is
different from that of Sitek and the one investigated in Sectioﬁ 2 of this
paper. Section 3 concerns with a procedure of Gupta and.Sobel f11] for
selecting the population with the smallest variance based on unequal sample
sizes. The exact lower bound for the probability of a correct selection

was bbtained>in [11] only in two special cases. A lower bound is giVen for
the general case in Section 3, and by a similar argument, we discuss a

- lower bound of the probability of a correct selection of the largest scale"

*This research was supported by the Office of Naval Research under Contract
N00014-67-A-0226-00014 at Purdue University. Reproduction in whole or part
is permitted for any purpose of the United States Government.



parameter for the gamma distribution for a similar rule studied by Gupta [5],
with our results being applicable to uﬁcqual sample sizcs; in Section 4,

we propose a rule, which is different from the rulc propoéed by Gupta and
Sobel [10], to select a subset containing all populations better than an
unknown control for a common known variance. Sitek [13] has proposed the
same type of rule in the case of a common unknown variance.. In this section
we also discuss and‘improve the lower bound given by Dunneft [2] for the
probability associated with k simultaneous confidence intervals for HiHgs

i=1,2,...,k.

2. Selecting the normal population with the largest mean.

Here we assume that 0§=02, i=1,...,k. The ordered ui'§ are denoted by
u[l] < u[z] f:..i_u[k]. It is assumed that there is no prior knowledge of
the correct pairing of the ordered and the unordered ui's. Let us denote
by “(i) the population associated with u[i], i=1,...,k. qu goal is to
select a non—empty'subset of the k populations so as to include the population
associated with u[k]. Defining any such selection as a correct selgction, we
wish to define a procedure R so that P(CSIR), the prqbability of a correct
selection, is at least a preassigned number P*(%—< p* < 1). We will refer
to this requirement as the P*-condition. We will discuss the two cases: (a)

02 known and (b) 02 unknown,

Case (a): 02 known. We assume without any loss of generality that
02=1 and propose the following rule R1 based on the sample means Xi’ i=1,...,k.
Rlz Select Ty if and only if
- " /11
(2.1) X, > max (X,-c —_—+ =) ,
| i 1<j<k j 1 n, nj

where c1=c1(k,p*,n15...,nk) > 0 is chosen so as to satisfy the p*-condition.



The expression for P(CS|R ): Let X

(1)

and the sample size associated with the population 7

and n

(1)

with mean u

denote the sample mean

(1) [i)’
i=1,2,..., k. Of course, both in) and n(i) are unknown. Then
- - 1 1
P(CS|R,) = Pri{X > X, .\ - }
(Cs[R) = Pr (k) = 1:?;:_1 Xy~ & Iy ¥ o )
1
I T ST S Y SRS S P S k-1}
(1) (k) Ny Mg -1
(2.2) 1
B - g _ 1 1 v
B IR O R £ M (S e v
< C 1 1 E 1 k-1}
+ - . — = -
—_— 1 (u[k] u[J])(n(J) n(k)) ’ J > b
= Pr {Z <c, + (u T )(——1— A )_12—- =1 k-1}
J!k -1 ‘ [k] [J] n(]) n(k) ’ ’ ’ '
For 2 = 1;2,..., k, define
L
(2.3) Z = (X - X -y + U )(—1—+ 1)"2'r= kr+2
) r,SZ, (I‘) (Q') [I‘] [2'] n(r) n(R,) - *? ’
and
n n -5
@9 oMo, oz s 1o A ae ST s s K

r,s + L; r'+ S.

(r)

Thus 2 ., T k 2, are standard normal variables with correlation matrix
3

()
{pr,s}.

(2.5)

k-1

j=1

n..

P(CSIRl) = f‘fm. T of 5—(—3-3-y

(k)

We can write P(CSIRl) alternatively as

/ N,
+ 1+ _(J)
+ Gk,j/n(j) Cl/l W]%)- e (y),



where Gij = u[i] - u[j], ®(+) and ¢(-) denote the cdf and pdf of a standard
normal random variable, respectively.
For the evaluation of the infimum of P(CS|R1) over the parameter space

Ql = {u : _u_= (ul)"': uk)’ o < ul”',‘) uk < oo]-,

and all possible associations between (nl,..., nk) and (n(l),..., n(k)), we
need the following lemmas. The first one is due to Slepian (See, Gupta [6])

and is stated below without>proof.

