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SomQIMultiple Decision and Related Problems
with Special Reference to pestricted Families of Distributions

and Applications to Reliability Theory
Shanti S. Guptat and S. Panchapakesantt

Abstract. This paper deals with procedures for seieCting a subset
from k given populations so as to include the '"best" wi£h>a specified
guaranteed minimum probability. Some geﬁeral results relating to subset
selection and specific procedures for important classes of_distributions
are reviewed with special emphasis on restricted families‘of probabil-
ity distriﬁutions. Such families are defined through partial order
relations and are exten51ve1y considered in re11ab111ty theory. A
selection problem for tail- ordered family of dlstrlbutlons is considered
and tables are’prOVided for constants needed to implement the procedure.
A general partiél-order relation is defined through a'class of reali
valued functions and a related selection problem is discussed. These
results provide a un1f1ed view of earlier known results. The rest of
the paper gives a brief survey of some important results perta1n1ng to’
restricted families of distributions such as the star-ordered and
convex-ordered disffibutions. These results relate to_life'testvsamp-

ling plans, inequalities for linear combinations of order statistics,
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estimation of failure rate function and some tests of hypotheses.

1. Introduction. In practice, there often do arise situations in

which the experiméntef wishes to choose the best (or the t best) from a
group of k populatibns, where the ''bestness' of a popuiation is based
on ranking them according'to the value of any charactefistic of
interest. For example, he may want to select from a groﬁp'of life
length distributioh$ each with an increasing failure rate, the distri-
bution which has the largest mean life or the largest quantile of a
given order. In such situations, the classical tests of homogeneity
are deficient in the sense that they have not been designed to answer
several possible.queéfions in which the experimenter may be really
interested. Thé need for more meaningful formulations in order to
answer these Questions set the sfage for the early investigations of
multiple decisioanprmulations of the problems which héve now come to
be commonly known as selection and ranking problems.

In the last two decades of investigations in this-érea by several
researchers, two baSic formulations, in general, have been adopted. The

first one is the so-called indifference zone formulation due to

Bechhofer [19] and the other is the subset selection approach of Gupta

[44]. The ‘basic problem can»be briefly described as follows.
Let m,, nz;.f.,‘wk be k populations with associated distribution

functions F i=1,2,..., k, respectively, where the ei are unknown

0.’
i
parameters whose values belong to @, an interval on the real line. Let

0 <...< 0

(1}-

[X] denote the ofdered parameters. It is assumed that there



is no prior information regarding the correct pairing of the ordered
and the unorderedlei's. To be\precise, we define the population associ-

ated with 6[ as the best population. In many specific problems, it

k]
could be the population associated with 6[1] depending on the physical

meaning of the parameter and desirability of a large or small value of
that parameter. The goal of the bésic problem in the formulation of
Bechhofer [19] isrto-choose one of the populations as the best. On the
other hand, in théi#ubset selection approach of Gupta [44], the objec-
tive is to select a subset of the given populations which will include
the best population, Of course, one would want to dovthié with as small
a subset size as poSsible. Further, it is assumed that in case of a tie,
one of the populations associated with e[k] is considered to have been

tagged as the best. Depending on the approach, any selection of the

populations satisfyihg the relevant goal is defined as a correct selec-
Eigg. In both thé approaches, it is required of any decision rule R to
guarantee a specified minimum for P(CS|R), the probability of making a
correct selection (CS) using the rule R. To be more explicit, it is
required that |

(1.1) | P(CS|R) > P* , 1/k < P* < 1,

where P* is specifiéd by the experimenter. In the indifference zone
approach, (1.1) is to be satisfied whenever G(B[k], e[k_l]), the
distance (suitably defined) between the best and the next best popula-
tions exceeds an amount A* specified by the experimenter. - On the other

hand, the subset selection approach requires that (1.1) be satisfied
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whatever be the true configuration of the e.. The condition (1.1) is

usually referred to as the basic probablllty requlrement or the

P*-condition. The procedures, which are discussed in §8 2 and 3 are
under the subset selection formulation. We have confined ourselves here
to a descriptioﬁ of the problem in its basic simplicity. Even the pio—
neering paper of Bechhofer [19] considered different goals. Since the
early investigations, several authors have considered various modifica-
tions of the goal and different sampling rules. Some efforts have also
been made to comBine both the indifference zone and subset selection
approaches. Recent results in this direction have beeh obtained by
Santner [89] and, Gupta and Santner [60]. A list of published litera-
ture under bothiapproaches is given in the monograph by Bechhofer,
Kiefer and Sobei tzo]. The developments and significant results in the
literature prior to 1972 under the subset selection formulation have
been surveyed by Gupta and Panchapakesan [58].

In reliability theory, we are largely concerned with estimation
and optiﬁizatioh ef the probability of survival, mean life, or, more
generally, life distribution of components or systems;.'Other problems
of interest include those involving quantities such as the'probability
of proper functioning of the system at either a specified or an arbi-
trary time. Tﬁe probability models and statistical techniques appli-
cable in these problems form an important part of the mathematical
theory of reliability. Reliability problems have a structure of their

own as could be seen, for example, in the development .of concepts like
| 4



monotone failure'fates. As such they have stimulated investigations in
other associated stétistical p}oblems.

In the abovc-context, selection and ranking procedures are relevant
to reliability problems. Of course, many procedures developed for the
location and scale_pérameter families are applicable. However, in
reliability problems; we are interested in procedures -applicable to
large classes of distributions such as those having increasing failure
rate. This necessitates developing new procedures to meet these various
situations. The investigations of Barlow and Gupta [ 6]}form the ini-
tial efforts in this direction; however, this area of research remains
largely unexplored.

The main obJectlve of this paper is two-fold: (i) to present some
important subset selection procedures applicable to rellablllty problems
and (ii) to review some important results concerning inequalities in-
volving order sta;istics'and, estimation and hypothesis:testing based on
order statistics relative to restricted fémilies of probability distri-
butions. Whilevthe former sets the format and techniques of subset
selection, the iatter presents some useful results of potential value
for further investigations.

Section 2 diééusses some general theory of subsét selection pro-
cedures and applications of these procedures to probiems concerning
specific distributions. Mainly all these procedures ére parametric in
the sense that tﬁe underlying distributions are known but for the values

of the parameter(s) involved. A short description of some distribution-
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free procedures is also given. We also discuss some related formula-
tions of problems such as selecting the populations better than a stan-
dard. |

The next section considers selection procedures relétive to some
restricted familiés of distributions. These are of direct>interest in
reliability because the families with monotone failure rate or monotone
failure rate on the average are examples of such families of practical
interest. In this seétion, some new prbcedures are discussed for tail-
ordered distribgtidns and relevant tables are given. A general partial
ordering is defined on the space of probability distributions through
a class of real valued functions and a Selecﬁion procedure is discussed
using this ordering. It will be seen that this gives a unified view of
some of the known resﬁlts.

Some life testing sampling plans for IFR (DFR) families are dis-.
cussed in §4. 1In §5 some inequalities are given for linear combinations
of order statistics from F and G where F is (i) starshéped, (ii) convex,
with respect to G. Linear combinations of order statistics can be look-
ed upon as weighted sums of spacings. Total life on test stétistic is
a special case of interest. |

"A natural problem of interest is to estimate the failure rate when
we do not know the functional form of the underlying distribution but
only know that it has a monotone failure rate. This as.well as the
window estimators for the generalized failure rate function have been

reviewed in §6. A brief review of some tests for éxpohentiality



against the altcrnétive that the underlying distribution ié a member of
some restricted family of distributions is also given in this section.

Most of thé results reviewed in this paper were obtained by several
investigators in therlast ten years; a good many of them in the last
five or six years. Research in selection and ranking pfbblems like
research in statistical problems of reliability relative to restricted
families of probability distributions has been growing very fast in
recent years. As»Such it is not possible and certainly is not our aim
to give an éxhaustive coverage of important resulfs in the two areas.
Our objective is to focus the attention on certain imbortant results
and highlight the potential fér multiple decision formulation for
problems in reliability.

2. Subset selection procedures - parametric and nonparametric

cases. In this section we follow the general setup described in §1.

We assume that the family of distributions {Fe}, 8 € ® is stochasti-

cally increasing (SI) in @, i.e., for 6 < @' in O, Fe and'Fe, are
distinct and Fe(x)lz_Fe,(x) for all x. We take @ to bé an open inter-
val on the real line and assume, unless stated otherwise, that the
distributions,Fe,e €®, are absolutely continuous with densities fe and
have thé same support denoted by I(Fe); ' We also assume that Fe is con-
tinuously difféfentiable in 6. Our goal is to select a subset contain-
ing the population associated with e[k]‘ For this pu;pése, we define a
class of rules Rh using a class &= {h} of continuous real valued func-

tions defined on the real line. The class & is assumed to have the



following properties:
(1) ho: x + x is a member of &
(ii) h(x) > x for every h e & and x e I(Fy),
(iii) for every x ¢ I(Fe), and  h e &, fﬁere exists
(2.1)  a sequence {hm} in & such that ;ig.hﬁ(x) = h(x),
(iv) fbr every X € I(Fe), except perhaps on é set of
Lebesque measure zero, there is a sequence {hm} in

& such that lim hm(x) = o,

Gupta and Panchapakesan [57] have defined the class of rules, R;:

.Include the population ™S if and only if

(2.2) ' h(xi) > max X
1<r<k

r’

where x,,..., X, is.a set of observations from w,,..., ™ , Tres ectively.
1 k | 1 K P !

Because of the stochastic ordering of {Fe},
2.3) inf P(CS|R) = inf f Fg_l(h(x)) dF (),
Q- 0e® -

where Q is the parametric space {8: 6 = (61,..., ek); ei é @ 1i=1,...,

k} and the integral is over the support of Fe. Let

(2.4) BEACRY el (h(x)) dFg(x).

Regarding the evaluation of the infimum in (2.3), Gupta and

Panchapakesan [57] have proved the’following theorem.

Theorem 2.1. Suppose, for every h e & and.e e @, .

(2.5)  £5(0) 35 Fa(h(X)) - h' () £,(h(x)) 55 Fo(x) 2 0



for all x € I(Fe), where h'(x) = (d/dx) h(x). Then, under certain

regularity conditions, Ah(e) ié_nondecreasigg»ig_e. The monotonicity

gf_Ah(e) is strict, if (2.5) holds with strict inequality.
The above theorem is, in fact, a consequence of a more general
theorem proved in [57].

If the condition (2.5) is satisfied, then inf Ah(e) =.lim+ Ah(e) =
 fe@ 66

Ah(e;L where 60 is the left hand endpoint of the open interval @. With

no loss of generality, we can assume that F _ is a distribution func-

)
(o]

tion. Because of the properties stated in (2.1), it can be seen that

there exists an h s._c‘t/for which
(2.6) | Ah(e;) = p* , 1/k < P* < 1.

Remark. In any particular problem of interest we may have 6 ¢ &',
where @' is the interval @ closed at either end or at both ends. In

this case, let

(2.7) ~ B(h) = min[A _(67), inf 'A'(B)],‘.
, Ah o fe@' NG h

where 9@ is the bogndary of ® The properties in (2.1) are sufficient
to assure the existence of an h for which B(h) = P*. However, in most
practical situatiqns, we have Ah(e;) = Ah(eo). |

Let p, denote the probability that the population associated with
e[i] is includéd in the subset. Then, a procedure R designed to select
the population with the largest © is said to be monotone if P; :_pj for .

1<i<j<k. Ifp, <py for all i, then we say that R is unbiased.



If h(x) is incféasing in x, it can be shown that Rh is.mOnotone.

Suppose we denote the number of populations included in the select-
ed subset using a procedure R by S. Then S, calied the subset size, is
an integer valuedlrandom variable. We are interested in the E(S) =
E(Sth). It is easy to see that E(S) = pi»+...+ P .Tﬁe following

theorem relating to the supremum of E(S) over & has been proved in [57].

Theorem 2.2. For the procedure Rh defined by (2.2), sup E(SIRh)
: ' T q

is attained when 6, = B, =...= N provided that

(2.8) 3%— Fe-(h(x)) fe (x) - h"(x) Eg—'Fe (x) fe (h(x)) >0
1 1 2 1 71 2
for every h e &, el :_62 and all x € I(Fe). )

It should be noted that (2.8) implies (2.5). Many of the proce-
dures investigated in the literature are members of the class Rh' In
the subsequent paits of this section we discuss some'specific procedures
of interest.

2.1. Selection in terms of location and scale parameters.’ Two of

the important cases in many statistical investigations are those of
location and ;caie parameters. Many of the parameters of interest fall

under one of these cases. We first discuss the location parameter case.

(a) Location parameter. In this case we have Fe;(x) = F(x-Qi),
ei e (-»,) aﬁdvI(Fe) = (-»,»). The usual choice is h(;) =x+b, b>0.
It is easy to see that Ah(e) is constant for 6 € ® and hence we can
evaluate the inf.P(CSIRh) at 8 = 0. It can also be shown [57] that,

for the above chéice of h(x), the condition (2.8 ) reduces to monotone
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likelihood ratio (MLR) in x. Thus the constant b satisfying the -

P*-condition is given by
v o«

(2.9) R ey arpo = P

-0

and sup E(S) = k P*, if f(x-0) has MLR in x.
As an appiication to a specific problem, consider selection of a

subset containing the largest mean from k independent normal populations

. . 2 -
with unknown means Hpseees Hy and a common known variance o . If Yy
i=1,..., k, are the sample means based on n observations from each
population, the rule Rh selects TS if and only if }i > max y_ - do/vn,
1<r<k

d > 0. Here h(x) = x + do/v/n. Thus, the constant d is given by

o

(2.10) | - f ¢k‘1(u + d) @(u) du

— 00

p*,

where, unless otherwise stated, ¢(+) and @(+) denote the cdf and the
density of the standard normal distribution. If 02 is unknown, one
will naturally use 52, the pooled estimator of 02 based on k(n-1)

degrees of freedom. In this case it can be shown that d is given by

(2.11) E

O 8

T k-1
[ 77 (utyd) @) g,(y) dudy = P*,

where gv(y) is the.density of xv/v with v = k(n-1). For the case of
known 02, the coﬁstant d can be obtained for selected;values of k, n
and P* from the table of Gupta [46]. Tables for the case of unknown 02
are givén by Gupta and Sobel [61]. Thgse procedures ha&e also been
discussed by Gupfa-[48]. The selection problem with unequal sample

sizes has been investigated by Gupta and Huang [5s1].

11



(b) Scale parameter case. In this case, we havc-Fe (x) = F(x/oi);
: i

ei e (0,°), I(Fe) = (0,#). For the choice of h(x) = ax, a > 1, it is
easily seen that Ah(o)is constant for 6 € ¢ and hence the inf P(CSIRh)
can be cvaluated at 6 = 1. Further, sup E(S) is attéincd when 0 =---

Gk if the dcnéity fe(x) has MLR in x and in that case sup E(S) = k P*.

The constant a satisfying the P*-condition is given by
k-1
(2.12) [ F- 77 (ax) dF(x) = P*.
: ' 0

A specific example of interest is the selection from k gamma
populations with densities
-x/0.

(2.13) £, (x) = rmyt e Xle  H xs0,8 >0,1=1,...,k
. |

It is knoWh [95] that the gamma distributions have increasing fail-
ure rates when r > i. 'One-may be interested in selecting the population
with the largesﬁ'ai. This corresfonds to selecting the population with
the largest meaﬁ Wy =T 6.. For this goal, Gupta [47]>proposed fhe

rule"Ra: Select ™ if and only if
(2.14) ax, > max X, a> 1,
where ii’ i= 1,.;}, k, are the sample means based on n independent

observations from each of the populations. The appropriate constant a

is given by
. © k-1
(2.15) . [ G (ax) dG_(x) = P*,
0 \Y Vv

where Gv(x) is the cdf of a standardized gamma variate (i.e. with 6=1)

12



with parameter v/2‘= nr. Gﬁpta [47] has tabulated the valucs of a
for k = 2(1)11,v = 2(2)50 and P* = .75, .90, .95 and .99. Thése tables
are also applicablé for the case when the common T is unkﬁowﬁ. This i§
discussed in §3. ‘The selection problem for the smallcst 6 can be
trecated in an analogous manner. This problem arises in the context of

sclecting a subset containing the normal population with thc smallest

variance. The rule in this case is an obvious modlflcatlon of R . We
select ™ if and only if x < a min X . This rule has been studied
1<r<k

by Gupta and Sobel [64] and the related tables are avallable in their

companion paper [65].

2.2. Selection from multivariate normal populations. Selection
problems for multivariate normal populations have been investigated

using several measures of ranking. Let =™ be independent

1 Mk
p-variate normal distributions, where m, has mean vector u and covari-
ance matrix Zi’ i = 1,..., k. Letvzij, j=1,2,..., n, be random
vector observatiohs_from m,. Let S. = (n-l)_1 2§1 (Eil—gi)(Eiljii)f,

denote the sample covariance matrix where ii is the sample mean vector.

