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1. Introduction and Summary. Let GQ;QEPi), i=1,...,k be k probability
spaces hereafter‘referred to as populations and denoted as M i=1,...,k.
Specifically it is assumed £ 'is a finite dimensional Euclidean space, & is
the associated Borel sigma field and Pi is an unknown probability measure
belonging to a specified family of probability measures,ﬁa. Each " is
characterized by an unknown scalar Ai = Ai(Pi) e A a known interval on the
real line. Let A

1]
A[k] be the ordered Ai s,

[1] <o0.<
Q= {5 = (Al""’xk)lxi € A'vi} the space of all possible underlying con-
figgrations of Ai's and ﬂ(i) the (unknown) population with parameter A[i]'
It is assumed there is no a priori knowledge of the correct pairing of the
elements in {m.} and {“(i)}’ The goal is to define a procedure R to select
the "best" population where for sake of definiteness “(k) is taken to be
the best population. In some casés n(l) might be the best population. Of
course if T(2 < T < k) pdpulations all have Ai = A[k],vthe selection of any
of these tied populations accomplishes the goal.

This ranking and selection problem was formulated as a multiple
decision problem and specific cases solved by early reseafch workers. The
theory in this field has undergone a somewhat dichotomous development arising

from the detailed formulation of a reasonable experimental goal to pursue.

*This research was'supported by the Office of Naval Research Contract
N00014-67-A-0226-00014 at Purdue University. Reproduction in whole or in
Part is permitted for any purpose of the United States Government.



One'approéch pioneered by Bechhofer (1954) has been to allow the experimenter
to select one population which is guaranteed to be ﬂ(k) with at least proba-
bility P* whenever the unknown parameters lie outside some subset, or zone
of indifference, of the entire parameter space. This has been termed the
indifference zone approach. A variety of authors have contributed papers
employihg this approach and the monograph by Bechhofer, Kiefer and Sobel
(1968) contains an extensive bibliography. In particular the procedure of
Mahamuﬁulu (1967) for selecting a fixed size subset of size m which contains
at least c of the t best populations employs this approach;

| In contrast to the indifference zone approach, Gupta t1956, 65) proposed
a formulation, called the subset selection approach, in which the experimenter
obtains a subset of the k populations for which there is fixed minimum proba-
bility P* over the entire parameter space that the best population is includéd.
The procedure selects a random number of populations between one and k, the
actual number depending on the data. A few recent contributors in this area
are Panchapakesan (1969, 1971), Gupta and Nagel (1971), McDonald (1972) and
Huang (1972). A unified account of some of the general théory can be found
in Gupta and Pahchapakesan (1972).

The goal in this paper is to study single sample procedures which give
more flexibility to the experimenter than does either the fixed subset size
rule or the subset selection procedure by allowing him to specify an upper
bound, m, on the number of populations included in the selected subset.
Should the data clearly indicate that a particular population is best, this
type of rule retains the advantage of the subset selection procedure over:
the fixed size subset rule in allowing selection of fewer than m populatibns.

On the other hand if the data make the choice of the best population less



obvious, this rule selects a larger subset for further study but guarantees
that no more than m populations are selected. Such procedures will be

called restricted subset selection procedures.

oo

2. Formulation of the Problem. Each . yields iid observations {Xij}

: : j=1
which are also independent between populations. Xij has cdf Fi corres-

ponding to Pi e Pwhich is now assumed to be a parametric family. Further-
more it is assumed there exists a sequence of Borel measurable functions

{Tn} so that Tn is defined on2" and

T = P
Tncxil""’xin) Tin 5 Ai as n-o,

In practice it suffices to assume {Tin} converges to a monotone function

of Ai so that the resulting selection problem is equivalent to the original
oxe. The assumptions concerning Tin are that its cdf Gn(y|Ai) with support
Eni depends on Fi‘only through Ai and is absolutely continuous with respect
to Lesbesgue measure with pdf gn(ylki). Also for each n it is assumed
{Gn(ylA)IAeA} forms a stochastically increasing family.

An indifference zone will be defined in 2 by means of a function

p:A > R such that

(i) p(') is continuous and non decreasing on A
(2.1) { (ii) p(A) <AVl A

(iii) piA' °"E% A where A' = {AeA|p(A)en).

Define

2°(p) Qealapy = Ap gy = PORT

The subspace Q(p) represents those vectors of Ai's for which the best and

second best populations are sufficiently far apart so that the experimenter



desires to insure detection of the best one with high probability.
Q(p) is called the preference zone, its complement the indifference

zone and Qo(p) contains the so called least favorable configurations in

e(p).

