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1.1 INTRODUCTION -

In a series of papers the lecturer developed two approaches towards
a unified treatment of the General Gauss-Markoff (GGM) linear model
(Y, X8, UZV) where V, the dispersion matrix of Y, may be singuiar and X
may be deficient in rank. One is called the inverse partition (IPM) method
which depends on the numérical evaluation of a g-inverse of a partitioned
matrix. Another is an analogue of least square theory and is called unified
least square‘(ULS) method.

It may be noted that Aitken's [1] approach (which is called generalized
least squares) is applicable only when V is non-singular although the require-
ment that X is of full rank can be relaxed.

The aim of these lectures is to bring out the salient features of these
two methods and to point out some interesting féatures of linear unbiased

estimation when the dispersion matrix of the observations is singular.

1.2 STATEMENT OF THE PROBLEM

Consider the triplet
: ,
(1.2.1) (Y, XB, o"V)

where Y is an nxl vector of random variables, X is a given nxm matrix and B

is an unknown mxl vector. Furthermore,

X8

02V

E(Y)

and D(Y)

where 02 is unknown.
We refer to set up (1.2.1) as the General Gauss-Markoff (GGM) model. No
assumption is made about R(V) and R(X) where R(-) denotes the rank of the

matrix argument.



The problem is to estimate B and 02. An associated problem is that
of testing hypotheses e.g. Test Hy: P'B = w, where P is a given kxm matrix,
on the basis of the given model.

The classical method of solving the above problem is the method of
least squares. Various types of difficulties can arise i.e. the parameters

may not be independent and the variables may be related in the following sense:
(a) R(X) <m

(6) R(V) <n ([V] =0)

If neither of the above two difficulties is present then a solution to the

problem of estimation of B is the B which minimizes (B is not estimable if R(x)+m)

Q = (Y-XB)'V' 1 (Y-X8).

2. PRELIMINARIES

2.1 Notation
The following notation will be used throughout.

(a) The vector Space generated by the columns of a matrix X is represented
by M.

(b) The vector space orthogonal to_€(A) is denoted bYJe(AL) where AY is a
matrix of maximum rank with‘its columns orthogonal to the columns of A.

(¢) If V is a n.n.d. (non-negative definite) matrix the expression

lpll = (v /2

where p is a vector is called the V-norm of p.

(d) The BLUE (bestvlinear unbiased estimator) is the linear unbiased
estimator with minimum variance.

(e) (X:V) denotes a partitioned matrix and R(X) the rank of matrix X. A

matrix with all zero entries is denoted by 0.



2.2 Some Results on g;inverses of a Matrices

Def, 2.2.1 Let A be an mxn matrix. A g-inverse of A is an nxm matrix
denoted by A, satisfying the condition
‘AA'A = A
Generalized inverses have the following properties.
(a) AA'B =B B = AK i.e._#(B) C4(A).
Proof:
Sufficiency is obvious. To prove necessity choose
K = A™B.
(b) Let A be of order mxn and let A~ be any g-inverse of A.
Then
( i) A general solution of the homogeneous equation
Ax = 0
is
x = (I-A"A)z,
where z is an arbitrary.vector;
(ii) a general solution to a consistent non homogeneous equation
Ax =y
is
x=Ay+ (I-A'A)z,
where z is an arbitrary vector
Proof:
| ( i) Note that this is equivalent to saying that the orthogonal space

of A' =_g(I-A"A) which follows from the fact that

A(I-A"A) = 0

and R(I-A"A)

n-R(A).



(c)

(ii) follows since a general solution of Ax = y is the sum of a

X

then the inner product (x,y) = x'Ay, A being a p.d. matrix.

Proof of (i): By property (a), we have X'X(X3X)'X' = X'. Then

PP, = X(X'X) X'X(X'X) X' = X(X'X) X' = P

XX X

so that Px is idempotent.

Further [(X'X) ]' is also a g-inverse of X'X. Then by

uniqueness for choice of g-inverse

Py = X[(X'X) ]'X' = X(X'X) X' = Py

SO PX is symmetric. Thus Px is the projection operator.

Proof of (ii): The proof is the same as in (1). We establish

Px is idempotent and APX is symmetric.

(4) #(X) = 41-(x")X'].

Proof: Let R(X") = r.

Then X'[I-(X')7X'] = X'=X'(X')"X' = X'-X' = 0

particular solution of Ax = y and a general solqtion of Ax = 0.
- The projection operator on_g(x) is |
( 1) Px = X(X'X) X', which is unique for any choice of the g-inverse,
when the inner product (x,y) = x'y, and
(ii) P, = X(X'AX) X'A, which is unique for any choice of the g-inverse,



Next we show that R[I-(X')"X'] = n-r.
This follows easily from the fact that the matrices [I-(X')'X'],

I and (X') "X are all idempotent. Therefore

R[I-(X')"X'] = Trace[I-(X')"X'] = Trace I - Trace (X') X' = n-r

(e) Consider thé equation

(2.2.1)

AXA = A
Then four alternative representations of a general solution to

(2.2.1) are, with PA as the projection operator on_g(A),

( 1) X =A" + U - ATAUAA™

( i1) X =»A_ + (I-A"A)V+W(I-AAT)
(iii) X = A" + U - P,.UP,

(iv) X=A + W(I-P,) + (I-P,,) V

where A~ is a particular g-inverse and U, V, W are arbitrary matrices.
Proof: '

Verification of these identities is straightforward and left to the

reader.

(f) The equation AXB = C has a solution if and only if

(2.2.2)

(2.2.3)

AATC BB = C.

