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INTRODUCTION

Let nl,}t;,ﬂk be k populations with =, having unknown cdf
Fi eF, a kﬁown’family of distributions. Each L is characterized
by an unknown Ai = Ai(Fi) € A, a specifiéd interval on-the real
line, and w(i)lis that population having the ith largest As- The
experimenter's goal is to make some inference about "tk) (or
equivalently n(i)).

Early statistical work on this problem consisted mainly in
deriving tests of hypotheses for the equality of the Ai's.
' Bahadur [2],:Moste11er [42] and Paulson [47] were among the first
research workérs to recognize the inadequacy of such tests for
homogeneity and to reforﬁUlate the problem as a multiple decision
problem concerned with the ranking and selection of k populations.

In the fw0-decades since these early papers, ranking and
selection problems have become an active area of statistical
research and the theory in this field has undergone a somewhat
dichotomous‘deyelopment arising from the detailed formulation of
a reasonable experimental goal to pursue. One approach pioneered
by Bechhofer [8] has been to allow the experimentér tb select one
population which is guaranteed to be of interest to him-witﬁ fixed

probability P* whenever the unknown parameters lie outside some



subset, or zone of indifference, of the entire parameter space.
This has been termed the indifference zone approach.

Other cdntributors whose work falls along these lines are
Alam and Rizvi {1] on procedures for multivariate n&rmal popula-
tions; Bechhofer and Sobel [9], Sobel and Huyett t56], Barr and
Rizvi [5] and Rizvi [5] on single sample procedures for various
univariate parametric populations; Sobel [57] on single sample
non parametric procedures for univariate populations; Mahamunulu [39]
and Desu an& Sobel [15, 16] on procedures for selecting fixed size
subsets containing the t best populations and Bechhofer, Dunnet and
Sobel [10]}, Bechhofer [15, 16] ,Chambers and Jaratt_[ls], Paulson
[49, 50, 51] and Bechhofer, Kiefer and Sobel [12] on multi stage
and sequential procedures.

In contragt to the indifference zone approach, Gupta [20, 26]
proposed a fofmulation in which the experimenter obtains a subset
of the k p0pﬁia;ions for which there is fixed minimum probability
P* over the entire parameter space that the population of interest
is included. The name of this approach is the subset selection
approach and is derived from the type of procedure employed.

Some recent contributors in the category of subset selection
work include'Gngnadesikan [18], Gnanadesikan and Gupta [19],

Gupta [27], Gupta and Studden [31] and Gupta and Panchapakesan [29]
on procedures for multivariate normal distributions; Nagel [43],
Gupta and Nagel [32] and Gupta and Panchapakesan [33] on single

stage procedures for univariate populations; Patterson [46], Rizvi
and Sobel [52], Barlow and Gupta [3], Barlow, Gupta‘and Panchapakesan

4], McDonald [40, 41] and Gupta and McDonald [30] on single stage



non parametric and partially non parametric procedures for
univariate populations; and Barron [6], Barron and‘Gupta [7]
and Huang [5] on sequential procedures.

Subset selection procedures are often thought of as screening
procedures which enable the experimenter to select a subset of the
populations_under study which contains the best one (n(k)) so that
the selected subset can be further studied in more intensive
fashion. The goal in this thesis is to study fixed sample size
procedures which give more flexibility to the experimenter than
does the usqal subset selection procedure by allowing him to
specify an upper bound, m, on the number of populations included
in the selecte&-subset. Should the data clearly indicate that a
particular population is best, this type of rule still retains
that advantage of the subset selection procedure in allowing
selection of_feﬁer than m populations. On the other,hand if the
data make the choice of the best population less obyious, this
rule selects a larger subset for further study but guarantees
that no more thén m popﬁlations are selected. Such procedures
will be called restricted subset selection procedures.

Formally this thesis studies a generalization 6fvthe subset
selectign and indiffereﬁce zone goals. Furthermore the procedure
proposed by Bechhofer [8] and Gupta [20, 26] are also special
cases of the present rules. Both analytic results and numerical
values needed';o implement the proposed rules are given.

The stétistician must base his selection rule on the

independent‘rahdom variables {Xij} from L which have common cdf Fi'



It is assumed that a consistent sequence of estimators for Ai’

{Tn(-)}, is aﬁailable i.e.