Example 2.1
p(A) = A-8(8 > 0) ”»Q(P) = {5|A[k]_l[k-l] > 8}, a location type

preference zone.

Remark 2.1. Since the emphasis in this paper is on the case 1 <m < k
the strict inequality p(A) < X insures that the indifference zone does
not vanish. However it should be noted that the general theory formally
reduces to give the results of Bechhofer and Gupta for the choices m = 1
and m = k respectively if the weaker p(2) < A is allowed.

Finally, a general procedure for selecting a restricted subset of the
k populations will.be defined. Let {hn(-)}.be a sequence of functions such

that each h_(.): E_ - R' where U EA C E_ and satisfies
n n rep M n

(i) For each n and x, hn(x) > X
- (ii) For each n, hn(x) is continuous and strictly incfeasing
(2.2 in x

(iii) For each x, hn(x) + X as n-w,

Define the procedure:

h 1

(2.3) R(n): Select ™ & Tin z-maX{T[k-m+l]n’ n (T[k]n)} where

T[l]n = Ti21n 53"5-T[k]n are the ordered estimators.

Example 2.2. For h (x) = x + d/vn =
-d/vn} .

. [—4
R(n): Select ™ Tin Z-maX{T[k-m+1]n’T[k]n



Goal Given P*, p(.) and the sequence {R(n)} find the common sample size n

necessary to achieve
(2.4) PA[CS|R(n)] > P* VeQ(p)

The event [CSIR(n)] occurs iff the selected subset contains =

k)"
Theorem 2.1. For any AeQ
: (
k-1 . .
(2.5) P)\[CS|R(n)]=-Z E / 1 GIEJ)(y) I {G;EJ)(hn(y))'
| ” p=k-m v=1 io/P () 5P (k)
69 (5146 ()
where

{Ug(i)|v=1,. (kpl)} is the collection of all subsets of size p from

U@i) = {1,...,k} ~ {i}
(i) = U(i) ~H (i)

(3)
G =G Ariq)
w0 = G Ul
Proof. Let T(i) be the random variable corresponding to i) and

AP -
\V]

. . TP
[Ty > Ty Vieh0, Ty < T vie 1.

PZ‘[CSIR(H)] = PZ‘[hn(T(k)) 2Ty Tao 2 Tikemeng!

's w/ j < k]

= PZ[hU(Trk)) 3-T[k] and T(k).> at least (k-m) T(j)
k-1
ey ¢ E ) i
] P=E-m o P ag) 2 Tpge A
k 1

= E Py > Ts) vJE’P(k)’ @ < Ty < MaTay)
Viedh (k)]

from which (2.5) can be immediately derived.



3. Infimum of the Probability of Correct Selectibn. The calculation of

the infimum of the brobability of a correct selection will be accomplished
in two stages. In the first stage the k dimensional infimum will be reduced
to a one dimensional infimum and in the second stage conditions will be
given which allow final evaluation. The following lemma due to Mahamunulu

(1967) and Alam and Rizvi (1966) will be needed

Lemma 3.1. Let X =(X1,...,Xk) have k > 1 independent components such that
for every i, Xivhas cdf H(-lQi). Suppose {H(QIO)} forms a stochastically
increasing family. If ¢(X) is a montone function of Xi when all other
components of X are held fixed then Eg[¢(§)] is monotone in Oi_in the same
direction. | v‘ -

‘Let

I(y;a,b) = ?E:;?%b) f w1 (1001

denote the incomplete beta function with parameters a and b.

Theorem 3.1.

inf P [CSIR(n)] inf PA[CSIR(n)] = inf ¢(A,n) where

2(p) 2 Qp(p) ~ - el

X k-1 G (y|p(0) . & oyl
vOun) = {6 (h (1 [pON Y 1 Gn(h Teeyskmm | 46, (v
Proof. It sufflces to showV’AeQ P [CSIR(n)] > inf Y(r,n).
- el
"1, T > max{T , )}
Define ¢(T) = {’ : (k) ~ [k-m+1] [k]
~ 0, <
where the n is suppressed for ease of notation and then P [CSIR(n)]
= E [¢(T)] Recall that T( ) is the statistic correspondlng to ﬂcl) By

Lemma 3.1 it suffices to show ¢(T) ¢+ in T(z) V& < k. Suppose



T 3 1! > T

(2 Vj 4 2 and ¢(T) = 0. Now ¢(1) = 0

(o) 3 Te5y = Teyy

1

e T(k) < maX{T[k—m+l]’ h; (T[k])}

(a) hn(T(k)) <_T[k]

ad or

) Togy < Treimen]

If (a) holds = either

D T =T 2 T T T T M To? T W Tag) < Tog T T

or

< T!

