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0. Introduction

Professor Erdds has stimulated a great deal of interest in
extremal problems in graph theory, [2], [3]. 1In particular, his
work on Ramsey's Theorem which dates back to 1935 in his joint
paper with Szekeres [U4] has influenced a large amount of research.
To this date no one has improved on Erd8s lower bounds for Ramsey
numbers [1] which was established by the ingenius probabilistic

methods which he invented.

This paper 1s devoted to obtaining upper bounds for Ramsey
numbers. Our methods are an extension of the methods of Graver
and Yackel [5]. The main result which we obtain is that the Ramsey
number R(nl, n2) satisfies the inequality

log log n n1-2 nl-l

2
n
log n, 2

R(nlf'n2) < C

where C 1s bounded for all nq. This inequality is only of

value when ny 1s fixed and n, is large. In particular, it

does not cover the case of R(n, n) which was treated in Yackel,

[6].

¥This work was partially supported by the Office'of Naval Research
Contract NOOO1l4-67-A-0226-00014 at Purdue University.




1. Definitions

We consider Ramsey's Theorem as it peftains to partitions
of pairs of elements:of a finite set S into two disjoint classes.
Our presentation will use the graph theoretic representation in
which the pairs of elements of S 1in one class determine the edges

of the graph.

Definition 1. I(G), the independence number of the graph G,
is the maximum number of points of G that can be chosen so that

no two are joined by an edge.

Definition 2. C(G), the clique number of the graph G, is

the maximum number of points in any complete subgraph of G.

Definition 3. G 1s a Ramsey (nl, n2)—graph'if ny > C(G)

and n, > I(G).

Definition 4. R(nl, n is the largest integer such that

5)
there 1s a Ramsey (nl, n2)—graph on R(nl, n2) points.

Our primary concern in this paper is to study the local
connectedness of a Rémsey (nl, n2)—graph and to use this connected-
ness in obtaining bounds for R(nl, n2). To facilitate this study
we define several symbols for notation to be used throughout this

paper.

Definition 5. With respect to a given independent set H
of G the support of a point is that subset of H adjacent (joined
by an edge) to that point. A i-point is a point of G for which

the support contains exactly 1 members.



2. Basic Inequalities

Our main inequality results from the application of Proposition 6,
p. 140 of Graver and Yackel [5]. We will first obtain extensions
of Lemma 9, p. 155 of [5], for which it-will be necessary to study
the connectedness of a Ramsey (nl, n2)-graph. The objective in
studying connectedness is to estimate the intersection of the sup-

port of i-points.

We now prove several lemmas for the purpose of estimating the
intersection of eupport of i-points. To that end we let
p(i; ng, n2) be the maximum number of i-points with respect to
an independent (n2 - 1) set for a Ramsey (nl, n2)—graph. We also
denote by e(i, j;'nl, n2) the maximum number of edges which join
two 1-points, for:which the intersection of the snpport of the two
points is J, all With respect to an lndependent (n2 - 1) set for

a Ramsey (nl, n2)-graph.
Throughout we will assume that ny is much smaller than n,.

Lemma 1. e(i,.O; ny, ny) < p(i; ng, n2)R(nll -1, ny)/2.

Proof: This 1s an upper bound for the number of edges

joining two i-points.

Lemma 2., e(1, 1; s ng) s 1p(i; Dy nB)H(n1 -2, n,)/2.



Proof: Each i-point is adjacent to 1 elements of the
independent set. Among the i-points adjacent to any one element
of the independent set the maximum valence 1is R(nl - 2, n2) since
the set of all points adjacent to any point in a Ramsey (nl, n2)—
graph'is a Ramsey (nl -1, n2)-graph and the valence of any point
of a Ramsey (nl -1, n2)-graph is at most R(n1 -2, n2). Thus
ip(i; n,, n2)R(nl - 2, n2)/2 gives an upper bound for the number
of edges between two i-points both of which haVe common support of

at least one point. This completes the proof of the lemma.

Lemma 3.

e(i, 2; n ) =

. p(i; nqs n2) (i
1° M2

2 2) R(ny = 2, np) — =71

where a(nl - l,‘n2) is the average support of the points in a
Ramsey (n1 -1, n2)-graph with respect to an independent (n2 - 1)

set.

Proof: Lét an arbitrary i-point, z, be given. Choose two of
the support points, say x and y. There are at most R(nl - 2, n2).
edges with 2z as one end point and for which the other endpoint
has support containing x. Next we find an independent n, - 1

set among the points adjacent to 2z and including Xx, y.



L\

The points adjacent to =z form a Ramsey (n, - 1, n2)—graph

1
and the average support of those points with respect to the
independent set choosen is a(nl -1, n2). As we consider all

points adjacent to 2z we thus find that

.n2"3
a(nl—l, n2) -2

<n2 - 2
a(nl—l, n2) -1

of thosepoints will also have support containing y.

R(nl -2, n2)

When we take account of all i-points, all pairs x, y and

the fact that each i-point is counted twice we find that

p(i; n,, n,) a(n, - 1, n,)
. L 2 i 1 2
e(i, 23 nl’ n2) S. > (2\ R(nl - 2, n2) - n2 T
as stated.
Lemma 4.
p(i; n., n ‘ a(n, = 1, n,)\Jj-1
. 1> M2/ f1 1 2
e(i, j; ng, n2)_s 5 ‘j) R(nl -2, n2)’ o, - T .