LX) P,

' Tn(xil"' in i

The following goal»is studied:

G: Given P*,ﬁ(l < m < k) and also possibly n and/or p(\) where
p(-)_is a fﬁnction on A satisfying p(A) < A, define a proce-
dure R(n) based on a sample of common size n ffom each popu-
lation which selects a subset of populations less than or

equal to m in size, contains K and satisfies-

Pz\[CS|R(n)] 2 PPV ae)=0 Ay < POy}

The event [CS|R(n)] occurs iff the selected subset contains r

(k)

The following rule is proposed.

h 1

R(n): Select m, ®T.n Z.maX{T[k_m+1]n’ ; (T[k]n)}

where -

(1) .Tin = Tn(xil""’xin)

(2) T[l]n 53"5-T[k]n are the ordered observations

(3) - {hn(-)} is a sequence of reallvalued functions
"satisfying
(a) For every x and n, hn(x) > X
(B) For everx n, hn(x) is continuous and strictly

increasing in x
(c) For every x, hn(x) + X as noo
The choices m=1 with any p(A) < X and m=k with p(A) = A yield

the indifference zone approach and subset selection approach

respectively.



In Chapter I a general expression is derived for the probability
of a correct seiection for an arbitrary underlying true vector of
Ai's. Then under the assumption that for each n the estimators
form a stochastically increasing family it is shown that the infimum
of -the probability of correct selection over Q(p) occurs at a point
for which the parameters are as close together as pbssible and yet
still in Q(p).‘ This amounts to reducing the calculation of a k
dimensional infimum to a one dimensional infimum. Sufficient condi-
tions are giVeh.under which this last infimum can be evaluated. In
Section 1.3 the monotonicity and other properties of R(n) are dis-
cussed. In'particular, it is proved that the infimum over Q(p) of
bthe probability of a correct selection approaches one as n%m so that
any P* level is attainable by simply taking n sufficiently large. In
Section 1.4 the number of non best populations selected, the total
number of populations selected and their expectatidns are studied
both asymptofiéélly and for fixed n. The final two'éections of
Chapter I discuss some modifications of the previous results to
allow selection for 1) and some alternate formulations of the
basic problem.

Chapter II discusses applications of the general theory to
some of the problems which have been previously studied in the
literature ﬁsing fixed size subset rules and subset selection (m=k)
rules.' These problems include selection from normal populations for
means and variances and from non central x2 and non central ¥ popula-

tions for non centrality parameters. An example is given of selec-

ting from uniform populations which illustrates the so called 'non



regular' case. Three different types of indifference zones are
employed and also some work is done to establish criteria for
choosing a particular rule R(n). Tables are constructed to
allow implemeﬂﬁation of the proposed procedure.

In Chapter III a generalization is studied in which the
experimentef'é goal is to determine one of the t best populations.
In the case t < (k-m) the indifference zone approach is employed
and all the results of the general theory parallel those in the
special case t=1. In particular the infimum of the probability of
a correct selection occurs at a point when all the-Ai's are as close
together as possible and yet A is still in Qt(p) = |
{élk[k-t] j_p(x[k_t+l])}, the‘preference zone for this problem.
Tables are provided to allow implementation of these selection rules.
In the case t > (k-m) the subset selection approach can be used to

yield results generalizing those.of Gupta and Panchapakesan [33].



CHAPTER I

SOME RESTRICTED SUBSET SELECTION PROCEDURES. -

1.1 Formulation of the Problem

Let &CJQ,Pi), i= 1,:..,k be k probability spéces_hereafter
referred tb as populations and denofed as m., is= l,;..,k.
Specifically it is assumed‘that Z is a finite dimensional
Euclidean spaée and 8 is the associated Borel ¢ field..The Pi are
unknown ; hdwever it is éssumed they belong to some specified family

€ of probability measures on (%,8). Finally let

(i)l Fi(x) = Pi(-m,x], xeX be the cdf associated with P.»
(ii) #,= {F(x) = P(-w,x]|P59} be the family df all possible
’-cdf's for LA and |
(iii) QC?) = 3k is the set of all possible underlyjng veétors

of cdf's.