T! x) "

(2] [k]
In either case h (Th)) < The] f-maX{Ttk]’hn(Ttk-m+1])} = ¢(T') = 0.

A similar argument shows (b) also implies ¢(T') = 0.

i

= hn(T' ) < T

@) Ty > Ty = Tk (k)

So we get

k-1
k-1, P . k-1-p
p=£_m( p MG, rIpOp ) {Gn(hn(y)Ip(x[k])-cn(ylp(x[k]))1

| v

Pé[Cis(n)]

46, (y[A )

w(k[k],n) > inf Y(A,n) which completes the proof.
Ael’

If ¢(A,n) is monotone (increasing say) in X and there exists a smallest
AgeA' then the k dimensional infimum will be completely evaluated as
inf P, [CS|R(n)] = y(Ar,,n).
A 0
a(p) ~
The following two lemmas give sufficient conditions for such behavior. The

first is due to Gupta and Panchapakesan (1972).

Lemma 3.2. Let F(-|A)|AeA} be a family of absolutely continuous distributions

on the real line with continuous densities £(.|A) and y(x,)) a bounded real



valued function possessing first partial derivatives ¢x and ¢A wrt x and A
respectively and satisfying regularity conditions (3.2). Then

EA[¢(x,A)] is non decreasing in A provided for all Aeh

(3.1) £(x/2) ”g’;’” - aFg;‘c/A) 34’(;‘;” >0 for a.e.x.

(i) For ail Aed, Eigﬁill is Lesbesgue integrable on R

7 (3.2) (ii) For every [AI,AZ] C A and AseA there exists h(x) depending

only on Ai, i=1,2,3 such that

' (X, A,) |
———ad’g’;’“ £(x|2g) - BF(’;L” ax.3 < h(x) Vae[a ,h,]

and‘h(x) is Lesbesgue integrable on R .
Also a straightforward computation shows the following result.
Lemma 3.3. For any 1 < £ <n and 0 <a<c<1
n c I(a/c;2,n-2+1) > ab(a/c) where b(y) = I'(y;&,n-2+1)
Remark 3.1. Thebfollowing assumptions are essentiall} needed to insure

that (3.2) holds in the following theorem. For any [AI,AZ] C A' and AseA'

there exist el(y) and ez(y) such that



6 (r[p(M)
(i) —r | = el(y)V'Ae[Al,Az] where
(3.3) (fel(Y)dGn(Y|A3))(fel(hn(Y))dGn(YIAs)) < e
N 3 (y [N
(ii) | = ez(y) VAE[AI,AZ] where

(fe,(y)d6 (h (¥) [A9)) (fe,(»)dG(y]29)) < =

Theorem 3.2. If Eﬁ = En Vied', Gn(y|A) is continuously differentiable and

‘satisfies (3.3) and all derivatives in (3.4) and (3.5) exist and yiel’

96, (h () [p(N) 8G, (v | 1) _
(3.4) g, (v = - h (g (h () [p()) —F5— >0 ae in E_
36 (y|p(A)) 36, (¥ 1)
(3.5 g UV ——— - g, UIP(V) —Fr— 2 0ae in E

then ¥(A,n) is nondecreasing in A.

Proof. As indicated, the proof is an application of Lemma 3.2. Note that

Y(A,n) IE ¢(y,})dGn(y|A) for the choice
n

k-1 Gn(Y|P(X))
o(y,2) = {Gn(hn(y)|p(k))} I Gn(hn(y)lpo‘)),k-m,m-. Hence

20A) - (k-13 16, (0, ) (0% g (h () [PODINL I TCK, (v ) skomym)

+ 16,0 ) [P Y b(K_(r, 1) 16, () [P, (v [p(N))

- G (y|PCOIN () g_(h(¥) [p(W))}
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/

_5 3G_(h_(y) |p(A))
2D - ey 6 () [pny) 2 n

A

I(Kn(y,k);k—m,m) +

k-3 36, (y[p(\))
{6, (h, (M [pPON Y7 bIK (v, 0))- {6, (h () [p(V) ———i— -
96, (h, () [p(M)

G, (rIp() = }

G, (y[p(N)
where Kn(y,x) ENCNGIRCN

So (3.1) becomes; VieA'

, G, (h, () [p(N) |
(3.6) g (yIMIk-1) = {6, (h () [p(0)) FI(K_ (y,A) sk-m,m) +b (K _(y,2))

36, (v [p(1)) acn(hn(y)lpcx))}]

