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In Chapter 2, we further consider the sequential version
of this decision problem by taking the loss function

L(s,I,n) = L(8,I) + cn,
where c >’O represents the cost per observation. 1In this
case we show that for any stopping rule the sequence of Bayes

terminal decision rules is given by '{I;};'

Let ‘[Yn} represent the sequence of posterior Bayes
risks for {I;}. In the last part of Chapterbz, we consider
the example of the normal distribution with unknown mean u
and known variance. Using the conjugate prior for u, we
show that the sequence of {Yn} behaves in such a way, that
we can use the theory developed in Chapter 1 and obtain a
family {t(c):c > 0} of A.P.0. and A.0. stopping rules
for this prdblem. As expected in this caSe, for each c,f(c)
yvields a fixed sample size.

In Chapter 3, we consider the example of finding a con-
fidence interval for the mean p of a normal distribution

where the variance 02

is also unknown. Using the conjugate
prior for u and 02, we again show that the sequence of
posterior risks {Yn} behaves in such a way that we can use
th: results of Chapter 1. In the example of this chapter

and in Chapter 2, the £ that works to give the A.P.0. and
A.0. stokqing.rules {t(c):c > 0} defined by (2), is given by
f(x) = {x/log x};i for x > 3.

Motivated by the two normal distribution examples, in
Chapter 4, we consider the general Bayes confidence interval
estimation problem,‘where f(x|g) and ¢ are assumed to
have any general functional form. Under certain regularity
assumptigns on f and §, we show that the sequence [I;]
defined in (4) is the sequence of terminal Bayes confidence
intervals. Further we show that the sequehcé of posterior
Bayes risks {Yh} of {I;} behaves in such a way that for
this problem the class of stopping rules {t(c):c > 0} defin-
ed in (2) is A.P.0. Here again the function £ which
defines t(c) is éiven by £(x)=(x/log x)a, for x > 3.



for the process X(n,c):
t(c) = n, if n is the first integer such that
2 -5y <.

If we further assume that sup'E(f(n)Yh) < ®, then
- n

we show that the class of stopping rules {t(c):c > 0} de-
fined in (2) is also A.0. for the proéess X(n,c). Fur-
ther we give an example in which the condition

sup E(f(n)Y ) < ® is not satisfied and the class of stopping

rules {t(c)-c > 0}, even though A.P.0., is not A.0. for
the process X(n,c).

Suppose V[Xn} is a sequence of independent identically
distributed random variables on some probability space
(Q,F,Py), 8e®, where ® is an open sub-interval of the real
line. Suppose that B has the density £(x|8) with re-
spect to some o-finite measure u. Further, suppose | 1is
the density of a prior distribution for 6§ on ®. In Chapter
l, we give a decision theoretic formulation of the confidence
interval estimation problem as follows: Let # be the class
of all sub-intervals of ®. This is our action space. For
8e®@ and Ie 7 the loss due to taklng the action I when §
is the parameter, is given by
(3) L(6,I) = at(I) + b{1 - 51(9)}

where 4 1is the length of I and 63(8) is 1 or 0, de-
pending on whether 6e¢I or not. Under this loss function,
if we assume that for every n almost surély the posterior
density w(elxl.....xn) of § is strictly unimodal and con-
tinuous, then we show that the Bayes rule under the prior ¢
is given by I;=[a;n,a;n] if q;n and a;n(> a;n) are the

two solutions of the equation'

: ' = &
(4) *(elxl'.o.‘xn) hand b e
%
Otherwise I, is a single point set if (4) has only one

‘ *
solution, and I, is the null set if (4) has no solutions. -



ABSTRACT

Kunte, Sudhakar. Ph.D. Purdue University. August 1973.
Asymptotically Pointwise Optimal and Asymptotically Optimal
Stopping Rules for Sequential Bayes Confidence Interval
Estimation. Major Professor: Leon J. Gleser.

Let {Yh} be a sequence of positive random variables
defined on some probability space (Q,F,P) and let Y, be
Fn measurable, where Flch:..JzF. For every c¢ > 0 define
(1) X(n,c) = Y + nc.

X(n,c). is a random process defined on the sequence
[Yn} and _cg(o,o). Suppose T 4is the class of all stopping

rules defined for this process, in the sense that for every
t ¢ T, the event [t=n] is F measurable.

Suppose' {t(c):c > 0} is a class of stopping rules con-
tained in T. .
Definition 1: {t(c):c > 0} is an asymptotically pointwise
optimal (A.P.0.) class of stopping rules for the process

X(n,c), if X(t(c),c){inf X(s,c)}"1 -1 a.s. P, as c - O.
seT »

Definition 2: {t(c):c > 0} is an asymptotiéally optimal
(A.0.) class of stopping rules for the process X(n,c) if
E[X(t(c),c)]{inf E:\'_)i((s,c)]]"1 -1, as ¢ =~ 6.
SeT
In Chapter 2 we assume that there exists a positive

strictly increasing function f£f:[0,®) - [0,=), such that
f(n)Yn -V, a.s., as n - «, where V is a positive con-
stant. Under some other not too restrictive assumptions
[see Al.1) to Al.5) of Chapter 1] we show that the class
of stopping rules {t(c):c > 0} defined below is A.P.O.



INTRODUCTION

The fhéory'of confidence intervals.has aiways_been of
interest to statisticians, particularly since it is realized
that in most typical statistical estimation problems, no mat-
ter how goodia point estimate may be, it can almost surely
never be equal to the true value of the parameter. If possi~
ble, one tries to obtain a random interval or, more generally,
a random subset in the parameter space, such that with a’
specified amount of'probability one can correctly say that
this interval (or the subset) covers the true-ﬁalue of the

parameter.

In most cases, every test statistic for testing the hy-
pothesis that the parameter has a partiéular vaiue yields one
such interval. There are also other well-known methods for
obtaining tﬁe confidence intervals directly. However, a con-
fidence interval constructed in this way may‘lose much of
its practical value on two counts: (1) Its length may be too
large; (2) its probability of coverage may be too small.
Since a confidence interval which is good on one count may
fail to be so on the other count, some kind of a optimality
criterion is needed for choosing one interval among the class

of all possible intervals.



There are two classical approachés to define such a cri-
terion. 1In thg first approach, it is requiréd that the prob-
ability of coverage of the interval be,not less than a pre-
assigned value (rather'arbitrarily chosen), and among the in-
tervals which satisfy this requirement, we are to choose the
one which hés smallest expected length. VIn the second ap-.
proach, it is required that the length of the interval be'
not more than a preassigned valué (again, rather'arbitrariiy
chosen), and among the intervals which.satisfy this require—
ment, we are to choose the one which has the largest prob-
ability of Covering the true parameter value. In most cases,
it is poss%ble to obtain intervals satisfying the criterion
of either approach. The theory of dbtaining such intervals
is thoroughiy.discussed by many textbooks, for example, in

Lehmann [1959]; and more recently in Zacks [1970].

One natural generalization of the criteria named abové
that comés to mind is simply to demand that simultaneously
the 1ength'of'the interval be not more than a preassigned
value and the probability of coverage be not less than a pre-
assigned value. As long as a given confidence interval sat-
isfies both of these restrictions, it seems unnecessary to
worry any fﬁrther about the optimality or uniqueness of thé
interval. Such an interval éfter all can not be very bad.
However, if the sample size is fixed in advance, no such'COn—
fidence interval may exist. This fact was probably realized

for the first time by Dantzig [1940]. One possible solutibn



to this problem was suggested by Stein [1945], when he sug-
gested the use_of a two stage sampling plan. This method
achieves ths_desired goal of obtaining a c0nfidenée interval
which satisfies the restrictions on length and probability

of coverage‘of'the interval at the same time. queVer, it
does so by'usihg a random number of dbservations, thus rais-
ing the question of the cost of sampling. A natural genefal—
ization of Stéin's two stage procedure is to‘¢onsider se-
quential sampling plans for obtaining the confidence inter-
vals with desired properties. Work on such procedures, among
others, is done by Stein & Wald [1947], Chow' &. Robbins [1965],
Paulson [1969], and Farrell[1959]. Chow and Robbins also
have defined optimality criteria for choosing one among var-
ious sampling plans. The aim of all such ssmpling plans is
to achieve‘ths-desired goals for the confidence interval

while using a2 minimum of observations.

All fhese approaches, being essentially classical in
nature, still sontain the arbitrariness for the choice of
numbers that are placed as restrictions on the length and/or
the probability of coverage of the intervai. This being the
case, they afe open to all the criticism that can be and has
been levied against similar arbitrary choices in the class-
ical approaches to point estimation and hypothesis testing;
One way to get around the criticism mentionéd sbove is to |
consider the confidence interval problem from the decision-

theoretic point of view, by defining a suitable loss function.



Such an approach has also been discussed previously by
Lehmann [1959], Joshi [1966], Winkler [1972], and Cochen &

Strawderman [1973], among others.

Having posed the problem‘in decision theoretic terms,
one can also try to find Bayes solutions to the problem under
suitable prior distributions. Hence, to some eXtent, the
~ nature of the interpretation of the solution changes from’
that of classical solutibns. Using thé'observed values of
the observable random variables, we are tryihg to set up the
limits for the value that the unobservable random variable
(the parameter) has already taken. The relation between the
value of the unobservable random variable and the values of
the observabie fandom variables that is exploited is that the
observable random variables have a distribution which has the
value of thé-uﬁobservable random variable as its parameter (s).
Thus, knowinglthe values the observable random variables have-
taken, we should presumably know more about the distribution
from which the value of the parameter has come  [posterior
analysis]. Hence, under this approach, the confidence inter-
val, instead of being a random interval poséibly set up to
cover the constant unknown value of the parameter, is an in-
terval expected to cover the random value bf the parameter

(i.e., a prediction interval].

Such a Bayesian problem can again be considered sequent-
ically. The first attempt at considering sequential Bayesian

decision problems was probably made by Arrow, Blackwell &



Girshick [1949]. In theirvpaper, they show that, in most
cases of sequential Bayesian problems, the terminal decision
rule is the'Bayes rule for the actual sample:Size attained
by thebstopping'rule. Since there are many.sampling plans
available, in order to choose a proper stopping rule, the
need of some optimality criterion comes up.. One such opti-
mality criterion is suggested in Kiefer and Sacks [1963],
for the case when the cost of sampling is proportional to the
number of observations. If ¢ is the cost per observation,
Kiefer and Sacks define a class of stopping rules {t(c):c>0}
to be asymptotically optimal if the expected risk under this
class of stopping rules, in the limit as ¢ - 0, is not
larger than the expected risk of any other class of stopping
rules. |

In this.thesis we consider the sequential Bayesian con-
fidence interval problem, and try to obtain asymptotically
optimal stopping rules for this problem in the sense of
Kiefer and Sacks. Similar work for the problems of point
estimation-and‘of hypothesis testing has previously been done
by Bickel & Yahav [1967a, 1968]. 1In fact,vthe present work
essentially is motivated by the final remark that ﬁickel &
Yahav make in their paper [1968], and also by a personal i
communication w1th Professor Bickel.

In Chapter 1, we develop some theory of asymptotically
optimal stopping rules. We prove that if ’{Yn} is a se-
quence of random variables defined on some probability space

(0,F.P), if {y } satisfies the condition £(n)Y¥ - constant



>0 a.s., where f(n) 4is an increasing function of n
which satisfies certain other regularity conditions (see

Chapter 1, Theorem 1.2), and if sup E(£(n)¥, ) < =, then
| e u

the class of stopping rules {f(c):c > 0} given below is
asymptotically optimal: |
For ¢ > 0O, define t(c) =n if n is thevfirst positive

integer such that

(0.1) {1 - -Hr-fl—}r%}yngc .

A similar theorem in the case where £(n) is a_positive
power of _n. was proved earlier in Bickel & Yahav [1968].
Our result geﬁeralizes this theorem of Bickel & Yahav in thé
sense of genefalizing the function £ permitted. However,‘
in contrast to Bickel & Yahav's results, we demand the con-
vergence of f(n)Yn to a constant instead of a random var-
jable. There are some technical difficulties involved in
this generalization, which make the present proofs somewhat

interesting. The condition sup E(f(n)Yn) < ®» is in general
, n :

rather difficﬁlt to verify. However, some condition like

this seems to be necessary for the asymptotic optimality of
the class {t(c):c > 0}. An example where oﬁly this condition
is not satisfied and the class {t(c):c > 0} is not asymp-

toticallyroptimal is given at the end of Chapter 1.

In Chapter 2, we develop the theory of fixed sample
size Bayes confidence intervals. We obtain a representation

for such intervals and also for their posterior Bayes risks.