Each ﬁi is characterized by a scalar A = Ai(Pi) e A.C€ R where
Ais a knoﬁn interval on the real line and the Ai's,are unknown. Let
A[l] < .. 54A[k] be the ordered A, 's, @ = {5=(Al,.;.,Ak)|AieAVi}
the space of all possible Ai's and (i) the (unknown) population with
parameter A[i]' It is assumed there is no a priori knowledge of the
correct pairipg'of the elements in {ni} and {“(i)}' The goal is to

define a procedure R to select the "best' population where for sake



of definiteﬁéss i(k) is taken as the best populatioﬁ,- Note that.
in some cases "(l) might be the best population. ,Of course if
J@2<j<k) populations all have Ai = A[k]’ the sglection of any
of these tied’pOpulations accomplishes the goal. However in the
subset seléction formulation, ordinarily the infimum pf the proba-
bility of correct selection is attained when all populations are
identical aﬁd an arbitrary one is tagged as the ''best' one.

The sfafistician must base his selection rule on the indepen-
dent random variables {Xij} from m. which have commoﬁ cdf F.. Now
it is assumed, as will usually be the case in practice, that a
consistent:sequence of estimators of Ai,'{Tn(-)}, is available i.e.

Tn(-) is a Borel measurable function on X" such that:

- _ n ..
Tn(xil""’xin) = Tin K Ai when {Xij}j=l are iid from .

More general;y'it suffices to assume {Tin} converges in probability
to a monotone function of Ai, v(Ai), so that selection in terms of
the v(Ai) is equivalent to that in terms of the Ai.

At times, for notational ease, it will be convenient to denote
Tin as Ti Supﬁressing the dependence on n. In addition{ when writing
the cdf of a‘random variable say, for example, G(y/A).the slanted
line will indicate the value of G at y given the true parameter is
~A. When used anywhere else a slanted line will indicate division.

Finally the following notation and assumption will be needed.



(i) The distribution of Tin depends only on Ai and
is absolutely continuous with respect to Lesbesgue

measure _

A.

o i
(L1.1) (ii) Tin has cdf Gn(y/xi), support En and pdf gn(y/Ai)
(iii) For every n, {Gn(°/A)IAeA} forms a stochastically

increasing family

(iv) Géi)(y) = G (y/Ap;)) is the ;df'of T, when

{Xx,.}

are iid from 7w..

n
ij j=1 (1)

Remark 1.1.1{  The requirements in (1.1.1) are not needed in the
proofs of all the results to follow even though theyvare listed here
for convenience sake. For example assumption (iii) alone suffices to
prove Theorem 1.2.2.

The following definitions will serve to distihguish between the
several types of rules proposed in the literature for the above
general problem. Let R be the given procedure ba;édvon Tl""’Tk and

S the number of populations it selects.

Def. 1.1.1. R is a fixed size subset selection rule means 3s(l <'s < k)

such that PE[S=s] = 1VF e Q(F)

Rules for which s=1 were introduced by Bechhofer [8] for
selecting the normal population with largest mean. In the general

case, fixed size subset rules were introduced by Mahamunulu [39].

Def. 1.1.2. R is a restricted subset selection rule means ds

"(l < s < k) such that PF[l <S<s]=1vFeq(% and R

* is not a fixed size subset rule.
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A class of restricted subsct selection procedures  for parametric
problems is studied in this thesis. Analogs for many of the previ-

ously studied procedures are developed using this approach.

Def. 1.1.3.- R is a subset selection rule means PF[l <SS <k] =1

VE € Q(%) and R is neither a restricted subset selec-
tion procedure nor a fixed size subset selection proce-

dure.

Subset selection procedures were proposed by Gupta [20,26] in
an application to the normal means problem. Some aspects of the
general theory are studied in Gupta and Panchapakesan [33].

The current problem will be solved using a restricted subset
selection procedure under the indifference zone fofmulation. In
general, only subset selection procedures can attain all P* ievels
over the entire Q space. The motivation for using such procedures is
that they can be used as screening devices which ailow the experimen-
ter to specify an upper bound, m, on the number of populations
included in thé_selected subset. Should the data clearly indicate
that a particular population is best, this type of rule still retains
that advantage of the subset selection rule in allowing selection of
fewer than m populations. On the other hand, if tﬁe data make the
choice of tﬁe_best population less obvious, this rule selects a
larger subset for further study but guarantees that.no\more than m

populations are selected.
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An indifference zone will be defined in Q@) by means of a

function p: A - R such that

'(i) p(+) is continuous and non decreasing on A

A ozto A where

(i) p:
(1.1.2) ’
A' = {xeA|p(A)eA}

(iii)' p(A) < A Vieh

Remark 1.1.2. Formally both the indifference zone approach and

the subset selection approach become special cases of (1.1.5) by
allowing p(A)'i_A in (1.1.2) and choosing (m=1, p(A)_< A) and

(m=k, p(A) = A) respectively. The case of importance for this thesis
will be 1 < m < k and hence the restruction p(A) < A. However at
times it will be pointed out how the general_theofy.reduces to the
previously Obtéined results for these important subcases and for this

discussion the weaker p(}) < A will be tacitly assumed.