{6, (h (¥) [PO) = - 6,(r[p(M) =

36_(y| N '
T [eDE () [P0 gy (b () [PODI (D TCK (y, ) skemym) +

b(K (v,1))
(6, (h, (N [P g (ylp(M)-h! ()6 (y|p(M)g (h () [P()I}] > 0 ae in E_
By rearranging terms (3.6) can be seen to hold if v AeA'

| LG ylp(A) a6 (y[N)
(3.7) {g, &[N

5 - —r—— g, (r|p(A))} > 0 ae in E_
and :
~ 36, (h, (0 [p(V) a6, (v )
(3.8) (g (v = - bl Mg, (h () [p(V) —57—x

(-1 (K (v, ) 5k-m,m) G (h () [p(M))-b(K (¥,))G (¥ [p(M))}> 0 ae in E_

But by Lemma 3.3 the second factor in (3.8) is non negative since'VyeEn and
Aed! = 0 5_Gn(ylp(x)) f_Gn(hn(y)lp(A)) < 1. Hence (3.8) and (3.7) reduce to
(3.4) and (3.5). Similar arguments show that (3.3) imply the regularity

conditions required for Lemma 3.2 and hence completes the proof.
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Remark 3.2. The proofs of Theorem 3.2 and Lemma 3.2 also show that if
(3.4) and (3.5) are identically zero than y(A,n) is independent of A and

if (3.4) and (3.5) are non positive then y(A,n) is non increasing in .\

4. Properties of {R(n)}. Both the properties of the sequence {R(n)}

and the individual rules R(n) will be studied. For AeQ let

(4.1) pg(i) = PA[R(n) selects ﬂ(i)]'

Def. 4.1. The sequence of rules {R(n)} is consistent wrt Q' means

inf P[CS|R(n)] + 1 as n-o,
Q!

Def. 4.2. The rule R(n) is strongly monotone in 7 means

(1)

4 in A[i] when all other components of ) are fixed
n,... .
px(l) is

¥ in X[j] (3 + i) when all other components of )\ are fixed.

Theorem 4.1. If there exists N >1 and AOEA' such thatVn >N

inf y(A,n) = w(ko,n), then any sequence {R(n)} defined by (2.3) is consistent
Ael! :

wrt any Q(p).
Proof. From the hypothesis of the theorem and the result of Theorem 3.1

we have Vn > N

inf PA[CS|R(n)] = fv(y,xo)dGn(y]AO) where

a(p) ~
. | k1[G, rIpO)
(4.2) vy, = {6 (h (1) [p())F T 1 oIy K )
Also Tin E Ai as me © Gn(Y|xi) M {2 : 5 : ii.

Since ¢(A0,n) < 1, it suffices to showV 1 > € > 0 @3 yn > M

f\)(y,xo)dGn(YIko) >1 - €.
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Since p(A,) < Aoﬂ'aa P(Xg) <o <Ay Given 1 > €' >0 let € =1 - /1-€'
and choose M > N2
(2) Gn(alxo) < € (since o < Aj)
(6)  16,(h, () [P 1(G, (elpOrg))skomom) > 1-€  (since b (o) > a > P(ig))
SoVy > o

(@ 136 (h (0 |pO) 2 6 (@ |p(r))

() 6 (ylp(r)) 2 G (alp(ry))

which implies that Vy > a

G_(alp(ay))
n 0 ,m § > 1-€.

. k-1 _—
V(ys2p) 3_{Gn(hnca)lpqu))} e mommogy k™ |2

So finally Vn > M

o0

fa V{y A dG, (y]2y)

v

JV(y.2)d6 (v ]2y

(1-€)[ d6_ (y|Ay)
[0

jv

s> 1-€' and the proof is completed.

Remark 4.1. Theorem 4.1 shows that any (P*,p) requirement can be met by

choosing a sufficiently large common sample size n.

Theorem 4.2. Any rule R(n) of form (2.3) is strongly monotone in “(i) for

any i = 1,...,k.

Proof. Since pA(i) = EA[”i(T)] where

-1
wo-f{ Tt 2™ femen )t T
1V~

0 , otherwise
the result of Lemma 3.1 can again be used to show the desired monotonicity.

Arguments similar to those in the proof of Theorem 2.1 show that
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(A) ni(T) is non increasing in T(j) @] * i) when all other components
of T are fixed

(B) ni(T) is non decreasing in T(i) when all other components of T are fixed

and hence complete the proof.

Gupta (1965) has proved that the subset selection rule which he studied
possessed the prdperties of monotonicity and unbiasedness. Recall these
definitions.

Def. 4.3. The rule R is monotone means V1 < i < j < k and AeQ

Pé[R selects “(j)] z_PA[R selects ﬂ(i)]

Def. 4.4. The rule unbiased means V1 < i < k and )JeQ

'PB[R does not select "(i)] > P[R does not select ﬁ(k)]

Corollary 4.1. All rules R(n) in the class defined by (2.3) are monotone

and unbiased.