The loss function considered here is given as follows:

(0.2)  L(8,I) = as(z) +b[1 - 6,(6)]

where a énd b are positive constants, 'Z(I)' is the
length of vI;::and |
(0.3) 61(9) _ 1, if 0eI,

_ 0, otherwise.
We also consider the sequential veréion of thié problem, and
show that for any stopping rule, the Bayes terminal decision
rule is to take the Bayes confidence interval for the éctual
sample size achieved by the stopping rule. - Thus, once we
havekobtained‘the Bayes confidence intervals for every fixed
sample size (aé is done in the earlier part of this chapter),
the problem :educes to that of obtaining the proper stopping
rule.

In Chapter 2, we discuss the example of the normal dis-
_tribution with unknown mean and known variénce to illustrate
the thepry;  Taking a normal prior for the mean, if we define
Y to be the posterior Bayes risk of the Béyes rule in this
case, we show that the sequence {Yn} satisfies all the
assumptions on {Yn} of Chapter 1. Now, using the theory of
Chapter 1, we show that the asymptotically optimal class of
stopping rules {t(c):c > 0} as defined in -(b.l), in this
case for each ¢ takes only a fixed number of observations.
However, the éalculations for obtaining'this fixed number in-
volves invertihg the normal distribution function.

In Chapter 3, we consider the more interesting example



of the normal distribution with both the mean and variance
unknown. We consider the "normal-inverted gémmé" prior on

g4 and o2 .in-this case. This is the coﬁjugate class of
prior distribﬁtions for the normal distribution. We continue
to take thé same loss function as defined in (0.2), so that
the loss function is independent of the unkhown value of o2.
Now, using the Remark 2.2 given in Chapter 2, we obtain the

_ * *
fixed sample size Bayes confidence intervals {[aln.QZn]}

and also the posterior Bayes risk of these intervals given

by {Yn}. Again, using the theory of Chapter 1, we show

that the class of stopping rules {t(c):c > 0} defined in
(0.1) is asymptotlcally optimal in this case. 1In Appendix 1
at the end of this chapter, we prove a theorem which glves

an upper bound on the probability in the tail of the student's
t-distribution. Even though the proof of this theorem is |
easy, we haﬁe'not previously seen such a bound used in the

literature.

Flnally, in Chapter 4, we try to attack the general
prdblem. Suppose {Xn} are 1ndependent1y, 1dent1ca11y dis-
tributed random variables with dlstributlon'functlon F(x|9)
and 0 has some prio; distribution with density given by
§(6) on @. We assume that the functions .F:'and § are
such that for each n, the posterior density of 6 given
xl,...,xn ekists and is almost surely unimodal and continu-

ous. We putzsome more regularity conditions on F and



which essentially ensure that the posterior distribution
converges to normality (for details see the conditions
given in Chapter 4), and under these conditions we show

that the posterior Bayes risk Y of the Bayés rule

* %
[aln,azn] ‘behaves asymptotically in such a way that we can
use the theory of Chapter 1 to obtain a family'of stopping
rules {t(c)ic > 0} which is A.P.0. for this problem.
Our claim that this family of stopping rules is also A.O.
for the problem is inconclusive to the extent that the re-
sults obtained in this chapter do not conform to the assump-

tions of Theorem 1.2 of Chapter 1. We hope to be able to

overcome this difficulty in our future research.
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CHAPTER I

ASYM.PTOTICALLY OPTIMAL STOPPING RULES

Introduction

In this chapter,.we prove some generai.theorems in
£he theory of asymptotically optimal stopping rules.
These theorems are applied later, in Chaptefs 3. and 4, to
the problem of obtaining asymptotically optimal'BaYesian
confidence intervals. Theorems of the type proved in this
chapter wereiéarlier proved by Bickel & Yahav [1968] for
special cases.- Hence, we generalize those thebrems to make
them applicable to a wider class of problems, including those
discussed in Chapter 3 and 4. The mathematical structure in-
volved in this chapter is conceptually indepéndent of the
problems arising from the‘confidence interval_prbbiems.
Hence, we give the theory of this chapter in a rather gener-
al setting in'fhe hope that these theorems ﬁay find use also

in other problems. | - . |-

Let {Yn} be a sequence of random variables defined on
a probability space (Q,E,P), where Yn is:'Fn measurable
and Ff:Fzér.,,.. CF. For ¢>0 and n a positive integer,
define X(n,c) = Yn + nc. X(n,c) is a random process de-
pending on the sequence {Yn} and the constant c > 0. We
consider thé problem of obtaining stopping rules for such a

process which are asymptotically pointwise optimal (A.P.O.)

or asymptoﬁically optimal (A.0.) in the folldwing sense.
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These-defihitions have been used earlier by Bickel & Yahav

[1968].

Definition 1: A class of stopping rules f{t(c): ¢ > 0} is
called asymptotically pointwise optimal (A.P.0.) if

(L.1) x(t(c),c)[inf x(s,‘c)]-l -1, a.s., as c - 0.
E seT :

Definition 2: A class of stopping rules {t(c): ¢ > 0} is

called asymptotically optimal (A.0.) if

(1.2)  1lim E[X(t(c),c)] [infE[X(s,c)]}~L = 1.
c-0 seT '

In bothvof the above definitions T is,fhe class of all
stopping rules defined on the sequence {Yn}._ As usual here
a stopping rule t is considered to be a non-negative integ-
er-valued randOm variable such that the eveht {t = n} is
measurable with respect tb the o-field Fo-

In order to obtain such A.P.0. and A.O. stopping
rules, we find it necessary to make certain,aésumptions. We
1iét these aésumptions here and then prove two theorems,
Theorem l.i,-aﬁd Theorem 1.2, which give us A.P.0. and
A.0. stoppiné rules,'respectively. |

Assumptions:

Al.1l) P[Yn»>_0] = 1 for each n.
A 1.2) P[Yn - 0] = 1.

A 1.3) f(n)Yn - V>0 a.s. as n - », where V is a con-

stant and £(x) is a strictly increasing function of x on

[0,2). Purther if we define
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(3) e = MGG

then we assume that F(x) is a bounded function on [0,=)
such that F(x) - M as x - », where M is a positive
constant. |

A 1.4) For each x > 0 and Vc > 0 there exists an integer
N(x,c) which minimizes the function . |

(1.4) h(x,c,n) = (f(n)fd‘x } nc.

Further, this N(x,c) may be taken as the first integer n
such that A(h(x,c,n)) 2.0, wﬁefe- A is the one step differ-

ence operator (on n). In particular, this last condition is

. s . . 1 : 1 .
always satisfied if the difference {f(x)’_ff(x+l)} is non-
increasing in x.

A 1.5)° There exists an increasing function g and a number

Xo such that for x > Xo. .
. £f(x

1 _L.Yl_ > 1

yow EGIGH) T
and

_ ® !
(1.5) 2 @ ———< e,

n=1 ng(n)

Now, Qe-state the two main theorems of this chapter,
which we will subsequently prove.

Let us define a class of stopping rules {t(c): ¢ > 0}
as follows: | |

Definition 3: t(c) =n, if n is the first integer such

that

£ .
(1.6) (l - -f—(ﬁ%%-\) Yn <c.
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Theorem l.1£ _Uhder the assumptions A 1l.1) to A 1.4), the
class of stopéing rules {t(c): c > 0} defined in (1.6) 1is

A.P.O.

Theorem 1l.2: Undervthe assumptions A 1.1) to A l1.5), if

(1.7) sup E{f(n) Yn}.< ®,
n

then the class of stopping rules {t(c): ¢ > 0} defined in

(1.6) 1is A.O.

In ordér-to prove these theorems, we Will need some -
preliminary.feSults, which are the consequences_of our
assumptions frdm A l.l) to. A 1.4).

In the following lemmas, it is aséumed that Al.l) to
Al.4) hold.

" We introduce some more variables.

Definition 4: vDefine a random variable no(c), such that

(1.8)  X(n_(c),c) = min(X(n,)).
. . n

Definition 5: Define a r.V. n* (c) such that

(1.9) h{(f(f(c»)_ert(c)?c.n*(c)} =

. -1 o
-m;n{h{(f(t(c))) Yy (oyrCrnl

Definition 6: Define mo(c) such that

(1.10) h(V,c,mo(c)) = min {h(v,c,n)}.
_ n

All these_variables, t(c),mo(c),n*(c) and mo(c),

obviously depend on c. However, for notational simplicity.

from now on we supress their dependence on ¢ and just write
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them as t;no}ﬁ* and m,. Since for fixed ¢,V > 0,

X(n,c) -» «, é;s., and h(Vv,c,n) -» o as n_# w, it is
clear that nb,n*,mo are wéll-defined and almost surely
finite, all c > 0.

We note that the function F(x) defined in (1.3),

can be written as

F(x) = x{1 - E%é%%y}
(1.11) = xf(x){?%;y ?TﬁifT} '

and that xf(x) -+ o, From these facts and‘assumption A 1.3),
we obtain:

Lemma l.l: As X - o,

_f(x)

£ (x+1) ;
(© 5y - Toamy? = O&EEN T = o),
(d) _x £(x) - 1.

(x-1) £(x-1)
Lemma 1.2: As c¢ - O,
(a) t-»>» and n* » ®», a.s.,

(b) m, - =.

Proof: From the definition of t, t is first n > 1, s.t.

(1.12) {1 -

By A 1l.1) and A 1.3) the left-hand side of the inequality
in (1.12) is positive for each n almost sﬁrely. Also,
from A 1.3) and Lemma 1.1(c), the left-hand side of the
inequality in .(1.12) goes to 0, a.s., as n - o, From

these facts, it directly follows that t - =, a.s., as ¢ - 0.
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From A 1.4), we see that n* and m are both
special cases of the variable
(1.13) n = first n =2 1 s.t. h(v(c),c,n+l) - h(V(c),c,n) = O,

where V(c) a“V; a.s., ‘as ¢ - 0. Now,

h(v(c),c,n¥1) - B(V(e),e.n) = V(o) {Fmaqy - 7)) * ©
so that |
(1.14) n = first n =2 1 s.t. {f%n) - f(nil)} V(c) < c.

Now the same argument used for t shows that

~

n-®, a.s., as c¢ -» 0, which proves that n* - «, a.s.,

and m - ® as ¢ > 0. | (Q.E.D.)
ILemma 1.3: As ¢ - 0, n, - ®, a.s.
Proof: We recall that n, = no(c) is defined to be such

that X(n_,c) = min X(n,c).
o . n .
We first show that X(no,c) -~ 0 a.s. as c - 0.

Let {ck} -~ 0. be a sequence of positive numbers and
{n} » = Dbe dgfined such that ¢ n, - 0. -Npte that for
every sequence’{ck} -+ 0 such a sequence {nk} can be
chosen. Now, for this sequence {ck} we know

x(nk’ck)-é‘Ynk + ¢ Ny alo a.s., as k- =.
Thus, since

| X(no‘ck),ck) < x(nk’ck)'

it follows that
(1.15) X(no‘(ck),ck) -0 a.s., as k » =,
This being ﬁrue for every segquence {ck} -+ 0, we have

X(n_,c) -0, a.s., as c - 0.
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This in turn implies that

Y -0, a.s., as ¢ - 0.

n_(c)
Also, by A 1,1), we have P[Yi > 0] =1 for all i,
and thus given any N we have

p[inf Yn'> 0] = 1.
nsN

Therefore, almost surely for every sample point, we can find

a 6§>0 s.t.

This inequality implies that for all N we can find
>0 s.t.

inf no(c) =z N,
c<d -

This proves the lemma. ' (Q.E.D.)
Lemma 1.4: f(t)ct - MV a.s. as c - 0.

Proof: By definition of t

(1.16) ff%?ff' ?T%;TT} £(t) Y, S ¢c< {f(til) - f%t)}f(t—l)Yt;l.

or

(1.17)

t{f(Hﬂﬁ- .f-(t)}'f(t)yt < £(t)et <

(t+1){F(t) - £(t-1)} Lof(t) ¢ *
| T E(D) ey (e-1) © Y
Since as ¢ -» 0, t(c) - « a.s., the results_of Lemma 1.1

imply that when we take the limit as ¢ - 0, we get

1lim £(t) - ¢ - t - MV, a.s. {(Q.E.D.)
c-0 o
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Lemma 1.5: n*f(n*)c - MV, a.s., as ¢ - 0.

Proof: We have already shown (in Lemma 1.2) that

(1.18) {f(i?)f' ) fE)Y S e < {f(ni-l) - T E Y
or |
(1.19)

(n*-1){f(n*) - f(n*-1)} n*f (n*)
. f (n*) (n*—l)f(n*-l)

f(t)Yﬁ.

Recall from Lemma 1.2 that t » «, n*¥* » ®», a.s., as ¢ = 0.
Thus, from A 1.2), f(t)Y£ +V, a.s., as c¢ - 0. Making

use of Lemma 1.1) and taking the limit in (1.19) as ¢ - O,

we find that f(n*)cen* . - MV, a.s., as c - O. (Q.E.D.)
' R X (t, ) |
Lemma 1.6:. 112;3up iﬁf h(f(t)Yt,c,n*) <1, a.s..

