Note on a Theorem of Passow*

bу

W. J. Studden

Purdue University

Department of Statistics
Division of Mathematical Science
Mimeograph Series #323

^{*}This research was supported by the National Science Foundation Grant 33552X2. Reproduction is permitted in whole or in part for any purposes of the United States Government.

Note on a Theorem of Passow*

W. J. Studden Purdue University

Consider a system of functions $u_i \in C^n[a,b]$, $i=0,1,\ldots,m$. We are interested in Hermite interpolation. Thus if $a \leq x_0 < x_1 < \ldots < x_k \leq b$ and $y_j^{(i)}$, $i=0,\ldots,a_j-1$, $j=0,1,\ldots,k$ are arbitrarily specified with $\sum_{j=0}^{k} a_j = m+1$ and $\max_j a_j \leq n-1$ we are interested in when there exists a unique $u(x) = \sum_{j=0}^{m} c_j u_j^{(x)}$ such that $u^{(r)}(x_j) = y_j^{(r)}$, $j=0,1,\ldots,k$; $r=0,1,\ldots a_j-1$. Under such conditions the system $\{u_i\}$ is called an extended Tchebycheff system (ETS) of order n+1. In the case n=0 the system is referred to as simply a Tchebycheff system (T S) and if n=m the reference to the order is omitted. Note that an ETS of order n+1 is a ETS of any lower order.

It is well known that x^{k} , $k = 0, 1, \ldots m$ where $t_0 = 0 < t_1 < \ldots < t_m$ is an ETS on any interval [a,b] for $0 \le a < b$. If $t_0 = 0$ and for all k, t_{2k} is even and t_{2k+1} is odd, then t_0 , $t_1, \ldots t_m$ is said to have the alternating parity property (APP). Recently E. Passow [2] [3] proved the following:

Theorem 1. The system $\{x^{t_k}\}_{0}^{m}$ is an ETS of order n+1 if and only if $t_i = 1, i = 0,...,n$ and $\{t_i\}$ has APP.

The purpose of this note is to generalize this result slightly to a larger class of systems $\{u_i\}$. Let w_k , $k=0,1,\ldots$, be strictly positive or $(-\infty,\infty)$ and r-k times differentiable. Then define

^{*}This research was supported by the National Science Foundation Grant 33552X2. Reproduction is permitted in whole or in part for any purposes of the United States Government.

$$u_{0}(\mathbf{x}) = w_{0}(\mathbf{x})$$

$$u_{1}(\mathbf{x}) = w_{0}(\mathbf{x}) \int_{0}^{\mathbf{x}} w_{1}(\xi_{1}) d\xi_{1}$$

$$u_{2}(\mathbf{x}) = w_{0}(\mathbf{x}) \int_{0}^{\mathbf{x}} w_{1}(\xi_{1}) \int_{0}^{\xi_{1}} w_{2}(\xi_{2}) d\xi_{2} d\xi_{1}$$

$$\vdots$$

$$u_{r}(\mathbf{x}) = w_{0}(\mathbf{x}) \int_{0}^{\mathbf{x}} w_{1}(\xi_{1}) \dots \int_{0}^{\xi_{r-1}} w_{r}(\xi_{r}) d\xi_{r} \dots d\xi_{1}$$
(1)

For x negative the integrals are assumed oriented in the obvious sense so that $u_k(x)$ is negative iff k is odd. The system (1) is a basis for any rth order differential operator for which successive Wronskians do not vanish; see [1]. The value r here corresponds to t_m . We will show;

Theorem 1. The system $\{u_t\}_0^m$ is an ETS of order n+1 if and only if $t_i = i$, i = 0, 1, ..., n and $\{t_i\}$ has APP provided $\left|\frac{u_i(x)}{u_j(x)}\right| \to 0$ for $|x| \to \infty$ when i < j.

The proof follows [2] and [3] however, some changes are necessary.

The proof is divided into a three lemmas. The first of which is nearly obvious.

Lemma A. If f(x) is continuous on $(-\infty, \infty)$ and has at most n distinct zeros, then $g(x) = \int_0^x f(\xi) d\xi$

- (a) has at most n zeros if x = 0 is a zero of f.
- (b) always has at most n + 1 distinct zeros.

Lemma B. The system u_{k_1}, \dots, u_{k_r} is a T.S. on [a,b] for 0 < a < b.