Proof. 'Since monotonicity implies unbiasedness it suffers to show that
pg(i) 5_p2(i+1) for any i = 1,...,k-1 and AeQ. Assuming wlog that Ay = x[i]

for notational ease it follows
n,. n .
pb(l) - p(xl’n..,xk) (1)

Py = (i) since pT(i) is 4 in A
i G TRRRTT VUL VST VRS VIPTPRRYS ¥ A [i]
n ‘ . » z . :
p(kl,...,A ’Ak)(1+1) since both (i) and T(i+l) have

1212254122410 240000

- theisame cdf.

n . n,.
<p : (i+1) since p,(i+l) + in A . N
(Al”"’xi-l’xi’xi+1"’"Ak) A [1]

= p2(1+1). This completes the proof of the corollary.
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Remark 4.2. The above proof shows that any rule which is strongly

monotone in “(i) for i = 1,...,k is monotone.

5. Number of Selected Populations. If S(n) is the number of populations

selected by R(n), T(n) is the number of non best populations selected by

R(n) and pg(i) is defined as before by (4.1) and if

-1
b Tegy 2max{Tp gy (T )

1., otherwise

W = ’

then the following representations hold

k

(5.1) sm) = ) W.(n)
i=1
k-1

(5.2) T(n) = ) W, (n)
i=1

(5.3) Py(1) = B, (W (m].

Theorem 5.1. For any AeQ

™
k-1 w . : : ,
) r ¢y 1 6D m -6 0146V ()
1 p=k-m vgl f-w jeJE(i) n 5975(1) . ! ; "

1

I ~1=

E}[S(n)] =

Proof: Using (5.1) and an argument similar to that in the proof of Theorem

(2.1) it can be seen that
k-1

Kk k-1 C E ) e
FAlS ] = 121 p=£-m Ly Palha(Tay) 2 T Vith, Ty > Ty Vieh(),
- < . P,
C ka Ty < Ty WD
kK k-1 Cp) o . o
" p=£-m L AalTey > T Ve Ty < Ty < Bp(Teyy Ve (]

which gives the result.
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Remark 5.1. The expected value of T(n) can be derived in a manner similar
to the above using (5.2).

In the remainder of the section two topics will be studied:

(a) Asymptotic properties of the sequences {S(n)} and {T(n)}.

(b) The supremum of EK[S(n)] and EX[T(n)] over Q.

Theorem 5.2. For an‘ =R > A
heoxen 22, Y2 20 7 M1

(5.4) pg(i) 4-{1 » tTk } as n>e

0 , 1<1i<k

. 1 , y > A,
Proof: Recall that Gﬁl)(y) > { [i] } as n+ and pick ad
» Y < A
[i]
X[k-l] < 0 < k[k]' Let
O I NS ¢ B R (SRR WG DAY SO )

jef i) T jedh )

Case A: 1 =k
k-1
n kel ( E ) PsV (k)
py(k) = ] [ (d6 ()
~ =k-m v=1

1

Subcase (1): Fork -m<p<k-2andl<wv j_(k; )

=9’€(k) $ ¢ and so VyeR,
2V < 1 6Paon -cPon 1 asPon

T et ) je?P (k)

A\
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Given € > 0 pick N 2 Vn >N

Gﬁk)(ﬂ < €/2

and

(3)
T (1-G:77"(a)) < €/2
. =P n
JEJ\) (x)

So Vn > N, 0 :_ffg’v(y)dGﬁk)(Y)

a 00
[ 87waPm + [ 2 maP o
-0 o

Q o
J 14600 + [ €2 a6y

- 00 a

| A

Subcase (2): p=k—1'and v=1
Using the fact that‘Js_l(k) = {1,...,k-1} and,JT-l(k) = ¢ and an

argument similar to that in the proof of Theorem 4.1 it can be proved

that ffk_l’l

K (Y)dGﬁk)(y) + 1 as noo,

Case B: 1 <i f_k—l

It suffices to show that ffg’v(y)dGﬁl)(y) - 0 as n* V p and v.

Subcase (1): For p and v such that k&lg(i)
Again using a straightforward argument of the above type the desired

result follows.

Subcase (2): For p and v such that k&]S(i).
Pick o' such that o f o' < A[k]' Now since hn(a) + o and a' < A[k] q

N such that vn >N
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ng)(a') < €/2
hn(a) < of
Géi)(u) >1 - €/2

= V¥n > N.and y < a

P,V (k) (k)
£ < 6,7 (h () - 6.7 ()}

A

(1)
G, (h_(y))

| A

6 ) <M @) < e

A

Finally we again obtain that ff?’v(y)dGﬁl)(y) < €vn > N. This completes

the proof of the theorem.