Proof: By definition,'
X (t,c) S 1 -
inf‘h(ﬁ(t)Y£,c,n). h(f(t th,n*
n

| S Y et
(1.20) = -
[£(n*) 17 £ (£) ¥, +on*

,g}t}Y£+ctf(t) -f(n*i
E(E)Y *fen*E(m¥) ~ E(t) °

However, by the definitions of n* and t and by A 1.4),
we can show that n* < t (a.s.). Thus, since f is a

strictly increasing function of its argument, we have.

x{t,c) - £ (t) Y +otf (t)
inf h(f(t)Yt,c,n) - f(t)Yt+cn*f(n*)‘ o
n \

(1.21)
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However, as ¢ —» 0 the right-hand side of (1.21) converges
to 1, a.s., by the fact that t(c) » « as < - 0, and by
Lemma 1.4 and 1.5.

Therefore, we have

s o x(t,c) o
c-0 n t v
_ h(f(t)Yt,c,nO)
Lemma 1.7: lim X(n_. o) =1, a.S.
c-0 o’ '
. ~1 ' _
g, DEWYLemg) o (Eg) £(EIYge
—_— X(no,c) Y +n,c
o
f(t)Yt+nocf(no)
f(no)Yno+nocf(no) :
Now, since t - «» and n,+® as c¢- 0 (Lemma 1.2), it
follows from A 1.3) that f(t)Yt - v and f(no)Yh - V, a.s.

o
Hence since nocf(no) > 0, and thus is bounded away from

- V, it follows that

1im h(f(t)Yt,c,no) - s
c-0 x{n_,c) ’ °=e
o
We are now ready to, prove Theorem 1.1. (Q.E.D.)

Proof of Theorem 1l.l: We first show that for each ¢ > 0,

t(c) is a proper stopping rule, in the sehse'that
Pt < o] = 1.
From the definition of t, we know that t =n, if.n is

the first integer such that



19

or '
1 1
From Lemma 1.1 we know i N S— - 0 and from
° £f(n) f(n+l)

A 1.3) we know £(n) Yn - V>0, a.s. Hence, the left
‘hand side of -(1.22) convergeé to zero almostbsurely. it
follows that the inequality is satisfied by some n, almost
surely, and-thus Pt < =] = 1.

Next, we have to prove that

. ) X(t,C) =
n sy -1 e
- i
~ SeT

However, since we have shown above that teT for every
c > 0, we have
X(t,c) >1, a.s.

inf X(s,c) =—
seT

Consequently, in order to prove the theorem, it is enough to

show that
. X(t,c)
(1.23) llgggup inf %(s,9) <1l, a.s.,
seT

or, equivalently,

(1.24) 1lim sup Xlt.c) <1, a.s.

c-0. X(no’c)
Now, _
(.25) =dt.c) X(t,c) . h(£(t)Y¥t,c,ng)
. X(nQ.é) = igf h(£(t)Y,_,c,n) X(n_,<)

Hence, using Lemma 1.6 and Lemma 1.7, we see that

(1.26) 1lim sup ==& <3, a.s.,
c-0 X(no,c) -
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and this proves the theorem. (Q.E.D.)

Note: Theorem 1.1 is a generalization oflThedfem 2.1 of
Bickel & Yahav [1968] in the case when their k(n) = n.
However, as cén be noticed, the steps in our.proof take a
differentvapproach than that of Bickel & Yahav. In fact, the
proof of Biékel & Yahav [1968] is in error because the follow-
ing statement which they make in their paper is not, in gen-
eral, true: |

"“->_-’°'B :
x(t(c),g) = mﬁn h(t (c)Yt(c),c,n).

This statement is not true because m%n h(%B(c)YE(c),c,n).is not
necessarily achieved by their stopping rule t(c), but is
achieved at some n* (c), where n*(c) 5_%(c). Hence, the

steps following this statement_in their proof also need not

hold true. However, the proof given here now provides rigor-
ous support for their Theorem 2.1 in the case K(n) = n.

We note that in the case f(n) = nB » our stopping rule

t(c). is idéntical to the stopping rule %(c) in Bickel &

Yahav [1968].

Cor 1.1: Uhder assumptions A.l.1 - A.l1.4,:

iig' iﬁf h({Vv,c,n)

=1 a.s.

Proof: Since f(n)Yh - V a.s., given any ¢ > 0, . there
exists Ne' possibly depending on the sample sequence, s.t.

for n > Né,

(1 -e)EmI™t vy, < Wae)lsmitv ,
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or ‘
(1-e)[[£()11 v+ ncl ¥ +ne< (1+e)[[E£(n) ]t Vv + ncl,
or o

(1-¢)inf[h(V,c,n)] < inf X(n,c) < (l+e)inf[h(V.n,c)].
n>N€' B n>NE n>Ns

However, from>Lemma 1.2 we know that mo‘a-w as ¢ - 0,
and so we can find a &, small enough" s.t.»bfor c < 8y,
>
mo(c) _Ne ’
and thus

inf h(V,c,n) = inf h(V,c,n).
n>N n : o
€
Also since by Lemma 1.3 no(c) - ®, a.s., as ¢ - 0, we can
find a 62 small enough (which may again depend on the sam-
ple sequence) such that for ¢ < 8o

no(c) > Ne'
Thus, choosing ©&* = min [61,62], we_have'for c < &%, that
(1-¢)inf h(V,c,n) g_x(no,c) 5.(1+e)igf h(Vv,c,n).
n

Now e > 0 being arbitrary, we get

x(no’c) =1

inf h(V,c,n) ’
n

lim
c-0

a.sﬂ

However, from Theorem 1.1 we have

lim '§%%L9%T -1 a.s.,
c-0 Mo!
and so
. X(t,c) N ' ,
. éilg inf h(V,C,n) b 1' aA.Se : (QoE.D-)
n
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Lemma 1.8: i) f(mo)cmo - MV, as c¢ - 0,
ii) f(mo)x(t,c) - (1+M)V, a.s., as c¢c - 0.
Proof: .In the proof of Lemma 1.2 we showed that
_ e 1 __ 1 o
m, = f;rst n>1l s.t. {ETHT 'ETH:TT} V < c.
Thus,

1 1 1 —
(1.27) {f(m¢> - f(mo+l)} V<ec< {f(mo-l) - f(mo)} V.

Now using exactly the same argument as in the proof of
Lemma 1.5, we get ,f(mo)cnb -~ MV, as c - 0. Thus, since
(1.28) f(mo)h(v,c,mo) =V + f(mo) cm, ,

using i) we have

f(md)_h(v,c,mo) ~>(1+M)V. as c - O,v

and thus, using Cor.l.l, ‘we find that |
f(mo) x{(t,c) - (1L+M)V, a.s., as c - 05 ’ (Q.E.D.)
Lemma 1.93 f(mo)ct - MV, a.s., as c - 0.. |
Proof: Since from Lemma 1.4, we know that |
f(t)ct » MV, a.s., as c¢ 50 ,
in orderlto_prove this lemma it is enough t@ prove that
| f(mo)
F) i, a.s., as c¢ - 0.
Now,
£(t)X(t,c) = f(t)Yt + £(t)ct,
from which, using A 1.3), Lemma 1.2, and Lemma 1.4, it
follows that
(1.29) E£(£)X(t,c) -(1+M)V a.s., as c - O,

Also, ‘
- £ (m) f(m )X(t,c)

ey — f®)xX(t,c) '’




S0 using Lemma 1.8(ii), we see that

This

f(mo) ' (L+M)V

proves -the lemma. (Q.E.D.)

We need one more lemma before we get to the proof of

Theorém 1.2,

Lemma 1.10: Under Assumptions Al.l) to A 1.5),

E{f(mo)cﬁ} - MV.

Proof: In_oﬁder to prove this lemma we use the following

"theorem from Bickel & Yahav [1968]:

Note

Theorem: - Let {Rn} be a sequence of r.v.s. on

some probability space such that R, - R . in law,
Let »

amv.n_ - PE‘&nl > n]
and | |

a =sup a_ .
n_ °pP %m,n

Then 2 a < = E(R,) - E(R).

n
We now maké use of this theorem to prove Lemma.l.lo}
that in Lemma 1.9 we have proved that

f(mo)Ct -» MV, a.s., ‘as C - 0,

which is in fact stronger than convergence in law.

s ' _ n ’ ‘
Also, in our case, let N = [%(mdlé]' Vand

(1.30) a_, = P[f(mo)ct > n].

cn

23



Then

acn = P[t > NJ

re 1 D T |
< PLEMYy > clFmy - FowD)? 1 0
The last inequality follows from the definition of t.
Using Markovfs'inequality, we obtain

& el __
ten S S

—t__}
cn £(N)  £(N+1)

a N{E(NHL)-F(N) }
(1.31) = oFm F (N+1)
8
= )
n{f (n+l) -£(n)}
f (n+1)

where @ = sup E{f(n)Yh} and B = sup < ®
n. . n

Now,
nm m

T _ o o
(1.32) N;[EE%E;T] = [EE;?TE;Tq Z_n[gagg%agy] = nM_,

m
= —20 ; - 3
where Mb'[cmcf(mo)]' Again, we supress the dependence of

N and M, on ¢ for simplicity of notation. ' .

Because f is strictly increasing, we have from

(1.31) and (1.32) that

B
a <
cn:—--chOf(an)

o8 1 ”f(mo)
(1.33) = W fmy ° n T@m) C
o o (o}
_ m_
Since M =[_____] ’
7 o] cmof(mo)
m m
(o] : (o}
: 1 S M -<_ ———
cmof(mo) o} cmof(mo)

24
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or
: M
. 1 1 o 1
(1.34) - < < .
cmof(m05 My 5 cm E(m))  °

Taking the limit in (1.34) as ¢ - 0, we see that

M
(1.35) —9"»'~lh as ¢ - 0.
m MV
o
Also,
c Mof(mo) = E; - c mof(mo).
and so

(1.36) ¢ M_f(m ) - —D}v .MV =1, as c - O.

Now,
. _ nMo
Elady) = Fimge =
_ o
and since >mo »® as ¢ - 0, we can find a c{ s.t. for
0 < c < c] and large enough n, using A 1.5), we have

o]
or _
: f(m))
1. o
(37— gy 2 FEM)
(=)

Therefore, for 0 < ¢ < cI and large enough 'n, we have
from (1.33) and (1.37) that | |

a { _;Q&____, . -1
cn — cM_ f(m) nM_y ‘
o Y o o
ng ( EF“”)

(o]

and thus>
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. a8 1
1.38) a < . ’
( ) cn—._-C_Mof(mo) ng (A (c)) |
~ where ffc) =|—|.
o
Now, |
 nM nM
o A o
T - 1< 1) < T

o (o}
and so for each n,

(1.39) .;im' nfe) ﬁv as ¢ - 0.

Cf—»Q n
In consequence, given an,,e>0,s,t.,ﬁv - g >0, we can find
* : * '
a c, s.t, for 0 < ¢ < c,
A(c) 1 )
no Z Gy

or for 0 < ¢ < c;

f(e) 2 G5 - ¢) n > A ‘.

where n 3 [(ﬁv - g)n].

Hence;,fOr 0 <c« c; ’
1 ‘ 1
04 ) X < -
(1.40) g(a{c)) = g(n)

Also, since CMof(mb) -1 as ¢ -0, given 'l >8>0 we

can find a. cg' s,t.- for 0 < ¢ < cg R
. 4 . _
(1.41) - < .

cMof(mo) 1-%

Thus, if we take c¢c* = min(c;,c;,c;), we have

for 0 < c < ¢* and large enough n,

(1.42) a = sup a < _aB 1 . ,
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(1

where -~ G- e) >0 as no = .,

Sst

© \

Finally, since 2 Tomy < ®, we get
n=1 " g(n , -
. ® ®© '
(1.43) ¥ a_ < %Lé- 2 l _ <o .
n=1. o =% p=1 ng(n)

Thus from the theorem of Bickel & Yahav quOted earlier, it

follows that

E{f(mo)ct} - MV, as c¢ - 0. | ‘.(Q.E.D.)

Proof of Theorem l.2e

From Lemma 1.8, we know
f(mo)x(t,c) - (1+M)V a.s., as c - 0.