In such a case a solution is given by
X=ACB + Z-A"A Z BB
where Z is arbitrary.
Proof:
Necessity of (2.2.2) follows from the fact that if the equations are
consistent there exists a matrix X such that
AXB = C

Then AA™ C BB = AA” AXBB™B = AXB = C. Sufficiency is trivial since
here ACB~ is clearly a solution. Observe that X defined by (2.2.3)
i

satisfies the equation

AXB = C.



Also.any arbitrary solufion X of this equation is obtainable
through the formula (2.2.3) by a suitable cﬁoice of the matrix Z;
for example,

Z=X-A" CB
is such a_ choice. This shows that (2.2.3) provides the general
solution.-

(g) (A generalization of Fisher-Cochran's Theorem.)

, _ | K
Theorem 2.2.1. Let Ay be mxpfmatricesof rank T i=1,2,...,k2 Z r. = m.

Then the following are equivalent:

(1) A Ay =0 idj

?

k 1]
(ii) I = izl A (AJA)T A

Proof: Rao and Mitra [4] prove a more general result, Theorem 2.8.1 on
p. 33-34.
(h) Let V be a n.n.d. matrix and X be any given matrix. If there exists a

matrix U such that.

N

AV XUXT) = (VX0
Then,
R[X'(V + XUX')™ X] = R[X'].
Proof:

See Lemma 5.2.2 for the prodf.

(i) Def. 2.2.2. A matrix denofed by A&tN) is said to be a minimum N-norm

inverse of A if

x = A;A(N)y
is a solution of the consistent-equation
. ey
with the smallest N-norm (being defined as vx'NX) where

N is an n.n.d. matrix.



Remark 2.2.1

( 1) Ayey need not be unique
( ii) {A;“N)} ;'{A‘}
(1i1) Ay = 6

if and only if

AGA

A

(GA)'N = NGA
(3) Let Ax = y be a not necessarily consistent_equation then a matrix denoted

by A;(M) is said to be M-least square inverse of A if .

X = Az(M) y

minimizes the quadratic form
(Ax-y)' M(Ax-y)
~ where M is a p.d. matrix. X is called a M-least squares solution

of Ax=y.

Remark 2.2.2

( i) A;(M) need not be unique
(i) {A;(M)} c {A}.

AGA
(AG)'M

A

(iii) G = AQ(M) if and only if { MAG

(k) Def. 2.2.3 A matrix denoted by A&N (=A+) is said to be a minimum N-norm

M-least squares inverse of A if

X = A+q is an M-least square solution of Ax=y with a

minimum N-norm, where M and N are p.d. matrices.



Remark 2.2.3

( i) At is unique
(ii) if G = A" then following holds (and conversely)

AGA = A

GAG = G
(GA)'N = NGA (N p.d.)

(AG)'M = MAG (M p.d.)

2.3 Duality Theorem

Theorem 2.3.1

(X", = [X° I’
MW Tt
Pioof: Let G = X L
AV
Then
(2.3.1) 6= X T
2V )

From the definition of G (Remarks 2.2.1 (iii)), we have
(xe) vl = vl xa.

Therefore
XGV = V(XG) ',

and |
(G'X")' V = V(G'X").

Again by Remarks 2.2.1 (iii) we have

M(V)°
Combining (2.3.1) and (2.3.2) gives the result.

(2.3.2) G' = (X")



2.3.1 Application of Duality Theorem

(Another proof of the Gauss-Markoff Theorem).

Consider the following minimization problem. Minimize
-1
(Y-XB)' V © (Y-XB).

A solution to the above problem is:

(2.3.3) B=x Y
LV )

Consequently an estimate of p'B is p'é = p'X 1 Y.
L(V)

Next, suppose we want to find an estimate of p'B by L'Y such that
(a) X'L = p (unbiasedness) | |
(b) L'VL = minimum.
A solution to above probiem is given by

L = (X')&(v) P -
Thus an estimate of p'B is

LY = p' [(X ey 1Y
By the Duality Theorem, this solution can be written as

L'Y = p'[X AL
LV )

From (2.3.3), the right hand side can be written as p'B which is a least

squares solution.
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2.4 Computation of A~ (Shows existence).

Let A be an nxn matrix of rank r < n.

(a) If Ais symmetric then it has a spectral decomposition

- 1 1 1
A= AlPlPl + A2P2P2 +...4 ArPrPr

where Ays 12"'Ar are non-zero eigenvalues of A with corresponding

eigen-vectors Pys PyyeneP o In such a case
T o= 1— ! .!‘... ! l 1___ ' 5 P =0 544
AT = x PPl + » PPL +...+ " P P, with P{P.=0 ,1*3'

(b) If A is not symmetric then it has a singular value decomposition

(see [4] p. 38, [3] p. 42)
= 3 ' ' 1
A= A PQ) + A,P,QY ..t AP QL
where ‘Pl’PZ";"Pr are the eigen vectors of AA' and
':Ql,QZ,...,Qr are the eigen vectors of A'A

_ Ai are the positive square roots of the eigenvalues of A'A.

In this case

.._1 ' 1
A = i—'lel oot = QrP;
-1 T

Remark 2.4.1.. Pl,Pz,’...,Pr are orthogonal to each other

and Q;,Q,,...,Q, are orthogonal to each other.

3.1 Condition of Consistency

Consider the GGM model
(3.1.1) (Y, X8,0%9).
It may be noted that the Gauss-Markoff model with restrictions on the

parameter B

(3.1.2) (Y,XB,UZV);C = RB
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can be written as the GGM model

' 2
(3.1.3) (Ye: xeB: g ve)s
where

_ Y _ (X _ Vo
(3.1.4) Ye = (C), Xe = (R), Ve = (0 0)-

When V is singular in (3.1.1) there are some natural restrictions on
the random vector Y and possibly on the parameter vector B.