Corollary 5.1. For any AeQ 2 A[k] > A[k-l]

{1 , i=k
as n-xe

0, 1<i<k-1

(5.5) W) %

Proof: For any € > 0, Pé[lwk(n)rll > €] f-Pb[wk(n)=0] = l—pg(k) +0

as n+ and for i < k, PA[|W1(“)| > €] f_p?(i) + 0 as m by (5.4).

Remark 5.2. Since all random &ariables studied in this éection are -
uniformly bounded it follows that convergence in L2 and probability are
equivalent.

Using (5.1), (5.2) and (S(n)-1) 5_(S(n)-1)2 together with the convergence

in probability of the Wi(n) random variables we obtain

Corollary 5.2. For AeQ such that A > X
Y - [k] ~ *[k-1]

(1) sS(n) E 1 and T(n) E 0 as m~ and hence

(2) EA[S(n)] -+ 1 and EA[T(n)] + 0 as mw,

~



18

The next results will study some properties of S(n) when n is fixed.
In particular, conditions will be given which guarantee that the supremum
ofvE%[S(n)] in @ occurs at some point A = (Al,...,kk) for which A[l] = A[k]'

The condition (5.6) will be assumed in some of the theorems which follow.

. A
(5.6) (i) Ej = E Vaed

(ii) For any [Al,hz] C A there exists e3(y) depending only

% (y|M)
£

A, and X

1 2 f_es(y) where

(Je3(nd6 (h () [2)) (Jeg(h (v)dG (y[21)) < = VAt > 2,

Theorem 5.3. If (5.6) is satisfied and Vﬂl, A, in A with X, < A

2 1 -2
3G, (h () 2)) 26, (y] 1))
- T —————————————— ' 1
(5.7) ™ g, (|2 7, g,(h (M [A )N (y) > 0 ae in E_

then EA[S(n)] is non decreasing in A[l] on A(A[z]) = {xeh|r f-A[Z]} for any
fixed (A[Z]”“’A[k])'

Proof. Fix A[Z] 53..§_A[k] for the following argument and then

Eb[S(n)] = Tl(g) + Tz(é) where

k-1
k-1 Cp) | 0
W= ] Py £ de ()
" p=k-m v=1 En
k-1
k k-1 (p) -
T2(5) = 2 Z g f fg’v(y)dGn (y) where

r=2 p=k-m v=1 En

fg’v(y) is defined as the proof of Theorem 5.3.
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Now TZ(A) can be rewritten as

- k-1
k-1 ()
LM = § L 1 £V;maPDy
pek-m v=1 r3led(r) E_
k-1
k-1 ()

+

, L[ V5.
p=k-m =1 r31ef(r) E. " n

For any A € {1,...,k} of size s, let {dg(A)|v=1,...,(k;s)} be the

collection of all subsets of size p from {1,...,k} - A. Note that

for any fixed p=k-m,...,k-1 and r=2,...,k
(5.8) L’gﬁr)lledﬁ(r)} = {-ﬁ-l(l,r)U{l}|v=l,...,(ﬁzf)}

while for any p=k-m,...,k-2 and r=2,...,k

6.9 AOIAD) = a0
So - k-2
k=1 k (-1 o (1) e E)
L= 1 T 1 ] wme )y
p=k-m r=2 y=1 E
k3 "
k-2 k
R 26 (v 10160 12196 )
p=k-m r=2 y=1 En
where (1). wg'“(y) = G(j)(y m {Gﬁj)(hn(Y))-

T )
et ™ e

(i)
G," ()}

~
N
~
N
"o
-
<
~
~<
—
1]

(3) (3)
no 6y 6 m -
jeha,n " jePa,y

<03)
G " (n)}.
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Next integrating Tl(ﬁ) by parts and noting that for fixed p=k-m,...,k-1

and r=2,...,k

(5.100 PP [reP)) - ﬁ/§'1(1,r)u{r}|v=1,...,(;:f)}
while for any p=k-m,...,k-2 and r=2,...,k
P P = 1P - k-2
(5.11) le(1)|ra7v(l)} = OJv(l,r)lv-l,...,( > )}
we obtain that
k-2
<1k G (1) g4 (D)
T, () =1- 7§ 2 2 f W2 (y)6 " (nde ™ ()
p=k-m r=2 y=1 n
. (k 2,
-] f SR M &l i n (n0-8 ) ey,
p=k-m r-2 v=1 n
Hence combining and cancelling terms it follows that
w2k 050
sml=1+ J ) 3 [ 26D n m)e -6 ;e

p =k-m r-2 v=1 E
(h, (¥))h! (y) }dy

and finally

k-2
dE. [S(n) ] k_
(512 - i § f 22V (y).
[1] p= k -m r=2 v=1
(1) (1)
3G~ (h_(y)) 3G (y)
{ nax[l? gy ) - ‘"%x;;;—-gﬁr)(hn(y))hﬁ(y)}dy.