Also from Theorem 1.1, we have for any seT

lim sup X(tec) . 1, a.s.
0 X(s,c) -— :

Thus, we see that, for any seT

lim inf f(m )X (s,c) > (1+M)V, a.s.
cn0 o

Using Fatou's lemma,

1lim inf .'E{f(mo)x(s,c)} > (1+M)V.
c-0

Because tsT,it follows that in order to prove Theorem 1.2, it
is enough to prove that
. E(X(t,c :
lim sup T0%F EX(s,c)) = 1.
- c-0 -
seT

Equivalently, for any seT, we need to show that

nggt,c“ < 1.

lim sup  Fik(sic)) <

c-0



Now, . S
. E(X(t,c) . - E(m)B(X(t,c))
b s Blx(ste)y = lmswe ZPEU

c+0  Em)EX(s,c))

< lim ;ué f(m )E(X(t,c))
c-0 lim inf f(mo)E(X(s,c))

c-0
< lim sup fMIE(X(t,c))
c-0 - T+ Vv

Therefore, in order to prove the theorem, it is enough to
prove

f(mb)E(X(t,c)) - (1+M)V, as c - 0.
From the definition of t we have

f(t+l) - £(t)

F(E+1) Yt = ¢
or
L f (t+1)
Yo = Ot ITE(e+1)-£(0)]
< :% ct

‘ - s-e D{f(n+l)-£(n)}

X(t,c) ='Yt + ct < (14 %—) ct

and ‘
f(mo)}{(t‘,"c) < (1+ %—) £(m) ct.
From Lemma 1,9 and Lemma 1.10, we know that
| f(mo)'ct - MV, a.s.,
and o
E{f(mo) ct} - MV.
From Lemma 1.8} we also have,

f(mo)’x(tv-, c) - (1+M)V.

28
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U51ng -a well-known generallzatlon of the dominated
convergence theorem (Royden [1968: page 891), we see that
E{f(mb)x(t,c)} - (1+M)V,
and this prdVes the theorem. - (Q.E.D.)
A cohdition like sgp E{f(n)Yn} < é is, in géneral,
rather difficult to verify in practical situaﬁions. However,
some condition like this seemé to be necessafy in order to
prove the a#ymptotic optimally of the class of rules
{t(c):c > 0}. In case this condition is not satisfied, the
family {t(é);c > 0} may not be asymptotically optimal, as

can be seen from the following example.

Example: Let tﬁe probability space be the interval [o,1]
with Lébesgue measure.v ILet f Dbe some fuhqtion satisfying
the condltlons on f given 1n A l1l.3 to 'A 1.5. For each
we[0,1] and each positive integer n, deflne 'a random var-
iable Y, such that |
£(n)Y (w"[{f(n) - eyl TV AE welon)
v ’ otherwise,

where V > 0 is a positive constant.

Then, we have

i
[
°

p[yn'> 0]
Also,

plY, - 0] =1
and

f(n)Yn -+ V, @Q.S., as n - @,

so from this definition of ¥, Assumptions' Al.1l) to A 1.9
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are satisfied.

Further

BE@Y) = SrEay T ¢ fV + (- D

=+ ® as n - =,
,which shows that
sgp E{f(n)Yh} = o,
Also

PLt>n] = P[{f(li) - f(%+l)} £(1)y; > ¢, for i <n].

However,
v L+ Aif we[0,3),

1

1 1 : _
ey - f(i+1)} £(1)Y; (w) = 1
' {f(i) T E(i+1

TALREE: we[+ . 17,
~so that if ¢ <V, we have

1
p{t > n] 2 =,

and thus,

E(t) =2 Pt >n] == .
n=1

This impiies that
EX(t ,c) = E{£(t)¥,} + CE(t) = =, for each 0 < c < V.

However, if we define a rule s such that s always stops

i

after the first observation, then

X(s,c) = Y, +c,
and thus

E(X(s,c)) =,E(Y1) + ¢ <w, for all c.

Hence, the rule {t(c):c > 0} cannot be asymptotically

optimal.
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CHAPTER II

SEQUENTIAL BAYES CONFIDENCE INTERVALS

2.0. ;ptroduétion

- In this chapter, we obtain representation‘for
the>fixed—saﬁpie size Bayes confidence:intervals, and
for the posterior Bayes risk of this Bayes rule. We also
consider the sequential version of the Bayesian confidence
interval prdblem,_ahd show that the terminal decision rule
when we stop after taking n observations‘is the same as
the fixed-sample Bayes rule for n observations, so that
the problem of finding the Bayes rule reduces to that of
finding £he appropriate stppping rule. At this point, we
can use the theory developed in Chapter 1'and.obtain A.P.O.
and A.O. BaYes sequential confidence interval estimates.
As an example of the theory developed in thié chapter, we
consider the éxample of obtaining the confidence interval
for the mean y of a normal distribution when the variance
is known and"u is assumed to have a normal prior distri-
bution, As might be expected, the asymptoticaily optimal
Bayes confidepce intérval rule in this case Gomes:out to ke

a fixed-sample procedure.

2.1. Fixed—Sample Bayesian Confidence Interval Estimation.
Suppcse we observe a sequence {Xi 251 of random var-
iables, independent and identically distributed according to

a probability law given by a density £(x| 0}, where 6 ¢ @
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CHAPTER II

SEQUENTTAY, BAYES CONFIDENCE INTERVALS

2.0. Introduction

In this chapter, we obtain representation.for
the-fixed-saﬁple size Bayes confidence}intervals, and
for the posterior Bayes risk of this Bayes rule. We also
consider the sequential version of the Bayesian confidence
interval problem, and show that the terminal decision rule.
when we stop after taking n observations’is'the same as
the fixed—sample Bayes rule for n observations, so that
the problem of finding the Bayes rule reduces to that of
finding the appropriate stopping rule. At this point,vwe
can use the theory developed in Chapter l'and.obtain A.P.O.
and A.O. BaYes sequential confidence interval estimates.
As an example of the theory developed in this chapter, we
consider the éxample of obtaining the confidence interval
for the meanvu_of a normal distribution when the variance
is known and u is assumed to have a normal prior distri-
bution, As might be expected, the asymptoticaily optimal
Bayes confidenCe interval rule in this case domes:out to. ke

a fixed-sample procedure.

2.1. Fixed-Sample Bayesian Confidence Interval Estimation .

Supposé we observe a sequence {Xi gﬁl of random var-
iables, independent and identically distributed according to

a probability law given by a density f(xleL where 8§ ¢ @
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and ® is an open subinterval of the real 1iﬁé. Suppose
nature choosés a value eo of 6 according to a probability
law with density ¢(6) on @. Let # rep;ééeht the class
of all subintervals of @®. This class includes in particular
single point sets and also the null set. ¥ is our action
space. Fufther, for each 6 ¢ ® and I e #, define ﬁhe

loss function L(6,I) as follows:

(2.1) L(e,I) = as(I) +Db[1 - 86.(8)],

where a,b ére' positive constants,
L(I)_='length of I

and .

{ l, if 8 ¢ I,

5.(8) =
0, otherwise.

Under this loss function, the Bayes risk of a decision

rule 1(x1,x2,...,x ) = is given by

| n
(2.2) R(y,I) = £{£"‘9'1X’ r_l £(x; |e)dx }w(e)de.

‘Since L(e,IX ) is a non-negative function, we can use

Theorem 20 of Royden [1968: page 270] to change the order of

llntegratlon in equatlon (2.2). We obtain:

_(2.3)» R(Y,I) = I?H; L(G.Iz‘{n)q:(elxl,“.,xn)de}-g,(;sn)%n

where ¢(dxl,.o..xn) is the posterior density of 6 given
KyseoesXos and g(§n) is the joint marginal density of

(Xll ep egxn) ®
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By definition, a Bayes decision rule is given by

I*(xl,...;xn).= I; . the decision rule which minimizes (2.3).
_ X

The Bayes rule equals  I* if for almost all (xi,..,,xn),I;

minimizes,

(2.4) p (4T ) = [ LI ) ¥(O]xp,...0x)d0.
~n ) ~n

This is the posterior Bayes risk of the interval I, .
~n

Our first task is to obtain a representation for I; .
~n

Now,

p(\lJ.Ix )= J‘ L(B,Ix ) \!'(elxl----.xn)de
~n @ 2n

=:a~i7:(:|:5

) + b{l - { ¥Blxg,..e0x ) a0l.
n X

~n
Hence, if we deflne 15n= [al(gn), a2(§n)] = [al,az].
then

(2.5) p(\k,I?Sn)= a(a, - al) + b{l-y (azl xl"'f'xn)
where Y(e\xl,.;.,xn) is the posterior distribution function

. _ * _
evaluated at ‘9. The Bayes rule I, FEGI ,g; ] for the prior
Xn © 1n n

distribution 'y is the interval which minimizes (2.5).
Let us make the change of variables: .
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Then

(2.6) p(¥,I, ) = ad + BL-¥ (6, | xg s e ensx )4 (@q] %y s eanrx) ]

Differentiating this partfially = ‘with respect to d and @y,
we obtain ' |

R

and

S-g- = b{-—\‘] (q1+d|x1'-f-:xn) +_‘V(“1‘x1""'.}{-n)}' :

Setting these partial derivatives equal to zero, we find that

it is necessary for the values “;n and d; minimizing

(2.6) with respect to &, and d to satisfy the following

equations:

% * . % v

lb (@1n+ dn|xl' ceoce ,Xn) b ll,( (Glnl X1, .o ."xn) ’

(257) » t

. ofe _ a
q’(@lnlxl,.o.pxn) - S °

Now, let us assume that for each (Xl""'xn) ’

¢(9|xl,...,xn) is a strictly unimodal, continuous density.
‘It then follows that, depending on the values of a and b,
the equation

(2.8) ¥(8]Xqseearx)) = £

has either Zerb, one, or two solutions, depending on whether
the density ever goes above %-. In consequence, depending

on the values:of a and b, for each n, the Bayes con-

fidence interval is given by:
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rnull set, if w(elxl,...,xn) < %-for all 6e®

(2.9) I; =| {a*}, if equation 2.8 has just one solution a*,
p el

. * . * .

hln?“Zn]' if @;, and a;n are the two’

. solutions of (2.8).

Also, the posterior Bayes risk of this rule is given by
o . * - * * - * : o
Yn=p (\"'I?Sn) =a (gizn-g'ln) +b{l ‘b (azn (xl' b "‘ 'xn)

(2.10a) *
+¥ (alnlxl,...,xn)},

* _ o % % . Lok s
vhere Ign'—[aln'62n1° Otherwise, when ;§n is a null set

or a single pbint set, we have

(2.100) Y = p(¢,I; ) = Db.
. - ~n

2.2. Sequential Problem.

Let us now consider the‘sequential version of the Bayes
confidence interval decision problem considered in Section 2.1
Here, we cah go on sampling.as long as we wish. However, if
we.stop samp;ing after observing (xl,...,xn) =X and take

the action FIX,, when 6 is the true parameter value, the
C~N : .

loss is given by

(2.11) L(8,I, ,n) =as(f, ) +b[1l - &, (8)1 + cn

“Tl ~n X
. Sn

L(e,I, ) + cn,
~n

where ¢ is a positive constant. The constant ¢ can be
‘interpreted as the cost per observation of sampling.

In this seqﬁéntial problem, our decision is a pair (T,IT),
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where T is"a'stopping rule and IT is a terminal decision
rule which tells us what decision to make after the stopping
rule T tells us to stop. Both the stopping rule T and
the terminai'decision rule I generally depend on the ob-
servations already made. The Bayes risk of the rule (T;IT)
for the priér density ((8) is given by

(2.12) R(y,7,I) = [ E (L(B,I ) + cr)y(6)de
®

-} n .
=2 [L(p,I )+en]l £(x.|0)ax Yy (6)do.
n=0 é‘ {‘E‘Tm] n i=1 lI n}

Again changing the order of integration as done earlier, we
obtain

2.13 T I L(9,I )+ Bl%ysenes )dx .
(2.13) R(p7. 1) [Ln]{g[ (9,T ) +enly (8% . +--x ) o x ) ax,

Because (2.13) is a sum of non-negative terms, in order to
minimize this sum, it is obvious that we havé to try to min-
imize each téfm. Thus, as soon as a stopping rule tells
us to stop after n observatioﬁs, the best we can do is to
qhoose the iﬁterval I, which minimizes the.inside integral
in (2.13). Howevér, we have already solved this problem in

Section 2.1; the interval I; given by (2.9) is the inter-

val which minimizes the inside integral. In other words, for
every stopping rule r, the terminal decision rule which min-
imizes the Bayes risk when (Tt = n) is the fixed sample size
Bayes.rﬁle‘ for n observations. This fact is a property
which is true of most Bayesean seguential problems and was

perhaps realized for the first time by Arrow, Blackwell and
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Girshick [1949].
Using our earlier notation, if we denote the posterior

BaYes risk of the Bayes rule. I; by Y s ‘i.e.,

then from (2;13) we see that the Bayes risk of the rule

(T,I; ) is given by
~T .

(2.14) R(y,7,I, ) = E{Y_ )+ cT()].
T

Hence; in order to find the sequential Bayes rule for our
problem, we have to find a stopping rule T which minimizes
(2.14). Such a stopping rule would naturally depend on c,
the cost of observation. Consequently, if we want to find
an asymptotically optimal Bayes rule for our problem, we can
in fact use'the theory developed in Chapter 1, with Y, 6 now
equal to the‘pdsterior Bayes risk of the Bayes rule for the
sample of éize n.