One such restriction on Y is given by the following:
Lemma 3.1.1

L'X = 0, L'V = 0 implies that L'Y = 0 with probability 1.
Proof: The conditions
E(L'Y) = L'XB = 0

Var(L'Y) = L'VL = 0

imply that L'Y = 0 with probability 1. As a consequence of the

above lemma, we have:

Theorem 3.1.1

(a) Y € #(V:X) with probability 1.
This is called the consis?ency of the model.

(b) R(V) =t <n, implies the existence of an (nxs)_matrix K such that
K'V = 0. Here s = (n-t) and the choice of K = V' works.

(¢) cov(K'Y) = 02

K'VK = 0 implies that K'Y =C (constant vector) with prob. 1.
(c) says there exist s independent linear functions of Y which are constants with
probability 1.

Remark 3.1.1

Another way to state the above result is:
Y-YO €_4(V) where Y0 is an observed value of Y or Y = Y0 + VZ where Z is an arbitrary

vector.



(a)

(b)

3.2

(3.2.

12

Restrictions on the random variable Y

K'Y = C.

Therefore Y lies on the hyperplane K'Y = C.

We show that Y lies on a hyperplane through the origin.
Let D = C: Then

D'K'Y = D'C-= 0;

i.e., N'Y = 0, where N' = D'K'. This implies that

4
Y €_4(N).

Restrictions on the parameter B

E(K'Y) = K'XB = C.
Therefore,
D'K'XB = 0(D=C*) = N'Xg = 0

where N' = D'K'.

Unbiasedness of a Linear Estimator

Let us consider the model (1) and find the condition for a linear

function L'Y to be unbiased for p'B.
1) E(L'¥) = L'XB = p'(8)

which must hold for all B such that

N'Xg = 0
Then there exists a vector A such that

L'X - p' = A'N'X

or p = X'(L-N})

Thus we have the following lemmas.
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Lemma 3.2.1
A necessary and sufficient condition that p'B admits of a linear

unbiased estimator is that p €_#(X').

Lemma 3.2.2
If L'Y is unbiased for p‘B then it is necessary and sufficient that
there exists a vector A such that

(3.2.2) X'(L-NX) =p

Lemma 3.2.3

If L'Y is an unbiased estimator of p'B then there exists a vector M

such that

X'M=p
and L'Y = M'Y with prob. 1.
Proof:

Take M = L-NA (X as defined by (3.2.2)).
Then M'Y = L'Y - A'N'Y = L'Y with prob. 1. Also note that

X'M = X'L - X'NA = p.

Remark 3.2.1

( i) Note that when V is of full rank or when the observation Y is unknown,
the condition for unbiasedness of L'Y for p'8 is
X'L=p
which is usually given in textbooks.
This is not true in general as (3.2.2) shows.
(ii) Lemma (3.2.3)'shows that the entire classof unbiased estimators of
an estimable function p'B can be generated by M'Y where M satisfies the

condition X'M = p,



14

Thus to find the minimum variance unbiased estimator of p'R we need to
determine M such that
M'VM is minimum

subject to the condition X'M = p.

(iii) The result of Lemma 3.2.2 is based on the knowledge of the matrix N,
which can be computed if V and a sample observation on the r.v. Y are
known.

However if we want L'Y to be unbiased for p'B irrespective of the
subspace to thch Y may belong then the condition is

X'L = p.
Fortunately,iﬁ view of Lemma 3.2.3 the formulae we develop for the
BLUE of p'B and for the estimation of 02 are valid no matter which

particular subspace Y may belong to.

4, THE IPM METHOD

4.1 Preliminaries

The Inverse Partition Matrix (IPM) Method requires the computation

of a g-inverse of the‘partitioned matrix

(4.1.1) ' =

where V and X are defined as in the model (3.1.1).0nce a g-inverse is

computed by a suitable procedure we seem to have a Pandora's box supplying

all the ingredients needed for obtaining the BLUE's, their variances and
covariances, an uﬁbiased estimate of 02, and test criteria without any
further computations except for a few matrix multiplications. Thus the
problem of inference from a linear model is reduced to the numerical

problem of finding an inverse (a g-inverse) of the symmetric matrix given

in (4.1.1).



15

We summarize some results about g-inverse of a partitioned matrix in
the following.

Theorem 4.1.1

Let V X, C 2, 3, C4, be as defined in (4.1.1). The following hold:

C! C!
( 1) 1 3 is another choice of g-inverse.
-C! :
4
( ii) X ¢ = XC
111 - - ] - t | -
( iii) v C2 X' = X C2 = X C4 Xt = X C4 Xt =V C3 Xt = X C3 \)
( iv)y Xx' C1 X=0,V C1 X=0, X! C1 V=0,V C1 V + X C3 V=YV
- - 1 - t
( v) V C1 \') C1 V=YV C1 V=YV C1 Vv C1 V=YV C1 \'
( vi) Trace V Cl = R(V:X) - R(X)
C1
( vii) is a g-inverse of (V:X)
C
3
- C Cl
(viii) vV X = 1 3 is another choice of g-inverse.
X' 0 Cé -C4

Proof:
The result (i) is proved by taking transposes of either side of (4.1.1).

(ii) and (iii). Weobserve that the equations

(4.1.2) e %50

are solvable for any d, in which case
a = C2 Xt d

(4.1.3) { - -C, X' d

is a solution.

Substituting (4.1.3) in (4.1.2) and omitting d, we have
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! = '
\' C2 Xt =X C4 X

1 ' = Y
X C2 X X',

(4.1.4)

In view of (i) we can replace C4,'C2 by C!, Cé in (4.1.4) to obtain

\ Cé X' =XC} Xt

(4.1.5) 4
] ] | - 1
X C3 Xt =X
Multiplying both sides of the first equation in (4.1.5) by X C3, we obtain
g 1 1 - | - L] t
(4.1.6) X C3 \Y C3 Xt =X C3 X C& X' =X C4 X'.