(a) Selection in terms of generalized variance, |£]. In this

case M and Z are unknown. The géal is to select a subset containing
the population assoc1ated with the smallest IZ | Fo; this problem,
Gnanadesikan and Gupta [40] studied the rule R: Select the population
™ if and only if

(2.16) | |Si|_<_c_1 min |S

ljyfk

r|, 0 <c <1,

13



It has been shown in [40] that

1

(2.17) inf P(CS|R) = Pr(Yl,f_c’ Yj, j = 2,...5 K)o

Q -

where Yi, i = l,...;.k, are independent random variables; ¢ach being
the product of pvindependent factors, the rth factor being distributed.
as d chi-square random variable with (n-r) degrees of-f?eedom. The
exact distribution of Y. is unknown except when p = 2.

(b) Sclection in terms of distance functions. In some problems,

it is of interest to use the Mahalanobis distance function,

Ai = Bi-z-i Hso to rank the populations. In the case of a univariate
population, 1/>\i is the square of the coefficient of variation. The
Mahalanobis distance function seems to be a good measure in some infra-
specific taxonomic'problems. Our goal is to select a subset containing
the population associated with the largest X.. Let y.. = x!. Tlx..,

n i ij =i i i)
j=1,...,m 1i=1,2,..., k. Theny, = ) Yi; has the non-central
, j=1 ‘

chi-square distribution with np degrees of freedom and nbn-centrality
parameter Ai = nxi. For the case of Xi = I(known) for all i, Gupta

[49] proposed the rule Rl: Select the population L if and only if

>c max y_, 0 <c<1.

(2.18) y.
' 1<r<k

i
Because of the stochastic ordering of the non-central chi-square distri-

butions in A', the inf P(CS|R,) is attained when the distributions have

the same non-centrality parémeter A'. Thus
(2.19) inf P(CS|R) = inf [ F,,“ Lo ), (0,
Q A'>0 0

14



where FA|(X) is the cdf of a non-central chi-squarc variable with np
degrecs of freedom and non-centrality parameter A'. Gupta [49] showed
that, for k = 2, the intcgra1 on the right hand side of (2119) is non-
decreasing in A' 3_0'and hence the infimum takes place at A' = 0.
Later, Gupta and Studden [60] established the monotonicity for k > 2.

They proved the following theorem.

- Theorem 2.3. Let gj(x), j =0,1,2,... be a sequence of density

functions on the interval [0,«) and define

(2.20) s = LW gm, x>0
. 520 j .
For a fixed integer k > 2 and a > 1, let

(2.21) Iy = Fi_l(ax) dF, (x)  and
. o 0
(2.22) I = [l-Fk(x/a)]k_l dF, (x).

0

Then, I()) and J(A). are nondecreasing in A prnvided that, for each

L >0, |
L % ‘
(2.23) izo Fi)[{Gi+l(ax)-Gi(ax)} g, ;s (X) -

c gi(cx) {Gl—i+1(x) - Gz_i(x)}] > 0.

Further, the monotoﬁicity is strict if the condition (2.23) holds with

strict inequality for some integer 2.

It should be péinted out that the monotonicity of J(A) is needed
for the procedure defined by Gupta and Studden [60] for selecting the

population associated with the smallest A.. Gupta and Studden [60]

15



considered the casc of Ei known but not necessarily cqual. Thus, for

S

their proceduré,yij = X, Zi Eij and the procedurc is substantially the

__1j

same as Rl defined by (2.18). They have also considered a procedure

for thc case where the Zi are different but all unknown. In this case,

-1

let z, = Ei S, X.. Then, the procedure studied is R,: Sclect.ni if
and only if
(2.24) e''Z. > max Z_, c' > 1,
i-— T —
1<r<k
In this casc, it is shown that inf P(CSIRZ) is attained when Ai = ... =
AL = 0. The distribution of Zi’ when the Ai are equal, is the non-

central F with dégrees of freedom np and noncentrality parameter A'.
The applicability of Theorem 2.3 in these two cases is due to the fact
that the non-central chi-square and the non-central I distributions are
of the form (2.20) Qhere gj(x) are central chi-;quare and F distribu-
tions,~respcctive1y, with degrees of freédom depending on j. It should
be pointed out that% when Xi are known, a procedure analogous to R2
with 7. = ii xll ii is undesirable because the constant c-in this case
doesvnot depend on n.  This difficulty is overcome by Rl'

(¢) Selection in terms of multiple correlation coefficient. Let

P; = Py.o D be the multiple correlation coefficient between the first

variable and the rest in the population ™ Gupta and Panchapakesan
[56] investigated procedures for selecting a subset cohtaining the
population associated with the largest Ps- Let the corresponding

sample multiple correlation coefficients bé Ri’ i=1,..., k. One of

16



the procedures investigated by Gupta and Panchapakesan [56] is Ry:

Select ™ if and only if
(2.25) R*¥™ > ¢, max R*z, 0 <c, <1,

where R*2 = Ri/(lQRi), i=1,..., k. Letting Ai = pi, the . distribution
of R;z is given by

v ++'j +
(2.26) w () = ] L(qrmed)A” ) 5ya*m

520 r(q+m)j! ( )

f2@q+3),2m
in the so-called unconditional casc and by

j
(mA) (x)

(2.27) u, (x) = _Z foa+3),2m

in the conditional case, where q = (p-1)/2, m = (n-p)/2 and fr S(x)
denotes the density of the F-distribution with r and s degrées of
freedom. In this caée,

-1

(2.28) inf P(CS|R;) = inf f Ui (x/¢) dU, (x),
Q A0

where U (x) is the cdf corresponding to uy (x). ‘Gupta and Panchapakesan
[56] have obtained a theorem analogous to Theorem 2.3 for the uncondi-
tional case, where the gJ are weighted with negative binomial weight
functions. The approach is similar to that of Theorem 2.3 which appear-
ed first in 1965 in a technical feport. However, in view of the remarks
on mixtures of distributions made below, we omit the statement of the
theorem of Gupta and Panchapakesan [56].

We first note that, for all procedures Rl through R3 discussed
above, we are interested in the monotonicity of the integral

17



f Fi-l(ax) d Fx(x),'a > 1, where Fl(x) is a mixture of a sequence of
distributions Gj(x)vwith eithef Poisson weights or negative binomial
weights. This is theomotivation for the thecorcem obtainéd by Gupta and
Panchapakesan [57] for their class of procedures Rh discuééed carlier 1in

this scction. Suppose the distribution Fe is of the form

(2.29) Fo(x) = ] w(8,j) 6;(x),
. j=0
" where Gj(x), j=1,2,..., is a sequence of distribution functions and

w(6,j) are non-negative weights such that z w(8,j) = 1 for & e [0,=),

_ j=0 '
We assume that the weights are given by

w(e,j) = a.07/B(8)j!, B(6) >0, 8 >0,

(2.30) ’ J - |

aj%1_= (m+2j)aj, j = 0?1,....; £,m > 0.

-m/%

It is easy to see that B(8) = ao(l-ez) , provided 6% < 1. The
following theorem is due to Gupta and Panchapakesan [57].

Theorem 2.4. The condition (2.8) is satisfied ifjbfor a=0,1,...,

[i/2] and b > 1,

(2.31) b %(meRa) [g;_ (x) 4G (h(x))-h' (x)g;_,(h(x)) 4G, (x)]

+ b (e (i-00) [g, (X) 8G;_, (h(x))-h' (g, (h(x)) 86;_ ()] 2.0,

where AGa(x) = Ga+1(x) - Ga(X) and [s] denotes the largest integer < s.
As an immediafe consequence of Theorems 2.1, 2.2, 2.4 and the
remark immediately following Theorem 2.2, we see that; if (2.31) holds
for every h ¢ &, then Ah(e) defined by (2.4) is'nondecreasing in 8 and

"sup E(S) is attained when 61 = ...0= 0. If we set m =:1,'2 = 0, and
| 18



a = 1 in (2.30) we get Poisson weights. The negative binomial weights
are obtained by letting & =1 and a, = 1.

The values_ofzthe constant c¢ defining R1 can bc obtained from the
tables of Gupta [49]. The constants c' of R, and ¢y of R, can be
obtained from the tAbles of Gupta and Panchapakesan [56].' It should be
pointed out that, ﬁhough we have described only procedures for select-
ing the populatibn associated with the -largest value of the parametric
function chosen, the several papers rcferred to above havebalso consid-

ered the case of the population associated with the smallest value of

the paramctric function.

2.3. Selection in terms of discrete distributions. We have dis-
cussed so far in this section procedures when the underlying distribu-
tions Fe are continuous possessing densities. We now qpnsider the case
where the underlying distributions are discrete. Subset se1ection
procedures have been investigated in the case of distributions of import-
ance such as biﬁomial, negative binomial and Poisson. ‘However, for the
purpose of illustration, we are primarily interested in thé binomial
case. | |

Suppose Missees M are k independent binomial populatiéns with
unknown probabilitigs of success on a single trial 91,..., ek, reépec—
tively, where 0 5_ei <1l,i=1,..., k. The goal is to select a subset

containing the population with the largest ei. Towards this end Gupta

and Sobel [63] prdpdsed the rule R: Select L if and only if
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5

(2.32) : X; > max - d, -
» 1<r<k -

where x; is the obscrved number of successes in n observations from .
and d = d(n,k,P*j-is the smallest nonnegative intcger‘that Qi]l s;tisfy
the P*-condition. It is known that P(CS]R) is minimized thn 01=...=0k.
Thus, the constant d is the smallest nonnegétive integer for which
: n o+d . . k;l

(2.33) inf ) (g)e“(l-e)“'“[ ) (?)93(1-9)“'3] > P*,

0<6<1 a=0 i=0
It has been shown by Gupta and Sobel [63] that, for k = 2, the infimum
in (2.33) is attained for 6 = 1/2, and that, for a fi*ed-k, the value
80 at which therinfimum takes place tends to 1/2 as n»=. However, in
general, the value of © for which the infimum takes place is not known.
Gupta and Nagel [54] have proposed a randomized rule R' as an alterva-
tive. Let pk(xl,.{., xk) denote the probability of selectlng T based

on the observations Xpseees Xpo Then the rule R' is defined by

1 if Xy > C

_ T’
(2.34) ' Pk(xl""’ xk) = p if X & CT’,
0" if X, < CTf

where T =
i

It

Xs is a sufficient statistic for 8 and, p=p(T,P*,k,n) and
1 ' :

Cp(P*,k,n) are deterﬁined so as to satisfy the P*—conditibn; The values
of CT and p have‘been tabulated by Gupta and Nagel [54] for k = 2,3,5;
n =5, 10 and P* = 0.75, 0.90, 0.95, 0.99 with T in each case going
from 0 to nk. | |

As an application, consider independent continuous distributions
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Fi_with densitieé-fi, i=1,..., k, associated with lengths of life
from k populationsﬁ:‘Then ri(t) = fi(t)/[l—Fi(t)] is the failure rate
function for the popﬁlation e We assume that these populations are
IFRA, i.e., R.l(t)_=.'c-1 Z r, (x)dx is increasing in t. Sugh distribu-
tions and scveral>fesults relating to them are discussed at'length in
the subseqncnt sections of this paper. Here we will assume' that there
is one among the k populatlons, denoted by F[k](x), such that the
associated R[k](t) j_Ri(t), for al1 t > 0, i=1,..., k.‘ The goal is to
select a subset contéining that population. It is easy to see that, if
Ri(t) :_Rj(t), then Fi(t) f_Fj(t). Thus, the best populaﬁion here is
the one which is stochastically larger than any other population.
Suppose we put n-items from each population on a 11fe test for a period .

of time, T. Let X be the number of failures. Then, X5 has

1ot Xy
the binomial distrlbution with p; = Fi(T) and we are intefested in the
population with thé,smalIest P;- So we can use the procedures R and R'
with n-x; in the place of X, -

Gupta and Nagel {54] have studied procedures similar to R' defined
by (2.34) for the problem of selection from Poisson and negatlve
binomial distributions. The case of Fisher's 1ogar1thm1c distributions
has been discussed'by Nagel [79]. The subset selection rules for
selecting the cell with the largest (smallest) probabilities in a
multinomial distribution have been investigated by Gupfa ahd Nagel [53],
aﬁd Panchapakeéan‘ISO].

2.4. Distribution-free procedures based on ranks. We now assume
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our carlicr setup where {FO} is a stochastically jncrcdSing family of
absolutely continuous distributions. llowever, it is now further
assumed that the fﬁnctional form of Fe is not known. For sclecting a
subset containing the population associated with the lérgest ei, Gupta
and McDonald [52] investigated three classes of rules based on ranks.
Let Xij’ j = 1,.;;, n., be independent observations from ™ i=1,...,
k. All the N = n, +...+my observations are pooled and ordered. Let
Z2(1) < Z(2) <...< Z(N) denote an ordered sample of size N from a con-
tinuous distribution G such that -« < a(r) = EG(Z(r)) <w, r=1,..., N.
With each observgtions xij‘associate the number a(Rij) and define

n
1

, i :
(2.35) H, = n; Z a(Rij), i=1,..., k,
i=1
where Rij denotes the rank of Xij in the combined sample. The classes
of procedures studied by Gupta and McDonald are based on the Hi' The
difficulty with the usual types of procedures is that the infimum of
the probability of a correct selection does not necessarily take place
when all the populations are identical unless k = 2. A detailed survey
of these and other related procedures is given by Gupta and

Panchapakesan [58].

2.5. Selecting a subset better than a standard. In many practical

situations we may be interested in choosing from k given populations
those which compare favorably with a standard or a control population
in terms of the characteristic of interest. To be precise, let s

i=0,1,..., k; be (k+1) populations with the associated distribution
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functions F. . The parameter 6 of the standard population, w _, may or
ei , o] o

may not be known. The other 6, are unknown. Wec say that s is better

than LR if Oi Z_Oo (or Oi :_00). The goal is to sclect a subsct of the

k experimental populations with a minimum guarantec on the probability
that all p0pulatibns better than the standard are included in the
selected subset. The normal means problem was investigatcd by Gupta
and Sobel [62]. Later Gupta [48] has discussed the cases of location
and scale parameters in general. Nonparametric selection procedures
when the comparison is in terms of a—quantilé (0 < o < 1) have been
studied by Rizvi, Sobel and Woodworth [88].

In problems of comparison of experimental populations with a
~ standard, mention should be made of the formulation of Lehﬁann 173].
He considers a pdpulation to be good if it is sufficiently better than
the standard. Invofher words, . is positive (or good) if Gi 3_96 + A
and negative_(or bad) if ei 5_60, where A is a giveﬁ positive constant.

Let S(6,68) and R(9,8) denote the expected number of true positives (i.e.

good populations‘included in the subset) and the expected number of

' false positives (i.e., a bad population included in the subset),

respectively, using the procedure 8. The problem of Lehmann is to

determine a procedure § for which sup R(8,8) is minimum subject to the
Befd

condition that inf S(6,8) > y, where Q denotes the whole parameter
e’

space and Q' denotes the set of parameter points for which there is at

least one of the populations is positive.
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3. Subset selection procedures for restricted families of proba-

bility distributioné. In the previous section, we discussed selection
procedurcs when the distributions under consideration are known except
for the parameters.involved. We also discussed some distribution-free
procedures assuming only the stochastic ordering of the uﬁderlying dis-
tributions. Presgntly we will consider situations where, even though
fhe functional forﬁs of the‘distributions are not known, .we do have

some information about the family to which these distributions belong.
This information could be useful in obtaining appropriate bounds for
the probabilities in which we are interested. These bounds, as we will
see, are in terms of some known distribution. For this reason, we.will
call these quasi-parametric cases. Many interesting exampleé of such
situations.arise in.practice. The families of_distributions having an
increasing failure rate'(IFR) or an increasing failure rate on the aver-
age (IFRA), which have been considered exteﬁsively in feliability theory
are examples oflthis type. Such families of distributiphs can be de-
scribed in the general setup of probability distributions, which are
partially ordered in some sense with respect to a known distribution

and this is described below.

3.1. Partial ordering in the space of probability distributions.

A binary ordering relation (X) is called a partial ordering in the space

of probability distributions if
(a) F =< F for all distributions F, and

(b) F <G, G<H imply F < H.
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It should be noted that F <G and G < F do not necessarily imply that
F = G. The above definition has beén used by early authors and follow-
ed 'in Barlow aﬁd Gupta [ 6]. However, it should be npted that a partial
ordering defined. as above corresponds to abquasi-ordering in the termi-
nology of Barlow et al [ 2] who consider more general ordering of sets.
Assuming fhat all our distributions are absolutely continuous, we
will now define some of the special order relations of interest to us.
F and C denote distribution functions.
(i) F is said.to be convex with respect to (w.r.t) G (written
F < G) if and only if G~ F(x) is convex on the support of F.
(ii) F 1s said to be star-shaped w.r.t. G (written F g G) if and

-1

only if F(O) = G(0) = 0 and G "F(x)/x is increasing in x > 0 on the

support of F.

(iii) F is said to be r-ordered w.r.t. G (F ? G) if and only if
F(0) = G(0) = %iand G_lF(x)/x is increasing (decreasiﬁg) for x positive

(negative).