<u>Proof.</u> The proof is by induction on r. For r = 1, u_k has no zeros on [a,b]. Assuming the result true for r - 1 we consider

$$\sum_{i=1}^{r} a_i u_{k_i} (x) = U(x).$$

We write U(x) in the form

$$U(x) = w_1(x) \int_0^x w_1(\xi) \dots \int_0^{\xi_k} 1^{-1} [V(\xi)] d\xi$$

where

$$V(\xi) = a_1 w_{k_1}(\xi) + a_2 w_{k_1}(\xi) \int_0^{\xi} w_{k_1+1} e^{-tc}$$

Now $V(\xi)$ can have at most r-1 zeros, since otherwise

$$\frac{d}{d\xi} \left(\frac{V(\xi)}{w_{k_1}(\xi)} \right)$$

would have at least r-1 zeros violating the induction hypothesis. By Lemma A, U(x) has at most r zeros one of which is zero so that U(x) has at most r-1 zeros on [a,b].

Lemma C.

(a) If $\{t_i\}_{0}^{m}$ has APP then $\{u_{t_i}\}_{0}^{m}$ is a TS.

(b) If
$$\left|\frac{u_{\mathbf{i}}(\mathbf{x})}{u_{\mathbf{j}}(\mathbf{x})}\right| \to 0$$
 as $|\mathbf{x}| \to \infty$ for $\mathbf{i} < \mathbf{j}$ then $\{u_{\mathbf{i}}\}_{0}^{m}$ is a TS

implies that $\{t_i\}_{0}^{m}$ has APP.

<u>Proof.</u> We first show (a) that APP implies TS. The proof is by induction. For m = 0 we have $t_0 = 0$ and $u_0(x)$ is assumed to be positive on $(-\infty, \infty)$. Assuming the result for m-1 we consider

$$U(x) = \sum_{i=0}^{m} a_i u_{t_i}(x).$$

If U(x) has at least m+1 distinct zeros then we consider

$$D_0U(x) = \frac{d}{dx} \frac{U(x)}{w_0(x)} = \sum_{i=1}^{m} a_i v_{t_i}$$
 (x)

where

$$v_{t_i}(x) = D_0 u_{t_i}(x)$$

As in the proof of Lemma B we write $D_{Q}U(\mathbf{x})$ in the form

$$w_1(x) \int_0^x w_2(\xi_2) \dots \int_0^{\xi_{t_1-2}} w_{t_1-1} (\xi_{t_1-1}) \int_0^{\xi_{t_1-1}} V(\xi) d\xi$$
 (2)

where

$$V(\xi) = a_1 w_{t_1} (\xi) + a_2 w_{t_1} (\xi) \int_0^{\xi} ...$$

is a linear combination of m functions <u>again</u> satisfying the APP. Therefore, by the induction $V(\xi)$ has at most m-1 zeros. As in [2]; if $a_1 = 0$ then $D_0U(x)$ has at most m-1 zeros by Lemma A part (a). If $a_1 \neq 0$, then since the number of integrals t_1 -1 in (2) is even x = 0 is not a separating zero of $D_0U(x)$ and U(x) has at most m zeros.

We turn now to the converse (b), i.e. TS implies APP. The case m=0 and m=1 are easily checked. We then assume the result for m-1 and suppose t_0 , t_1,\ldots,t_m does not have APP. The two cases. (i) t_0,\ldots,t_{n-1} has APP and (ii) t_0,\ldots,t_{n-1} does not have APP can be handled as in [2]. For case (i) we assume that t_{n-1} and t_n are both odd and consider a polynomial $t_n=1$ and $t_n=1$ with $t_n=1$ and $t_n=1$ and $t_n=1$ and $t_n=1$ are sufficiently small using the assumptions in (b), i.e. $t_n=1$ will have a zero near every simple zero of $t_n=1$ and will gain two more zeros for large x. Case (ii) is again handled as in [2].

Proof of Theorem 1. If $\{t_i\}$ does not have APP then by Lemma C, $\{u_k\}$ is not a TS so it is also not an ETS.

Suppose that $t_i > j$ for some $j \le n$ and consider the minimal such j.

We then take $x_0 = 0$, y_0 $\neq 0$, y_0 $\neq 0$, y_0 and consider any $U(x) = \sum_{i=0}^{\infty} a_i u_{t_i}(x)$. A little reflection shows that any function of this form has the jth derivative at x = 0 equal to zero. This follows from the fact that if we define

$$D_{i} f(x) = \frac{d}{dx} \frac{f(x)}{w_{i}(x)} \quad i = 0, 1, \dots$$

then f(0) = 0 and $D_i D_{i-1} ... D_0$ f(0) = 0, i = 0, ..., j - 1 if and only if $f^{(i)}(0) = 0, 1, ..., j$. The proof of the converse also follows

[3] using the operators $D_0, ..., D_{n-1}$ instead of the ordinary derivatives.

- 1. Karlin, S. and Studden, W. J. <u>Tchebycheff Systems</u>, Interscience, New York, 1966.
- 2. Passow, Eli. Alternating Parity of Tchebycheff Systems, <u>J. Approximation Theory</u> (to appear).
- 3. Passow, Eli. Extended Tchebycheff Systems on $(-\infty,\infty)$