So that X CA X' is symmetric.

Then (4.1.4-6) prove the results (ii) and (iii).

(iv) We observe that the equations

Va + Xb = Xd,
(4.1.7) .
X'a = 0,

are solvable for any d. Then,

as=s C1 Xd,
" (4.1.8) S

b C3 Xd,

is a solution. Substituting (4.1.8) in (4.1.7) and omitting d, we have

v C1 X+ X 03 X =X,
(4.1.9) '
1 _
X Cl x - Oo,
But X C3 X=X=V C1 X = 0.
Also, V Ci X = 0 in view of (i).

The result V C1 V+X C3 V = V easily follows.

(V) We observe that the equations
Va + Xb = Vd,

(4.1.10) .
X'a © =0,

are solvable for any d. One solution is



C

o
1]

1 vd,

C,y Vd..

(4.1;11)

o
n

Substituting in (4.1.10) and omitting d

\Y C1 Va+X C3 N

X! C1 \'

vV,
(4.1.12)

0.
This implies that

V+VC XC,V=VC V=VC(C, VC,V,

(4.1.13) V C1 \ C1 1 3 1 1 1

since V C1 X = 0.

Also, since V Ci X =0,

' = '
(4.1.14) Vv C1 Vv C1 V=YV C1 v,

and V C1 V is symmetric,
(vi) To prove (vi) we use the result
R(AA) = R(A) = Tr(AA") for any g-inverse A~ of A.

vV X C1 C2 \' C1 + X C3 ) C2 - X C4

R = Tr _
. L] 1
3 & X' ¢ X' G,

H

. 1]
Tr(V C1_+ X‘CS) +Tr X C2

]

Tr(V cl)'+ R(X C;) + R(X' C,)

(4.1.15) = Tr(V Cl) + R(X) + R(X").
Moreover,
VvV X
(4.1.16) R = R(V:X) + R(X).
: X'o /.

Equating (4.1.15) and (4.1.16) we have

Tr V C1 = R(V:X) - R(X).

The reéults'(vii) and (viii) are proved by direct verification.



18

Remark 4.1.1

( 1) Thé results (ii), (iii) and (iv) of above theorem are necessary
and sufficient for relation (4.1.1) to hold.

( ii) C2 and Cé are in fact minimum V-norm g-inverse of X'.

(iii) (Ci:Cé) is a minimum V-norm g-inverse of (x,).

As remarked earlier the inverse matrix (4.1.1) is like a Pandora's Box
which gives all that is necessary for drawing inference on the B-parameters.
We state the results in Theorem 4.2.1 which demonstrates the use of the sub-

matrices in (4.1.1).

4.2 Main Results

Theorem 4.2.1

Let Cl’ C2, CS’ C, be as defined in (4.1.1). Then the following hold:

4

3]. The BLUE of an estimable parametric function

p'8 is p'B where

( i) [{[Use of C2 or C

(4.2.1) B = Cé Yor B = C3 Y

( ii) [Use of C4]. ‘The dispersion matrix of é is 02 C4 in the sense,
(4.2.2)  var(p'®) = o” p' ¢, p,

4.2.3 1 1RY = 2mt _ 2,

(4.2.3) Cov(p'8, q'B) = o"p'Cyq = 0"q'C,p,

where p'B and q'B are estimable.
(i1i) [Use of C;]. An umbiased estimator of o° is

~2 -1
o

(4.2.4) f

'
Y C1 Y

where

Hh
n

R(V:X) - R(X)



Proof:

(4.2.5)

( i)
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If L'Y is an unbiased esfimator of p'B then
‘X'L =‘p._
Subject to this conditien
V(L'Y) = GZL'VL,
or L'VL hés to be minimized to obtain the BLUE of p'B.
Let L, be an optimum choice and L be any other véctor such that
.X'L = X'L,.
Then
L'VL = (L-L, + L)' V(L-L, + L)
= (L-L,)' V(L-L,) + LLVL, + 2LLV(L-L,) > LiVL,,
iff LlV(L-L,) = O whenever X'(L-L,) = 0; i.e., VL, = -XK,
for a suitable K,.

Then L, and K, satisfy the equations

0

{VL* + XK,
' P

X'L,

We observe that the equations (4.2.5) admit a solution and any two
solutions Ll* and Los satisfy the condition

V(Ly, - Ly,) = 0.

Since (4.2.5) is consistent, a solution is given by

L, = C2p L,
or
Ky = 'C4P K, 'C4P

C%p

Then the BLUE of p'é is

LLY = p'CyY = p'CyY.

We use the fact that p = X'M for some M. Then
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Var(p'CéY) o] M'(XCéV)CZX'M

= oPMIXC, (X'C X" )M Using Theorem 4.1.1 (iii)

= o“MIXC,X'M Using Theorem 4.1.1 ( ii)
2

=0 p'C4p.

Similarly,

2 2
Cov(p'CéYq'CéY) o p'C4q =g q'C4p.

(iii) Since X‘CIV

0 and x'clx = 0, using Theorem 4.1.1 ( iv),

Y'c,y = (Y - XB)' C, (Y-X8).
We have

6% Tr ¢, [E{(Y-Xg) (¥-X8)'}]

o Tr CV = *[R(V:X) - ROOT,

E[(Y-X8)'C, (Y-X8)]

where the last equality follows from (vi) of Theorem 4.1.1.

Theorem 4.2.2

Let P'B be the vector of BLUE's of a set of k estimable parametric

2

functions P'g, R0 = Y'ClY and f be as defined in Theorem 4.2.1. If

Y ~ Nn(XB,GZV), then:

(i) P'8 and Y'C,Y are independently distributed with

(4.2.6) P'B - N (P'8, )
and

22
(4.2.7) YIC,Y ~ otk

where D = P'C4P.