(iv) F is said to be tail ordered w.r.t. G (F_? G) if and only if
F(0) = G(0) = %-‘nd G_lF(x)-x is nondecreasing on the support of F.

1f G(x)_= ije—x(x > 0), then (i) defines the class of IFR distri-
butions studied by Barlow, Marshall and Proschan [ 9]; while (ii)
defines the élass of IFRA distributions s;udied by Barlow, Esary and
Marshall [ 4]. The r-ordering defined by (iii) has been iﬂvestigated

by Lawrence [72]. Doksum [28] has used the tail-ordering. The convex

ordering and s-ofdering (not defined here) have been studied by
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Van Zwet [87]. It is easy to verify that the above order relations are
all partial order relations. One can also easily see [26] that convex
ordering implies star-ordering.

3.2. Subset selection problems for quantiles. In this section we

assume that the populations M i=1,2,..., k, with the distributions

Fi have unique a-quantiles, £y i= 1,2,..., k. Let F denote the

[i]
cdf of the population with the ith smallest o-quantile. We assume that
(a) F[i](x) z_F[k](x) for all x, i=1,2,..., k;

(3.1) (b)  that there exists a distribution G such that

FripS6, i=12,..., Kk

where X denotes a partial ordering relation in the space of probability
distributions. Of course, the correct pairing of the unordered and the
ordered Fi's is not known. We denote the space of the k-tuples (Fl,
Fz,..., Fk).By 2. Our goal is to select a subset fro@ the k populations
so as to include the population with the largest a-quantile. For this
goal we define a selection procedure when the partial ordering in (3.1)
is star-ordering.

Let Tj,i? i=1,2,..., k, denote the jth orde? 5tafi§tic based on
n independent obsérvations from . where j < (n+1)a < j*1. Then, for
selecting the population with thellargest anuantile, the following rule
Ry was proposedrby Barlow and Gupta [6].

Rl:. Select’ni if and only if

(3.2) ' - T. . >c max T, ,
- J’l 1<r:k J’r
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where 0 < c¢ = c(k,P*,n,j) < 1 is determined so as to satisfy the prob-
ability requirement-

(3.3) | inf P(CS|R,) =
Q

To enable the-determination of the constant c, the following result has
been obtained in [ 6].

Theorem 3.1. lﬁ F[i](O) = G(0) = 0, F[i](x) Z;F[k](x), x >0,

i= 1,2{..., k, and F[k] G, then
(3.4) inf P(CS[RI) = f [G.(x/c)]k‘ldG-(X),
g 0o J J

where Gj(x) is the cdf of the jth order statistic based on n independent

observations from the distribution G.

Thus the constant c which defines the procedure R1 is determined

by

p k-1
(3.5) J [G.(x/c)]" 7dG, (x) =

o J

As we have noted éarlier, when G(x) = l—e_x(xzp), the populations

have increasing failure rates on the average. For this case, the value
of the constant c satisfying (3.5) has been tabulated by Barlow, Gupta
and Panchapakesah [ 7] for P* = 0.75, 0.90,. 0.95, 0.99 and the follow-

ing values of k,n and j corresponding to each selected value of P*:

(i) j=1, k = 2(1)11 (In this case c¢ is independent of n);
(ii) k = 2(1)4, n = 5(1)15, j = 2(1)n;

(iii) k =5, n=5(1)12, j = 2(1)n;

(iv) k=6, n = 5(1)10, j - 2(1)n.v

These tables can be used also when the class of distributions F is

27



star-ordered with respect to Weibuli distribution Gx(x) = l—éxp(-xk/e)
for x > 0 and 6, » > 0. It is known that such a class of distributions
is the smallest class of continuous distributions containing the Weibull
class of distributions with shape parameter A which is closed under the
formation of c¢oherent structures and limits in distribution. For the
selection problem in this case we use the rule Rl with constént

1/

c, = ¢ , where ¢ is obtained from the table in [ 7].

A
For the quantile selection problem, Rizvi and Sobel [87] proposed
a distribution-free procedure R2 which selects the population m if and

only if

(3.6) - T, . > max T, s
. J,1 1_<_I‘_<_k J-a,r

where a is the smallest integer with 1 < a < j-1 for which the P*-con-
dition'is satisfied. An asymptotic comparison of R1 and R2 has been
made in [ 6]. Using the asymptotic theory of order statistics, the

sample sizesvnR-(e), i =1,2, are found such that E(S|Ri)-P(CS|Ri) = €,
i ,

It should be noted that for any rule R, the expression E(S]R) - P(CS[R)
denotes the expected number of non-best populations includedbin the

selected subset. [For the slippage configuration F[i](x)_= F(x/8),

i=1,..., k-1, and F[k](x) = F(x), 0 <6 < 1, the asymptotic relative
efficiency ARE(Rl, RZ;B) of R1 relative to R2 is defined to be the
limit as e*0 of the“ratio nRz(e)/an(s). It has been shown in [ 6]
that ARE(RI,RZ;G)'= 1.

A similar comparison of R, and the procedure (which we will call

1
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R' here) for selecting the largest gamma parameter discussed in §2 gives
(3.5) ARE (R;,R";8) 3_2(1—6)2 &2(-1og &)2

- ‘ [r (og 9% wa (146917, 121,
where r is the common degrees of freedom of the gamma distribufibns and
a = l-a. In particular, for r =1, we get

(3.6) ARE(R},R';641) > o™ 'a(-1og 52

| v

= ,493 when a = %.
The problem of selecting the population with the smallest a-quan-
tile can be handled in a similar way. Here, of course, we will assume
i = <
that F[i](x) f-F[l](#)’ i 1,2,..., k and all x > 0, and F[i]-* G.
The selection procedure proposed in this case is

RS: Select L if and only if

- 3.7) dT. . < min T. ,  j < (o < j+1 ,
Js1l — lir.ik JoT -

where 0 <d = d(k,P*,n,j) <1 is a constant chosen so as to satisfy

the P*-requirement. It is shown in [ 6] that d is determined by
5 k-1
(3.8) f [l-Gj(xd)] de(x) = p*,
0

The constants d are tabulated in [ 7] for P* = 0.75, 0.90,-0,95,"0.99
and the following ranges of k,n and j for each P* value:

)

(i) k

1, k = 2(1)11 (d is independent of n);

2(1)5, n = 5(1)15, j = 2(1)n;

(iii) k = 6, n = 5(1)12, j = 2(1)n.

3.3. Selection with respect to the means for the class. of IFR
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distributions. Lct My be the mean of the distribution F(x;ui), i=1,

2,..., k, and assume

(a) F(x;u[i]) z_F(x;u[k]) for all x, i =1,2,..., k;

(3.9)

(b) F(x;u_[i-])':G(x) = 1-¢%, i=1,2,..., k.

For convenience, we assume that F(O;ui) = 0 for all i. For seleccting a
subset to include the population with the largest mean, u[k], Barlow

"and Gupta [ 6] have proposed the rule RS: Select m, if and only if

(3.10) ' X. >c' max X
| =7 jerax T

where ir’ r=1,2,..., k, are the sample means based on a‘raﬁdom sample
of n observations from each population. Let U[i](x) denote the distri-
bution of the mean of‘the sample from F(x;u[i]). Then, as an immediatc
consequence of (S.Q)f(a), we have U[i](x) z_U[k](x) for all x, i =1,
2,..., k. Since, the class of IFR distributions is- closed under

convolution [ 9], U[i] ;iG, i=1,2,..., k. Using these properties, it

has been shown in [ 6] that

‘ . -] k_l

(3.11) p(ciss) > {6 (x/c') d6(x).
0 .

An obvious disadvantage of the above procedure is that the bound in
(3.11), and hence the_constant c' satisfying the P*-condition, is
independent of n. However, if we restrict the class ofrdistributions
to the gamma family, we cén obtain a lower bound for the pfobability of
a correct selectionIWhich depends on n. By taking the density of the
population m, to be £(x;0,) = ezxa-le-eix/r(d), x>0, 8, 5‘0. i=1,
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2,..., k, and o > 1. The actual value of a is unknown. Then, selecting
the population with the largest mean is equivalent ot selecting the

population with the smallest 6. In this it has becn shown in [ 6] that
(5.12) PcsiRy > [ 6™ x/en1 ! ac™ ),
0

where G(a) denotes the distribution of a gamma variate with parameter

a. Thus the constanf c' = ¢'(k,P*,n) is determined so as to satisfy
the P*-requirement_by equating the right hand side of (3.12) to P*,

The values of c' are tabulated by Gupta [47]. The problém of selecting
the population with the largest 6 can be handled in an analogous manner.

3.4. Selection with respect to the median for distributions

r-ordered with respect to a specified distribution G. In this part we

consider selection procedures with respect to the median for the
distributions Fi’ i=1,2,..., k, which have lighter tails than a
specified distribution G. We say that the distribution Fi has a lighter
tail than G with G(0) = 1/2 if Fi centered at its median, Ai’ is

r-ordered with respect to G and (d/dx)Fi(x+Ai) > (d/dx)G(x) (see
x=0 - |x=0

Doksum [28]). Our goal is to select a subset of the k populations which
includes the population with the largest median, A[k]’ which is assumed
to be stochastically larger than any of the other populations. In this

case, Barlow and Gupta [ 6] have considered the rule R Select M if

4
and only if

(3.13) T. . > max T, _ - D, j < (n+1)/2 < j+1
I T gerck 10T - ’
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where the T. r are as defined in §3.2, It has been shown that the
s .

constant D = D(k,P*,n,j) > O satisfying the P*-condition is given by

o0

(3.14) f G?_l(t+d)d Gj(t) = P*,

- 00

It could be easily scen [28] that, if Fi has a lighter tail than
G(G(0) = 1/2), then it follows that Fi, centered at its median Ai, is
tailed-ordered with respect to G as defined in §3.1. We can show that

the procedure R, of Barlow and Gupta can, in fact, be used for select-

4
ing the population with the largest median, when all the populations
Fi’ centered at their respective medians, are tail-orderéd with respect
to a specified distribution G. Towards this end, we state the follow-
iﬁg theroem.

Theorem 3.2. If F_..(x) > F x) for all x, i = 12,..., 'k,
—" — " [i] S [k] (x) for all

G(0) = 1/2 and G—;F[k](x+A[k])—x is nondecreasing in x on {x: 0 <

F[k](x+A[k])} < 1, then

(3.5) inf P(CS|R,) = [ GX ' (t+D) a;,

j
2

where Gj is as defined earlier in §83.2 and Q. is the space of the

1
k-tuples (Fl;..., F,) such that F, : G, i =1,2,...,k.
We leave out the proof of Theorem 3.2 in view of the next thcorem
which states a little more general result.

Suppose F and G are two continuous distributions with unique a-

quantiles, ga and Ny respectively., We say that F is a-quantile tail-

ordered with respect to G(F : G) if G—IF(x+ga)—x—na is nondecreasing
a
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in x on the support of F, If a = 1/2 and 51/2 = n1/2 = 0, we have the
tail-ordering defined in §3.1. For the a-quantile tail-ordering we
prove the following lemma.

Lemma 3.1. Let X (Y) be a random variable having continuous

distribution F (G) with a unique a-quantile, ga(na). If F é G, then
a

(3.16) Pr(a+n, <Y < b+n ) < Pr(a+f <X j_b+€a),

for every a and b such that a < 0 < b.

Proof. Let F' and G' be the distributions of X' = X—ga.and Y' =
Y—na, respectively. Then, it is easy to see that G'—lF'(x)~x is non-
decreasing in x. Letting @(x) = G'_lF'(x), we have

Pr(a+na :_Y_i.b+na)

= Pr(p(a) < (') < @(b)) > Pr(a < X' < b), since ®(Y') = X' and
@la) <a <0 <b < ¢b). The conclusion of the lemma follows
immediately.
™ with associated abso-

Now, consider k populations = s T

‘ 12 2t k
lutely pontinuous Qistributions Fi’ i=1,2,..., k. We assume that
these distributions have unique o-quantiles, Ea,i' Let F[k] denote the
distribution which has the ith smallest a-quantile. Let G be a speci—
fied distribution with thévunique a-quantile, Ny In order to selcct

a subset including the population having the largest a-duantile, ga[k]’
assuming that the distributions Fi belong to a fahily of distributions :

which are a-quantile tail-ordered with respect to G, we propose the

rule RS: Select ™ if and only if
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(3.17) ‘T, . > max T, —D i < (m+a < j+l1,
Jat 1<r<k It ’

where Tj r is the jth order statistic based on n indepéndent observa-
b .

tions from L and D > 0 is a constant to be determined so as to satisfy
the P*-requirement. We now state and prove a theorem, which helps us

to determine D.

Theorem 3.3. 'lf_F[i](x) Z_F[k](x) for all x, i

1,2,..., k, and

F... < G, then
[i] t, T

(3.18) inf (CS|R) = fc‘j"l(un) HOF
o B

o

where Gj is the cdf of the jth order statistic based on n independent

observations from G, and Q' is the space of all k-tuples (Fl,..., Fk)

satisfyingAthe hypothesis of the theorem.

Proof. Since the stochastic ordering is preserved by the order
statistics, we have

(3.19) P(CS|R.) > Pr(X, , > max X, _ - D),
5 i,k 1<r<k jsT _

where the Xj , are independent and identically distributed having the
?

same distribution as that of the jth order statistic based on n indep-

endent observations from F[k]’ which is denoted by Fj K Let U(x) be

_ -1
the cdf of xj,r" Ea[k] and @(x) = Gj ux) - Ny- If we now set Y. _- n

it o

= ¢(Xj’r— ga[k])’ it is easy to see that Yj r has the distribution Gj'

?

It is also easy to verify that @(x)-x is nondecreasing in x. Hence the
event_[w{lzifk (xj,r - Ea[k])} - ?{Xj,k - ga[k]} < D] implies the

event [ITiik (Xj,r - ga[k]) - (Xj,k - Ea[k]) < D]. Thus, we obtain
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Pr( max (Y,

-n ) - (Y, -n) <D
1<r'<k J,T 0‘) ( J,k C!) - )

(3.20)
ipr(lrzi):k (X"r - Ea[k]) - (Xj,k - Ea[k]) f_ D)'
From (3.19) and (3.20) we get

(3.21) P(CS|R.) > Pr(Y, , > max Y, _ - D).
. S J’k— 1_<_r_ik J,I'

This completes the proof of the theorem.

Thus the value of D = D(k,P*,n,j) is determined by the equation

[es]

(3.22) | ' / G§'1(t+n) de(t) = p*,

- 00

Values of D are given in Table 1 for k = 2(1)10, n = 5(2)15 and
P* = 0.75, 0.90, 0.95 and 0.99 when G is chosen to be the logistic dis-

tribution G(x) = [1+e_x]~1. In this case, F_: G implies f(x+£a)
a .
3_F(x+€a)[l—F(x+5d)] for all x on the support of F, where Ea is the

a-quantile of F. A brief description of the computational methods used
in the evaluation of the integral in (3.22) is given below.

Let u(t,D) = G§—1(t+D) gj(t) so that (3.22) becomes

(3.23) A() = f u(t,d) dt = P*,

- 00

Splitting the region of integration into three parts, we write

! Uy o
f u(t,d) dt + { wu(t,D) dt + [ wu(t,D) dt

AI(D) + A,(D) + Ag(D), say.

(3.24) A(D)

The numbers u. and u, are chosen such that |A1(D)| < 10-13 and

1

13

|A3(D)| 5.10- so that the total error in omitting the tail parts does
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j.20074
«RA247
.821h2
LK EIN

1.,70974

1.17118
A3772
«T3526
«TPBS L
« 713526
«83772

T.17118

1.15487
809330
«69220
606211
h?2750

«hU2Y1 -

+597220
«80735
1.15647

1.16455
$79315
hRTTD
6NT26
57738
56912
57738
60726
66770
+79315

1.14455

1.13742
.78138
65186
58542
543218
53032
«5240673
53032
4024
.58532
+65186
J78188

1.13762

1.13221
77390
6LOT8
«57126
«53043
«50618
»49238
<4 8834
«49238
50638
«53063
«57126
«64078
77350

1.13221

3

1.73431
1.31954
1.25302
1.37390
132017

1.A3A40
1.2?979
1.93390

1.20630°

1.12166
1.7)069
1.88286

1,65019
1.134AR
1.323%4
93822
9458
Larsnz
1.75291
1.25356h

1.95232

1.65368
1.15753
L9362
.31200
L85423
.83643
\Ar559
92701
1.07931
1.24109
1.34934

1.63232
1.13941
233875
«85752
.8180nN

«73391

«739N04%
+«91209
«83552

«83732.

1. 01766
1.22693
1.84%038

1.62403
1.12640%
«34038
+Babin
« 73786
73507
« 73861
«T35014
4114 )
« 75807
«8)926
«B7T7LY
«93248
1.21523
1.83384

Table |.