Lemma 2.1. Let X,,..., X (Y,,..., Y ) be standard normal random variables
—_ 1°° m 1 m

with the correlation matrix {pij} ({Kij}). Let

X <aj). Ifp..>«k.., i,j=1,2,...,m,

1’077 T m ij — "ij

@m(al,..., a s {pij}) = Pr(X1 < a

then, for any set of constants a , a

120 m’

; k.. D).

(2.6) @m(al,..., a_; {pij}) 2_¢m(al,..., a ij

m m

Now we state and prove a lemma, which is a direct consequence of the

above lemma.

Lemma 2.2. Let n . nk be a set of given positive numbers and denote their

10"
ordered values by n < ... <n . For any 2, 1 < 2 < k, let
7y = [k] YIRS

. o
)2 Ly . n—[‘%)] L= Lk 1,4 04

H "M
2.7)
U ST I T U VI A

Then, for any set of constants al,..., 3 _1»

.o (R
%1 (al,..., & 15 {Kij B

. (2.8) (k)
2 %1 (@ a1 {Kij b.



Proof: The inequality (2.6) follows from Lemma 2.1, if we show that for
Loy LK) N ¢ B ¢ S IR .

2 <k (i) Kij z-Kij s 1,7 + 2, 1,j + k; (ii) Kk’j Z-Kz,j" j=1,..., k;

j % 2,k. It is easily seen that (i) and (ii) are true, because n[z]_: n[k].

And we know {Kgi)}, 1‘:_2 < k, is positive definite [3]}.

We now prove the following theorem regarding the infimum of P(CSIRl).

Theorem 2.1. For the rule R, defined in (2.1),

1
o - k-1 cl—OL.u
(2.9) min . inf  P(CS|R) = [T W of % 1] de(u),
NysMy, ... ,ny Ql j=1 (l—aj)

where
a, = (1 + _lflg , 1 =1,..., k-1.
i n..
[i]
Proof. For any given aésoc1at10n between (nl,..., nk) and (n(1),..., n(k)),
we can see from (2.5) that the infimum of P(CS[Rl) is attained when u[l] =...= “[k]'

Thus the infimum we seek in (2.9) is given by

k n,. n,,
(2.10) min [° 1 of /ULy, ¢, / 1+ ) ya0(y)
1<i<k " j=1 ey O

it

Using the alternative form in (2.2), this minimum in (2.10) is equal to
min P{Z <c, r=1,..., k; r + 2}
1<a<k

min Qk—l (Cy Cyveny C3 {pﬁll})
ligik ’

. L)
= min ¢ (c, Cyere, C {K( )
1<g.<k k-1 T,Ss

k
= ®k—1 (c, ¢yeney, C; {Ki,l}), by Lemma 2.2.

1]

Pro(V; <c, i=1,2,..., k-1,



where V are standard normal random variables with correlation

ERERE Vk—l
K(k) = 0

g can be generated from
T,s T

as. It is well known that Vl,..., Vk—l

k independent standard normal variates V!,..., VL_I, V by'the transformation

1
. - |
V.= (l-0)%V, +a, v
j RO TR

and it follows that the minimum we have obtained above is equal to

k-1 Cc,-0.u

(2.11) [0 e[3] deqw)
=1 (1-a)E

This completes the proof of the theorem.
Let S denote the size of the subset selected. Then the expected

subset size is given by

1
e~ =

E(SIRI) = Pr{Selecting the population "(i)lRl}
i=1
(2.12) = §, Pf{X i > max (Y'.) - cl' S )}
i1 A T U "W "W
k ' -
= ) pPr{max (X,,, - X,. )(——l;-+ 1 )  <c,}.
sl 1<k ) Ty g b
 3h
Theorem 2.2. For the rule R1
(2.13) - sup E(S|R)) < k (c )
) ' Q
1
Proof. Since
L
Pr{ max (Yk.) - iti))(ﬁ_l—'+ - 1 ) . c,}
1<k RECO R ¢)
jHi
, L
<Pr{(X,.. - X,. )(——l—-+ —-1—0_2 <c.}, for any j # i
-0 @Gy ngyt =