Before we'go on to give an example of the theory
developed here, we stop to make some remarks.

Remark 2.1l: 1In order that our representétion of the Bayes

confidence interval I; and the posterior Bayes risk of

this Bayes rule Y, hold, we have made one important assump-

tion in this chapter, namely that for each n the posterior
density of © given by ¢(G|xlys;e,xn) is strictly unimodal
and continuous, It would be nice to have a set of necessary

and sufficient conditions on {(8), the prior density, and.
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vf(xle), the common conditional density given 8 of the
observations -xi, which assure that this assumption holds.
At present, we cannot demonstrate the existenée of a set of
such conditions. However, for the unimodaiity assuﬁption to
hold, it is sufficient that ¢(8) and f£(x|8) ~both be

log concave in 0. In particular, if both - (8) and £(x|0)
belong to the exponential family, then this latter condition
is satisfigd-énd 'w(elxl,xz,...,xn) is unimodal in 8 for

almost all Xl,xz,...,Xh.

Remark 2.2: Suppose that there is a p-dimensional nuisance
parameter ¢ in the problem. That is, the common density

‘of the random variables X,;,X,,..., is given by £(x|6,9)

whera 06¢® as before and oe?, én open subset of p-~-dimen-

sional Euclidean space. If we do not let our loss function

depend on the value of ¢, i.e., we continue to have
L(8,p,I) = af(I) +Db[1-5,(D)],

then the above problem essentially remains the same as the

one discussed in this chapter with the understanding that

w(e|x1,...,xn) now represents. the marginal poSterior density
of 9§ given KyseoosX s with respect to a prior density
y(6,p) for the parameter (8,9).

2.3 L] Exameleo )

Suppose‘that {Xn} is a sequence of independent,

identically distributed N(6,1l) random variables, and that

the prior distribution of 6 is N(ugoz) where ¢4 and o
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’ aré known constants. Then it is well known that the poster-

ior distribﬁtion of 6 given XyoeeosXy is given by

(2.15) 4 (8lxgseeeuxy) = Nup.od),

where
' = 2
(2.16) g = DX tulo
n n + 1/52
‘and
(2.17) o2 = (n+ 5%0-1
_ n o

Also, we know that

1 1 1.%
M (8 1g0 e ) = - Lo dys,
6 1 n V2m o V2T o2
Y

so that for n chosen such that V%; (n +=5) > %-, we
S 14 :

*
have Ix

* * * v .
X = [aln. a2n], where @, are the solutions of

the equation

1 - —17 (G;n"l-ln)z

e 20n =

5
A
Q
s .

o'l

That is,
1 2 ' 21
- ;—_7(“§n - H,)=log ayem on ,
o v :
n

or eguivalently,

' 2
* . 2 _ 2 b
CH - u )" = o, log ;;f;z—gi .

- Solving these equations, we obtain

,b2- }
. 2 2
27 on a

D _ 3
(2.18) aln»£ “n - 0, {log
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and
9 o =u +o flog —2] g
' n
Also,
et =20 1 b’ *
%on 7 %1n T “n { °3 o o2 a2 } 4
n .
and thus, L el y2
1- ¥, | ) L T 203 o de
- X p-oo'x = _T_-_ .
' 2n!7l n Eﬁ'on o
v n-
’ ® _.. 2
(2.20) - 7 e g
\/2.“', {lOg 5 5 }2
21 a Gn
and
- 2
e b %
. L ~tlog —3 5" 12
_ 1 : ma g - -
(2.21) Y(alnlxl'ooo,xn)_ _‘[ n e 2 .

- % o
- l - ‘E-(azn‘xl'oo"xn)»o

We conclude that the Bayes risk of the Bayes confidence in-

1 * % .
terva [gln,mzn] is

2 o 2
. . 1 -2z
(2.22) Y =,2Ea o_{log —B—=1% + B [ o 7 dt}.
n S ¢ o 2 2 —
~a’ o, QZH b2 L
{log 55}
2m a” o©
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-

Since 02 = —t , we have
n 1
2
o
.2, % 2 i
: 2
2 2 2
21 a 0 o 2T a

Using the well-known bound on the probability‘of the normal

tail, we find that
2

' b
~%{log —=—
, ® 2 .2{9 22}
h f e—%t at < b , e 2ma“o
var A SR &
" {log b 1% 2wy log — }
Ztraz c2 2m a 0y
- n
_ a o,
o ‘ 2 i
. b 2
{log —3 2}
2ma ¢
n
- SV T
) (n+-——);i {1og(n+ ——)+1og b ’ ’ niogn
: o c 2ma
Hence,
(2.23) ¥ {( 1y~ b® ik ),
2.23) Y =2a n+ {1og + 1og(n+ ) + 0 (—=—=— )
az \('
~and thus
n
(2.24) Tog n Yn - 2a .

Now, if we restrict x to be > 3 and define

X
log x

(2.25) f£(x} ="

M

then this £ satisfies all the requirements for f stated
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in assumptions A 1.3) to A 1.5) of Chapter 1. Further,

f(n)Yn - 2a > 0. Also netice that since o does not de-

pend on xl,,..,xn, Yn is not a random variable, but in-

stead takes a fixed value for each n, no matter what the

observed vaiues of the ‘X's are. Thus, obviously
E(f(n')Yi;) = £(n)Y,

‘and so o

sgp E{f(n)Yn} <o,

Theorem 1.1 and 1.2 of Chapter 1 now apply in this case
to show that class of stopping rules {t(c): ¢ > 0} is
A.P.0. and also is A.0., where, for each ¢ > 0, t(c)

is defined as follows: t(c) =n, if n is the first inte-

ger, n > 3, such that

1. _\|n_log(n+l) .
(2.26) (1 -\[TGE 105 7 ¥n S ©

Further, the corresponding sequence of BaYes confidence in-

. . . * * * : *
tervals is g;yen by {;En}=={[gln.m2n]}. where @, and

*
“2n

emphasize that since ¥, is independent of the data, the

are given by (2.18) and (2.19) respectively; We re-

stopping'rule t(c) is a fixed integer satisfying (2.26).
Although t(c) does not define the optimal sample size |
T*(C) for the Bayes procedure (that sample size is found by
:minimizinge.Yﬁ‘+ nc over all n > 0), the theory of Chapter 1

tells us thet

' E(Yf(c) + ct(c))
iigf E(YT*(C) ¥+ ct*(c)) 1 ‘.
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Solution for the optimal sample size 7 (c), since it in-
volves inverting the normal c.d.f., is conéiderably more
complicated:than finding t(c), so that t(c) may offer a
more practical alternétive in cases where the cost of samp-
ling is small. Our major motivation, however, for giving
this example'is to illustrate the theory of'this chapter'and

to motivate the results of the next chapter.
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CHAPTER IIX

CONFIDENCE INTERVAL ESTTMATION OF THE MEAN OF THE

NORMAL DISTRIBUTION WITH UNKNOWN VARTIANCE
3.0 Introduction,

In this chapter, we consider the probiem of obtaining
the asymptotically optimal sequential_Bayeé confidence inter-
val procedurélfor ﬁhe mean of the normal distribution where
the variance is unknown. For this problem, if we stop samp-
ling after' n observations and choose the interval I, oﬁr

loss function is given by

L(u,cz,n,I) = ag(I) + b1 - 6I(u)] + nc.
(3.1) = L{u,I) + nc,
where (TR 02 are the true values of the parameters. Thus

- the loss function is independent of the true value of 02,

and so we can use Remark 2.1  of Chapter 2 to get the solu-
tion in this case. In order to do this, we first have to
find the fixed sample size Bayes confidence intervals

% % ’ ‘ ' ‘ '
[aln'GZn] and also the posterior Bayes risk {Yn} of these
intervals. Further, we have to show that '{Yn} satisfies
. all the assumptions of Theorem 1.1 and Thedren 1.2 of

Chapter 1, so that we can use these theorems to obtain A.O.

and A.P.0., stopping rules.

" The class‘of prior distributions that we consider here
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is given by

2y =
q’(u,o“no'\)olmolvo) =

;,nO 2
- 2'0_5(“"“0)

M .t >
where no.,\)o,mo,vo are known constants s ter Vg 2,

v, > 0, n0’> 0. Under this prior distribﬁtion, the distri-
bution of 62 is inverted gamma type, and the distribution
of M giveh '02 is normal. As is well known (Raiffa and
schlaifer [1961]), the prior distribution (3.2) belongs
to the family of conjugate priors for the nofmal distribu-

tion with mean and variance unknown.

3.1 Fixed Sample Size Bayes Confidence InterVals.

Using'the prior distribution (3.2), it-is well known
(Raiffa and Schlaifer [1961, page 303]) that the posterior
distribution of uy and 02, given the first n observations
xl.xz,...,Xh. is of the same functional form as (3.2) with

the new parameters now given by nl,vl,ml,vl, - where
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nl=n'+n,
vl =_vo + n,
(3.3) SRt { 55 '
‘ m, =——jnm + X.
1 n, o0 Z,71f 7
= = 2 _ 2
vy kvovo + n_m ) +-7‘X nlm1 } .

i=1
Note that for simplicity of notation we have suppressed the
dependence of these new parameters on n. The density of the

, 1s

posterior distribution of p and 02 given KysooesXy

now given by

In order to obtain the marginal posterior density of uy, we
integrate out 02 from (3.4). It can be easily varified
that after doing this integration, we get the following marg-

inal density of u given XyseoerX 3

(3.5) ¥ (u|ny,vyom,vy) = n (-, ) Xlii'
| | /% \[_lB(;ip 4 [ Ly 1] 2

1 1

: - v =
From (3.5) we can see that if we define t = ;l(u - ml),

| | : Vv,
then +t has student's t-distribution with vy degrees of
freedom. |

Now, since X ~ N(u,cz) and (u,cz) has the prior dis-

tribution given by 1§, we have,

E(X) = E{E(X|u,0%)},
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or |
(3.6) E(X) = E(w) = m, -
Also, ,
E(x%) = E{(E(X?| 1,07}

=VE{u2 + 02

= E(0?) + E{E(u?|0?)}

= E(0%) + E{n? + %%}

- RIE) +mg
or
(3.7) E(X?) = Q + ﬁi) ;5%5 v +m .

‘Since from (3.6} and (3.7), we see that E(X) and
E(X2) are both finite, using the strong law of large numbers

for exchangeable random variables (Loéve [1963,p.365,400]).

1 A v
-n- yZ) x - mo' a.S., as n - @®,

i=1 *
-and also
n v
1 2 1 o) 2 :
_nZ)Xi—»(l+n)v_2vG+mog a.s.,_a,s n - o,

i=1 ‘ o o
[Here, and in the rest of this chapter almost sure conver-

gence is in terms of the marginal distribution of the Xi's].

Further, using these results and the definition of vy

from (3.3} we see that

g 1 Vo
(3.8) wv, - (1 + E—) 5 =3 Voe @.S., as n - =

1 ‘ o (o]
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From .(3;5) and (3.8) it can be shown (see (3.14) for
example) thaﬁ the value of the posterior density of p at
m, goes to ® as n -» w. Also, note from (3.5) that
w(ulnl;vl.mipvl) -0 as u - * o, Thus, for every value

of a and b such that a >0 and b > 0, the equation

[4]

(3-9) \V(ulnlpvl.ml,vl) = S

will, for large enough n, always have two distinct solutions

* * * .
%1n and P ¢ gln)' Now, the theory of Chapter 2 shows

* * * . . : . .
that Ih = [aln'aZn] is in fact the Bayes confidence interval
for the fixed sample size n. Further the posterior Bayes
o *

risk of this procedure I, is given by,

*
- . % ® gzn . :
(3.10) ¥ =ala, - &;,) +Dbl1l - |} w(u|nl,ylpml.vl)dp].
in

3.2 Asymptotic Behavior of {Yn}.

%*

From the definition of qin and a2n, ‘we know that

%* a . Ny
(3.11) y(a; Ingevyemy,vy) = £, 1=1,2.

%* & .
Alsq aln { azne If we define

nl &
(3-12) By =|[37] @in = ™)

then usingx(3.5) we see that the Bin satisfy the equation

n \Y
2L 1 -
(3.13) \[5 =

1 Bin ' v1+l
o —== 4] 2
v

2]
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- where o (v +1)
I\ l
. = 1 _ \" >
v , vy vy °
1 \/VlB(;io 7) \/\)l\ﬁ; T (—2—) .
Since v, = v6_+ n, from known facts about gamma functions

it is straightforward to show that as n - =

(3.14) c - —=

Vl ' v. \—m °

Lemma 3.1. As n - = ,

2 ;
(i in . in _
) _f;I___ -0, (ii). iEEF7§[ l, a.s.