4

1.99167
1.53713
1.6747%
1. 63515
2.3%6067

1.97465
1.u2628
1.27808%
1.75u64
1,372847
1.56545
2.29uL5%

1.90258
1.37091
1.19205
1.12413
1.,11026
1,15172
1.25285
1.514514
2.27253

1.R8229
1.33770
1.163563
1, 06262

-1.01199

1.109633
1.03258
1.09778
1.22547
1,48973
2.25879

1.86841
1, 31557
1.11257
1,01061
«95566
.93012
+92696
. 94493
9871
1.N6u6G
1,720129
1.67312
?.26913

1,85330
1.29976
1.09093
"+9820%
.91004
.88293
. 86562
.86379
« 87680
+ 90666
«95776
1.04477
1.18436
1.46121
2.24218

S

2.159X4
1.68116
1,622
1.915%04
2.626058

2.79218
1.55605
1,195,
1.37908
1,4F827
1.73749
LI AR

2.05564Q
1.0Q132
1.3r214
1.22875
1.22764
1.27044
1.39868
1.6A7348

2.5F26A .

2.03279
1,65378
1,2L7467
1.15119

1.10968

1.10606
1.12771
1.21297
1.759302
1.66129
2.54933

2.01708
1.4287¢8
1.21245
1.10387
1.06523

i.02019 .

1.01861
1.04735
1.083064
1.17744
1,33335
1.6L379
2.53846

2.00564
1.41095
1.18808
1.07196
1.00505
96714
+96963
« 96905
«96483
«99916
1.05775
1.15326
1.,31537
1.63124
2.53124

Each entry is the D-value satisfying Pr(Yj k > max
k=

1<r<k

Y

P* = 0.75

)

2.27897
1.785%4
1.72u13
1.95121
?.26239

2.265%4
1.667473
1.,4R37214
1., 473%)
1.57324
1.86%W4
2.9103%4

?.16541
1.57834
1.3823¢4
1.30826
1.%0268
1.3%922

1.50098

1.818RQ
2.78724

2. 14037
1.53801
1.323u2
1.,22384
1.18186
1.18009
1.21611
1.239%2
1.,45977
1.79133
2.77265

2.12321
1.51079
1.285%3
1.17261
1.11232
1.68677
1.78658
1.11138
1.16569
1.26228
1.43309
1.,77385
2.76259

2.11072
1.49139
1.258%5
1.13776
1.0682¢%
1.02320
1.01172
1.01225
1,03028
1.06829
1.13257
1.23706
1, 41640
1.76088
2.75524

Jor

- D) = P* where Y

?

2.37163
1.86815
1.R2224
2.6h021
3.03042

2.29261
1.72040
1.55982
1.54726
1.66702
1.97043
2.90391

2.24981
1. 64718
1.LL628
1.379390
1.76760
1.42980
1.98278

“*41,92LA5

2.97053

2.,22300
1.A0366
1,36278
1.28087
1.2387¢%
1.23861
1.27831
1.366811
1,56962
1.89725
2.95575

2.20463
1.574062
1.34218
1.2261C
1.16532
1.13922
1.14029
1.16765
1.22628
1.32993
1.51300
1.87875
2.94557

2.19127
1.55372
1.31398
1.18921
1.11778
1.07799
1.06064
1.06215
1.08207
1.12313
1.19210
1.30395
1.49379
1.86548
2.93813

D-values of procedure Rg'for sclection of quantiles

&

2. LLKTH
1.93610C
3.89%14
2.15117
3.189191

2.36211
1.77936
1.61781
1.60A32
1.72657

.- 2405485

3.14836

2.31785
1.75271
149810
1.62235
1.642113
1.4823
1.65078
2.013467
X,12536

2.28951

1.A5F64
1.643123
1.32758
1.28546
1.28€83
1.32970
1.42511
1.60753
1.98539
X, 11006

2.27111
1,62¢€04
1.38€52
1.26938
1.20827
1.18231
1.18450
1.21629
1.27¢€40
1.386065
1.57953
1.96656
3.,10C19

2.25600
1.60625
1.35886
1.23122
1.15633
1.11798
1.10082
1,10321
1.12476
1.16842
1.24137
1.35946
1.55990
1.95306
3.09269

g0 g2 Vi

9

2.50954
1.99354
1.9571¢8
?e229170
3.32640(

2.t2192

1.63000Q
1.hLEBE
1.66019
1.78591
2.13058

©3.,28216

2.37uL51
1.764932
1.,54179

T 1.4hSBR

1.46655
1.53796
1.73888
2.u8957
3.25941

Z.3u480
1.7012¢C
1.67201
1.3670¢
1.32636
1,32771
1,37337
1.,647370
1.666931
2.Ub111
3.24641

2.32L52
1.65G62F
1.62746
1.32686
1.26453
1.21R76
1.22197

«25351
1.31934
1.643391
1.63644
2.04202
3.23607

2.30976
1.64652
1.39654
1.26656
1.19251
1.15177
1.13481
1.13800
1.16099
1.20692
1.28332
1,40683
1.61669
2.02833
3.22652

1L

2.56753
2.04718
2.01111
229724

bbbt 32

Z2.47218
1.87325
1,704928

1.7(521 .

1.83751
2.20374
,ul1uh

2.42285
1.76938
1,578 7
150152
1.505)3
1.56119
1.75465
2.15622
3.37739

2.39139
1.73G64
1.96714
1.60122
1.35917
1.36312
1.L1128
1.51537
1.71493
2,1274b
3.36252

2.373387
1.706390
1.46034
1.33831
1.27582

‘1.25028

1.25641
1.28769
1,35618
1.47558
1.68612
2.1C816
3.35213

2.35552
1.68272
1.42830
1.29699
1.22198
1.16093
1.16419
1.16811
1.19238
1.26032
1.34978
1.44808
1.66589
2,08430
3. 346SH

same distribution as the jth order statistic based on n independent observations from the logistic distribution
with density e‘x/(loe'x)z.

are i.i.d. having the
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1.71841
1,5u624
1.71%4
236715

N1 & W

2314851
1.h1628
1.40853
$.35516
j.47850
1.h16H2"

e B UL 7 RN

2.2837¢
1.56529
1.327%2
1.72727
1.19958
1.22727
1.327%2
1.56539
2.26024

O BNPNE W

?.2727%
1.530672
1.28169
1.16129
1.1034F
1.9267¢
1.10%46
1.1%12q
1.28140
1.530672
2.27215

DWW S NNV Y

-

2426727
1.514136
1.25276
1.12na¢
1.76479
1.0116%
1.0071 0
1.211564
1.94870
10 1.121788
11 1.252%6
12 1.51436
13 2426927

DB NPNE W

1 2.25169
2 149982
3 1.23156
& 1.09357
5 1.01318
5 296547
[ 4 «93988
8 «931786
9 «93998
10 «96547
i1 1.01318
12 1.09357
13 1.23156
is 1.693%2
15 2,25169

Each entry is the D-value satisfying Pr(Y

2,%1454

3

2.94555
2.13519
1.93984
2.13921

Te17184°

2.7790%
1.95081
1.724607
1.67252
1.75585
2.7%3K7
. 21739

2eT4437

1.83638

1.51 766
1.53u80
1.047864
1.52337
1.53%22h
1.93A04
2.9383%

2.72223
1.95477
1.33813
j.u1838
1950643
1.2301¢
1.35723
1o4b727
1.5)952
1.95156
2.37004

2.71708
1.92047
1.52109
1.33671
1.23367%
1.24255
1.2327%
1.25171
1.3)329
1.41031
1.57667
1.92661
2.95747

2.63608

1.83976

1.43366
1.33150
1.23771
1.13237
1,15692
1.14829
1.15180
1.19763
1.25166
1.33857
1.55209
1.9t 223
2,9:832

4

T.ngcRL
?2,29249
?2.17261
?.60039
J.4011R

3. n10113
?.13821¢&
1.80055
1.94372
1.9459%
2.28292
2. 425483

2.96951
2, 06371
1.76931
1, 65173
1. 62F40
1. AR492
1, RLERT
2.22248
T.3953¢%

2094430
2.01817
1.70172
1.55428
1.48766
1,47435
1.50959
1.60222
1.79074
2,18630
3.37712

2.927950
1,9883°2
1.65PR1
1.49509
1.40728
1.36%)2
1.35701%
1.38M4
1.44126
1.55319

"1,75487

2,162213
3.36429

2914064
1.96709
1.62871
1.65528
1.35560
1.29769
1.26901
1.26380
1. 208088
1.32274%
1. 39673
1.51937
1.72989
2. 14505
3, 35496

% Table 1
P* = 0.90
s [}
I, 26427 2, 35650
2020470 2.52276
2.%102% 2. 41707
2457340 2. 70285
3.77)81 r.29512
3.15945 2.26585
2.25H57 2.34334
2.r01027 2. 08438
1.9536A0 230522
2.67584 2.1761 8
2444882 2. 57556
3.71481 2.93375
3411602 7.21828
2417407 2.25550
1.87004 1,944608
1.75714 1.82352
1.72961 1.8056S
1.7963R 1.47686
1.97 3t 7.069"8
2.37669 2451230
3.68455 2.90r829
3.0P631 3.189565
2.12509 2.203462
1.79h68 1.86679
1.660641 1.71131
1.57hAK1 1.64338
1.56565 1.63381
1.60608 1.67360
1.79959 1.78331
1.91533 2,10333
2.34952 2. 4704 4
3.66561 31,3892 4
3.06764" 3,16842
2.09266 2.16896
176994 1.81722
1.5803¢C 1.64337
1.48978 1.551C8
1.64712 1.50932
1.64966 1.50323
1.46817 1.53369
1.5350¢0 1.60559
1.65766 1.73665
1.,87822 1.97137
2.32478 2.44926
3.65265 1.87620
'3.05366 3.15373
2.,06961 2414y 8
1.71756 1.78230
1.53723-  1.59777
1.,643368 1,69471
1.37432 1. 43129
1.34549 1. 40251
1.30151% 1.39959
1.36128 1.6215%
1.40763 147163
1.48868 1.55800
1.62255 _1.70063
1.85238 1.94552
2.30743 2. 43129
3.64322 3. 86671
>
b l:::k Yjpr

~ D) = P* where Y

(cont'd.)

7

3.6u282
2.R0035
2.49668
2.80676
Le17822

3.3L9314
2.41160
2.15%76
2.11428
2.25299
2.67799
Ge.121A0C

3.2989¢
2031834
2.,00357
1.42169
1.86584
1.94282
2.16H17
2.61389
4409192

3.26768
2.7hL69
1.92196
1.76417
1.569%578
1.68811
1.,73647
1.85423
2.08602
2,57554
4,(7183

3.,2661%5
2.22656
1.97007
1.69310
1.59957
1.55685
1.55296
1.58590
1.66199
1.79996
2.06741
2.55002
4.05879

3.23086
2.20289
1.83416
1.64543
1.53752
1.47637
1e66772
Leb6574
1.46950
1.52233
1.61344
1.,76325
2.02052
2,53181
%.04927

8

2.510669
?.664L33
2:56550
?,89793
£.33293

2.,641€659
7.46759
2.20%15
2.17156
?.31870
2.76786
4,27€13

To360622

2.3715%6

2.15199
1.9297¢C
1.91536
1.99763
2.21(50
2.69912
4,24546

7.33155
2.31671
1.96723
1.80759
1.73928
1.73305
1.78449
1.96775
2414€57
2.66038
L,22627

3.30926
227715
1.91336
1.73396
1,63950
1.59691
1.59409
1.62918

1.70884

1.85268
211045
2.63460
4,21314

3.29308
2.25047
1.,87609
1.68454
1.57520
1.51351
1.48503
1.4.8389
1.50922
1.56455

1.65952

1.81543
2.08321
2+61622

420359

1 Y2 Yik

9

3.57504
2.71862
2.62628
2.9hB36
LetbEGRB

3,47324
2.5148%
2.2511°%
2.2204¢C
2.37497
2.83774
4.49995

'3.41875

2,L1556
2.v9298
1.9704R
1.956846
2.CLLYE
2.2h563
2.77248
ho3792¢

3.38483
2.3568¢C
2.06547
1.84456
1.77623
1.7713¢C
1. 82545
1.95352
2.2Cu06
2473343
4.35997

3.36170
?.31738
1.94988
1.76853
1.67335
1.63092
1.62908
1.65605
1.7488¢4
1.8977¢

. 2416453

2.70745S
4.36681

330691
2429063
1.911h%
1.71759
1.60709
1.54500
1.51672
1.51633
1.54305
1.60056
1.69088
1.86009
2.13700
2.68892
%.337284

16

3.62639
2.7h558
2.07553
3.0345%
4.58439

3.52168
2.555714
2.29114
2.26231
2.62411
2.90255
4.52795

3.46533
7a453u8
2.12844
2.6H0585
1.895%51
2.08528
2.31383
?.83636
4.49716

3. 43035
2.39%)2
2.03t49
1.876467
1.8C£827
1.80653
1.86111
1.99345
2.25173
2.79755
447739

3,40666
2.35339
1.,98139
1.708%1
1.70266
1.66C062
1.65947
1,69812
1.78368
1.93717
2.21185
2.77140
Geu6LT1

3.38913
2.326476
1.94191
1.74612
1.63467
1.57228
1.54619
1.54449
1.57245
1.63190
1.73319

1.89909 .

2,18408
2.75274
6. 645512

same distribution as the jth order statistic based on n independent observations from the.logistic distribution
with density e"/(loe")z.

are i.i.d. having the
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j k ? 3
1 17956 3.6)0358
2 2.23217 2453601
3 2406740 ?2.,411433
L) 2.23218 2.55174
5 T.13960 3.A3888
1 X, ARNC 3.52751
2 2.1C0350 2.42729
X 1.82152 2.1158¢
3 1.74955 2.14533
s 1.82162 2.14736
6 2.1075¢C 2.51173
7 I.neN7N 3.7773¢8
1 TIU3DA 1.43687
4 2.0u01R 2.3+4087
3 1.7174n0 1.93863
4 1.5813n 1.8%4197
5 1.56551 1.81597
L] 1.5R73" 1.95034
14 1.71730 2,978
] 2.0LNLH 2ebe 201
9 T0L316 Te-79529
1 2.029%0 3.454L77
? ?.,072u9 ?.%1399
3 1.6533% 1.2173%
4 1,4097%% 173856
s 1462230 1.65529
6 1.3492¢% 1./3422
? 1.422%8 1.Hh>5731
8 1.69921 1.76FhH5
3 1,h%4986 1.23922
10 7406249 2.41222
11 3.729%4 3.72495
1 2.01537 Jobeb?Y
2 1.97752 2.27'RQ
3 1.h228% 1.873C5
LY {0775 1.67617
s 1.35215 lés>001
6 236305 1.517%6
7 1.2R730L 1.5) 354
8 1.,30396 1,526012
9 1435215 1.53922
10 144775 1.73930
11 1.62285 1.92R862
12 1.97752 2,37521
1 X.01587 3.711C8
1 3.00609 3.63640
2 1.35375 2.23218
3 1.59718°  1.5%138
“ 1ab131 4 1.53425
s 1430654 1,51L479
6 1.24369 1.40510
7 1.21070 1.4)907
L} 1419936 1.33938
9 1.21030 1.41578
10 1426359 1.83926
11 1.30664 1.5382¢
12 1.61311 1.67078
13 1.59718 1.3)012
14 195975 2.35600
15 3.00609 3.7)100

Each entry is the D-value satisfying Pr(y,

[N

3. R3344
2,77439
2.60778
2.,88756
4.24€39

3. 75235
2.59717
2.27347
2.,2273%
2. 328571
2.742579
L.18427

T, 7088y
_.‘1135
2.1%2%7
1.a8¢48
1,96743
2.017%4
2,20R7N
2.h713%7
b.15178

3.62179
2.46C0138
?.065332
1.80A27
1. 78059
1.76157
1.8027%9
1.91414
2.1613Q
2.Rh7Q118
G,13174

3. 65136
2.L2651
2.0n47q
1.79724
1.h8F23
1.63214
162032
1. 67414
1.71627
1.8560¢
2.29939
2.h0125
4.11723

3.64998
2.40279
1.97002
1.75103
1.62551
1.55286
1. 51616
1.50830
1.52762
1.57708
1.66563
1.81359

2.06976

24581061
4.10706

- D) = P* where Y,

7

L,180L13
3.0700L%
2491917
3.27807
4.,94159

G, 0RE26
?2.89992
2.%2287
2, 46649
2.Hh2342
2,12h77
4,87929

4 "226G7
2.75817
2.35628
2419981
2.17171
2.25940
2.L9k/3Q
3.15204
4,845386

3,909p85
2.h8B26
2.26483
2.06678
1.97874
1.96u90
2.01817%
2.1539n0
2.L256h5
3.768065
L, 82 21

3.97755
2.H65378
2.20695
1.9861%
1.,86918
181401
1.80603
1.84226
1.629¢41
2.0R8976
2.3P056
2.97882
4.81106

3.96138
2.63081
2.16701
1.93250
1.79883
1.72259
1.68576
1.68092
1.70663
1.76670
1.87192
2.04661
2.34930
2.95823
4.,80079