(ii) Let P'B = w be the null hypothesis. The null hypothesis is consistent iff
(4.2.8) DDu =u

where u = P'é - W,
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If the hypothesis is consistent, then

(4.2.9) F=4__u_. s h = R(D)

has a Central F distribution on h and f degrees of freedom when the
hypothesis is true, and a non-central F distribution when the hypothesis

is false.

Proof (i)
The result (4.2.6) is easy to establish.

(4.2.7) follows since

C, + C! Cc, + C!
e R [ e
and by
VCIVCIV = VCIV
and
t -
VCIVCIV = VC1V

which is an NAS condition for a xz - dist, (See Rao [3] p. 188 and also
Rao and Mifra [41.)
The degrees of freedom of the x2 is
Tr VC1 = R(V:X) - R(X) = £, ' using Theorem 4.1.1, result (vi).
Since P'B is estimable,
P' = QX for some Q.

~

Then P'8 = QXC,Y.

: c, + C! :
The condition for independence of Y'(—le—J% Y and QXCSY is
Cl + Ci
—ee—s ! =
V( > ) VC3X'Q'QXC3V 0
which is true since
C, + C! c, + C!
1 vorxt = vt L -
V(—-—ir——a VCSX' = V(= 5 ) XC3V = 0

Using Theorem 4.1.1 (ii) and (iii).



22

(1i) The hypothesis P'8 = w is consistent_for any vector M.
Var[M' (p'B-w)] = 0 = M'(P'-w) = 0;
i.e., M'DM = 0 = M'u = 0 or u €4(D), for which a NAS condition
is DDu = u, for any g-inverse D~ ofTD.

Since dispersion matrix of u = %D and

DD'D = D,

7 7% h = R(D),

Using the result proved in (i), Rg

independently of u. Hence the result (4.2.9) follows.

is distributed as xi

Q.E.D.

In Theorem 4.2.2 the numerator of the F statistic for testing the
linear hypothesis p'B = w was obtained in the forﬁ U'D U which involved the
estimation of deviations in individual hypotheses, computations of their
dispersion matrix apd its inverse.

Theorem 4.2.3 provides an alternative method of computing the numerator

as in the theory of least squares.

Theorem 4.2.3

Let C1 be as defined in (4.1.1) and

A 0 X E E
0 0 p! = 1 2

E3 E4
X! P 0

for any choice of the g-inverse. Further let Y have a MVN distribution.

Then the hypothesis P'g = w is consistent iff

vV 0 X 1 Y Y
0 0 p! ‘
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in which case

!
—

il
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= =<
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~
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=
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T

vy
2 Y ClY

are independently distributed as 02x2 on

R <? X1 R(V:X) and

[a¥
n

0 p!

}—h
i}

R(V:X) - R(X)

degrees of freedom respectively.
Hence,

pal.l2
- T

— ¢

has the F distribution on d-and f degrees of freedom.

5. UNIFIED LEAST SQUARES METHOD (ULS)

5.1 Statement of the Problem

Suppose we have a GGM model

(5.1.1) (Y,X8,0°V) .

(a) When V =1 and X is of full rank in (5.1.1) Gauss [2] propounded the
famous theory of least squares which postulates that the best estimate

B of B is obtained by minimizing the sum of squares
(5.1.2) (Y—XB)' (Y-XB)

Gauss showed in fact that é is the BLUE of B and that an unbiased
estimator of 02 is

(5.1.3) 52

(Y-XB)' (Y-X8)/n-r with

R(X) .

T



(b)

(5.1

(5.1.

(5.1

(c)

.4)
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IfV + I but non-singular we make the transformations

_-1/2
Y, =V

Xt =V

Y

-1/2 X

and reduce the problem to the original Gaussian model

2
to which the theory of least squares is applicable.

Thus we are led to minimize

6)  (Y,X.8)' (Y.-X.B) = (Y-XB)' vl (y-xg)

which is the prdcedure proposed by Aitken [1].

If V is singular, Aitken's procedure fails as V_1 does not exist.
(e.g. if V is symmetric and n.n.d. with R(V) = r < n).

In such a case V has the following spectral decomposition

V=AxPP! +...+ A PP

1'1'1 rrr’

Let pr+1;""Pn denote eigenvectors corresponding to 0 eigenvectors.
- 4-1/2 .

Suppose Fi = Ai Pi i=1,2,...,r.

Then Var(F!Y) = o2F!VF, = o2A"1p1vP, = o°.
i i i i1

Cov(F.%F.Y) = 02P!VP. = 0.
i it

J
Also let Bj f Pr+j 3 =1,2,...,n-r, then

Var(B!Y) = B!VB, = 0.
J J )

Letting

F = (F|, Fp,..uhF ),

B = (B, BysersB ),
the given model (Y,XB,GZV) is reduced to (F'Y, F'XB;azIr) with

constraints B'Xg = B'Y = C.
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This is a simple Gauss model with restrictions on the parameter.
Hence the original problem is reduced to

minimize: (F'Y - F'XB)' (F'Y - F'XA,

such that B'Xg = C;
or
(5.1.7) minimize  (Y-XB)' FF' (Y-XB8),
such that B'XB = C.
. _ -1/2 -1/2
Since F = (Al pl,..,xr Pr),
-1 -1 -
LI ' f o=
FF Al_ P1P1 +...4 Ar Pr Pr v .

Therefore FF' can be identified with V- and (5.1.7) can be reformulated as

(5.1.8) minimize: (Y-XR)' V- (Y-XB),
such that B'XB = C.