Example 1.1.1.

(o;m) and p(A) = 6A(0 < 6 < 1) = A' = (0,)

(a} A=
(®) A= (-»,%) and p(A) = A-6(8 > 0) = A" = (-=,%)
(¢) A=

[0,2) and p(A) = A-6(8 > 0) = A' = [§,=)

For each F ¢ Q(F) let A(F) = (A ;.,Ak) be the vector of Ai's

1’

associated with F. Define

Q(p) = {geglx[k_ll :_p(A[k])}

° = = =
o (p) f,{genlx[ll = A1y = POp?
and then
Q' (p) :’{fﬁQC¥)|§(f)eQ(p)} specifies a preference zone in Q(%).
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Example 1.1.2.

(a) Let A and p(-) be as in (a) above = Q' (p)

{fJS‘IA }

[k-1] < (k]
(b) Let A and p(*) be as in (b) above = Q' (p)

{F|A

k] ™ Mx-1y 28

Finally,-a general procedure for selecting a restricted subset
of the k populations will be defined. Let {hn(-)} be a sequence of
functions for which each hn(') is defined on a portion of the line

containing U Eg and satisfies
: AedA

(1) For each n and x, hn(x) > X
(1i) For each n, hn(x) is continuous and strictly increas-
(1.1.3) . .
ing in x
(iii)' For each x, hn(x) + X asn-+

Define the procedure:

h

. -1
(1.1.4) R(n)f, Select e Tin :-maX{T[k-m+l]n’ n (T[k]n)} where

T[l]n.f-T[Z]n ff"f-T[k]n are the ordered §s§1mators.

Example 1.1.3.

(a) Take d > 0 and h (x) = x + d//n
R(n): Select m ®T, 3-maX{T[k-m+1]n’T[k]n'd//E}

(b) Let d > 0 and hn(x) = (1+d/n)x and suppose U E. <(0,x)
Ael

. n .
(n): Select M Tin Z-maX{T[k-m+1]n’ (E:a) T[k]n}

n
A

=]

Goal: Given P*, p(o)-and the sequence {R(n)} find the common sample

size n necessary to achieve
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(1.1.5) PF[CSIR(n)] > P*V Feq' (p)

—

Here [CSIR(n)]:stands for the selection of any restricted size

subset containing w

k)’

Remark 1.1.3. It is not obvious that (1.1.5) can ever be achieved

for any n for én arbitrary P* and p(-). Section 1.3 will provide a

proof for this claim.

1.2 Probability of a Correct Selection and its Infimum

Theorem 1.2.1. For any FeQ(%)

k-1 (37 o :
(1.2.1) PE[CSIR(n)] = 7 ) G(J)(y) LI

isk-m =l e je k) N jegt(k)
v Ty
i) () (o 140 (K)
{67 (h (0)-6.7 7 (¥) 3G ™ (y)
where
L}f(k)|v=l,...,(k;1)} is the cbllection of dll subsets of size

% from {1,...,k-1}
% )
Jv(k) = {,1’”.,](-1} -J.\)(k)

Proof. Let'LJi(k)} and ﬂ;i(k)} be defined as_above.and also let

i

- g | .
Av = [T(k) > T(j)VJqu(k) and T(k) < T(j)VJqu(k)] where

T(z) is thé»random variable corresponding to =

(2)

=PE[CS|R(n)] Pelh (T () 3_T[k]'and Tk) 2 Tikemer)

= pE[hn(T(k)) z_T[k] and T(k) > at lgast (k-m)

T(j)'s w/j < k]
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k-1
k-r Gi)
= P.[h (T, ) > T and U Uu A]
Ernt (k) T T
k-1
ke G : L
= ) ) PF[ﬂv] where £v=[hn(T(k))zj(j)VJ<k,Av]

i=zk-m v=1 ~
Fix i and v and then since hn(T( )) > T( ) by assumption

= [0, (M) 21 (T T S [h (Tp) 2 T 5]

1
F [h (T(k)) > T( ) v j<k, T( K 2 ( ) Ja# x),

(k)
i
= PF[Q\:]

~

h (Tgy) < by (T Wie?) (0]

| i . i
PEIT ey > TP 37, 005 T 5 <hy (T gy D <hy, (T (5 W je (k)]

N . 4 . )
Pf[T(k) T 5y¥ied (k) T(k)<T(j)<hn(T(k)nyQJ;(k)]
- i j » i) k)
=1 n 6Dy v 6B 9)-6) 1065 (v
e je (k) je gy T ; !

where GﬁJ)(y)_is.defined to be the cdf of T This completes the

(3)n
proof.