Table 1 (cont'd.)
Peo= 0.9
.5 )
X.924/0Q L,0973 1
2.906992 2.99542
2.7795¢ 2.33326
2.05138 2.17A70
L.5751" L, 75836
3.RATH® 4,"0324
2.7171¢ 2.79394
2.37972 2. 45325
2.31776R 2.40016
2.4%245 2.54741
2.9032R T,02653
L7314 4, FAHK 3
3.85051 2.95308
2.617¢0° 2.h9572
2.27814 ?2.29955
2.07u0t 2416837
2.7u352 2.11530
2.1173% 2.195619
2.3299¢4 2. 42207
2.87372 2.75238
L.L394p L,66343
3.R2120 ¥.,92132
2.5F112 206388 4
2.16457 2.21175%
1.9918% 2.01573
1.8R5N7? 3$.G2A35
1.8L89" 1.71351
1.R9365 1.49h278
2.P1544 2.39222
2.25127 2.5226
?.7RTRA 2.90937
L.61930 L,he273
3.80123  2,90%A9
2.%2712 2. £0N95
2.,%2152 ?.15607
1.87822 1.93346
1.7hhtu 1.82784
1.709RA 1.75908
1.69348 1.75838
1.77018 1.79252
1.80822 1. 87549
1.9535% 2.0230%
'2.21756 2.30777
2.75921 2.88052
b.4052% 4, 62860
3.78674 3.86529
2.50161 2. 57409
2.05491 2.11764
1.82895 .1.88680
1.69973 1.75502
1.62537 1.67356
1.58848 1.66266
1.58176 1.63633
1,60366 1.66030
1.65746 1.71813
1.75288 1.81893
1.91188 1.98654
2.18726 2.27632
2.73898 2.86002
©.39503 4,61835
> max Y
ik _'l<r<k i

ja1’

]

L.25L3?
T.13248
298574
2.36712
“. 03k G

4.15138
2.310L24
2.57u33
2:.52153
2468631
1.21023
€.03263

L.09¢39
2.83HE9
2.40796
2,24594
2.22173
2.31215
2.55855
2.43%37
£.00(25

L,0629)
2.74F38
230850
2.10F19
2.U2105
2.90793%
2.06617
2426535

268717

2.9912¢0
L,974948

40367
2.70874
2.2U673
2.02546
1.8977646
1.85275
1.R4578
1.88377
1.974L31
2elbiGY
2.44151
2.061656
4.96531

L.02283
2.67711
2420751
1.97010
1.83496
1.75814
1.72144
1.71738
1.74459
1.80709
1.91608
2.09677
2.,40993
3.064081
%.95503

Yy20

9

[P PR
3.18522
3.66272
3,63634
5,22979

L.2077C
2.9602?
2.H1936
2.5H875
?2.74137
X.2R24F
5.16731

4.150R5
2.85171
2.LL25¢E
2.2852¢0
226271
2:3572¢
2.61192
3.20717
5.1339°0

4,11565
2.78787
236565
2.163FR8
2.05656
2.04407
2.10352
2.,268463
2.53a84
3.16253
5.,11310

4,09151
2.74583
2.284CH
2.05869
1.93998
1.88539
1.87932
1,91912
2.0127%
2.1838"R
2.49389
3.13301
5.09892

L 072497
2.71606
2.24172
2.0019¢
1.86561
1.768835
1.75180
1,748045
1.77699
1.84161
. 1.35387
2413979
2.46204
3.41204
5.08862

1e

Ga3R551
231
3.09Q245
3.50059
S.3u774

4.25%54
2.3%9239
2.656)6
2.60982
2.78931
2.34594
5.28521

4.19F96
2.88656
2.L7€37
24316931
2.29%461
2429655
2.H6865
R A ScEN
$.25177

L 16057
2.82219
2.377062
Co17667
2.URBT79
2.07F53
2.13734
2.207394
2.58635
1,22536
€,23035

4,.13579
2.78029
2.31658
2.08752
1.96819
1.91X7¢6
1.90852
1.946935
2.066524
222186
2.53978
3,19571
5.21676

4,11782
2.7L957
2.27125
2.02949
1.89217
1.81456
1.77817
1.77567
1.80520
1.87170
1.98687
2417741
2.5077¢
3.170464
5.20646

same distribution as the Jth order statistic based on n independent observations from the logistic distribution

with density e X/(l+e- x)

. J k are .i.i.d. h1v1ng the
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k 2

4.91237
X.25%38
2.97576
3.25578
4.81237

WA N

L, 74559
2.78389
2.602622
2.511610
2.52622
2.08139
4.76559

N VIE AN -

4.71922
2,00133
2.46221
2.27439
2.21173
2.271139
2.48221
2.00133
L,73922

W NP E N

11 %.603%2
2.95402
2.40357
2.15241
2.03339
1,998%1
2.03333
2.1524%1
2,40357
2.35432
L.68632

~OWW NS WN

e

L.H7242
2.92259
2.354214
2.08124
1.93448
1.85375
1.83656
1.85975
1,93448
11 2.08124
i1 2.35621
12 2.92259
13 4e57342

13

WO VEF WN -

15 1 L,6R25 1
? 2.37°33
3 2.3222%
L3 2.5 3735
5 1.87138
6 1.775%5
7 1,72455
3 1.7°854
9 1.72455
11 1.77545
11 1.R7)38
12 2.0 2388
13 2.72%25
14 ?,9f113
15 L.hH2573

Each entry is the D-value satisfying Pr(Yj K2

3

5.258(3
3.37833
3.23278
3. 54300
5.5)682

Se103510
3.33131
2.83934
2.77401
2.30338
3.05276

5.43358

513806
3,23779
2.725:3
2.43972
244176
2.5L57¢C
2.75585
3.37731%
S.4)450

5,11234
3.23312
2.h3549
233450
2.23956

2.21633°
" 2424354

2.33329
2.53251
3.3275¢0
5.33137

5.23684

3.13736
2,57931
2423633
2.12536
2.34633
2.32438
2413451
2.14256
2.31325
2,5%031
3.23438
5.33636

5.%12156
T.17212
2.5%1619
2.2375%
2,23017
1.25168
1.9392;
1.%3318
1.91286
1.35373
2.170638
2.23269
2.53439
3.2713%
5.35613

[

5.L8659
3.75453
3. 46987
386424
S.91272

5.39936
3.56C68
3.03345
2.92142
3. 08419
3.68C17
5.84533

5.35331¢
3,43935
2.85666
2.62510
2.56856
2.656146
2.,92655

3.59312

5.80967

5432545
3.38C45
2.76037
2.480165
2.35108
2, 31837
2.,3698 ¢
2.952267
2.84039
3.54263
5.78760

5.306J89
3. 4187
2.70C95
2,39339
2.23062
216983
2.12914
2.16298
2.25913
2. 44395
2.78728
3.50926
5.77259

§,29236
T, 21052
2. R5Q7R
2.336393
?.15294
2.C4A1LS
1.99767
1.9796”
2.26337
2,FRA72
2.18R45
2.391743
2.753462
1, LARES
5.76172

1<r<k

max Yj.r -~ D) = P* wherey

Table 1 (cont'd.)
P* = 0.99
5 6 7
5.0636511 S.7u861 5.83126
3.67362  2,96317  .03460
3.59224 3.68535  3.76u57
4.01931 4.1396% 4.23567
6.20062 6,42339  6.6L63u
5,5L286  5.648537  5,72799
3.664737 T.72707 3.79323
©3.13174 3.25531 3.265065
3,02189  3.u9354  3,16025
3.19907 3.23636  3.355C4
1,83290 3.95359 WILE3L
6.13315 6,35538  6.53876
5.69345 £,59469  5.67326
3.5636% 2,51576 3.67517
2.94576  3.91259  3.06576
2.71974  2.77538 2.82711
265611 2.72255  2.77592
2.70927  2.821%3  2.88329
3.03856  3.12641 3.19392
3.74486  3.86137  3,95707
6.L8746  £.32757  6.50303
6.4628  5,56230 5.63936
3.47862  3.55932 3.,60823
2.8B4526 2.96826  2.95826
2.5587% 2.61775  2.6H485
2.42797 2.u85C&  2.53252
2.39668  2.,458)7  2.5037
2.65285  2,516)1  2,56686
2.61485 2.68539 2,74236
2.95152  3.0%631  3.1(501
3.69363  3,81)27  3.93519
607537  6.29356  6.48u91
5.e4201  £,5.027 5.61629
3.4377¢ 3.50848  3.5641b
2.78227  2.84290 2.89392
2.646343  2,52425  2.56867
2.30185  2.35543  2.39829
2.22)26  2.27331 2.31596
2.20761 2.25476  2.29320
2423763 2.29434  2,33993
2.33966  2.40132 2.45u67
2.53676 2.6C413  2.66u21
2.99691  2.98136  3.74927
3.66012 3.77652 3.87127
6.96334  6,28353  6.46588
5,42692 5.5263) 5.59G58
3.Lr 897  7,47853  3,53317
2.,73978 ?2.794829 2,PL4LT7
2.6°%67 22,6627,  2.50497
2.22166  2,27252 2.31315
2.1138°% 2.16341 2.,20297
2.55891  2,10B24  2.1477¢
2.06577 .29535 2.13601
2.U7175  £,12366  2.16537
2.14115  7.19625  2,24TK0
2.26762  2.32754 2.37622
2.48153 7,55718 2.60567
2.85345  2,94317  3,01i1(k
3.A3669  7,75273  3,84736
6.ub94kh  6,27264  6,45499

[}

5.90114

4,09385
J.82240
4, 31716
6.76L51

$.793%66
3.8423%
3.3142%
3.21163
3.41756
L,12€3y
6.692395

5.,73741
31,7276
3.16941
2.870141
2.92045
2.9292%

3.25229

L,03730
6.h5721

S.70177
3.65490y
2.99555
2.7G389
2.57117
2454347
2.60925
2.791 08
3.16273
3.9852u
6.63509

5.67781
2.60276
2.93(52
2.60542
2.43281
2.35135
2+ 33044y
2.378.0
2.49133
2.70721
3.10659
3.9511 %
6.620)5

5.66(45
1.57791
2.68721
2.56022
2,34R63
2.23°81
2.18152
2.16945
2.20°17
2.27765
2,41686
2.65221
156612
1.9271%
€.60€15

j.1’ ij,..” Yj,k

k]

5.95997
L,14L36
3.87734
4,3875¢
6.53409

5.3691(
3.38656
3.3563¢
3.25583
3.46696

T 4413658

6.62651

5.79034
3.76515
214729
2.30684
2.65859
2,97129
3.36256
4.10661
6.73(76

5.75394
3.63450
3.23462
2.73716
2.6L 618
2.57749
2,6658¢
2.8311¢
3, 21246
4.55630
6.76864

5.72917
3.64826
2.9641.
2,A3669

‘2.4b41L

2.35157
2436537
2.%1ub2
2.52734
2:76763
3.1560C
Leo2017
6.,75359

5.71123
3.61552
2.91578
2.5721¢
2.37523
2.26383
2.271655
2.19857
2.22997
2.30942
2.,45178
2.69226
1.11731
3.99609
6.76270

10

6.0170)
4.18832
3.824L57
Lo b9y
7.01131

50690652
3.32433
3.39291
33,2964 13
3.513396
4,25707
6.34432

5.83603
3.80(46
3.1793¢%
2.93884
2.89131
3.LuBt )
3.34668
Lo k6753
6.91856

5.79857
3.72808
3.06543
2.7661
2.653236
2.6(719
2.67768
2.867.5
3.25613
L,1152)
6.88644

5. 77318
3.68146
2.99318
2.66334
2.49°45
2.WL731
2.392+¢
2.43913
2.55842
2.783;7
31994
L. CB(9G
6.67139

5.75L652
3.64RL3
2.94335
2.59517
2460338
2.28821
2.23298
2.22313
2.25€00
2.33721
2.48235
2.727315
3.16052
4, 05630
€.86749

are i.i.d. having the

same distribution as the jth order statistic based on n independent observations from the logistic distribution with

density o'x/(loe_x)z.
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3

not exceed 2-10"l . This was always agh%qug'for u, > -35 and u, < 15.

For evaluating A2(D), the iﬁterval is sugdivided into an even number of
jntervals of length h = 0-125 and Sim?séﬁgs fule is used first with
interval length‘h and then 2h so as to yiéld the evaluations Bh(D) and
BZh(D), respectively. Now'a correcteg value, Ih(D) is obtained by
setting Ih(D) = Bh(b) + eh(D), where Eh(D) = [Bh(D) - BZh(D)]/IS. Then
leh(D)I usually gives a good estimatéféﬁgtheverrorelAZ(D) - Ih(p)lland

0 ain .
. Since the truncation error <

~

in our computations Ieh(D)l 2 1071

2.10713, the total error = |A(D) - I 53] % 10

Now, to solve for D from (3.23),_

Let D, and D:» be two trial values atithe stage i. i = 1,2,..
pefine
(8.25)  Dyg=Dyy - A(;y) [0y - Dy,]/ [AD;g) - AWD;p)]-

For the stage i+l, D; 5 repiaces D4 if'tASDil) - P > |A(Dy,) - p*|
and replaces Diz otherwise. This procé§§ was continued»until the stage
m, where m is the‘smallest positive infgéer for which either
D5 - Dmll <107 or |Dm3 - Dm2| < 107°, D 4 is taken as the solution
of (3.23). It could be safely said that the table values are corréct
to five places of decimals.

It should be pointed out that Table 1 will be of interest in other
problems such as testing of hypothéﬁés based on order statistics from
the logistic distribution. As one can.see, the table value D is the

upper 100(1-P*) percentage point of the distribution of max Z Zr K
L]

1<r<k-1 T,k’
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(Yj,r - Yj,k)’ where Yj,l""’ Yj,k are i.i;d. having the distribution |
of the jth order statistic based on n independent observations from the
logistic distribution.

We now discuss the asymptotic evaluation of the probability of a
correct selection using the procedure RS' We state and prove the

following theorem..

Theorem 3.4, If F < G, F G) has a differentiable densit
Theoren 3.4 L Fpg ¥ © Frg(® has2 d

](g) in a neighborhood of the o-quantile Ea[k](na) Eﬂé-f{k](ga[k]lf

£y

+ 0 (g(na) # 0), then in our previous notation (see Theorem 3.3)

(3.26) TR f[k](ga[k]).(n/a&)l/z] d(x)
> [ 0 g(n) (/en)?] e,

where j/n > o as n + », a

l-a and ¢(+) is the cdf of the standard

normal variate. - ..
Proof. Pr(Xy , > lir;;k X; .- D)
G2 =P ) £ Cape) (/o0
2 [max (0 - ) - D) £ Capep) (/o0
: _Z R TR 1 Capep) @/ /21 de,

since X.
ik

variance ao/n f

is asymptotically normally distributed with mean ga[k] and

2
(k] Caxp)-

(Note that a_ < b_ means
n n
41



1im an/bn = 1). |
ne , .
The second part of (3.26) follows from the fact that F[k] : G

implies that f[k](ga[k]) z_g(na).

For G(x) = (l+e *

)_1, g(na) = oaa. Thus, for evaluating approximate

value of D, we set

[

(3.28) ks e P de() = P

- 00

The D-value satisfying (3.28) can be obtained from the tables of Gupta,

Nagel and Panchapakesan {55], who have tabulated H-value satisfying

(3.29) § e % « mra-e) P dern)

-0

P*

/2

for selected values of k, p and P*, For p = 1/2, D H(Z/na&)1
exact and asymptotic values of D are given in Table 2 forn=25, j =8,
13, 18 and P* = 0.90, 0.95.

3.5. A general partial order relation and related results. We

now define a genefal partial order relatioh through a class of real
valued functions. The star and the tail orderings can be obtained
as s;;cial cases. This general order relation also throws additional
light on a lemma of Gupta [49].

Let & = {h(x)} be a class of reai valued functioné_héx) defined
on the real line. Let F and G be distributions on the real line such
that F(0) = G(0). We say that F is & -ordered with respect to G

1F(x)) for all h € & and all x on the

. -1 -

(F <G) if G "F(h(x)) > h(G
.74 - _
support of F. It is easy to verify that the order relation is reflex-

ive and transitive. It can be seen immediately from the definition
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that, if & = {ax, a > 1} and F(0) = G(0) = 0, we get the star-ordering.

The tail-ordering is obtained by taking & = {x+b, b > 0} and F(0) =

G(0) = %n We now prove a lemma which is useful in obtaining a lower

bound on the probabiiity of a correct selection using a general class

of proccdures described below.

=0

Lemma 3.2, 1 G, then, for any positive integer m,

F <
M [ve)
F'(h(x)) dF(x) > [ G"(h(x)) dG(x)

1> Xooeees Xm+1(Y1, Y2,..., Ym+1) be "indcpendent and

jdentically distributed, cach with distribution F (G).' Then, the left

hand member of (3.30) is equal to

Pr(h(X ;) > Xi, § = 1,..0,m)

j)

v

Pr(pCh (X 1))

| v

@(Xj), j=1,...,m), since ¢ = G_lF is nondecreasing

v

PI_‘(h((P(xm+1)) 2 (P(Xj), j=1,...,m), since FQG:

Pr(h(Ym+1) > Y., j=1,...,m), since w(Xi)gi Y

j i ='1,..., m+l,

i,

f_Gm(h(x)) dG(x).