Proof: From (3.13) ‘'we have

g
0

2 v, +l
B 1 v
[——-—-m + 1] 2 1
Vi
o ' -
or log n; 2
, o Vlﬂ'l - . \/V_l\ v+l
(3.15) e =15 = .
Pin 4 "1
V1

From (3.8) and (3.14), we see that the»fight hand side
of (3015)"goes to 1, a.s., as n - @, Also
(vl + 1)_1 logn; -+ 0 as n- =, and so we get that

B.

-, g, A.S., A8 n - @,

1l

2
i

<
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'Now, taking logarithms on both sides of (3.13) and

dividing on both sides by log n,, we get

(3.16)
log ¢ ’ 2 a
log vy vy ‘ vl+1 Bin log(g)
3 I P — +% - %Lt — log(—2 + 1) = —=>— .
log n log‘nl log n, Vi - log n,y

Taking the limit as n -» « in (3.16), we see that the

right hand side of (3.16) goes to zero as n - ® and so

the left hand side must also go to zero, a.s.

It thus follows from (3.8) and (3.14).-Ehat

vyl 'Bgn B
1 A |
or )
2 | lo (B_irl + 1)
vy H Bin J vy
Vi ) log ny - 2 -1, a.s., as n - =,
' in
Vi

al

However, since we have already shown that —32,4 0 as n - =

: 1

. ' -1 2 -1 L

it follows th@t{log(vl Bin+1)}/(v1 Bin)al,a.s.,. as n - =,
‘and so from the above statement we conclude that as n - «,
Bin
oy

- 1.  (0.E.D.)

Using the definitions of n, and Bih' and Lemma 3.1,

we can show that

1 n 2

© %k
I Togm Gin” ™) -1 @S, as mee
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However, since from (3.8) we have

' AY
g A o
v - (l + —) - V_ o d.S., as n-—- «,
1 n’ v,-2 o ‘
we see that,
n ok 2 1 o o

log n‘ (q'in - ml) - (l + no vo_z VO' AeSe., AS NI = &,

or
(3.17) [rRlefpm ml » (0 +29529% , as., as no e
) 109 n'7in 1 n \)o 2 ’ «Sey .

. k. * : | .
Now since “&n; and a2nz‘are the two solutlons of

' ' % *
Equation (3.9), since aln < Cons and since m, is the mode of

. * % ‘
m(u‘nl,vl,ml,vl), we know that o, <m; and a, > m
Tt follows that
f n__ % * L1 Voo ks :
(3.18) Tog @y, = &1,) = 2{(1 + no) \’o‘z} R |
"Lemma 3.2, AS n - o,
n., ®
—~—i——°'f ¢ (ulnsvy,m, ,v.)du - 0, a.s.
log n; Y, 1?V1"1e 1 ’ Tt
_ a ,
2n
, nl T
Proof: Making the substitution t = ;—(u - ml), we get
. ' 1
T | 1 s 1
[, v@inygevyomy,vy)du = vy I 2 v Ot
uzn . . MB (;il T) B 2n [ ) +1] 2

1

Now, using the bound on the probability in the tail of

students' t-distribution from Appendix 1, we get
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=1
) : \Y
1 B _ 1
I* ¢(u|n1.vl,ml.vl)du < vi-2 Afl} v,-2 BZ V-1
a’2n \)l" (;5' 2 )[_2.I_l+]] 2 -
: v
1
) . 2
: B ]
_ v 2n
1 [——— + 1
y 1 .
- \)1 - 1 . B(Zl 2) \)1 1
(3.19) M
2
vy o1 [ Pan a | [o1
<G s et B \E
1 2n L 1 1

The last inequality in (3.19) follows from (3.13) and the

fact that
i v
B =+ -
B(;il 2) - \)l 2
T v, =2 V.1
Bl
Thus,
. ®
(3.20) \[r—=2— [ ¥(u|n,,v,.m,v )du
- lOg nl * ll 1I ll 1
) ®2n

| 2
Vv :
e a [ 1 Bon r-

1 2n 1 1

From Lemma _3.1 and (3.8), it follows that the right hand

goes to zero almost surely, and so the

side of (3.20)
(Q.E.D.)

lemma is proved.
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Cor, 3.2, As . n - o ,

log n, f ¢(u|nlnvl.ml.v )du - 0, a.s.

Proof: Since the posterior density of u is 3ymmetric about

my (see(3.5)); we have
.

a’ln . © : )
(3'21) J‘ 1|J(Lll nl'vl'ml’vl).du = ‘r* ¢(U~| nl’vl’ml'vl)du .
- ' g'2n
Hence, from Lemma 3.2, the éorollafy'follows. (Q.E.D.)

Theorem 3.1, If th is defined as in Equation (3.10), then

v .
I Ay o a1k :
Tog Y - 2a{ (1 + no) Vo-z vo} » @.S.; as n - ®,

Proof: Using (3.18), Lemma 3.2 and Cor. 3.2.: it follows

from (3.10) that

n ' v o _
\ /--L— - 1, o ¥ .

o
However, since n, =n + n,, we have
,nllog n
B @
n log n, 1, as n-oe,
. 1
and so,
n

. v Y -
Y - 2a{(1 + -J'—) .02 v.}?, a.s., as n - o,
log n n no \)o" -0

(Q.E.D.)
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For x > 0 define the function,

Vx , if 0<x<e,

Fen = ——Eﬁ—? if x> e
- log 2 ' °

This function satisfies all of the requi:ements in Assump-
tions A1.3)'T£o A»l.5) of Chapter 1. Further,'since we

have just now proved that

f(n) ¥_ - 2a{(1 +jl?}fr~%— v }%>> 0, a.s., as n - =,
n n vo;z o A

‘we can use Theprem 1.1 of Chapter 17 and show that the class
of stopping rules {t(c):c > 0} is A.P.O. fbr our problem;‘
» where for each ¢ > 0, t(c) is defined_as follbws:

 t(c) =n, if n 4is the first integer n, ﬁ 2_1{’ such that

'ff.n

(3.22) (1 - T Yn S ©

In order that we can also use Theorem 1;2 of Chapter 1
in this example, we have to show further that

n

s§p%E{ log n Yn} < ®.

A direct proof of this result is rather difficult; consequent-
ly, we use a rather indirect argument to get this result.
Notice that an is the posterior Bayes risk of the
e ok * * | ) ) :
Bayes rule .In = [aln’aZn]’ so that if we consider any other
» ' ' ' ] ' - . ) 3 P ‘ *
rqle vIn = [qln’QZn] and if Y, is the posterior Bayes risk

of I;, then Y; " almost surely exceeds’ Y, -



Thus, in order to prove that

sup E{f(n)Yn} <® ,
n

. . ]
it is enough to show that there exists some rule I, with

sup E{f(n)Yn'} < ® .
n

Let us define,

1 ' 1 V ) log \)
(3.23) In'= [ayr®on] = [my- \/_ > — L m, + \[_ \/

Then we know that
' log Vq
(3.24) - Yn = 2a vy —-ITl—"

,n .
+ 2b p[ (n - ml) > (log vy % ‘nl,vl,ml,vlj.
1 .

, n :

. 1 .
However, since Vl (b - ml) given nl,vl,ml-,vl has the
students' t-distribution with Vi degrees of freedom, using

the result from Appendix 1 we get

ny o % |
P ;I (4 - m) > (log v,) |nyovqomyovy

(Vl—z)

Vi

Vi 1

..2  :

£, 5 (

’ 1
_ (log v,)™)
(log vlf% vy : 1 ’

<
V1

where £ _o (%) is the density of students' t-distribution
1 : :

with (v1—2) degrees of freedom.
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(3.25)

1
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[} wemy) > (log v) " ny vy om, 1)] <
[ 1 Y[;— 1 (v,-2)
—— Vv f ( —tt

vi=2 yv; V1 \(Tog v;) (1og n) V-2 Vi

(10g v) D).

From (3.24), (3.25), and the fact that v, = n + Vs in

. order to prove that sup E{f(n) } < », it is enough to

n

show that

(1) E{[v,} < =
sgp {JVI

and

v1—2

L
(log v;)?) < e .
Vl' 1

(ii) sxrllp v £,

The next two lemmas will precisely prove these results. .

’Having shown by these lemmas that

| sup {f(n)Y;} < =,
n

we will have then shown that

sgp {E(n)Y } <= .
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Lemma 3.3: If fv _z(t) is the density of student's t-dis-
_ V1 , _ :

tribution with (vl—2) degrees of freedom, where

Y1= n + n,. then
(v -2‘)
1 %
sgp,/vl fv _2( S (log vl) ) < e,
Proof: We haVe,
(V 2) 1
(3.26) \/ 1 fv _o(\[——(1og v;)7)

_ 1 Wi
V-2
\VO1-2)B s

1 [1og vy l]% \/vl
AN e TTR pat
1 log vy 2
. —_— + 1

Now, we know that

: 1 5 5 - _l_ as n - cb,_
- \/2n
: (V =1 B(;il 1 :
1 2
and so,
sup L <=,

?\/O1- D B—3—)

log v, 5
sup | ———=+ 1| < =,
n Vi

Also,
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and from Appendix 2 we know that

AR

sup - < @ ,

\)l‘

Using these results, from (3.26) we see that

su V., Vf fvl—Z) (lo );i < w- (Q E.D )
np\/ 1 Vl_z V] g vq . .E.D.

Lemma 3.4, If vy, is defined as in (3.3), then
sup E(\Jv,} < =.
o N2

Proof: According to Raiffa and Schlaifér [1961, page 3073,

we know that the marginal distribution of vy is inverted:

beta 1 type with density given by

v.V
O O
).

(3.27)  £555 (v3]% vordi vy 7

where the functional form of (3.27) is given by

1 (y_b)n-r-l. bt

B(r,n-r) Yn .

fig1 ¥lT/n/b) =

where, O Srb <y<® and n>1r > 0.
Further, if y is a random variable with this inverted

beta 1 type density with parameters r,n ‘and b, then

b%ﬁB(r - %, n-r)
B(r,n-r)

(3.28) E(Vi5 =
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Using (3.27) and (3.28) we get

5 BeS- I
_ [ Yo' Bl—~ 3
S U Nl B
| Blm » 2
ﬁ -1 n+v
5 o =) T2
(3.29) = (v \4 ) vy TEvge | .
J_ T (——) I'(~———)

Using Sterling's approximations for gamma functions, it can
be easily seen that the right hand.side of (3.29), in fact,

converges to a finite constant. 1In consequence,

sgp E(JVI) <o . (Q.E.D.)

To summarize, our arguments in this chapter have proved
the following theorem.

Theorem 3.2: If {Xi} is a sequence of independent ident-

ically distributed N(u,oz) random variables and the prior
distribution of p and 02 is given by (3.2), then the

* _
sequence of terminal decision rules {In}={[qin,a;n]} is the

sequence of terminal Bayes decision rules against any stopping
rule. Further, the class of stopping rules {t(c):c > 0} de-

fined in (3.22) is A.P.O. and also ‘A.0. for this problem.
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APPENDIX 1 TO CHAPTER IIX

Theorem: If T is a random variable having student's t-dis-

tribution with v degrees of freedom, then for'any a>o,

—_
V=2

a’ —;—)

where fv(t) is the density of students' t-distribution with

, o V=2),
>
P{T > al < fv._bz(a S ‘)4.

v degrees of freedom.

- Proof: We know that

1 1

£ (t) = ———m—— . .
’ VORICE 2 1
_ NE ,+l
. Thus, |

P[T > a] = J‘ fv(t)dt
 (t>a)

t.
= f 2 fywyat
(t>a)

= 1 [ —t _ at.
, = .
WBERDa  (isy [3_2_ +'1]\‘)'2"

Y
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2
Making the substitution %7 = 4, we obtain

P[T>a] < __.\[_\7__._ J' ﬁ dz
2a B(%'%) . a2 (z+1)VT
, (t> =) '
AY)
— ) 1 1
o
[— +11
v
1L V=2
=y BB 1 |
v-l a B(.Y)  B(u¥RH) 2 vl
[&= +1]
v
and so,
PT>a] £ —=— . £ , (/2 a). (Q.E.D.)
' {v=2) . | |

Y
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APPENDIX 2 TO CHAPTER ¥II

Theorem:
1
sup — —~ < e*,
0<n <o 5
[12?n +];]2
Proof: We know
=% %»‘.'log n _-% %
1 Yo - =
n log n 1 *
[1og n +1]2 n ' ‘
n

From (1) it is clear that in order to prove the theorem, it
is enough to prove that for positive integers n the follow-

ing inequality holds true:

1 1 »
= log n - =
e n n _ 1o§ no 1,

or, equivalently, it is enough to prove that for all positive

integers n,

(2) ;-log n -+ < log (;99—3 + 1).
n n n

Now for x > €, define

(3) g(x) ='log(;9§—§ﬂ+ 1) - %=log X + %'.
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>
e
Q
%
I

o 1 [_ 1 - 21logx (log x)2 ]
dx . _2rlog x X x -
- x°T =t 1] : , j
' For ¥ > e, the right hand side of (4) is always negative,

and so for x > e, the function g(x) is a decreasing
function. Further as X - ®, g(x) - log (1) and so we see

that for x> e

g(x) > log 1,

or .