Proof: The argument is the same as in Lemma 3. We must
consider all adjacencies and so we obtain an average but with less

freedom when J points of support must be common.

For a fixed value of n, and as n, is taken to be large

it is convenlient to write



o . nl-l.
.R(nl? n2) < f(nl)n2

see Graver and Yackel [5], or Yackel [6].

Theorem 1l: For n a fixed integer and n, sufficiently

1
large we have

n., -2
i-1 (n;-1)- —

l'Cr12 1

p(i; ny, n,) < (f(n1 - 1))

where C 1s bounded for all Ny, N0, and 1 =< log n,.

Proof: As a direct application of propostion 6 in [5] we

determine that

n, - 1 -21 + )

1
-1 e(i, j; ny, n
=0 e\ -2t 45

We leave it as an exercise for the reader to verify that

i ) n2 -1 -2i+ ]
) oe(di, i n,, n,)

n2 -1 - i

k - 1

(ng—l—Zi)
= e(1, 0; n;, ny) == (1 + o(1))

5 = 1 -1
k - 1



as n, approaches..w,_for‘-nl' fixed and 1 s log n,. Lemma 1,
Lemma 2, and Lemma 3, together with the fact that a(nl, n2)

o(log n2) for fixed n as n, approaches o, suffice for that

1
assertion. If a(nl, n2) were not of(log n2) then our principal

result, Theorem 2, would follow with no more additional work.

To complete the proof for the theorem we need only estimate

_ p(i; ng n2) n1—2
e(i, 0; nys n2) by 5 f(nl - l)n2

and the remark preceeding the statement of this theorem. Then we

using Lemma 1

make standard estimates of the quantities in (1) using (2) as well
to complete the upper bound. In obtaining the final result we

must choose the value of k. Thus we choose

n,-2
1
nl_' 1
- 1 2
k = int T
i

in making our final estimates. Thls completes the Theorem.

3. Asymptotic Bounds

In this section the bounds obtained for p(i; nq, n2) are
used to determine bounds on R(nl, n2). Since the results 1n
section 2 are obtained piecemeal for each p(i; nq, n2) there 1is
some work yet to be done in order to find the best bounds available

from the results stated in Theorem 1.



> n,-2 n,-1

1 n 1
2.

log log n

Theorem 2. R(nl, n2) < C for

log n,
large valuesof h2, where C 1s an absolute constant for all n, .
Proof: For'any‘Ramsey (nl, n2)—graph, with respect to an

independent (n2 - 1) set we find

n2-l

(3) 151 ip(i; ny, n,) < n,R(ny - 1, ny,)

by counting edges.

n,-1
‘ 2 o
Since R(nl, n2) = n, + izl p(i; n,, n2) we are interested
n2—l
in finding an upperbound for Z p(i; ng, n2). The upperbound
i=1 '
can most easily be established by stating the linear programming
problem:
_ n2—l
Find the maximum of | p(i; ny, n,) where
i=1
n,-2
- lfl (ny-1)- 11
p(1; n;, n,) < (f(ny - 1)) C n,

for i=1, 2,...,1log n,
p(i; n,, n2) < n, R(nl -1, n2)/i for n, >1i > log n,
and n2—l

Y ip(i; ny, ny) = n,R(n; - 1, n,).
i=1

Now, we do not inténd to solve this problem but will instead use

the dual problem to find an easy and useful bound on the maximum.



9.

We accomplish this by finding a feasible point for the dual problem
and estimating the value of the objective function fbr the dual
problem at that point. This procedure gives a reasonable bound

on the maximum of the original problem when it is carefully done.

The dual problem states:

Find the minimum of

n,-2
)) zi(f‘(nl - 1)) C n,
i=1
n2—1
+ ) z, n,R(n, - 1, n,)/i + =z n,R(n, - 1, n,)
1=Tog n2+l i2 1 2 n, 2 1 2
where Zy + 1zn2 =1 for 1 =1, 2,..., n, - 1.

To establish the theorem we propose the choice

1 - % if isM
z; = for 1 = 1,2,...,n2 -1
0 : if 1> M
1 ny - 2 log n2
and zn2 =M Next we propose M = 3 Tog 1og n, to complete

the description of the feasible solution for the minimum problem.

Finally, with this choice we find

. n,-2
: . (ny-1)- =5
. zi(f(nl - 1)) C n, + z, 1

e~1=2

1

n
Mo R(nl -1, n2)(1 + o(1)) as n, +* o«

and the theorem is established.



10.

4, Concluding Remarks

It is surprising that the local connectedness properties we
studied here in sectilon 2 should glve global results. This seems
to suggest that a deeper study of the structure of Ramsey graphs

would significantly improve these results.

There is cleafly no point in attempting to evaluate constants
nor in improving the statement of Theorem 2 by more careful

optimization of the'linear programming problem,

A study of the constructions of Erdés [1] would be of interest
to compare the connectedness of his graphs with the results of

this paper. This study has not yet been done to my knowledge.
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