The poinf to be emphasized regarding this result is that the
PF[CSIR(n)]'ohiy‘depends on E through é(f) which is obvious sinée the
d;stributions bf the T.0 depend only on the A e Hehqe the more accur-
ate notation, PA[CS|R(n)] will be used hereafter to denbtg the proba-
bility of a cor;ect selection computed under the assumption the Xij's
have cdf's F with parameters A

As mentioned in Section 1.1 the interest in this fhesis is in

the case 1 < m < k. However note that for the casés m=1 and m=k the

goal and rule of Section 1.1 and Theorem 1.2.1 reduce to the following
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(a) m=1, p(A).< A(Bechhofer type goal and rule) ]

Goal: Select the population = so that PX[CS] > p*

(k)
AeQ(p)

Rule: Choose the populatidn correspondiﬁg to.T[k]n

© k-
P,[CS] = | nl 670 (a6 )
- -o j

(b) m=k, p(A) = A (Gupta type goal and rule)
Goal: Select a subset of {nl,...,wk} which contains

"(k) such that PA[CS] > P* Véeﬂ

Ruxgz, Select LA hn(Ti) 3-T[k]

o k-1

AR 6D s y)
Lo~ —wJ

The next problem is to determine the infimum of the probability
of a correct selection over Q(p) for a given R(n). The following

lemma due to Mahamunulu.[39] and Alam and Rizvi [1] will be needed.

Lemma 1.2.1. Let X = (X ,Xk) have k > 1 independent components

'EXEE
such that for every i, X; has cdf H(-|0.). Suppose {H(-[|)} forms a
stoChastica;ly increasing family. If $(X) is a monbtone function of
Xi when all other components of § are held fixed then E9[¢(§)] is
monotone in Oi_in the same direction. -

The following notation will be used throughout to denote the
incomplete béta}function with parameters a and b.

10328 = FErey f NGOl
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“Theorem 1.2.2. .

inf P [CS|R(n)] =
2(p) ~_

inf PA[CS|R(n)]
2° (p)

(1.2.2)

inf | {G (h, (Y)/P(l))}
Aeh! -o

G_(y/p(\)
I(G NGV A OLEN (y/0)

Proof. The‘prodf is an application of Lemma 1.2.1. Take

11, T > max{T 11’ h )}
¢@)=[ 00 2™ T perp By T

0, otherwise
Recall that in T = (TyseesTy), T[i] is the ith order statistic and

T(i) is the statistic corresponding to “(i)' Now for & < k pick

= (T!,..., k) satisfying T( ) = (j)v j+2 an§ Tz£)1> T(g). It
suffices to prove ¢(T) =0=¢(T') = 0.
Now ¢(T) =
l
’¢°T(k) < max{T[k me1]’ h [k])}
© () h (T(k)) < T
or
(b) T(k) < T[k-m+1]
 If (a) holds = either
W Ty =T 2 Tha = T 7 M) = M Tao) < Mg
or , .
@ Ty > Ty = Ty = Ty > Tk
= h (T(k)) < T[k] < th) = Tik]
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So in either case

hn(TEk))'<'Tik] < max{T[k], h (T[k m+1])}
=¢(T') =0 .
If (b) holds = either

(Tt 2 Tkemer) * Theme] = M)

= Ttk) ( < T[k-m+1] = Tvik'—m+1]
or
@ Ty ” Tieme1] ™ Thkeme1] = Tkeme1] = Ty < Themen]
or
S Ty S Theme) < Tl = Theeme1] = TR _po1sTh b Tlk-m+1]

=Tk < Tik-me1]

So in either‘case
h (T(k)) < h (T[k +1]) < max{h (T[k m+1]) T[k]}

= ¢(T') = Q thus ending the proof.
Let

® k1, S N2 Te0))
(1.2.3)  wOun) = [ {6 (h (y)/p())} (G B o7y <M S, /)

and then the significance of Theorem 1.2.2 is that it has reduced the
calculation of a k dimensional infimum to a one dimensional infimum
over A'. Furthermore the following lower bound for Y(A,n) can be
easily obtained by noting hn(x) > x and y(A,n) is non decreasing in
hn(x): »

U ® k-1

vOun) > [ {6 (y/p(A)} dG_(y/1)
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Note that the right hand side is actually the one dimensional

infimum obtained using the above theorem in the case m=1.

