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Purdue University

Consider a system of functions u, € Cn[a,B], i

[
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-t
]

We are interested in Hermite interpolation. Thus if

a<x <x <..<x b and}sj.'21=0,..., a, -1, j=0,1,...,k

o "1 77 j
are arbitfarily specified withjzoaj =m+ 1 and m?x aj <n-1we
are interested in when there exists a unique u(x) = 120 ey uy (x)
such that'u(t)(xj) = yj(ﬁz j=0,1,...,k; r=0, 1,...a 3 - 1. Under

such conditions the system {ui} s called an extended Tchebycheff system
(ETS) of order m+l. In the case n = 0 the system is referred to as
simply a Tchebycheff system (TS and if n = m the reference to the

order is omitted. Note that an ETS of order nt+l is a ETS of any lower order.

It is well known that x X, k = 0, 1,...m where t; = 0 < t; <...<¢t_

is an ETS on any interval [a,b] for 0 < a <b. If t, = 0 and for all

k, t2k is even and t2k¥1 is odd, then to, t 'tm is said to have

e
the alternating parity property (APP). Recently E. Passow [2] [3] proved

the folldwing:

Theorem 1. The system {xtk}: is an ETS of order_h-+'1 if and only if
tj;-i 1=0.,nand{t}hasAPP, |

The purpose of this note is to gemeralize this result slightly to
a larger class of systems [ui]. Let w,, k=0, 1,..., be strictly

positive or (-=,®) and r - k times differentiable. Then define
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uy () = wy (x)
ul(x)_= wo(x) [x wl(gl) d§1
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u () = vy [o w (6 ... fo W (E) dE_ ... 5

For x negative the 1ntegfa1s are assumed ofiented in the obvious sense
so that uk(x) is negative iff k is odd. The system (1) is a basis for
any rth order differential operator for which successive Wronskians

do not vanish; see [1]. The value r here corresponds to tm. We w111

show;

Theorem 1. The system {u } is an ETS of order mtl if and only if
€0 uy (x)
=i, 1i=0, 1,...,n and {t } has APP provided \

1
|x| - @ when i<j.

l - 0 for

The proof follows [2] and [3] however, some changes are necessary.
The proof is divided into a three lemmas. The first of which is

nearly obvious.

Lemma A. If?f(x) is continuous on (-®,®) and has at most n distinct

zeros, then g(x) = Ix £(E) a8
’ 0
(a) has at most n zeros if x = 0 is a zero of f.

(b) always has at most n + 1 distinct =zeros.

Lemma B. The system Weos el is a T.S. on [a,b] for 0 < a < b.
. 1 ‘

Proof. The proof is by induction on r. For r = l,uk has no zeros

on [a,b]. Assuming the result true for r - 1 we consider

r

i1 8 iy () = V6.



We write U(x) in the form
X Sk -1 '
UG = w G [ w @ - _[0 1 [v@)l;g
where

| | g
VO = O + 3, m © {s S

Now V(E) can have at most r-1 zeros, since otherwise

<-w (§)

would have at least r-1 zeros violating the induction hypothesis.
By Lemma A, U(x) has at most r zeros one of which is zero so that

U(x) has at most r-1 zeros on [a,b].

Lemma C.
m
(a) 1f {t } has APP then {ut }0 is a TS.
i
( )
(b) If f—-—— l -0 as |x| @ @ for 1 < j then {u } is a TS
j i

m
implies that,{ti}o has APP.

Proof. We first show (a) that APP implies TS. The proof is by induction.
For m = 0 we have to = 0 and uo(x) is assumed to be positive on
(-°,%) . Assuming the result for m-1 we consider

m

U (%) =i§0 a, uti (x).

If U(x) has at least m+l distinct zeros then we consider



where

v. (x) =D, u,_ (x)
ti 0 ti

As in the proof of Lemma B we write DOU(X) in the form

g 3
v [ wE€) ... 1% € H|atve & 2)
1 J‘Z 2°2 ”[0 t1-1_ t1-1 IO (
where
® ® ® jg |
Vv =a, W + a. w v
1 tl 2 t]. 0

is a linear combination of m functions again satisfying the APP.
Therefore, by the induction V(§) has at most m-1 zeros. As in [2];

if a, = 0 then DOU(x) has at most m-1 zeros by Lemma A part (a). If

a, # 0, then since the number of integrals tl-l in (2) is even

x = 0 is not a separating zero of DOU(x) and U(x) has at most m zeros.
We turn now to the converse (b), 1i.e. TS implies APP. The case

m=0and m = 1 are easily checked. We then assume the result for

m-1 and suppose t_, t .,tm does not have APP. The two cases. (1)

O 1.'.
t....t has APP and (ii) t....t does not have APP can be handled as
0 n-1 0 n-1

in [2]. For case (i) we assume that tnil and tn are both odd and conmsider
n-1

a polynomial U =% a, u with n-1 distinct simple zeros on [a,b]
with an-1'> 0. Then Un-l - € u, has ntl zeros for € sufficiently

n

small using the assumptions in (b), i.e. Uq" € u, will have a
: n
zero near every simple zero of Un-l and will gain two more zeros for

large x. Case (ii) is again handled as in [2].

Proof of Theorem i. If {ti} does not have APP then by Lemma C,
{uk } 18 not a TS so it is also not an ETS. ‘
i

Suppose that tj > j for some j%n and consider the minimalsueh j.



We then take x, = 0',}(%) ﬁ 0,53) =0,1=0,...,j~1 (see introduction)

and consider any U(x) = E a; u (x). A little reflection shows that
i . '
any function of this form has the jth derivative at x = 0 equal to zero.

This follows from the fact that if we define

. d_ £Go)
Di f(x) =dx w,(x) 1=0,1,...
s e i
then £(0) = 0 and Di Di-l"'DO £(0) = 0,1 =0,...,j -1 if and only if

f(i) (0) = 0,1,...,j. The proof of the converse also follows

E3] using the operators DO""’D

-1 instead of the ordinary derivatives.
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