2.14) Pr{ m (X,... - X.. + ) < c.}
( Tl @ (1))(n(i) T, ¢
k 1
1 1 1 2
<= 1 Pr{(X ¢ + ) < ¢}
R = S DI € !
it
k _L
1 1 1 2
T — z (D[C + (u 3] )( ) ]
kelyoy 71 TR TOY gy g,
j¥i '
Using (2.14) in (2.12), we have
kK k -%
: 1 . 1 1 2
E(S|R) < Y L ele, + 8. ( + ) ]
17— k-1 i=1 3=1 1 ij n(i) n(j)
(2.15) | jti
= K%T'Q (say).
Now we show that the supremum of Q over Ql is attained when u[1]=...= “[k]'

Towards this end, we consider the configuration

(2.16) =eee= u[m] =qu f_u[m+1] < . f_u[k], 1

<m < k-1,
ey =nz

and show that Q is nondecreasing in u, when u[m+1]""’ “[kj are kept fixed.

For the configuration (2.16), Q can be rewritten as

; § L
Q = [(m-1) &(c,) + e{c, - 6. ( + ) 1]
io1 ' gema 17 Mgy Ry
k m -5
(2.17)  + )y [) ofc, + 6, ( L. )}
R R O I )
k . L
1 1 2
+ ) efe, + 8. ( + ) 1,
jemel b M Mgy P
j#i
where 5i = “[i] -y :



. o m k
Interchanging the labels i and j in the sum ) , Y and then differentiating
o i=1l  j=m+1l
with respect to W and grouping the terms, we have
k m -+ _L
1 1%
%% T ) .2 G % *a % ) leley - S ) }
i=m+l j=1 "(1) (3) (1) (3)
1 1
- {cl + 8 (g * g ) 1] > 0.
- 0G)

Thus, by successive applications of the above result, withm = 1,2,..., k-1,

we see that the supremum of Q over @, is attained when “[1] =,..,= utk] and

1
this gives

1
k-1

Sup E(S|R)) < © (k-1) -« ko(c;)

&

=%k ¢ (cl)

(2.18)

obtained to satisfy the P*-condition is

Remark. For k 1

given by @(cl) = P*, Thus, in this case, the bound in (2.18) is k P*,

2, the constant ¢

which is the exact upper bound in the case of equal sample sizes.
Now we discuss the case of unknown common 02.

Case (b): 02, unknown. Let si denote the usual pooled estimate of 02

on v degrees of freedom. If the u; are unknown, v = igl’(ni—l). In this case,
we propose the rule R2 defined below. |
Rz: Select L if and only if
(2.19) Yi > max (i5 -cys, /5 LI = 1 ).;
1<j<k (1) (3

where c, = cz(k, P*, n s nk) > 0 is to be determined so that the

12

P*_condition is satisfied.



1
- < 1 1 .72 .
P(CS|R,) = Pr{(X, ... - X —_— < s 1 , k-1}
(CS|R,) (X (k))(n(j)‘ “(k)) <cys, =1,

Z. © CaS o8, . . _%
sprpdek 2y, kol L1y L e
T Gy T »

Z, S

sk v .

PPl <o, 25 =1, k1)

- ® 1 ' 2 = _
= fcpr{zj,k Sepss J =1, k-1b d Q) (s,

where Z! x are standard normal random variables with same correlation
s .
matrix as the'Zj K defined earlier and Qv(s) denotes the cdf of a xv//s variate.
3
Thus

. . ' . ' . _ _
min  inf P(CS|R2) =fz min Pr{Zj,k‘i €,8:j = l,..., k-1} d Qv(s)

nl,...,nk QZ nl,...,nk
o o k-1 czs-aiu
= [, [_o T e do@)dQ,(s),
J=1 l—a%
j

by using the results of Case (a). Thus we obtain the following theorem.

Theorem 2.3. For the rule Ry»

k-1 czs—a.u.

(2.20) min  inf P(CS|R,) = f: [So0n e(—2 do) dq(s),
nl,...,nk '92 , i=1 l—u?
o i
where @, = {u : p = (u U 02)}
% ot 17000 W . |
By similar arguments, we can state the following theorem for the

expected size.

Theorem 2.4:

(2.21) E(S[R,) <k f: ¢(c,x) d Q (x).
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3. Selecting a Subset Containing the Population with the Smallest Variance

and Selecting for the Largest Gamma Scale Parameter.