(1—°§-{—’-‘- +1) >e

It thus follows from (2) that.

(5) sup Yo _ <%
3< ni<e

_.[—-—9——,1'°.n n +1]2

For n=1 or 2, the inequality

yn < &3

n

[1og p +£]2

can be nuﬁerically verified.  This, together with (5), proﬁes

the theorem. ' _ " (Q.E.D.)
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CHAPTER IV

ASYMPTOTICS OF POSTERIOR BAYES RISK FOR THE
- GENERAL CONFIDENCE INTERVAL PROBLEM

4.0. Introduction.

In theﬁgenéral Bayes confidence interval problem we are
allowed to observe a sequence {Xh} of independent random
variables identically distributed according to a common

probability law P which is one of a class {Pe: 6 e B8}

e'
of possible distributions. Nature chooses a fixed 8, from

the parameter space ®, and we are allowed to observe the

Xi's sequentially - these Xi's now have the'probability

law P, . Our permissible strategy is to keep observing the
o _

Xi's according to a stopping rule t which tells us when to

stop based on the observations already seen, and when we stop

at t =n, say, to estimate eo with a confidence interval
I, = [aln(xl,...,xn), a2n(X1,...,Xn)]. If we stop after

t = n observations and choose the interval In' then our
loss is

L(eopn, In) = aHMIn) + bl - GI }} + nc, where z(xn)

n
is the length of I, &> 0, b> O;fc > 0,
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and GIn(eo) =1 if eo £ In' and = 0 otherwise. Our

goal is to choose a stopping rule t* and a sequence of in-

. v - * )
tervals {In*}, where I =~ is the interval used if we stop

at t* = n, so as to minimize the Bayes risk under the prior

distribution ¥ and the loss function L.

In Chapter 2, we showed for any stopping rule t how to

find optimal choices for the intervals In" The Bayes stop-

ping rule +t* in general would depend on ¢ (the cost per
observation). In Chapter 2, we gave a formula for the post-

*
erior Bayes risk Y for using the Bayes interval In

when observation ' ceased after taking n observations. 1In
Chapter 1, we provided conditions under which the class of
stopping rules {t(c): ¢ >0} defined by : |

f(n)

t(c) = first n > 1 such that (1 - (D)

) ¥ < e,

where the function f£f(n) is specified in the conditions, is
asymptotically pointwise optimal as ¢~ O. The results of

Chapter 3 suggest that in fact £(x) should be

‘Vx7log x for x > e. 1In the present chapter we give a set
of assumptions on the prior {(§) and the class of probability

laws {P : 8 ¢ 8} under which this choice of f£(x) provides

asymptotically pointwise optimal stopping rules for minimizing

the posterior Bayes risk.

In order to fulfill our stated aims, we begin in

U
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Section 4.1 by obtaining some basic asymptotic results on

the posterior distribution of # given xi,xz,...,xn And'

on the posterior Bayes risk of the Bayes fixed-sample con-
. *
fidence intervals I, - This is followed in Section 4.2 by

a proof of the asymptotically pointwise optimality of the

family of stopping rules {t(c): c > 0} defined by
f(x) = Vx?log x for x> e.

4.1 Asymptotic Theory.
Let {Xh} be a sequence of independent, identically

distributed random variables with common probability law Py

belonging to the family {Pe: B ¢ ®}. We assume that each
Pe has‘density f(x|e) with respect to a o~finite measure
M. The parameter space, ®, is assumed to be an open sub-

interval of the real line. 1In addition, we adopt the follow-

ing regularity conditions.

A4.1) There is a prior measure ¥ on ® which has a
density ¢(8) with respect to Lébeséue measure. The density
¥(0) is assumed to be continuous, positive,'and bounded on

0.

A4.2) For all eo e ®,

(4.1) 0 < I “#l f(xile) v1(0)ds < », a.s. PG .
i= o

A4.3) Let o(6,X) = log f(x\&).i Then it is assumed
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that the partial derivatives 23y (,X)/30 and ach(O.X)/ae2

exist and are continuous in 8 a.s., Pe in X for all
_ o |

eoe ®.

A4.4) For each 0 ¢ ®, there exists an ¢(9) > O,
such that _

2
(4.2); Eetsup{la—cg%'-&)-lzls-ﬂ <e®), s e 8} <=
v -1

[Note: As usual, Ee denotes computation of the expectation

assuming that the true value of the parameter is 9.]
A4.5) The function
2 2
(4.3) a(e) = - E, (0 0.X), EB.(E%(:_&)

362

is a positive function of 0§ ¢ 0.

A4.6) For all -’f§1@1€ 8, BI.*=6.
(4.4) E,[0(8;:X) - 9(8,X)] < 0.

If eo' is a value of 6 chosen according to the prior

density ¢(6), and if XyrXgreeasX havé common density
f(xleo) given eo' then under Assumptions A4.l)b to A4.6)

Bickel and Yahav [1967] have shown that a.s. P, for all

%

large enough n the likelihood equation

n acp(eax.)
2 T - =0
i=1

has a solution en' et
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and

A

(4.5) en i eol a.s. Peo .

Note: All of the convergence statements for random sequences

made in the rest of this chapter will hold true almost surely

under Pe ., unless otherwise noted. Thus, we will not men-
o v :

tion the fact of almost sure Pe' convergence in the rest of
o . v

this chapter unless a statement of the fact is needed for the

sake of clarity.

Let us denote the posterior density of 8 given

XyiX50....X by &(6[%9. Making a change of variable
(4.6)_ t = n%(e - Sn)'. and denotiﬁg the pdsterior density
of t given Xi,xz,...,Xh by w*(tlg), we have

(4.7) ¢7(t]x) = n"F y(nE ¢ +_§n|5).

Under our assumptions [a4.1) to A4;6)]. Bickel and Yahav

[1967; Theorem 2.2] have proved that

(4.8) [ v (elm) - N(t.A‘l(eo))ld; ~ 0,

where

N(t,A T (o)) =

Let us dgiine

. n R n
(3.9) v, (8} = explD @™ € +§,,%)) - Z 06,1
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It is easily'verified that

volt) 4a7F e 43 )

c .
n

(4.10) 4" (t}x) =
where

= [ vt 4 e 4§ %) at.

Bickel and Yahav [1967- proof of Theorem 2.2] demonstrate
that

© 3 |
- - . . _.l
(4.11) [ ¢(p>%t + 0 )|y () - (E%gzjo N(t,A""(8,))]at
-—Cd ' .

-~ O as n- o,
which, using (4.10)‘ and the fact that the absolute value of
an integral is less than or equal to the integral of the

absolute value, implies

X = _ R 1
(4.12) |c_ - (K%gzyo [ v™% + 6 )n(e,a te ) at]

- 0, as n-»-eo

Now since 6, = 8 and ¢

o is bounded and continuous, we can

apply the dominated convergence theorem to shbw that
-] _;5“ ~ | _1 .
.Lw (n%t +0,) N(£,A77(8,))dt ~ ¢(8,).
Hence, from (4.12) we conclude that
; ’ |
(4.13) ¢ - (A(B )) ¥(0).

From (4.7) and (4.12), 3

. % -~
_ A n% y@)v, (0% - 5.))
(4.18) 4(0|%) =077 ¢* (%@ - 5 )| 1 n
. : n
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Thus,
. n%y_(0)y(8,) n* §(8,)
v lx) = o - —
n n

since vn(O)El by (4.9). since §(8) is continuous and

A

since § - 6_, it follows that ny"(én-) - y(8)> 0.

Using (4.13) and Assumption A4.l), it follows that

(4.15) ‘I’(anL’S) - ®, as n - o,

Let 0, % 6, Dbe a fixed element of @, From (4.14) we
have
' n% y(8,) v_(n%(0, - §))
(4.16) y(0,1%) = ¥i8y) vy 1~ %

c *
n

However, from (4.9)

-~ A n R ~ ‘
(4.17) 1o§'.vn(n;5(el-en)) =.21[CP(91.X1)-cp(9n.Xi)]
i=1 T

n ‘
S,Eifw(el.xi)' - 9(8,,%;)],
1=

where the inegquality in (4.17) follows from‘the‘definition of

6, as the maximum likelihood estimator.. Now, from A4.6)

Eeotw(el'xi) -'CP(eo'xi)] = 6(91) .< o,

for i =1,2,...,n. Thus, for any 6§ >0 such that

5(91) +6 < 0, using the S.L.L.N.,“.we know that for all

large enough n

1 & '
x 200015 - 0(0,,%)] < 5(6;) + o,
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Thus, from (4.17), we have that for all large enough n,

log vn(n%(él— gn)) g_en(a(el)‘f 8) .

Hence, from (4.16) we find that
I S
R n;i en(5 (61) + 5) \l’(el)

y,1% < .

C
n

since 6(8;) + 8 < 0 and since c, converges to a positive

constant, we conclude that for 8, F0

(4.18) w(eliz) -0 as n- o,

Suppose now that a and b are given positive
constants.
Lemma 4.1. Given a,b > 0, for large enough n there exist

) at least two distinct solutions - %1n and %on

(a.s. P
» G

of the equation
(4.19)  yalx) = 2 -
. Proof" From A4.1l) and Ad4.3) it is easily demonstrated

that w(elg) is (a.s. Pe ) continuous in 5. Using
: o

(4.15) and (4.18), we see that almost surely for large
enough n the posterior density ¢(9|§), will exceed a/b

near 6n and will be near 0 . for 8 in a neighborhood of

8, - ¢ and in a neighborhood of 8, + €, where ¢ >0 is

a fixed positive constant. The lemma now follows using the

continuity of ¢(6|§)' in 8.
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To ensure that exactly two distinct solutions

* x . ok * . :
®1n and Qon® “ln < @ope of (4.19) exist (a.s. Peo) for

large enough n, we make the following assumption.

A4.7) For every n, the posterior density of @8
given Xl,xz,;,.,xn, denoted by (8|X), is almost surely
strictly unimodal in 6. |

-We now pféqeed to study the asymptotic behavior as
n - ofﬁthé th*solutions:‘G;n “and ﬂu;h of (4.19).

Defi ¥ = n%@* -8.). Then the B tisf
efine in =D (“in - en . en . the jn sSatisfy

(4.20) ¢ (B

Y

Notice that since (e\g) is obtained from y(e]xX) by a

non-trivial change of location and scale, and since

. _
y(0lx) is strlctly unimodal, ¢ (8|X) is also strictly un-
imodal. Thus, (4.20) almost surely for 1arge enough n has

. *
exactly two solutions Bin and 32 ¢ B < B

1n
Lemma 4.2. Under ASsumptions 24.1) to AL.7),

4 21 * - T . R v",’“-/"b

( °© ) Bln"’ m' an - R a.S n — :‘.,.‘ -

Proof. We prove the result for B;n; the result for Bln'
follows by a similar proof.

Recall from (4.8) that

(4.22) | lw*(t\g) - N(t.A’l(eo)ldt 0 as n o e.
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Suppose {in} is a sequence of observations for which
(4.22) holds. Then for this sequence {xn}, - we show that
(4.21) must also hold. Our proof is by contraposition.

Thus, suppose ﬁhere exists a sequence {xn}' for which
(4.21) does not hold (i = 2). Now B;nf%"w ‘implies that
there exists-bo <M< e and aisubsequence. {gn}jﬁk - ®
as n - «, :for which

* .
(4.23) B < M, all n.

Z,kn

* .
From (4.20) and the fact that is strictly unimodal, .

*
we know that for all t> B,

a ®
bk

In particular, for M 5.t.5_M + 1,

y(tlx ,X',..;,x ) <
ey gy

(4.24) \y*(t|x1.---.xk ) <
. ' n

Thus, for M < t < M + 1, we have by (4;2ifﬁandf(4;24)’thati»

“1'* (t‘#;l'...'*;kn) - N(t,A-l(eo))‘ i N(tIA-l (90))' as .n\i"" 0B o -

Applying the dominated convergence theorem, we get

MEL -1
(4.25) [ |4 (tlgqsecoxy)-N(E,A (0 ) |at
M
Ml -1 ,
- [ m(e.aT (g ))ae > 0 .
M
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This in turn implies that

(4.26) [ w*(i-_lxl,....xn) -‘N(t,A‘l(eo))ldt ,4 0.