But (5.7) gives for every r=2,...,k

(1) (1

9G_ " (h_(¥)) 3G (y)
- BA?I] ggr)(Y) - "%}EEE-'gﬁr)(hn(y))hﬁ(y) >0a.e. in E_

= the derivative in (5.12) is non negative and completes the proof.
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Remark 5.3. Condition (5.7) is essentially the same requirement as that

made by Sobel (1969) and Gupta and Panchapakesan (1972) in order to show

that sup E[S] be attained for their rules when the distributions are identi-
9}

cal. 1In location or scale parameter problems it reduces to the requirement

of MLR.

» dEA[S(n)]
Corollary 5.3. - If for every fixed A[Z] 53":-A[k]’ —5H 20
B 08

for A[l] in A(A[Z]),'then the sgp EA[S(n)] = sup y(A,n) where

Aeh
5.1 a,n) = kf {6 (h ()| M) S 010 k-m,m) dG_(y|A)
.13 s = Jk-m,m
( ) y(A,n L, n(a (V312) (E;TE;T;TTT— n
. ; .

Furthermore if the hypotheses of Theorem 5.3 hold for A=A,

then v(A,n) is non decreasing in A and hence if there is a greatest

element xoeA = sup‘EA[S(n)] = y(Ao,n).
Q ~

Proof. It suffices to provevq < k and fixed A[ <. ..< A that

q+l} - [k}

Eé(q)[S(n)] 4 in A on A(A[q+1]) where the underlying
A(q) = (A""’A’A[q+1]""’x[k])' Let A' = (A[l]"“’k[k]) and note

from Theorem 5.1 that EA,[S(n)] is invariant under permutations of

the elements in A'. So

dEbgq)[S(n)] _ % 9E,,[S(m)]

? i1 2l @
Q3E, , [S(n)]
L FY A(a) .
OE,,[S(m)]
But from the previous proof _—AET———__ > 0.
[1] A(9)

Hence the supremum over Q@ of E[S(n)] occurs at some point where all

the A;.,'s are equal.
[i] 9
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Since y(A,n) = E[¢(Y,2)] for

¢ y = y |
n n G (h . ()’) )\)

;k"m:m ’

Lemma 3.2 can be applied and the sufficient condition (3.1) that y(A,n)

be non decreasing reduces to

36, (h, (V) 36 ([N

G [0 g vy 2B . T () ORI
G_(y[n) G, ([
{(k-1)6 (h () [N I 5 ) sy k-mem | - G (y[A)b T }>0
VA and ae y

36, (h (M [N 96 (y[M o
= {g,(r[n A - 57— g, (h (M [Vh! ()} 2 0 VA and ae y

since the third factor is non negative by Lemma 3.3.The final part of the

result is obvious.

Remark 5.4. While the hypotheses of Theorem 5.3 imply those of Corollary 5.3
in the regular case, these hypotheses are also satisfied in some non regular
problems, for example, in selection from uniform populatiqns.

Note that the expected number of non best populations selected can’

be written in the form

(5.14) E\[T)] = By [S(M] - py00).

Corollary 5.4. If the hypotheses of Corollary 5.3 hold then

sup E, [Tm)] = 2L sup y(a,n) where v(A,n) is defined by (5.13).
Q ~

Ael

Proof. For any 5 = (A ])eQ let A([k]D) = ]) then

[1]""’A[k (A[k]""’x[k
V AeQ the hypotheses imply EA[S(n)] f-EA([k])[S(n)]' Also the strong
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monotonicity of R(n) implies p;(k) 3_p2([k])(k). So by (5.14)

, ' _ (k-1)
E} [T(n)] = EA([R]) [T(n)] = X Y(A[k]»n)

= sup EA[T(n)] = (kil) sup v(A,n).
Q > Ael

Remark 5.5. From Corollary 3.3.it follows that y(A,n) is nondecreasing

in A if the hypotheses of Theorem 5.3 holds for Al = A,

6. Applications. In this section we apply the results of this paper to

some problems of selecting from univariate and multivariate normal
populations.

2, . . 2,
I. Suppose L N(ui,o ), i=1,...,k where the common variance o“ is

known and the experimenter is interested in selecting the population

1

n .
]

. an
Wy a d

il

~having largest My We take Tin =

N~

X.. and then A.
p 1] i

Gn(yIAi) = ¢({n1/2(Y-ui)}/c) where @ is the cdf of a N(0,1) random
variable.