Remark. In selection problems we will have Pr(h(Xt+1)2_ max  X.)
: _ 1<j<t+1

In this case, thé proof of the lemma is valid if we assume that h(x)>x
on the support of F.
Now, we wish to point out the relevance of a lemma of Gupta [49],

which is stated below essentially in its original form.
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Lemma 3.3. ‘Let X be a random variable having the distribution F

Xz

Let hB(x) be a class of functions and supposc there exists a distribu-

tion function F such that hb(gk(x)) Z_gk(hb(x)) for all A and all x,

F(x) for all x. Then, for any

where gA(x) is defined QX_FK(gA(x))
t >0,

(3.31) () R, ()

| v

[ R, (0) dF(N).

Though this lemma was not stated in terms of a partial order rela-
tion, it can be seen that the hypothesis of the lemma amounts to saying
ij£§F, where & = {hb}. It should also be pointed out here that Lemma
3.2 can be proved for any m > 0 but we have restricted ourselves to a
pésitive integer m which is the case in selection problems.

Now we describe a selection problem for a family of &“ordered

distributions. Let m be k populations and»Fi be the dis-

1> Tpscees T

tribution function associated with L i=1,2,..., k. we assume that
there is one among the k populations, denoted by F[k]’ which is stoch-
astically larggrxthan any of the others. We also assume that FiEEVG’
i=1,2,..., k, where G is a specified continuous distribution and

&= {h} is a class of continuousdistributions satisfying the properties

stated in (2.1) for x on the support of G. Let Ty = T(X g Xjpoeees

Xin)’ i=1,2,..., k, and T = T(Yl, Y - Yn) be statistics based on

PIEE

independent observations xil’ Xiz"“’ Xin from Fi’ i=1,2,..., k, and

Y., Y s Yn from G. It is assumed that the Ti and T preserve the

1’

stochastic énd.ﬁflordering of the parent distributions. Then, for

oo
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selecting a subset containing F[k]’ we propose the selection rule R6:

select ™o if and only if,

(3.32) | h(T,) > max T,
lirik

where a function h e & is chosen so that the P*-condition is satisfied.

Theorem 3.5. Let F,(x) > F,,-(x) and F, <G, i = 1,2,...,k. Then
i = — iy

(k]
(3.33) inf P(CS|R.) = [ 6K (h(x)) d 600,
T

where GT ié_the cdf_2£ T.

Proof. Since the Ti preserve the stochastic ordering, we have

(3.34) P(CS[Ry) > f FT[k](h(X)) d Frpg O

where F ](x) is the cdf of the T from F The statement of the

Tk [(k]”
theorem follows 1mmed1ate1y because of Lemma 3.3 and the iﬂ/orderlng
property of the Ti and T.

In 82 we discussed the class of procedures R A natural question

he
that arises is how to choose a class & for a particular selection
problem. Of course, it should depend on any additional knowledge we
may have about the fémily of distributions we are deaiing.with. In
this context a partial answer is provided by the selection problem
discusséd above,

We now discuss some life testing problems and sampling plans for

the IFR (DFR} distributions.
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4. Lifc testing problems and results relating to restricted fami-

lies of distributionsr The life testing problems are closely related
to reliability problems. They are not only relevant iﬁ problems con-
cerning the lengthvof life of items such as electronic components and
ball bearings but also in biological problems concerning the life of
individuals such ds human beings. Hence such problemsvare relevant to
both reliability and biometry.

Since the life test data are censored long before all items on
test have actually failed, the need arose to develop new estimation and
decision procedures-based'on such censored data. Methods of estimation
and testing procedures based on order statistics naturally play an im-
portant role in thié area for the obvious reason that the life test ex-
periments yield‘observations which are ordered as they arise.

In the early investigations the underlying distribution for the
" life characteristic was assumed to be the oneband the two parameter ex-
ponential [35], [36]. While such a model is very nice to handle mathe-
matically and is surprisingly applicable in many situations where the
failure rate can be assumed to be constant over the time span of inter-
est, there are Séveral circumstances under which the’assqmbtion of a
constant failure rate becomes untenable. In some cases [45], [82], the
normal and lognofmal distributions have been used. Some of the other
widely used life length models are the Weibull [69], gamma [24], and
the extreme value distributions [43]. 1In the case of the Weibull dis-

tribution in its two-parameter form [F(x) =1 - exp(a(x/B)B), x >0,
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6;8 > 0], the failure rate is of the form r(x) = A xB_l, where A > 0.
As one can immediately see, the Weibull distribution provides a desira-

ble flexibility in describing a life length model, because, for differ-

. ent choices of B, we have a failure rate which is constant for 8 = 1,

increasing for 8 > 1 and decreasing for 8 < 1. Considerable work has
also been done undér a quasi-parametric setup. Under such a setup

the distribution;_though not functionally known, is assumed to have an
increasing (decreasing) failure rate or an increasing (decreasing)
failure rate on the average. The use of the exponential model is still
borne out by therfact that it serves as a 'boundary" for the IFR and
DFR distributions and hence is employed to obtain useful bounds. In
this section we dgscribe some of the importént result; relating to both
parametric and quasi-parametric cases. The general literature on life
testing has grown enormously and the reader is referred to the biblio-
graphical information available in [27], [41] and [78].

4.1. Exponential model. The estimation problem for the life test

data under the exponential model was first considered by Epstein and
Sobel [35]. They considered what is now usually referred to as Type II
censoring. A given number, n, of items are put on test and the experi-
ment 1is terminated at the rth failure. In a subsequent paper [36], the
same authors have obtained some theorems relevant to life testing under
the two-parameter exponential model with density

(1/6) exp{-(x-A)/8}, X > A,

(4.1) f(x; 6,A) = .
-0 s otherwise,
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where © > 0 is unknown and A > 0. The parameter 6 is the mean-time-

between-failures and A is usuaily referred to as the guarantee time.

Let us denote the r failure times by X < X <,..< X . Then, the
‘ 1,n 2,n -r,n

maximum likelihood estimator of 6, assuming A to be known, is shown to

be

A 1. &
(4.2) 8o =T {izl (X oA+ (n—r)(Xr’n—A)}.
Define .

Wy o= (-ieD)(Xg (-Xg g p)s B = L2, T
(4.3) Xo 0 = A

T = Z (X; -A) + (n-r)(Xr’n-A).

i=1 1,n

The statistic T is called the total life statistic. The most important

results relating to the Wi and T are contained in the following theorem.

Theorem 4.1. For 1 <r <n, the random variables-wi, i=1,2,...,

' r, are independent and identically distributed with the density func-

tion in (4.1) with A = 0. Further, 2T/6 has g_chi—sqpare distribution

with 2r degrees of freedom.

Epstein and Sobel [36] have also obtained several theorems rele-
vant te estimation for various cases. It should bevpointed_out that
the distribution'ofiT readily allows one to construct confidence inter-
vals and tests of significance for 6. For these and other estimation
problems the reader is referred, among others, to Epstein [32], [34],
Bartholomew [18] and Epstein and Tsao [38]. ‘In the subsequent sections,
we discuss some.acceptance sampling plans under parametric and quasi-

parametric models.
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4.2, Life test sampling plans: parametric case. For the expo-

nential model with A = 0, Epstein [31] has discussed sampling plans to

meet prescribed requirements on the producer's and consumer's risks.

He considered life test data censored after a fixed number r of failures

as well as data censored at time t = min(X ,T ), where X is the

T,n° © . r,n

time at which the rth. failure occurs and TO is a pre-assigned time.
Suppose we put n units on life test and terminate at the rth fail-

ure. If»e0 is the acceptable (high) mean life and 61 is some specified

unacceptable (low) mean life, then the lot is accepted or rejected

according as © >Cor 6 < C, where 6 is the maximum likeclihood

r,n r,n — PRt
estimator in (4.2). It is required that the Operating Characteristic
(0C) function L(8) satisfies

\

(4.4) , L(6,) = l-a and L(8)) < B.

The constant C = (2r)_16o xi_a(Zr), where r is the smallest integer

such that

(4.5) Kot > e e

and xi(m) is thé upper 100v% point of the chi—squére distribution with
m degrees of freedom.

On the othef hand, if we consider terminafing the experiment at
time t = mip(Xr,n,To) as explained earlier, we accept or.reject the lot
according as t = To or t < To' The results concerning this procedure

were obtained by Epstein [31] and summarized by him later in [33]. For

a pre-assigned To’ it is required to find r and n such that the OC-
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function satisfies the conditions that L(OO) = l-a and L(el) < B. It
has been shown that the appropriate r is precisely the same T used in
the first case, namely, the smallest integer such that (4.5) is true.
A good approximation for n, when 8 > 3 T, is given by |

(4.6) n = [r{l-exp(--c'lTo) }’1] ,

where C = (21')_1

60 xf_a(Zr) .

In the above cases, we can also use a replacement model in which
the failed items are replaced by new ones. Necessary modifications in
the results can be made in this case and these will not be discussed |
here. Also we do not discuss the sequential life tests in the exponen-
tial case studied by Epstein and Sobel [37].

Now we consider some sampling plans based on data censored at a
pre-assigned time T obtained from a life distribution F. Let 6 denote
a parameter of this distribution. ‘It could be, for example, the mean
or a given percentile. We consider any value 6 to be acceptable if
6 2_60, where 60 is some specified value. The sampling plan accepts
the lot if the number of failures is less than or equai to an accept-
ance number, c. Given the desired confidence level, P*, the parameter
goal, Qo, and the test time T, we wish to determine the smallest n such
that the consumer's risk in adopting the sampling plan (n,c,T,OO,P*)
does not exceed 1-P* whatever 6 may be in the interval [0;60].

It should be noted that these life tests can be terminated prior

to time T with the rejection as the result. In fact, we can terminate

the experiment at the smaller of the two times T and Tc+1’ where Tc+1
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is the time to the (c+1)st failure. In this case, we accept the lot at
the end of time T if and only if Tc+1 > T. Thus, letting Ln(p) denote
the probability of acceptance when n items are put on test and letting

p = F(t;6), we Have .

(2)13i (1-p™

L (@) .

i
i1 e~10

i
(4.7)

1 - Ip(c+1, n-cj,

where Ip(é+l, n-c¢) is the incomplete beta function. If the family of
distributions {F(t;6)} is stochastically increasing in 6, then

F(t;0) 3_F(t;66) for © 5_60. Since Ln(p) decreases in p, in order to
satisfy the requirement of the consumer's risk, we choose the smallest

n such that

(4.8) I_ (c+1, n-c) > P*,
P, -

where P, F(T;eo).

The above procedure has been studied by Gupta and Groll [50] in
the case of the two-parameter gamma distribution with density

-1 r-1
(4.9) fr(t;e) = {6 T'(r)} = exp{-t/6} (t/6) s
. 0<t<w, 6>0,1>0,

In this case, since 6 is a scale parameter the acceptable quality is
stipulated by specifying T/re0 and we want the consumer's risk to be
bounded by 1-P* for 6 :_60. However, (4.8) is still valid. Gupta and
Groll have tabulated the minimum sample size n satisfying (4.8) for

selected values of P*, r, T/reo and ¢, Similar acceptance procedures

have been investigated by Gupta [45] for normal and lognormal
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distributions. Our main interest is the quasi-parameter case which is
described below.

4.3, Life test sampling plans: distribution-free and quasi-

parameter case. In our discussion of sampling plans based on life test

data we have so far assumed a complete knowledge of the functional form
F(t;0) except for the specific value of the pafameter 6. Now we con-
sider truncated life test sampling plans investigated by Barlow and
Gupta [ 5]. We first assume that, though the functional form of F(t;6)
is not known, there are known bounds on F(t;8). To be_specific, let us
assume thaf F(t;8) > b(t;8) for t > 0 where b(t;6) is a known function,
decreasing in 6.  Since Ln(p) in (4.7) is a decreasiﬁg function of p,
we have |

(4.10) L [F(T;8)] < L [b(T;6)] < L_[b(T;6)]

for 6 :_60. Thus the sampling plans of the type described in the
parametric case are obtained by choosing the smallest positive integer
n satisfying

(4.11) - L [b(T,8)] < 1-P*,

where c,Bo and T are fixed. If b(t;6) is a sharp bound on F(t;6), then
it is nondecreasing in 6 since F(t;6) is nondecreasing in 8. If 0 is
the mean, then b(t;e) = b(t/0;1) since the mean is a scale paraméter
for a positive random variable. In this case, b(t;0) is decreasing in
8 and the consumer'é risk is controlled for 6 3_60. A few known

examples of the bound b(t;8) are given below.
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| Example 1. (Markov inequaiity). Let '6 be the meén of a nonnega-
tive random variable. Then
o , t <89,
(4.12) F(t;8) > b(t;8) =
1-6/t, t > 0.
A sampling plan bésed on Markov's.inequality would affordibrotection
over the class of all distributiohs.on the positive axis. However, as
one would expect, the bound is quite wide. Also we will need the test
time T to exceed the goal mean life.
Example 2. (Unimodal density). Suppose that the density f of a
nonnegative random variable is unimodal with unknown mode and firét

moment 6. Then, we have from Barlow and Marshall [ 8]

0, 0 <
(4.13) F(t;0) > b(t;0) = 2-20t7%, 6 <t < 30/2,

<
1-6(2t)"Y,  t > 30/2.

t <o,

As we can readily See, the bound in this case is a slight improvement
over Example 1.

Example 3. (PF2 density). Let f be a PF2 (Polyg_frequency of
order 2) density with mean 6. That is to say, log f(t;0) is concave in
t when f(t;6) > 0. In this case we have the following bound which has

been tabulated by Barlow and Marshall [ 8].

0, | t <86,
‘ l-sup(l-e"at)(l-e-mt) , t >0,
m>t : '

where a is determined by
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o =  gp LM
6= (1-e ) f ax e
' )

-ax
dx.

A sampling plan based on this bound would afford less protection than
the IFR sampling plans discussed below because of the fact that a PF,
density f implies an IFR distribution F but not conversely.

Sampling plans for the IFR and DFR distributions. In discussing

the sampling plans for the IFR and DFR distributions, we will consider
the two cases, namely, (i) 6 = W the rth moment and (ii) 6 = Ea, the
ath quantile. First we discuss the IFR distributions.

Case (i): 6 = M It is known [10, p. 40] that

1, t < Wy ,
(4.15) _ 1-F(t) < —wt 1/r r > 0,
. e s t > ur s

where w is uniquely determined by

(4.16) wo=T } "X 1 gk,

o
Hence, the n required in the sampling plan is the least positive integer
which satisfies (4.8) with P, = b(T;uro), where Moo denotes the desired
rth moment. The Solution of (4.8) depends on the fact that ™ > Hye A
special case of intérest is that of the mean (r = 1).. In this case,
(4.16) reduces to
(4.17) HW = l-e
The values of n are tabulated in this case by Barlow and Gupta [ 5] for
Tuil = 1.1(0.1) 2.0(0.2)3.0, ¢ = 0(1)10 and P* = 0.90, 0.95. In all

these cases, the table also gives the exact value of the consumer's

risk. S5



Sobel and Tichendorff [90] have tables for the exponential casc
buﬁ their tables afé,for the ratios T/u10 < 1. However, some rough
comparisons have shown that the IFR sampling pian would require a
longer test time. .The main difficulty with the IFR testbplan lies not
so much in ité conservative nature as in the nature of the parameter
chosen to represent quality, namely, thevmean. Despite the great
~ intuitive appeal,‘it appears that the mean life is not an appropriate
parameter to represent its quality except in the exponential casé; The
quantiles are more appropriate in the case of IFR distributions.

Case (ii): © - Ea. In this case, we have

o, t<g ,

' (4.18) b(t;g) = 7
1-(1-@) ) t _i 13

The sample size required to insure a specified quantile life €00 is
given by thé least n satisfying (4.8) with P, = b(T;gao), The minimum
sample sizes have been tabulated by Barlow and Gupta [ 5] for

a = 0.1(0.1)0.9, TE;;I 1.0(0.1)2.0(0.2)3.0, ¢ = 0,1,2 and P* = 0.90,

0.95. Since the bound in (4.18) is the exponential with ath quantile
Ea when t z_ga,'the sampling plans obtained for T 3_£a6.are the same as
those for the exponential case. However, the exponential life test
sampling plans can also be developed for T < an which is not possible
with the IFR aséumption alone.

Similar sahpling plans can be developed for the DFR distributions
when 6 is either the mean or the ath quantile. These are discussed by

Barlow and Gupta [ 5] with tables for the quantile case. The
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appropriate inequalities in these cases are given below.

When 6 = ur;

l—exp{—th;l/r}, t<r Ai/r ,
(4.19) b(t;u ) = :
o T 1-r¥A_(et) ¥, £ > AT s
T - T
- : -1 -
where AL = ur{P(r+1)} . When 6 = £ , we have
t/g, _
1-(1-a) s t <&
(4.20) b(t;€ ) =
o , t > ga.