“Thus, on this sedquence {kﬁ},_(4.22) does not hold, which by
¢ontrapositi6n‘provéé the lemma. “ (Q.E.D.)
Lemma 4.3. ,Under Assumptions AA.;) to 24.7),

- aiﬁ) - 0, as. n - o,

* ~ ~
(4.27) (a5 -8 =0, (B,

* P
Proof. We prove only that (&, -8.) ~ 0.

a * :
The proof that (en - aln) -+ 0 follows similar steps and is

*

omitted.

Let q, be the larger solution of the equation
.—l a .
(4.28) N(g,A ~(8.)) = —= .
° byn
-12b-2 :
[As long as n >(2n) &a A(eo), exactly two solutions of

(4.28) exist - since N(t,A-l(eo)) is strictly,unimodal and

-1 o a-l _ »
N(t,A77(0,)) < N(0,A77(8,)) = (A(8,)/2m) "]

Thus, .
| - 3 a@ ) b° %
(4.29) q, =A (Go){log n + log -—————5—-»} .

2 a

* %
From Lemma 4.2, B2n -+ ® as n - », and thus -BZn >0 for

large enough n. Assume n is large enough so that B;n > 0.

) . ) * o *
Let Jn denote the interval [mln(BZn,qn)g max (BZn'qn)]'

* -
Notice that on J,, one of y(t|x) and N(t,A 1(90))
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always exceeds a/b, while the other is always exceeded by

a/b. Thus, it follows that for t ¢ Jh,

* Cre a1 4 _a -1
4.30) |y (El®) - AT )| 2] pE - YA e N]-
Using (4.22) and (4.30), we find that

(4.31) 'bjﬁ - N(t,A-l(eo))I dt - 0 .

In

Now, for every n, the definition of q, implies that for

each t ¢ Jh,

(4.32) sign(l-;)"’,‘—ﬁ --N(t.A'l(eo))) = sign (B;n - ).,

and so

(4.33) | |b_af - N(t,27 (o)) ]at
J ‘n

n

= ‘ﬁ-ﬁ I'B;n -q|-] N(t,a"t (6 ))atf.

In

» *
However, we know that an -+ o and q, > ® as n - =,

' * L
Hence, it follows that _min(BZH,qn) - ®» and thus

(4.38) [ N(t,a"l (0 ))at - 0, as n e
g ,
L

Also, from (4.29) we have

(4.35) 0, as n - o,

VI-{ -



Thus, using  (4.31) and (4.33), we see thaﬁ.
*
2 g 8.) ' o )

— “ had e - 0, as n - ™, Q.E.D.

Vo = en |

Cor. 4.1. Under Assumptions A4.l) to A4,7),

(4.36) @) - 8,y a8 now, i=1,2.

Prdof. From Lemma 4.3, we obtain

*

|G'in -fan,‘ -0, as no- =,

From (4.5), iah - e°| - 0 as n-+ «, From these two
results, (4.36) easily follows. " (Q.E.D.)

We now state and prove the two main theorems of this
section.

- Theorem 4.1. Under Assumptions A4.1) to A4.7),

. n * * ~%,
(4f37) "\ 1log n @y - aln) =227,

Proof. We first prove that

* - %
(4.38) 10; — @y = 8,) =2 o).

This, of course, is equivalent to proving that
- I
(4.39) (log _nr% Bop = A (90) .

. o
Now, from‘thg‘definition of an' we know

byn °




Using (4.10), we obtain

. !5 * -~
v (B2n) ¥ (n” _2n +8.) _ a '
. Cn | bﬁ
or
Vo (BZn) w(“2n) = =8 .
c, bv;
From (4.9), '
log\)(B )-—=Z‘t:p(n;i )-ECP(G X;).
n i=1 2n n" j=1 0 M
Expanding o (n %. *n xl) in a Taylor series around
log v (B ) —E {n";“i .ac';(el'x_l)
1=1 , zn 39
£ .2 2 %
+ — - o ’
n 2

ae

*.av.\ _;E* _A * . .
where 8 e[en.en + n 32n] = [en'“zn]' Tt follows that

k2 2 , %
_ Co “{B,_) n 3%p(s _,X,)
* L 2n n’"i
(4.41) log v_(B, ) = % = —,
n*"2n n i=1 aez

because from the definition of en' we have

§ acp (eﬁ'xi)
i=1 38

= 0.

D>

%
From Corollary_ 4.1 and (4.5), Gy = 90 and n eo

*
as n - o, Thus, 'Bn - eo as n -+ e,

~

8
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Further, from B2A4.3) and BA4.4), using the monotone

convergence theorem, it can be verified that

2 . , .
§—94Q5§L is a super-continuous function of 8. [Super-

continuity of a random function is defined in DeGroot_(1970,

Section 10.6) and the proof of the asserted super-continuity

of 2 (ez,x) follows as in the proof of Theorem 10.6.1,
39

p.206, of DeGroot's book (1970).] Now, using Theorem 10.8.1

of DeGroot [1970], we can establish that

, n 2 * . '
.l:!-_l > 0 cp(en'xl) - - A(eo)v a.s. P

i=1 392

9o

Consequently, for large n,
o % * 2
(4.42) log v, (B,)) =~ - % (B, )" A(8 ).
Now, taking natural logarithms on both sides of (4.40),
we get |
. * * ’ X a 1
(4.43) 1log \Gl(an) +vlog ¢(a2n)'— log c, = log £ — % log n,

and dividing (4.43) through by 1log n; and then taking the

limit as n -» », we find frdm (4.13) and (4.42) that

* .2
(BZn) ’

log n

since ¢ is a bounded function. This result in turn implies

that

*
B

22— . [ap )17,

\/10g n



. _
since an is positive for large enough n (Lemma 4.1).

'ﬁﬁ5§ng a similar argument, it can be shown that
a*
" “1n

. %
== - (A1 .

Putting the two results together gives

* = 1

n * * K -
log n (“2n - g’ln) ;Eii?ﬁg (Bon f Bin) - 2[A(60)] .

(Q.E.D.)
Theorem 4.2. Under Assumptions A4.1) to a4.7),

o«
n
(4.44)  fiogm [, velxiae - o,
%on
and
R %*
n ®in
(4.45) Tog [ Sy(elx)as - o.
- 0

Proof. We will prove (4.44). A similar argument shows

that (4.45) holds.

From (4.7) and the definition of B;n,
n a n ' X *
(4.46) frogm [, V@I = 5o [ v elpat .
‘ %95 Bon

From Equation (2.35) of Bickel and Yahav [1968]; we know

that for every 6 > 0 there exists ¢ (8) > 0  such that

79
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f v (t|X)at = CL J \h(n-% t + §n) v_(t)at
5y - n 5 YA
3 L
5- z,ncn e"'n 6(5) (l + |en|) .
Thus
2 ne ™) (1443 1)
(4.47) [R5 [V elpae < 5 LPA LA

log n 2 cC
g 5\ n Jiog n

Now, from (4.13) and the fact that én - eo' we see that
the right hand side of (4.47) goes to 0 as n - o, In

consequence, for every & > 0, we have

(4.48) 103 = f W*(t|§)_4 o, as. n-o® .,
byE .

Bickel and Yahav [1967; Equation (2.40)] further show that
for every ¢ > 0, there exists 6&6(¢) > 0 and
N = N(é,xl,xz,...), possibly depending on the sample
) .- _%t %*
sequence {xn}, such that n> N and |n %] <& = 8(c)
implies
g2 _ .2 oy
log v, (ty <t (—A(ao) -2¢) ==t (A(eo) + 2e),

' - +2em (a ,
Thus, for n > N and |n %t| <", v (£) <e t4a(eo) + 2.¢)

{%igél'<"6*;-
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- R
() ¢y(n 2t +06.)
‘1'* (t|x) = e wc' a
n
W(n*%t +8.)  -t2(a(e.) + 2¢)
-<— C n e 0 ' -
n
Thus,
' , 2
5 5YT - - -t (A6 )+2¢)
(4.49) IVH S elxae < Ty 4 8,) e | ° at
* : * c
an BZn n

By A4.1) | is a bounded function of 8. Suppose the

bound of § is M, then from (4.49) we get

- 2
5 Vi o -t“(A(9 ) +2¢)
4.50) [ ¢elpacs [ e T T gt .
% ~ cn &% :
Ban | Bon

Now from Theorem 4.1, we know that

. _
‘Byp T O(Jl’og n) .
Thus, using the well known bound on the tail of the normal

‘distribution function, and the fact that {cn} ¢onverges to

a constant as n -+ «, we get

dvh 1 '
at = —)
I* v (t|X) t og/n log n)
B,
n
Thus,

e VA,
(4.51)\/i3§‘5 I* ] (ttg)dt -0, as n-» o ,
Bon ' |
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Results (4.48) and (4.51) together now imply that ‘

[--}
- n * .
Tog n J’* ¢" (t|X)at » 0, as n - =, (Q.E.D.)
B

2n

4.2. Solution for the General Problem.

Let us assume that the assumptions A4.l1l) to 2A4.7)
are satisfied. Thus among other things, we have assumed
that for each n, the posterior density of 6, given by
¢(9|xl,.°.,xn), is unimodal and continuous. We now can use
the results ovahapte:'Z, which state that for every stopping
rule, the sequence of terminal Bayes confidence intervals is
given by {I;} ‘defined as follows: Let

(4.52) YOlXsa00x) = £ .

Then, define,
Empty‘set, if (4.52) has no solutions.
(4.53) Ig = {a*}, if a* is the only solution of (4.52).
- * * * * * .
Loy nr®op ], if @, and @, (>a; ) are two
solutions of (4.52).
[Recall that‘since w(e\xl,...,Xh) is strictly unimodal,
there can be.no more than two solutions toquuation (4.52).]
If the posterior Bayes risk of this sequence of rules

*
_{In} is given by {Yh},h we know that:

o |
If I, is a null set or a single point set, then
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. . L * —— * * ‘
otherwise ;f I, = [qln'QZn]' then

*
_ . * * Gln
(4.54) Y, =ale, - a) + b{£°° ¢(e|xl,...,xn)de

+ ] TCHD AP S T N

GZn

From our earlier discussion in this chapter we already

know that under our assumptions, almost surely: Pe for
o

every sequeﬁce of observations, Equation (4.52) will
eventually have exactly two solutions and so for large

enough n, Y will in fact be given by (4.54)

Now for x > 0, 1let us define a function £ as follows

x < e
(4.55) £(x)=

Using Theorem 4.1 and Theorem 4.2, we see that
(4.56) f(n)Yﬁ - 2a{A(9°)}—% > 0.
Also it is easy to verify that this sequence .{Yn} and the

function £ satisfy all of Assumptions Al.l) to Al;5), of
Chapter 1 except Assumption Al.3). Assumption Al.3) is not

satisfied only in the sense that f(ﬁ}yn ir this case con-

verges to Za{A(BO)}-%, which is a positive random variable,
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and not a positive constant, under the prior {(8).

If we govthrough the proof of Theorem 1.1 of Chapter 1,
the only place where we have used the féct.that V is a
positive constant is to claim that t{c) isa propér stop-
ping rule and further that t(c) - », a.s., as c - 0.
These claims hold even if we assume that V is a random
variable such that P[0 < V < »] = 1, Hence, as far as
Theorem 1.1 of Chapter 1 is concerned, we can modify our

Assumption Al1.3) by

a1.3%) f(n)Yn -+ V a.S., as n - w?

where P[0 < V< ®] =1 and £(x)
is strictly increasing function of x

on [0 =«]. Further if we define

then we assume that F(é) is a’
bounded function of [0,»] such
that F(x) - M as x - o, where
M is a positive constant.

Now since our {Yh} and f satisfy this modified

Al.3), Theorém 1.1 applies in our case, and we can claim
that a claés_of A.P.0. stopping rules for this Bayesian
sequential confidence interval is given by .{t(c):é > 0}
whére for each c¢ > 0, t(c) is defined as foilows:

t{c) = n, ‘if n is the first inteéer

>
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such that
| i _ fgn[

We would also 1ike to be able to use Theorem 1.2 in
this case, and claim that the family {t(c):c > 0} is
also A.0. for our problem. However, we can not do this
rigﬁt away, because the proof that we have given for
Theorem 1.2 does not go through under the.modified
Assumption A1.3').v There are two possible ways out of this
prdblem: (i) To modify the proof of Theorem 1.2 so as to
make it go through under the Assumption Al.3'); (ii) instead

of proving the conditional convergence of f(n)Yn to

2a(A(9°))“1; under the condition that eo is the true
parameter value, we should try to prove the marginal con-
vergence [marginal on the unconditional distribution of the

x;s] to possibiy’ 2a(E(A(e))_%, expectation being carried

out with réspect to the prior distribution.of 6. In future,we
plan to continue the study of both_offthese'approaches to see
if we can in fact prove that the fami1§ of stopping rules
{t(c):c > 0} defined in (4.56) is alsc A.0. for this

general problem of Bayesian sequential confiﬁence intervals.
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