Remark 5.1.1

Here V  can be taken as any g-inverse of V. The solution to (5.1.8) is

obtained by solving the equation

vyryT [} - Yty
(5.1.9) {xv XB + X' BA = X'V Y
‘ B'X8 = C.
Let
X'v- X . X'B\ Hy H2
1
B'X 0 Hq H,

Then the solution of (5.1.9) is
N
B = H X'V Y + HyC

and

Var(p'8) = ozp'Hlx'v' VW xHIp.
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Also, as before we can calculate

(1) Rg = min (Y-XB)' V (Y-XR),
B'X8 =C

(2) Rf = min (Y-XB)' V (Y-XB).
B'XB = C
P'B =W

(3) The F statistic (4.2.9) for testing

. ! - 3
HO. P'8 = W is

2
Rl—R
h

2
0

HJC;iJ

Motivated by the knowledge that Aitken's procedure fails when V is singﬁlar,

we raise the following question. Does there exist a matrix M regardless of

whether V is singular or not such that the following conditions hold?

(a) The BLUE of any estimable (ped(X')) parametric function p'B is p'é
where 8 is a stationery point of the function

(5.1.10) (Y-XB) ' M(Y-XB)

i.e. where the derivative of (5.1.10) with respect to B vanishes is zerc.
(b) An unbiased estimator of 02 is obtained as

(5.1.11) 8? = (Y-XB)' M(Y-XB) % f

where
f = R(V:X) - R(X).

(c) Ri = stationary value of

(5.1.12) (Y-XB)' M(Y-XB)
under the restriction P'8 = W,

Rg = stationary value of

(5.1.13) (Y-XB)' M(Y-XB)

and




Remark 5.1.2

It can be assumed, M may be chosen to be symmetric. Theorem 5.2.1 and

provide complete aﬁsWers to the questions (a) and (b). We show that V

singular or not, the choice should be

(5.1.14) M= (V+ XUX')~

for any symmetric g-inverse where U is any symmetric mafrix such that
AV:X) =_g(V + XuX').

In particular we can always choose

' (5.1.15) M= (V+ K2XX')"

for any choice of g-inverse where k is an arbitrary non-zero constant.
hold for any choice of M for all testable hypotheses.

5.2 Some Preliminary Lemmas

Lemma 5.2.1 Let T be a matrix such that R(X'TX) = R(X). Then

(5.2.1) X(X'TX) ™ (X'TX) = X

If R(X'TX) = R(X),'then for any vector 2,
X'TXA = 0 if and only if XA = 0.
This result together with the identity
(5.2.2) 0 = X'TX(X'TX) ™ X'TX - X'TX = X'TX[(X'TX)” X'TX - I],

yields (5.2.1).

Lemma 5.2.2 Let U be symmetric and V be n.n.d. matrices such that
(5.2.3) M(V:X) =_4(V + XUX")
vThen

R[X'(V + XIX")™ X] = R(X")

The result is easy to establish using Lemma 5.2.1.

.
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Lemma’5.2.3 Let X8 be the BLUE of X8. Then the unbiased estimater of 02 is
(5.2.4) £ LY-XB)'V (Y-XB) = £ L(Y-XB)'(V + XUX')" (Y-X8)
where
f = R(V:X) - R(X) and U is defined in Lemma 5.2.2.
The 1eft—Hand side expression in (5.2.4) is well-known.and the equivalence

with the right-hand side follows easily observing that Y-Xé-EJ{(V).

Theorem 5.2.1

Let (Y,XB,OZV) be a GGM model and M be a symmetric matrix such that

AXTMY) C(XMX) |
in which case

(Y-XB) ' M(Y-XB)

as a function of B has stationary values. Further let 8 be a statiocmzry point.
If p'é is the BLUE of p'B for every p&#(X'). Then it is necessary that
(5.2.5) R(X'MX) = R(X)
and M is of the form
(5.2.6) (G + XIX'") ™ + K

for any symmetric choice of g-inverse where Uand K are any symmetric matrices

such that
(5.2.7) | AHV:X) =_g(V + XUX")
(5.2.8) VKX = 0 X'KX = 0

Conversely: If M is of the form (5.2.6) with (5.2.7) and C5.2.8) true, tihen
R(X'MX) = R(X) and p'8 is the BLUE of p'g

for every p&#(X').

Equating the derivative of (Y-XB)'M (Y-XB) to zero, we obtain

(5.2.9) X'MX8 = X'MY
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which is consistent since_#£(X'MX) D_#(X'MV) and YCMV:X) with probability i.
In this case _
(5.2.10) B o= (XTMO)T X'MY
is a stationary point.
Let p = X'L. Then p'B is the BLUE of p'8 and it follows by definition that
(5.2.11) _L'X(X'MX)_ X'MX = L'X.
Since L is arbitrary in (5.2.11), we have
| X(X'MX)~ (X'MX) = X = R(X'MX) = R(X),
which proves (5.2.5).
If p'éhis the BLUE of p'B for every p&#4(X') then applying the lemma on p. 317
of Rao [3], we have:
(5.2.12) L'X(X'MX)~ X'MVZ = 0 for any L,
where Z is a matrix of maximum rank such that
X'Z = 0.
Then (5.2.12)= X(X'MX) X'MVZ = 0® X'MVZ = 0
(5.2.13) = VMX = XQ
for some Q.
Now there exists a symmetric matrix U such that
(5.2.14) X'M(V + XUX')MX = X'"MX.
Let W = X'MX. Then it can be verified easily that one choi;e of U is
WO(-X'MVMX + WWT,
where W is a symmetric g-inverse of W.
Multiplying both sides of (5.2.14) by X(X'MX)~ and using (5.2.13) and Lemma 5.2.1,
we obtain

(5.2.15) (V + XUX')MX = X.
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If o'(V + XIX") = Ovthen from (5.2.15) o'X = 0 and hence o'V = 0 and
vice-versa, which proves (5.2.7),Choosing'a symmetric g-inverse and a
symmetric K, let |

(5.2.16) M= (V+ xe')‘ + K.