In all the above,céses, Barlow and Gupta have also given bounds on the
0C function.

Barlow and Proschan [13] have investigated acceptance sampling
plans in the IFR(DFR) case based on a censored sampling. To be
specific, we assume that n items from an IFR population are placed on
test and the testing is discontinued after the rth (r < n) failure.
There is no replacement of failed items. The acceptaﬁcg sampling plan

accepts the lot if and only if 6 > (0 ), where 6_ _ is as defined
r,n — o T,n

N

in (4.2), 6 is the mean life goal and C(8)) = 8 xz(Zr)/Zr. It is

shown in [13] that

ce ) o)

|v

(4.21) PF(er,n > C(8,) l8) > Pe(oL 4

for © 2_60 x§(2r)/2(n-r+1), where G is exponential with mean 6.
Similar plans are considered for the case where we wish to estab-
lish that the qth quantile, E:, exceeds some quantile life goal, 53

with a Type I error < a. The decision rule proposed in [13] is to
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~

accept the lot if and only if 6 n Z_C'(ESL where C'(&z).=

T,
2 20/ [-2r dog(1-0)].

In using exponential life tests based on censored samples, it is
shown in [13] how, depeﬁding on the objective chosen, either the pro-
ducer or the consumer, but certainly not both simultancously, can be
protected withiﬁ the class of IFR(DFR) distributions. Barlow and
Proschan [13] have also discussed similar plans when the féiled items

are replaced.

5. Order statistics in multiple decision problems and reliability

theory, and some important results for restricted families of distribu-

tions. In the discussion of selection and ranking problems in §§ 2 and
3 we saw that thezprocedure is usually defined in terms of the largest
or the smallest order statistic. With more complex goals of selection
problems, the procedure will depend on appropriate functions of the
ordered observations. Iéisome cases (not described in this paper) one
‘may use a linear combination of o?der statistics. It could be a convex
combination or a contrast. In selection problems relating to the quan-
tiles of IFR or IFRA populations,'the decision involves the sample
quantiles. For a survey of some important results concerning order
statistics énd their role in problems of statistical inference the
reader is referred to a recent paper of the authors [49].

As we pointed out earlier, the life testing problems involve order

statistics. Moreover, they provide a natural area for the use of order

statistics to a great advantage since the observations are ordered as
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they arise. Estimation and testing problems involve the use of statis-
tics based on ordered observations such as the total life statistic.
Some estimation and testing problems relating to families with monotone
failure rate have‘been discﬁssed in 86 below!

Presently we survey some important results.concerning order statis-
tics from the restricted families of distributions. These results are
mainly about linear combinations of order statistics from a distribu-
tion F which is star-shaped or convex with respect to G with special
interest in the case of exponential G. We assume that F and G are
absolutely continuous. Throughout this section, unless otherwise
stated, X < X < ... <X will denote order statistics based on

1,n — "2,n — - ‘n,n

n independent observations from F and Y <Y < ... <Y will
l,n — 2,n — . — n,n

denote those from G. Unless the context needs more clarity, for the

sake of notational convenience, we will leave out n and write X(i) and

Y(i) for Xi,n and Yi,n’ respect}vely. i}
If we consider any linear combination 2 a; (i)’ 1l <r <n, it is
i=1 r
easy to see that it can be written in the form 2 Ai(x(i)-x(i_l , where
. i=1
i
X(o) = 0 and Ai = jzlaj' The successive differences Di = X(i)'x(i-l)’

i=2,...,n, are called the spacings. A linear combination of order sta-
tistics is therefore a weighted sum of the spacings. The theory of
spacings, in general, is an interesting area of research. fhe litera-
ture on spacings that had appeared prior to 1965 has been substantially

surveyed by Pyke [85]. Some tests for increésing failure rate based on
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spécings are discussed in §6. Some of the recent developments in the
theory of spacings have been surveyed by Pyke [86], who has also set out
some open problems in the asymptotic theory of spacings.

5.1. Inequalities for linear combinations of order statistics from

F star-shaped with respect to G. The important results summarized here
are due to Barlow and Proschan [11].

Theorem 5.1. Let F £ G.

(i) Suppose there exists k, 1 < k <n, such that 0 <AL Ay S

2 Ay < 1, and when k <m, Ak+1 =...= An = 0. Then
n
5.1 F X <G
(5.1) (lila @ 5 (12 Yi5y)-
(ii) Suppose a; > O for i = 1,2,..., n and a, > 1. Then
5.2) F X > G Y
(5.2) (1o iy 2S¢ I a, i)

i=1

In (5.1) and (5.2), gt indicates stochastic inequalities. The

st i=1

above results are useful in obtaining conservative lower and upper
‘tolerance limits, respectively (see Barlow and Proschan [12]). The
following theorem relates to the expected values of the order statis-

tics.

Theorem 5.2. Let F XG. Then E Xi n/E Yi n is (i) decreasing in
. EIU2IS , 22 gecreasifie -

3

i, (ii) increasing in n, and (iii) EX_ . /EY_ . is decreasing in n.
- — — n-i,n n-i,n — —

If F is an IFRA distribution (that is, G is exponential), we can
see from the above theorem that E X1 / 2 (n- J+1) is decreasing in i
. 521

and increasing in n. The theorem also provides bounds on E Xi 0’ If 6
]

is the common mean of F and G, it is easy to show that
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(5.3) 0 E Yi,n/E.yi’i_f_E X S OE Y /Y] ner

In order to state a few other interesting results, we need the
following definitions.

Definition 5.1. A sequence a = (al,..., an) is said to majorize a

sequence b = (bl,...;‘ bn) (wiltten a>b), if a >3, > e 2 a0,
b1 > ..o 2 b and " ) a; > Y b, for v = 1,2,..., n-1, while
i=1 i=1
Pa - )
a, = b..
j=1 * i=1 7

The above definition is according to Beckenbach and Bellman [21]
and differs slightly from that of Hardy, Littlewood and P6lya [67].

Definition 5.2. If a differentiable function H(zl,'..., zn)

satisfies (z.—z.)(g—}-l—— - E—) > 0 for all z, i,j, then H is said to
i) azi 9z . — - .

satisfy the Schur condition.

Theorem 5.3. Let F and G have a common mean 6, and F £ G. Then

. T - T )
(i) iZIE Y(i)/izlﬁ X (1)
and

T . T o
[ 2 (n—1+1) E(Y(i)"Y(i_l))]/[izl(n'1+1) E(x(i)TX(i—l))]

i=1 »

are increasing in.r, 1 <r < n;
. *

(1) B Yy B Ypopyeooos E Y ) > B Xpys B Xgpgyoeees
E X(1y)

and

pres———

T T
zl(n-i+1) E(X (37X (1-1) z_izl(n—i+1) E(Y(i)—Y(i_l))

i=
for 1 <r <nj;
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(131) H(E Yy B Y qyses E Yp)) ZHE Xos B Xy qyaeee

E X(l))’ if H is a Schur function;

aaint .
@) ] a;(eiel) By Xegpy) 2 by (eied) B0y Y5090

i=1 i=1

if a, > a

> ... > a.
= %1 Z

2 — 1

When F is IFRA (DFRA), part (i) of the above theorem means that

E is decreasing (increasing) in r so that E © > (<) 6, where
T,n g r,n — —
0 -l and
T,n T,n
T
(5.4) T = ) (n-i+1) (X, _-X. )

T,n i,n "i-1,n

i=1

ijs the total life statistic defined in (4.3) with A = 0. Also, part

(iv) yields

n n
(5.5) iziai_(n—iﬂ) E(x(i)-x(i_l))i ) e izlai, |
if a1 Z.az 3;... 3_an.

Further, if F is IFRA with mean 6, the result (5.3) on bounds for

expectation reduces to

1 i -1 i
(n-j+1)"°/ 1 j7° <EX;  <md )

[ e Rl

(5.6) m-j+D7 Y, 1<i<n,
j=1 j=1 Ly j=1
and
L |
(5.7) | e SEX <8 j§1j .

The above bounds are non-trivial but only sharp for i = 1 or i =n., On
the other hand, if F is DFRA with mean 6, the following bounds can be

obtained using Theorem 5.2,
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o
A
=
>
A
(o]
~
=

=" %1,n
i . -1 i -1 _
(5.8) 0<EX, <ié Y o(m-j+1)" 7/ Y 5, 1 <i<n,
’ j=1 j=1 S
n _1 .
6 ) j ~ <EX__ <no,
. — n,n —
j=1

All lower bounds in (5.8) are sharp. The upper bound is sharp when

i=1and i = n.

n n
Let X = n ' ) X; , and ¥=n?! Y Y, . Wedefine (Uj,..., U)
i=1 0 i o
' J J _
< (V.,..., V) tomean ) U, < ) V. for j = 1,2,..., n-1, while
1 n . 1=, i
st i=]l “ st i=1
n _ : :
yu, = z V,. We state below a theorem due to Marshall, Olkin and

i=1 *sti=]
Proschan [75].

Theorem 5.4. Let F ¥ G. Then

(1) (X(n)/n X,.00, X(l)/n X) < (Y(n)/n Y,..., Y(l)/n ;

L /n Y,

(i1) HXpy/n Xonny X(gy/n %) < H(Y( /™ 5 Y

(n) Q1

if H is a Schur function;

- .
(iii) § (n-i+1)(X(i)—X(i ))/x Z (n- 1+1)(Y( )-Y(i_l))/Y;

i=1 : st i=1
-1 <21 ;52 -1 o2, 52,
(iv) (n” 2 x(l) -X5)/%° < (n” 2 Y(l) Y9 /Y%
V) if, in addition, a, > ... 22, then
n
g a, x(l)/x 3 zlaiy(i)/y
and

> Z a. (n i+1) (Y
st i=1

121a (n-i+1) (X, W Ya-n)/t

In the case of an IFRA (DFRA) distribution F, we obtain from part

(@) a-1y27%

(iii) of the theorem
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(5.9) 0, ZO/K > (D 0 (D

st st

Let us consider a life test with n items on test where successive
failures are observed until a pre-assigned time t, For this sample,
define

T

(5.10) v(t,) = _zlxi NGRS S
i= ’

where r denotes the number of observations < tO. As we can see, V(to)
deﬁotes the total time on test up to time ty This statistic has been
studicd by Epstein and Sobel [37]. For F starshaped with respect to G,
we have the following theorem concerning the total time on test due to
Barlow and Proschan [11]. |

Theorem 5.5. Let F £ G with a common mean 6. Then

T S
(5.11) E[_{'xi ot (@-r)t] > Ef Y Y, o+ (=)t ],
i=1 ©° i=1 ?

|v

where r(s) denotes the number of X (Y) observations f_to.

When F is an IFRA distribution with a known mean, we can use
(5.11) to obtain a lower bound on the expected total tiﬁe on test in
truncated sampling from F.

5.2. Inequalities in the case of F convex with respect to G. In

this part, we consider pairs of distributions F and G such that F_évG.
We give a few results due again to Barlow and Proschan f11].

Theorem 5.6. Let F_g G and F(0) = G(0) = 0. Then the followihg

statements are true.

(i) Suppose 0 f-Ai <1 for i = 1,2,..., n. Then
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n n

(5'12) ' F(iz i (1)) = G( Z i (1))

(ii) Suppose there exists g_k, 0 <k <n, such that A, > 1, i =1,

1

2,..., k and for k < n, <0, i=k+1,..., n. Then

A

n
(5.13) Z > G( 2 a.Y
st

3 (1]) (1))

(iii) Let F and G have a common mean 6 and Ai >1,71=1,2,..., T.

Then

r T )
(5.14) PF[izlAi(X(i)-X(i_l)) > x] 3.pG[izlAi(Y(i)—Y(i—1)) 2 x]

for x < 6 min (Rl,..;,ﬂ ).

T
n
(iv) Let a; >0 for i =1,2,..., n, and 2 a, < 1. Then
; ey g
(5.15) F( ) a, ) <G( ) a, EY_..)
j=1 @) i=1 ()

One can use (5.12) and (5.13) to obtain conservative lower and
upper tolerance limits for distributions F for which G-IF is convex
[12]. In the cases of IFR and DFR distributions, we have additional

results concerning the total time on test.

Theorem 5.7. Let F be IFR (DFR) and F(07) = O. Then the total

life statistic Tr n defined in (5.4) is stochastically increasing
’ — - .

(decreasing) in n > r.

Another result concerning IFR distribution can be readily obtained

from (5.14) by setting Ki = n-i+l, i = 1,2,..., r. This gives the

following corollary..

Corollary 5.7.1. Let F be IFR with mean 8 and G(t) = l—e-t/e,

Then
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(5.16) p X) > %) > P(T, > x), x < (n-T*1)8,

F( T,Nn

where T X) denotes the total life statistic using X observations.
’

Sharp bounds on expected values of order statistics from an IFR
distribution can be giveﬁ in terms of the pth percentile. A result in
this direction is given below.

Theorem 5.8. Let F be IFR with pth percentlle 5 ~ Then, for

1<j<n
(5.17) o X(gy < max{ty, Tog G+t i J+1)}
and .
It n IP i n-i
(5.18) E Xy > L () [ [1-gx)] [gt)]
, (G) =320 0

‘where q =1-p and g(x) = exp{é;;1 x log ql.

5.3. Properties preserved in taking order statistics from IFR

(DFR) distributions. Now we point out some differences in the behavior

of order statistics and the spacings between IFR and DFR distributions.
For an IFR distribution, while the order statistics also have an IFR
distribution [10; PP- 38—3§], the same is nof true forethe spacings.

In the case of a DFR distribution, it has been shown in [10] that the
order statistics are not necessarily DFR, whereas the spacings are. A
stronger property than IFR is that the distribution F has a density £
such that log f(x) is concave where finite. In this case we say that f

is a P6lya frequency of order g_(PFz). Barlow and Proschan [11] have

proved the following theorem.

Theorem 5.9. Suppose f is PF2 with £(x) not necessarily zero for
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x < 0. Let f. denote the density of X. and h. denote that of the
in — %,n — i . -

spacing Xi n—Xi-l n’ i=2,..., n. Then
3

)

(i) £, is PF, for i=1l...,m

(i1) hi ‘is PF for i=2,..., n;

=2 2 ot

if £(x)=0 for x<0, where hl is the density of X1 0
— —_— skttt Ateiy W

(iii) h1 is PF,,

The fact that the order statistics preserve the IFR property has a
physical meaning. If we consider a so-called k-out-of-n structure con-
sisting of n identical components each having an IFR failure distribu-
tion, then the life of the structure corresponds to the ktﬁ order ;ta—
tistic and hence is also IFR.

Besides these properties relafing to order statistics, there are
other interesting basic properties of IFR and DFR distributions which
are useful in many situations. For example, the IFR property is pre-
served under convolution where as the DFR property is hot.. This would
mean that a system consigting of a single IFR unit suépdrted by n-1
spares will have the IFR property. These and other properties can be

found in the monograph by Barlow and Proschan [10].

6. Some estimation and testing problems for restricted families

of distributions. In this section we describe briefly some of the
estimation probléms and tests -of ﬁypotheses concerning mainly distribu-
tions with monotone failure rate. We will not deal with these very
elaborately here. Our purpose is to include some of the important pro-
blems for the sake of completeness of our survey. The details and

other references can be obtained from the recent book by Barlow et
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gl[z].

6.1. Estimation for distributions with monotone failure rate. If

F is the life distribution of an item which is'subjecf to wear-out, the
shape of the failure rate function often suggests when to take appro-
priate maintenance actions. So the estimation of the failure rate
function from a sample of n independent identically distributed life-
times is of practical interest. Experience indicates that, in many
situations, the failure rate function could be just monotone or U

. shaped. We consider here the monotone failure rate fﬁnctions. The

U shaped case can be handled by modifying the monotonic estimators, see
for example Bray, Crawford and Proschaﬁ [251.

Let F be an unknown distribution in the class &% of IFR distribu-
tions with support contained in [0,%). We say that F e & if
-log[l-F(x)] is convex on the support (i.e., the points.of increase) of
F, an interval cdntained in [0,®). It can be shown [0, p.26] that F is
absolutely continuous except fér the possibility of a jump at the right
hand endpoint of its support.

We wish to obtain a maximum likelihood estimator (MLE) of the
failure fate function r(x) = i:‘(x)[l-F(x)]-1 which is well-defined for
F(x) < 1. For convenience, if F is IFR, we define f(x) = « for all x
such that F(x) = 1. It is not possible to obtain an MLE for F e &

n

by directly maximizing 1 £(X, ) because f£(X_ ) can be choseén
} i=1 i,n n,n -
arbitrarily large. To get over this difficulty we adopt the approach

of Grenander [42], who first obtained supremum of the likelihood
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function over the schlass~57M of distributions F € % whosec failurc

rate functions are bounded by M. Using the fact that for any distribu-

tion F and any x for which r is finite on [0,x)

X

(6.1) 1-F(x) = exp[- f r(u) du],

’ 0

we can write the log likelihood L = L(F) for F 6_57M in the form
n n xi,n

(6.2) L= ) logr(X, )- ) [ r()du.
. i,n . ,
i=1 i=1 0

‘Suppose F ¢ M 145 failure rate r and let F* be the distribution with

failure rate

o, x < Xp s
* = = -
(6.3) r*(x) (r(Xi,n), Xi,n <x < xi+1,n’ i=1,..., n-1,
.r(ann), X Z-xn,n .