3.1 Selection for normal variance.

Let Mys Moseees My denote k given normal populations with unknown
variances of,..., ci, respectively, (ci >0, i=1,2,..., k), and with

all means known or unknown. The ordered variances are denoted by
2 2 2 ' . .

o < ... <0 . Let s’... denote the (unknown) sample variance that
1= =% (i) ( ) samp

is associated with the i-th smallest population variance, o%i]; let v

(1)

denote the number of degrees of freedom associated with s . Gupta and

(i)

- Sobel [11] have considered the following rule:
R3: Select m. if and only if

éi f.El' min _s?, (0 < c < 1).
3 1<j<k 3

For this rule, they have shown that

\

- k C gV X :
(3.1) P(CS|Rg) > -min fo m[1-G, ( VJ 31d 6 (%),
1<i<k " © j=1 Vit Vi i

i
where Gv(x) and gv(x),are chi-square cdf and pdf with v degrees of freedom,
respectively.
The minimum onvthe right hand side of (3.1) has been obtained by
Gupta and Sobel in the two special cases (i) k = 2, (ii) ail v, are equal
to 2, except one which is assumed to be any eveﬁ iﬁteger. In‘thevfollowing

lemmas we obtain two different lower bounds for the minimum on the right hand

side of (3.1)
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Lemma 3.1.
- k csv.x
min  [° 1 [1-G vJ 11dG. (x)
1<i<k © j=1 j i i
(3.2) - it
k-1
g €3V [k] :
> [ m [1-G, ( )] 46, (x). \
B R VR 5 g ke,
W16, Ty T ()
Proof. %:L d = 4n
k C,V.X oA Gamms foumaly ba MER b
min [ 1 [1-6, () d6, () by Y £l 12, p1n) L comebunts Vo
1<i<k © j=1 j i i ’1
s 1 cu1
it § mﬁl % (%) 46, by
fm k csv[j]x o 1
= min I [1-G (—*2<4) dG (x) . L/ &V*)) A
1ﬁﬂ‘ﬁﬂ CvGT Vi Vri] >§Wu%k£»6%m
jti
- k-1 c.,V X
> min f_ T [1-G, (—3\)[—1‘]—)][1-% °s [k] ——=)]d6, (X
1<i<k j=1 (3] [1] [k] °11] [i]
jFi
o k-1 c3v k]x
> min [ T [1-G, (——;l———a] dG, (x), since
T i<ick (0 §e1 G170 [i1
R (Y L
v v !~ V.. v !
[k] [1] (il "[1]
- k-1 - Cgv K]¥
(3.3) = fo il [1-Gv (——:}———J de (x), using the result in
j=1 13} (1] [k]
k=1 | 3V K]
[12, p. 112] with ¢(x) = 1 [1-G (—-—[——)] and the fact that
' - j=1 SIRERE Y '
G (x} > G (x) .
V] Ykl
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Lemma 3.2. : N '
— _ : ‘F{‘(\«Q (cﬁl) S %’(}
: . . Kk C4V X A KAIRS =
(3.4) . min fo H [l—G\) (—\)—J——)] dG\) ()() ﬁmt

jFi

®3=2 Y1 Yn [k]
Proof.
. k csv.x
mn [ T [1-6, (=51 46, (x)
1<i<k  © j=1 j i i
jHi
k C V...X
= min 01 (-6, G746 oo
1<i<k j=1 (3] [i] [i]
jti-
o K C,Vr. X ' '
> min [T 1 (-6, G5Hipee, e ds; o
T 1i<k U =2 [11 1] 1] [i]
j#i
k C V. X -
> min T T [1-G, (—3—\)—"-3—]—)] d6,  (x), since
1<i<k © j=2 11 [l [i]
C_,V..:X
l-G[l](csx) 3_1—Gv[1](—§§;&l"0,
V1]
fm k [ csv[j]x ’
= I 1-G ( ) dG » by the same
VR TR

‘reason as in (3.3).

Using Lemmas 3.1 and 3.2 in (3.1), we obtain the following theorem.

Q
ad

Yin



Theorem 3.1.