Since this is a location parameter problem we take p(n) = u-8(8 > 0) and

h (x) = x+do/v/n and obtain

X[k] - do/vn}.

Using Theorem 3.1 and Corollary 5.3 it can be seen that

R(n) : Select L ii > max{X

(6.1) inf P[CS|R(M)] = [ {o(y+ds “rs) ol o) ckemm | do(y)

Q(p) - 3(y+d+ JES)

(6.2) sup E[S(n)] = kf {<I>()'+d)}k—1 g%%%aja -m,m} do(y).
Q -0
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One choice of {R(n)} can be made by setting the right hand side of (6.2)
equal to 1 + € and solving for d. Having chosen the sequence {R(n)}, the
proper saﬁple size can be found by equating the right hand side of (6.1)

to P* and solving for n. Additional details including comparison with

the fixed size proéedure Desu and Sobel (1968) and tables of constants
required to implement_the proposed procedure are given in Gupta and Santner
(1972).

II. Now suppose s is p variate normal with mean vector B and covariance
matrix §(Np(yi,§)) for i=0,1,...,k. The common I and My are both known and
Ty may be though of as a standard or control population. It is degired to
select that population which is furthest away from T in the sense of
Mahalanobis distance so that X, = (u,-u,)' g_l(gi-go). Gupta (1966), Alam

and Rizvi (1966) and Gupta and Studden (1970) have considered this problem.

We take
-1
= 1)t =
Tin = (Xg5709) " T (Xy5mup)
) A-8y (8, >0)  , 0 <A< 8;8,/(8,-1)
P(A) ={ 4
654 (8, > 1), §8,/(8,-1) <A
h()=d/™x, da>1
| RVLIERY. x _9/2-1 -y/2

F (XIX) = e A/2 z >\J E +2.(x) where E (x):j %.2_ dy
P j=0 2351 P*4J q 0 r(q/2)2%

so that Tin 2 p+i, as mxe

G r[ay) = Fo(yag)

Q(p) = e, N Q, where o) {5|A[k]'k[k-l] 2.51}

o]
|

5 = {Alx[k] > 8y M1yt



25

. -1/n
R(n): Select‘ni Q:Tin Z_max{T[k_m+1]n,d T[k]n}
The following are known properties of Fp(ylx)
F I dF_(y|%)
P = 2 [P0 I-E 0] = - £ ([N where £ (y[N) = —E—

p+2(y|A)/f (|2 ¥ in A and {Xf 2(ylx)}/f (y|») 4 in A. In addition a
result from Chapter 7 of Lehmann (1959) can be applied to show that
fp+2(yll)/{yfp(y|k)} is non increasing in y and yA.

Since fp(ylk) has MLR, Theorem 3.1 can be applied to show that

(6.3) inf P[CS|R(n)] inf Y(A,n) where
Q(p) k>61
@ Fp(y1(2-610)
1/n k-1
IO{an(yd |(}"61))} (YI(A 5 )):k m,m anp(YIA), Ae
¥(A,n)=
-1
an(yIGZ A

> 1/n| -1, k-1 ,
fO{an(yd |62 A} ;k-m,m anp(y|A), Ael

1/ny.-1
Fop(yd 16573

where I1 = [61,6162/(62-1))

2 = [6162/(62—1))00)

I

In this problem the one dimensional infimum Y(A,n) is not independent of

A as was the case in the normal means problem. However for 1 < d < 62 and

using the properties of the fp(ylx) density listed above, a piecewise applica-

tion of Theorem 3.2 on I1 and I2 shows that ¢(A,n) is + in A on I1 and 4+ in

A on I2 and hence

(6.4) inf P[CS|R(N)] = ¥(8,8,/(8,-1),n).
2(p)
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Theorem 4.1 applies since 6162/(62-1)5A = [0,~) and hence

inf PA[CS|R(n)] + 1 as n», All other usual properties hold for R(n)
Q(p) =

and in particular (5.7) holds (as verified by Panchapakesan (1969)) and

hence
sup E[S(n)] = sup y(A,n) and y(A,n) + in A
Q , A>0 .
where
o F__(y|n
1l 1/n k-1 n o
y(A,n) = ka{an(yd END A | ;k-m,m anp(ylx).

Foprd /1)

3.

Using a probability argument this supremum can be evaluated as lim y(A,n)=
: -
We obtain
(6.5) sup E[S(n)] = m.
191

Details of the above probplem as well as other applications to regular. and

non regular problems can be found in Santner (1973).,
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