Then it is easy to see that L(F) f_L(F*). This shows that the MLE for

r is a step function and that L may be replaced by the function

n n-1
(6'4) iZIIOg r(xi,n) ) 1zl(n_i) (Xi'.'l’n'- Xi’n) r(xi’n)

So the problem reduces to maximizing (6.4) subject to r, 2T, Seel2 Ty

), i=1,..., n. It has been shown by Marshall

< M, where r, = r(X;
’

and Proschan [76] that the solution is given by

o , X < xl,n’
e P, A .
(6.5) rn(x) = T xi-l,n <x < xi,n’ i=2,..., N,
' M, X Z-xn,n’

where
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(6.6) r.=r (X, )= min  max - t-s+l

i<t<n-1 1<s<i

T ,
¢ .
jis(n-J)(XJ'+1,n'XJ’,n)

o ' | . 1
and it is asgumed that M > max [(n-1)(Xi+1’n-Xi,n)] . Now the

lfﬁfp—l

'MLE is obtained by letting M -+ <, so that rn(x) = +» for X Z_Xn 0
. 3

The solution in (6.5) can be obtained elegantly in the general context
of isotonic regression explained in [ 2]. It should also be pointed
out that (6.5) is different in form from the one given in [42] but is
equivalent to it. The following strong consistency theorem has been
proved by Marshall and Proschan [76].

Theorem 6.1. If F is IFR, then for every X,

- . ~ — +
6.7) r(xo) < lim rn(xo) < lim rn(xo) f_r(xo)

with probability one.

The above theorem leads to the following corollary.

Corollary 6.1.1. If r is increasing and continuous on [a,b], then

for t € [a,b]

(6.8) 1im |§n(t) - ()] =0

n->e

with probabilitx»one.

Now,.the MLE of the distribution function F is given by

X A
f rn(u) du]

- 00

(6.9) | f’n(X) = l-exp[-

and if r is continuous, the strong consistency of Fn follows as an
almost immediate consequence of Theorem 6.1.
~An interesting and useful fact is that (6.6) can be expressed
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in the form
(X, ) - Fp(Xg )

(6.10) r (X, ) = min max — .0 n_s,n ,
LN i < HDUEL (X 1M e g Y

where

(6.11) '1 1) = f [l—Fn(u)] du

and Fn denotes the empirical distribution. The right hand member of

(6.11) is equal to nl T, i where

H

(6.12) Tnyi = JXl(n -3 O =Xy )

is the total time on test up to the ith observation defined in (4.3).
The total time on test transformation first appeared in [76] but was
not made use of by the authors. The role of the transformation in the
proof of the consistency of the MLE can be seen in [ 2]

The asymptotic dlstrlbutlon of the MLE of r has been obtained by
prakasa Rao [83], whose approach is to reduce the estlmatlon problem to
that of a Weiner process and use convergence theorems for stochastic
processes. His result is given.below. |

Theorem 6.2. Let F be IFR with failure rate r. Let £ Pg_such

that 0 < F(§) < 1. Further suppose that r i§_differentiab1e at £ with

non-zero derivative and r(g) > 0. Let rn(g) denote the MLE of r(£)

based on n independent observations. Then the asymptotic distribution

of

————

| | . , 1/3
2n r (£) f(§) 1 1
(6.13) [ T (5) ] [}n(a) ) r(£)]

has en51tz w(x/Z) where y is the den51ty of the minimum value of
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W(t) + t2 and W(t) is a two-sided Wicner-Levy process with mean 0,

variance 1 per unit t and W(0) =

In the case of a DFR distribution F (i.e., log {1- F(x)] is convex
on the support of F, an interval of the form [o,»)), the distribution

is absolutely continuous except for a jump at o. Suppose o is known

and o = xl,n = .. = Xk,n < xk+1,n < ... < Xn,n' iIf k = 0, we define
Xo,n = o, It can be shown that the MLE is

k/n , X = 0,
(6.14) T (x) =

r (X ), Xi-l,n < x f-xi,n’ i = k+1l,..., n,
where

2 . ' -1

(6.15) | rn(xi,n) = ?ii'sfi?l (t—s)[Tn’t‘— Tn,s]

and Tn,i is as defined in (6.12). Contrary to the IFR case, this DFR
estimator is not unique; it is‘determined by the likelihood equation
only for x :-xn,n’ and may be extended beyond xn,n in.any manner that
preserves the DFR property. In this case, the.statement_of Theorem
6.2 is valid withbDFR and -r'(g) substituted for IFR and r'(§), respec-
tively. When o is unknown, it is shown in [76] that MLE is found among
the DFR distributions with support [Xl,nfw) and thus the problem
reduces to the case of known a. - The felatively slow rate of conver-
gence indicated by (6.13) prompted Barlow and van Zwet [16], [17] to
consider the so-called window estimators for the genéralized failure
rate function discussed below.

As we have pointed out earlier in §3; if F is iFR, then F_E G,

where G(x) = l-efx, x > 0. Since, in this case, G—lF(x) = -log[l-F(x)],
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the failure rate function r(x) can be written as

(6.16) rx0) = (d/dx) IR = £x)/gl6TF (0],

where g is the density of G. This idea is used to define the general-

ized failure rate function for any general G by the relation (6.16).

Let & be the class of absolutely continuous distribution functions
F on (0,=) (here 1(0) need not be 0) with p051t1ve and rlght (or left)
continuous density f on the interval where 0 < F < 1. (0) and F 1( 1)
are taken to be equal to the left and right hand endpoints of the
support of F. We considgr F_é G, where F, G ¢ % and G is specified.

Let X < X < ... <X denote an ordered sample from F. For each
l,n — "2,n — — “n,n

n, we define a grid on (-»,*), namely, a finite or infinite sequence

. < tn,-l < ?n,O < tn,l < ... . In each window [tn,j‘ tn,j+1) we

choose a point X, j to which a non-negative weight w(xn j).is assigned.
’ ALy ]

~

We start with an initial or basic estimator P for r, the generalized

failure rate function. Here we take Ph to be the naive estimator for r

given by
-1

(6.17) o (x) = [g67'F (x;) (¢ 17T R (6, 41 -Fn(ty, 1]

..t .
n,i+l n,1 n'n,i+

fo t . .. <t

- where Fn is the empirical distribution corre-
E

n,i+l’

sponding to our sample. We choose

o - -1
(0.18) w(xn’j) = gG Fh(xj)(tn,j+1'tn,j)'
Now, using P énd the weights w(xn j),'we define
y
- ’ 521 5'2-: .
(6.19) r_(x) = min max{ Py (x )w(x Y/ ) wix, ), t L<x<t .o,
n s>i+l r<i j=r n,j jor n,j n,i—" n,i+l
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which is called the isotonic regression of En with respect to the

weights w(xn-j).‘,It should be noted that pn(xn j) is defined only if

2

X . This condition is always assumed in (6.19)

X <t <t . <
n,j+l — n,n

l,n — n:j

though not explicitly stated. By choosing

(6.20) wix. i) = gG lE(x

n,j

) (. -t L),
,J) ( n,j+l n,J) ,
we see that

1

55 1 -1
Zr(tn:j*‘l—tnoj)gc Fn(xn,j)] )

(6.21)r (x)= min max[F (t  J-F/
sz}+l r<i

(£, D11
J

~

Note that T, is a nondecreasing step function and that r,o= n whenever

pn(xn,j) is nondecreasing in J.

If we consider the random grid t_ . =

n, Xj,n’ j=1,..., n, deter-

mined by the order statistics, (6.21) reduces to

s-1

(6.22) rn(x) = min max (s-r)[n X 'gG-l(j/n)()(.+1 n-Xj n)]—1
i+l<s<n 1<r<i j=r J*hs ’
for X. < x < X. , i=1,2,..., n-1. This is, in fact, the MLE when
i,n — i+l,n

-G is exponential,' In this case

n g6 /M) Ky 1Ky ) = (e Xy oYy )

j+l,n”
which is the total time on test in the interval (Xf , X, ]. For
j,n’ Tj+l,n

this reason the quantities gG'l(j/n)(X.

-X. _) are called the
j+l,n “j,n

’

total time on test weights for general G.

~

For the grid consisting of order stafistics, the estimator Py is
not consistent. Uﬁder certain regularity conditions, it is shown by
Barlow and van Zhet.[16], [17] that ;n is strongly consistent, provided
the grid becomes "dense" in the support of F with probability 1 as n>«.
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Their results on the associated asymptotic distributions are summarized
in the following theorem.

Theorem 6.3. Let F, G ¢ . Further assume

(a) the generalized failure rate r(x) ié_nondecreasigg_ig_x > 0;

(b) ~ ié_continuouslz>differentiable and f" exists ig_g_neighbér—

hood of x;

(¢) r'(x) >0 and

A t) 441" t .=cn % 0<a<1.
,i+1 n,i

Then, the followi_g statements are true.

W 16l <<l then fe 20010 V22017, (01 00
is asymptoticalix_N(O,l).
(B) f7 o < —é—, then

[c ‘f(x)]ll2 n(l_a)/z[r(x)]_l[;n(x)—r(x)-czn-zaf"(x)r(x) {24f(x)}_1]

is asymptotically N(O 1).

() If 3- o <1, then [2nf(x)/T' (x)r x)] /3[r (x)-r(x)] has
density %- w/2), where ¥ ig_the’densigx_gf_the minimum value of
2

» w(t) + t° and W(t) ig_g_two—sided Wiener-Levy process with mean 0 and

variance 1 per-unit t and w(o) =

The problem of optimal choice of window size for nonparametric
estimators of the density and.failure rate function have been investi-
gated by Parzen [81], Watson and Leadbetter [93], and Weiss and
Wolfowitz»[94].

Isotonic estimators for star-ordered famiiies of distributions

have been proposed and studied by Barlow and Scheuer [157. The MLE's,
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fof example, when G_islexponential and uniform,.are not isotonic
estimators. Moreover, surprisingly enough, they are also not
consistent. It is shown [2, p. 259] that the isotonic estimators in
these cases are consistent. Percentile estimators in the star-ordering
case have also been discussed in [2].

6.2. Tests for monotone failure rate. As we have seen elsewhere,

the knowledge that the failure rate is increasing is useful in construc-
ting appropriate bounds for survival probability, and obtaining inequal-
ities for linear combinations of order statistics. Also, for practical
applications, a knowledge of this fact leads to the maximum likelihood
estimate of the failure rate. It also helps, for example, in adopting
economical replacement policies obtained under this assumption.

As before, Xl,n :_Xz,n < ean 5_xn,n is an ordered Sample from the
distribution F, with density f, where f(x) = 0 for x <.0, and failure
rate r(x). The interest is in testing the null hypothesis, Ho:r(x) = A,
A an unknown positive constant, against the alternative hypothesis,

H,: r(x) is nondecreasing, but not constant.

1

Let us define

1,  if Di,n Z-Bj,n for i,j = 1,2,..., n,
6.23 V. . =
( ) 1,]
-0, otherwise,
where Di,n = (n—1+}) Di,n and Di,n = xi;n - xi—l,n’ i=1,2,..., n., It

is assumed that X

o 0. The bi , are called the normalized spacings.
3

3

Proschan and Pyke [84] have proposed a test based on the statistic
76



n
(6.24) | v =i,'j2=.lvi’j

1<)
The null hypothesis is rejeéted at the level a of significance'if
Vn > Vn,a’ where vn,a is determined so_fhat Pr(Vn > Vn,alHo) = o, The
distribution of Vn under Ho can be obtained by a recurrence relation
and is given by Kendall [70] and Mann [74], who have also given the
values of P[Vn < k] for n < 10. It has been shown by Proéchgn and Pyke
[84];Fhat the test is unbiased and that Vﬁ, suitably nofmalized, is
asympfotically normally distributed for a wide class of alternatives.
In particular, under mild assumptions when the underlying distribution
is IFR, Vn is asymptotically normally distributed. The asymptotic
relative efficiency of this test has also been considered in [84]

relative to the likelihood-ratio test for Weibull and gémma alternatives.

Bickel and Doksum [23] have considered the statistics T, = ZiRy

and T, = -L i log[l—Ri(n+1)'1], where Ri denotes the rank of Bi o among
. . ?
D, ,...,D. . Then T, is asymptotically equivalent to the Proschan-Pyke -
1,n n,n 1

statistic. It has been shown in [23] that the asymptotic normality

holds for sequences of alternatives {Fe } that approach the null hypo-
n

thesis distribution, namely, the exponential with failure rate A, as

n+, It is also shown that, the rank statistics that are‘asymptotically
most powerful in the class of linearﬂrank tests, are nowhere most power-
ful in the class of all tests, when the écale parameter A is known. If

A is unknown, studentizing of the linear normalized spacing tests,which
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are asymptotically most powerful for A known, leads to procedures
which have onlylthe same asymptotic power as the most powerful linear
rank tests. Bickel [22] has considered four classes of tests including
those based on T1 and T2. He shows that, under certain regularity
conditions, each_of these classes contains a test asymptotically equiva-
lent to the asymptotically most powerful similar test.

The tests of Bickel and Doksum are in fact unbiased against IFRA
alternatives as shown by results in Barlow and Proschan [11]. It was
shown by Barlow énd Proschén [14] that anélogous tests designed to
treat incomplete samples of failure data are also unbiased against IFRA
alternatives.

ﬁarlow and Doksum [ 3] have considered the problem of testing
H:F : G (that is, G_lF is linear on the support of F) against the

(o]

alternative le F <G and F t G, where G is assumed to be known and
c

F_;<G. They considered tests based on the cumulative total time on test

statistic
i n
6.25 "U_=n D. D. _,
.25) IR AL

i=1 j
where the 5i are the normalized spacings. In terms of H;l defined in

,n
(6.11) we can also write it as

a et -1
(6.26) | U =n izl H_ " (i/n)/H_~ (1)

The null hypothesis is rejected for large values of the statistic.
Asymptotic normality of Un has been shown in [ 3]. The corresponding -

result when G is exponential is attributed to an unpublished paper by
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Nadler and Eilbott. Asymptotic minimax property of the tests based on
Un has also been established by Barlow and Doksum over a class of
alternatives based on the Kolmogorov distance and in each of the classes
of statistics considered by Bickel and Doksum [23] when G is exponential.
Barlow [1] has investigated a likelihood ratio test for Ho: F 6‘92

against H,: F ¢ & - j%, where ~9% denotes the class of exponential

1
distributions with possible truncation on the right and %% is the class
¢t all IFR distributions. The test is shown to be unbiased. He also
considers a likelihood ratio test for H.: Fe & against H;: F e s
where \92 and j?i are the classes of IFRA and DFRA distributions,
respectively. It is shown by him that the likelihood ratio statistic
has a nonincreasing density on ({0,1) under the exponential assumption.
It should be pointed out that in these tests the usuazl concept of
maximum likelihood does not suffice and the concept used is a generali-

zation of the usual concept proposed by Kiefer and Wolfowitz [71].

7. Concluding remarks. As we have explained elsewhere, we have

confined our. interest to a few important results relating to subset
selection and reliability problems. We have not discussed here several
other procedures of interest which have been investigated such as sequ-
ential procedures, Bayes procedures and procedures based on paired
comparisons. These and other procedures have been reviewed by Gupta
and Panchapakesan [58].

One related problem that is not discussed here is the estimation

.of the ordered parameters. Some work has been done on waximun
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likelihood and interval estimation among others by Dudewic£ [29],
Dudewicz and Tong [30}, Tong [91], and Tong and Saxena [92]. Many simi-
lar problems arise when the distributions belong to some restricted fam-
ily.

There are other classes of life distributions which have been stud-
ied recently. If F is a life distribution (F(0) = 0), we say F is new

better than used (NBU) if F(x+y) < F(x) F(y) for all x,y > 0, where

F = 1-F. If the inequality is reversed, F is said to be new worse than

used (NWU). If F is NBU, the obvious interpretation is that the chance
F(x) that a new unit will survive to age X is greater than the chance
F(x+y)/F(y) that an unfailed unit of age y will survive an additional

-X-

time x. We note that if G(x) = l-e ©, x > 0, then saying F is NBU is

equivalent to the statement that ¢ = G_lF is superadditive, i.e.,

p(x+y) > @(x) + ¢o(y) for all x and y, on the support of F. If F is NWU,
then ¢ is subadditive. Ip follows from the results of Bruckner and
Ostrow [26] that F is IFRA (DFRA) implies that F is NBU(NWU). Some
properties of Liese families have been studied by Esary, Marshall and
Proschan [39]. Additional properties of such-classes of distributions
and their importance in the study of replacement policies have been
recently discussed by Marshall and Proschan [77]. In another recent
paper, Hollander and Proschan [68] have considered a test based on a’
U-statistic for testing the hypothesis that F is exponential égainst the

alternative that F is NBU (and not exponential).
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