_ k
(3.5) P(CSIRs) > max{f: j

Cc,V X
Yoo, Elhya w0,
R £ R SY [x]

|}

o

Cv\).x
1 e, (e o
J

2 MR §Y [k]

= =

Remark: To compute c;, We equate the right hand side of the inequality in

(3.5) to P* and solve for ¢

3
In the following, we obtain an upper bound for E(SIR3) under the
. e 2 2 2
slippage configurations A ¢ =0 = ... =0 , A > 1.
Ppag & | [1] = (2] (K]’ ° =

.Theorem 3.2. Let

22
Gy = {op;q = 8 opyq: i = ;1,..., Kb, &> 1

k-1 C,V,.. X
(3.6) By (S|R) < f° 1 [1-G (—%—U-%—)] 46, (x)
3 RIS i
, - c,Vv A | c,Vv x k-2
+ (k-1) jo [1-G, (——3—\)—[—1-]———x)][1—GV (%Ll—]—)] 6, (x).
' [k] [k] (k] [k] [k]
Proof.
E (S[R)-E P{s2.. <—= min s2. |a.}
a5 018 4 PR Te T o)
jki
K v6isG) | S0 W),
= _2_: P{ J2 . ->_ . 2 ] ( 2 )s J"]-: ) kIQS}

=g YwH1 Ol Jri

13
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.2 2
V,. S, C,V, . v S
= P{ LJ% (J) > 3 (J) ( (1)2(1)), j=2.,3,-..‘,k}

—_ vV A
1] (1) 1]
2 2 2 2
. § e | St Y@l TWmiG) , 370 (“(igs(i)), i=3, .. k)
i=2 0?1] —? V(1) G%i] O%j] EACS | 911
k L CLV .
-1 -6, =W grde,
° =2 Vi) “m° V(1)
k c. Vv A k C, V. ... X
s 1 onee. S ogrnpee, U146
i=2 Jo Y Y =3 VGYy U@ MER
k-1 C, V. 1X
© 37171
< n (-6, (=tL9]d6. (%)
ot B SpgeT Sy
CV. A C. V. X k-2
coen e, Ao gipee, S w6 w,
k] V(K] (k] V[k] [k]

by using a similar argument as in (3.4).

3.2. Selection for the largest gamma scale parameter.
Let Mis Toseees T denote k given gamma populations with density
functions
- X
8. 1

’Y—
1 e 1 (§¥J , x>0, 8, >0, i=l,..., k,
1

I'(v)e;
with a common parameter y (> 0) which is assumed to be known. . The ordered
scale parameters 8, are denoted by 6 < 8 <...< @ . Gupta [5

P i 8re Y Oy SOy L2 O Gupta [S]

proposed the following rule.

R4: Retain wi_in the selected subset

max X.,
1<j<k

if and only if Y: >c

i 4
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}where cy = c4(k, P*, 2n1y,..., 2nky) is a constant with 0 < c4_§_l which
is determined in advance of experimentation.
Let iki) denote'the (unknown) sampie mean that is associated with the
i-th smallest population parameter e[i]; let v(i) denote twice the value of
the other parameter associated with iki)'

The following lemma is given in [5].

Lemma 3.4.
: - . k-1 X v, |0
(3.7) PeslR) = f7 1 16, D1, @
_ S a=l  V(a) “4°(K)"[0] (x)
_ fw k X v,
> min n [G (———lJ] dG. (x),
1<i<k € 5=1 V5 4¥i Vi
jti

where Gv(x) and gv(x)'ére the cumulative distribution function and the
density, respectively, of a standardized gamma random variable (i.e. with
8 = 1) and with parameter %—.

By a similar argument as in Theorem 3.1 and 3.2, we have the following

resﬁlts.
Theorem 3;3.
(3.8) p(cs]R4)
k v X k-1 Vi ..X
z_max{f: 1 G (_Ill__a dG (x), fm I G (—lll——a dG (x)}.
j=2 U[i1 4Pk Y[l °j=1 V] 4kl V@l



e

Theorem 3.4.

9, = {0y = 8 o5y 1,2,..., k-1}, § > 1,
. . ) k X Ve.q6
(3.9) Eg (s]R4) < A o——JQJ—q dG:
4 T70 4=2 Va1 %4’[u) [k]
) X Vv X Vr.26 k-1
caen 6, —Eope, oo e, .
° Vi Ca¥r1® V) S4’x M

4. Selection with Respect to a Control or Standard

4.1. Selecting a subset containing all populations better than a control

or standard

Let Mos Mpoeees T be k+1 normal (experimental) populations with unknown means
Hys Hyseees uk, respectively, and let T denote the control population with

unknown mean o Assume that all (k+1) populations have a common known

variance 02 = 1. Our goal is to select all experimental populations that-

are better than the control (ui Z—“o)’ Let Yi be the sample'mean based on

n. independent observations from T i={0,..., k. Then we propose the |

following rule.