Substituting (5.2.16) in (5.2.15), we obtain (5.2.8).

The converse is.easy to prove using Lemma 5.2.2.

Theorem 5.2.2

~

Let B be a stationary point of (Y-XB) 'M(Y-XB) where M is a symmetric

matrix such that

MX'MX) DO (X'MV).
If p'B is the BLUE of p'B for every pC#(X') and for all YEHV:X),
(5.2.17) o% = £ 1 (y-xB) "M(Y-XB)
is an unbiased estimator for 02, then it is necessary and sufficient that
M is a symmetric g-inverse of V + XUX' where U is any symmetric matrix such

that_#(V:X) = 4(V + XUX').

Proof:
We have already.seen that M ié of the form (5.2.6) and K satisfies (5.2.4}.
If (5.2.17) is the same as (5.2.4), then

(Y-XB) 'K(Y-XB) = 0 = Y'KY.
Using (5.2.8) for all YEMV + XUX'), which implies that VKV = 0 in additionm
to (5.2.8). Then,

(V + XUX")[(V + XUX')™ + KJ(V + XUX') = (V + XUX')
which shows that M‘is a g-inverse of (V + XUX').

Remark 5.2.1

( i) In Theorem™®.2.1 we showed that M is a symmetric g-inverse of
(V + XUX'). It may be seen that the expression

(Y-XB)'(V + XUX')™ (Y-XB)



31

is independent of the choice of a g-inverse and in practice one can use
any g-inverse.
(ii) If V + XUX' is a n.n.d. matrix then
(Y-XB) ' (V + XUX')™ (Y-XB)

is independent of the choice of the g-inverse, is non-negative and obtains
a minimum at B where the derivative vanishes.
We can always choose U in such a way that V + XUX' is n.n.d. and satisfies
(5.2.7). For example Ucan be any p.d. matrix.
(iii) It may be seen that (V + XUX') need not be a g-in&erse of V.
If there exist a matrix U such that V + XUX' satisfies (5.2.7) and

{V + XUX")} c {V} |
then it can be shown that a NAS condition is:

ANV) N_g(Xux') = {0}.

Such a choice of U can be made if necessary.

Theorem 5.2.3

Let M be chosen as in Theorem 5.2.2 and P'B be a set of k estimable functions i.e.
A(P) < _#(X").

Then P'@ are the BLUE's of P'@ and the dispersion matrix of P'B is

(5.2.18)  D(P'R) = o2P'[(X'(V + XUX")™ X) - UJP

Proof:
Let W = (V + XUX').
Then |
P'8B = P'(X'W X) X'WY
and

2

(5.2.19) D(p'é) = 0P (X'W™ X)" X'W V[P'(X'W X)~VX'W"]W

Write V V + XUX' - XWX

W - XUX' in (5.2.19).
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Then, repeatedly using the relation (a) of Section 2.2 we get (5.2.18).
Finally, to test the hypothesis
P'8 = W.
We proceed as follows:
Let u = P'B - W and
D(u) = oD, R(D) = h.
The hypothesis is consistent if

(5.2.20) DD” u = u,

If (5.2.20) holds, then the null distribution of the stétistic

hE ~
(5.2.21) F = 9-%}—11 s 5

is the F distribution on h and f degrees of freedom when Y - MVN(XB,OZV).
The results (5.2.20) and (5.2.21) are proved in section 4,
In Theorems 5.2.1 and 5.2.2, it is shown that there exists a matrix M,

~

whether V is nonsingular or not, such that a stationary value g of
(Y-XB) 'M(Y-XB)

provides the BLUE of an estimable function p'B as p'é, and an unbiased
estimator of 02 is

o2 = £ 1(y-XB) 'M(Y-XR).

So far we have an analogue of the least squares theory in the general case.
The first departure from the least squares results is the expression

(5.2.18) for the dispersion,ﬁatrix of P'é, which contains the extra term

02P'UP. It cén be shown that there exists no choice of M unless_g(x) c_#(V)

such that

(5.2.22)  D(P'R) = o°P'(X'MX) P

for all P such fhat P'B is estimable.
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Since (5.2.22) does not hold, there exists no choice of M, unless
M(X) © _4(V), which enables the computation of the numerator of the F-

statistic, (5.2.21), in the form

u'Du = min (Y-XB)'M(Y-XB) - min(Y-XB) 'M(Y-XB)
P'B=w .

for all testable hypotheses of the form P'B = w.

However Rao [6] and Mitra [10] have shown that a suitable choice of
M can‘be made provided the null hypothesis is written in a modified but
an équivalent form. The computation of such an M is somewhat complicated
and it is much simpler to compute the F-statistic as in Theorem 5.2.3, using
the simple choice of M as in Theorems 5.2.1 and 5.2.2 for estimating P'B-w
and 02. Note that M can always be chosen as (V+XX') , which satisfies the

conditions of the Theorem 5.2.2 (see Rao and Mitra [121).

6. BLUE'S AS PROJECTIONS

6.1 Projection Operators

It is well known that when V is nonsingular the BLUE of XB is obtained

by the orthogonal projection of Y on _#{(x), using the norm ||x]||= (x?V_lx)l/z,

which is thg sameras the projection of Y on_g(x) along_#(VZ), where Z = xt.
[Note that_g(x) and_g(VZ) are disjoint subspacés whether V is nonsingular or
not]. We prove the corresponding resﬁlts when V is singular. Naturally,

the results haye to be stated in a slightly differenf manner since V_1 does
not exist (hence the norm ||x|| cannot be defined as in the nonsingular case),
aﬁdjt(x) and_#4(VZ), although disjoint, may not span the entire space En(hence

the projection on_#(x) along #(VZ) is not properly defined).