Rs: Retain the population ™ (i = 1,..., k) in the selected subset

/_1_ _l
+
n.
x + 1+ Ei cs) dé(x).

if and oniy if

Theorem 4.1.

k
(4.1) P(CS|R R j o(-
- i=1

Proof is simple and is omitted.
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4.2. A multiple comparison procedure for comparing scveral treatments

with a control.

Suppose there are available n, observations on the control, ny

observations on the first treatment,..., n, observations on the k-th

k

treatment. Denote those observations by Xij (i=0,1,..., k;°
. n

j =1,2,..., n,) and the i-th treatment mean, Hl X.., by X. . We
. . i j=
make the assumptions that the Xij are independent and normally distributed

. . 2
with common unknown variance o~ and mean My o We assume also that there

is available an estimate si of 02, indgpendent of the ii, which is based
2 = 2
N N (X..-Xi) , where v =

on v degrees of ffeedom, s
: . . ij .
i=0 j=1 i

I 17
I o~-17

1
== n,-(k+1).

0
The problem is to obtain simultaneous confidence limits for each of

the differences My -u

o (i =1,2,..., k) such that the joint confidence

coefficient, i.e., the probability that all k confidence intervals will

contain the corresponding My - Wgs is equal to a preassigned'value P*(0 < P* < 1).

7(.i_)_(.o-'(ui._uo) Zy .
Let Z. = and t. = — , i =1,..., k. The Z./0 are
i i s : i

1 1 v

—_— . —

n. n
i 0
o n, n, -%

standard normal variables with correlation pij = [(1+ E—J(1+ ;ra] s
i j

i,j=1,..., k; 1 * j. The r. v.'s ti’ i=1,..., k, have the joint
multivariate t-distribution. For this problem, Dunnett[z]uproposed the

following confidenéellimits:



(a)

(b)

(c)

lower:
X. -X_ -d.s —l-+-—l
i o i“v /n. n
. i o)
upper:
— —
X. - X +.d. —l-+ L
i o] i~y /n n
i o)
two-sided:

_— — 1"
X. - X_ +d. s %—l +-—£
1 oO— 1 Vv n. n
i 0

1 1
The constants di and di satisfy

(4.2)
and

(4.3)

In order to obtain conservative limits, Dunnett used the inequalities,

(4.4)
and

(4.5)

) '
P(t) <d] ,uees

1"
PClty] <dy ueees

P(-t1 1

1"
Pc|t1| <dy e,

K =P

tk < d

1"
|tk' < dk) =

Son
[t l < d) 2

P*.

1
p(t; <d.)
|3
.H P(ltil <d

i=1

i)
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We give below exact expressions for the probabilities in (4.2) and (4.3).

Theorem 4.2.

(4.6)

1
P(t1 <dp,eee, <

o o 'k d;s—siu

B fo jwm I
i=1 1-82
i

dk)

B[] do(w) dQ(s)
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-and
. ) . l; "
(4.7) PClty] <dp,eee, [t ] < dy)
. . ko dis-Bu -d;s-8,u
= [y Lo T [0(——) - (——)] de(w) dQ (s),
i=1 1 g2 //1_82
/R i
. 1 .
where, Bi = —i=1, 2,..., k,
no :
1+ —
n,
1

‘and Q (s) denote the cdf of IR

Proof,
For (4.2):
1 L]
P(t) <dj,ern, ty < d)
Z 'S Z S
- v k 'y
SRl < dghes T d
-<3 Z]_ 1 Zk !
= [, P < dyS,eeey o < dis) dQ (s)
.
o w Kk dis-Bu
= fo {, T ¢[———] do(u) dQ,(s), the same argument as in (2.11).
_ i=1 2 o
l—Bi

-Similarly, for (4.3):
o1 ' v . 1"
pg|t1| <dj,ae, [tk| < d)

fm " Zl 1" on Zk 1" :
o P(—dls <= < .dls""’ —dks <= < dks) d Qv(s)

: o o K d?s—B.u —dvs-s.u . ‘
=00, 1 ) - es(——29] do(w) dq (s) .
i=1 2 2 -

1-8. 1-B
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5. Numerical Values and Examples

5.1. Suppose n[1] =...= n[k—l] = un[k], i.e.
21 1
_ 1. 2 _ a2 . _
a, = [1 + a]_ = (1+u) , 1 =1,2,...,k-1.

We note that (2.9) can be rewritten as

o k-1 cl—aix w k-1 c +a. X

[ 1moe[ - ]do(x) = [ @ ¢[ 1de(x)

-o izl 77 - i=1 [ 2

i i
1

gl pZ X*C %’ a
={ ¢ “(——)dé(x), with =076 0=y

- yl_p

Equating the above integral to P*, Gupta, Nagel and Panchapakesan [9 ]

have solved for o) for special values of p = 0.100, 0.125;'0.200, 0.250,

0.300, %3 0.375, 0.400, %3 0.600, 0.625, %, 0.700, 0.750, 0.800, 0.875,
0.900, and k = 2(1)11(2)51, and P* = 0.99, 0.975, 0.95, 0.90, 0.75. For
example, o = 0.5, k=5, P* = 0.90, we have p = 0.5 _1 then ¢; = 1.8886 and

1+0.5 _ 3° 1
for (2.13), k¢(c1)‘= 56(1.8886) = 4.85.

5.2 When k = ZQ:and é[l] =...= n[z] = un[l+1] =...= an[k].
1
1. _ o 0 52 .
Nl 7 > 1= L2,
1 + —[—-
ey
a. =
1 .
L , 1= 2+1,...,k ,
V2
We have
o k-1 C,+0. X
1. 71
[ 1 o[- 1 de(x)
-0 J=1 : ﬁ—qg

[+ 3

- [ ol ci)¢2(/ax + VTrac,)do (x)

- 00
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. 1 1 3 9 .
For special values of k = 4, 6 and a = T DT the cl—value is

"~ tabulated in Table ‘1.

5.3. Whem k = 3 and npjys...=npeq S oy g0 == Oy = By g

Bn[k]

Then

o k-1 c1+aix
[ 1 e[——] de(x)
= j=1 Vl-a?

1

[e]

= [ ¥ (xevZ ¢1)¢2(/§ x+V17B c1)¢2(/(§ x+ /14 %-cl)d®(x)u.

-0

%3 , the c,-value is

For special values of k = 3, 6, and a = %3 %ﬁ B = 1

NI

tabulated in Table 3.



Table 1
vcl—value of rule Ry for special values of k, o and P*
IS 7 2 3 1
4 ‘0.75 1.266 1.233 1.208 . 196
0.90 1.783 1.763 1.747 .739
0.95 2.100 2.086 2.074 .068
0.99 2.7 2.707 2.699 .695
6 10.75 1.488 1.446 1.415 .400
0.90 .1.981 1.955 1.935 .924
0.95 2.285 2.266 2.251 .242
0.99 2.882 2.869 2.858 . 852

The entry is the smallest value 4 (to 3 decimals of acCﬁrracy)

satisfying

-1

[ o (x+ /27 c)e

k

.E(/E x + /I+q cl)dQ(x) = P*V;.

22
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Table 2

cl—value of rule R1 for special values of k, o, B and P*

K o i1 1 3 13
p* ¥ 2 T 37 2 3

3 0.75 _ 1.046 1.041 1.027
0.90 1.598 1.595 - 1.586

0.95 | 1.932 1.930 1.924

0.99 2.573 2.571 2.568

6 | 0.75 1.431 1.415 ' 1.409
0.90 | 1.941 1.929 1.929

0.95 | 2.254 2.243 2.246

0.99 o 2.859 2.851 2.854

The entry is the smallest value of g (3 decimals of acchracy) satisfying

K Uk k |
=-1 2 L ,
[ 08 e 0B x + VIE ot /B x s f14 e angn = b

1
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Abstract:

Let = be k independent normal populations with means

1o M
. 2 2 . R .
Hpseoes Hp and variances Oyseees Ops respectively. Our interest is to
select a non-empty subset of the k populations containing the best when
. ' . . 2
the populations are ranked in terms of (i) the means Wi, when oy =0,
known or unknown, and (ii) the variance oi , when the u; are known or
unknown. Procedures and results are derived for the case when sample

sizes are unequal. We also discuss gamma populations with scale parameter,

and selection for normal means that are better than control.




Key words:

Selection procedures, normal means and variances, gamma distribution,

scale parameters, better than control.
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