Definition 6.1.1. Let I be an n.n.d. (non-negative definite) matrix

of order n and define f-norm as

(6.1.1) x] ], = ez M2,
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Further let A.be an nxm matrix. We call pAZ a projector into_#(A) under

the Z-norm if
AP,) S M)
(6.1.2)

||y-PAzH: < |y - AA||Z for all y€E", A€E™.

The following lemma is easily established (see Mitra and Rao, [11]).

Lemma 6.1.1. If P is as defined in (6.1.2), it is necessary and

CAZ
sufficient that
(6.1.3) AP, o) C_#(A)
- = ty -
(6.1.4) (PAZ)'Z PAZ = ZPAZ = (pAZ) T
(6.1.5) ZPAZA = IA

Definition 6.1.2. Let U and W be two matrices such that g(U) and

_M(W) are disjoint, which together may not span the entire space. Any

vector o€MU:W) has the unique decomposition

@ = *oay, 0 c 40, o, c_qW).

Then pU[w is said to be a projector onto_#g(U) along 4(W) iff

(6.1.6) P for all o €_g(U:W).

a = o

ulw 1

The following lemma is easily established.

Lemma 6.1.2. If pU]W is a projector as given in Definition 2, then

it is necessary and sufficient that

(6.1.7) pUlW U=U, pU]W W=20
and one choice of pUIW is
(6.1.8) pU|W = U(GU) G,

where G' = W' and (GU)~ is any g-inverse of GU.
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6.2 Applications
The following theorem provides expressions for the BLUE's in terms
of projection operators as described in definitions 1 and 2.

Theorem 6.2.1. Consider the G.G.M. model (Y, XB, 02V). Then the

following hold:

( i) Let L'Y be an unbiased estimator of p'B with the property L'X = p',

1

and define L, = (I-P, )L, where Z = X~. Then LL Y is the BLUE of p'B.

1

( ii) Let S = V+XX', S~ be any n.n.d. g-inverse of S, and Z = X°. Then
g

(6.2.1) (p PXS-) a=a for any a €_#g(V:X)

1
zv ¥

i.e., the sum of the projection operators on the left hand side of

(6.2.1) is an identity in the space _#(V:X) = 4VZ:X).

(iii) The BLUE of Xg is
4 - 1 = - =
6.2.2) . (1 PZV)Y (Pxg )Y (PXIVZ)Y
where the projection operators are as described in definitions 1 and 2.

Proof of (i). Since_l(PZV) c 42), Piv X = 0 and hence

1pt = It =
E(L PZV Y) =L X =0,

. ]
Pv

giving
E(LLY) = E(L'Y) - E(L'PéVY) = E(L'Y)

so that L!Y is unbiased for p'B.  Further

L. VZ = L'(I-P VZ = 0

1
ZV)
using the conditions (7.4) and (7.5), which shows that L!Y has minimum
variance.

Proof of (ii). Since #(V:X) =_g(VZ:X) we need only verify that

(Pév + PXS_) (VZ:X) = (VZ:X)

which follows from the definitions of the projection operators.
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Proof of (iii). From (i) it follows that the BLUE of X8 is

-pt
(1 PZV)Y
and from (ii) we have
-Pp! =
(1 PZV)Y (PXS_)Y

To prove the last part of the equality in (6.2.2), consider the unique
decomposition

(6.2.3) Y = XY1 + VZY

2
on the disjoint subspaces_g(x) and_#(VZ). Note that XY1 = (levz)Y where

PXIVZ is the projector onto_g(x) along #(VZ). Now
Xp = E(Y) = XE(YI) + VZE(YZ),
= x[B-E(Yl)] = VZE(YZ) =0

since _#(x) and g(VZ) are disjoint. Then E(XYI) = E(Y), so that XY1 is
unbiased for xg8.
Further from (6.2.3)

Cov(Y,Z'Y) = X Cov(Y,,2'Y) + VZ Cov(Y,,2'Y)

(6.2.4) = VZ = XD1 + VZD2 for some D1 and D2

= VZ(I-D,) = XD, = 0 = Cov (XY;,Z'Y)

which shows that XYl is the BLUE of E(XYl) = XB.

Theorem 6.2.1 is thus completely proved.
Note that, following (6.1.8), we can represent

(6.2.5) = X(GX) G

Px|vz

where G' = (VZ){ When V=I, we have G = X' giving the BLUE of xg as

(6.2.6) (PX|VZ)Y = X(X'X) X'Y.
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When v is nonsingular, we have G = xrv! giving the BLUE of xB as

1

6.2.7) Yy = x(x'vin Txrvly.,

Px|vz
Thus (6.2.5) provides the well known formulae (6.2.6) and (6.2.7) in
the particular cases considered.

In these lectures we have considered the problem of estimating
p'B by L'Y such that L'VL is a minimum subject to X'L = p, which provides
a complete solution to the BLUE. However, this approach does not provide

all possible representations of the BLUE. For this, one has to minimize

L'VL subject to the condition X'L-p €_#(X'N) where N is as defined in
Section 3.1. The latter problem called BLUE(W), BLUE in wider sense, which

is of some theoretical interest is solved in Rao [9].

Note. The references given at the end of the notes constitute the material

on which the lectures were based. For references to related work by other
authors the reader is referred to bibliographies in Rao [5] and [6]. It may
be noted that Goldman and Zelen [13] were the first to consider the case of

nonsingular V in a systematic way using generalized inverses.
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