Remark 1.2.1. Gupta and Nagel [32] have introduced the concept of

a just rule. A rule R with individual selection probabilities
pi(xl,...,xk), i=1,...,k is said to be just if X, >y and
xj f-yj for J,f i implies that pi(xl,...,xk) > pi(yl,...,yk).

Since ¢(T) is the probability of selecting = based on T for the

(k)
rule R(n), the proof of Theorem 1.2.2 shows it suffices that R(n)
satisfy a reIa;ed but weaker condition than being just. In fact,
it can easily be shown that R(n) is a just rule.

In many cases it is possible to prove that y(A,n) is monotone
(increasing say) in A. If this is the case and there exists a
smallest A, ¢ A' then the k dimensional infimum will be completely

evaluated as

inf PA[CS|R(n)] = ¥(ry,m).
e(p) -

The following two lemmas will be used in the proof of such a

result. The first lemma is due to Panchapakesan [45].

Lemma 1.2.2;'_Lét F(-|A)|AeA} be a family of absolutely continuous
distributions on the real line with coﬁtinuous densities f(-|A) and
$(x,A) a bounded real valued function possessing first partial deriva-
tives ¢x and ¢A wrt x and X respectively and satisfying regularity
conditions (1;2;5). Then EA[¢(x,A)] is non decreasing in A provided

for all AiehA

> 0 for a.e.x.

(1.2.4) f(x/xj 3¢g§,l) . Bng/k) 3¢g§,k)
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Further if (1.2.4) is strictly positive on a set of positive
Lesbesgue meaéufe than EA[¢(X,A)] is strictly increasing in A.

One possible set of regularity conditions is:

(i) For all xeA, égi%iél-is Lesbesgue integrable on R.
(1.2.5)

(ii) For every [AI,AZ] C A and AseA

aF (x/2) 20(X:A5)

] 39(x, 1) f(x/A3) _ < h(x) AE[AI,AZ]

I3 A ax

whefe h(x) depends on Ai’ i=1,2,3 and is Lesbesgue integrable
on R.
(1.2.5) is needed to justify several of the technical details in the

proof of Lemma 1.2.2,

Lemma 1.2.3. :For any 1 <2 <nand 0<a<cc<l
ncl(a/c;2,n-2+1) > ab(a/c) where b(y) = I'(y;2,n-2+1).
' : 3 n i n-i
Proof. ncI(a/c;&,n-2+1) = nc 2 (i) (a/c) (1-a/c)
i=g

> ne(y) (a/e)*(1-a/c)"*

= an(z) (a/c)’z'-l(l-a/c)n-2 >a-b(a/c) which

proves the lemma.

Remark 1.2.2. The following assumptions are essentially needed to

assure that (1.2.5) holds. For any [AI,AZ] C A aﬁd any AseA' there

exist el(y) and e2(y) such that
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| %6, (y/p(M) |
(1) {7 f_el(y)V‘Ae[Al,Az] where
(1.2.7) (Je, (146, (7/23)) (fe; ( (1))dG_(y/15)) < =

. 13G_(y/N)
ii I n¥

3 l j,ez(Y)V Ae[kl,kz] where

ey (46,00, (0170 (fe, (1)dS, (7/3)) < =

Theorem 1.2.3. If E: = En VieA', Gn(y/A) is continuously differen-

tiable and satisfies (1.2.7) and all derivatives in (1.2.8) and

(1.2.9)vexist:and satisfy vieA!

3G (h (y)/p(V) 36 (y/)
(1.2:8) g (y/A) 2N - i, (hy ) /p(N) —2 " >0
| ae in En
36 (y/p(A)) ' G (y/2) _
(1.2.9) g, (/M) —r—— - g, 0/p()) —27 > 0 ae in E_

then Y(A,n) is nondecreasing in A.

Proof. As indicated, the proof is an application of Lemma 1.2.2.

Note that

Y(A,n) = ¢(y,A)dG_(y/}) for the choice
E

n
G_(y/p(M)

sk-m,m). Hence
G, (7P () »

$(y,0) = {6, (h () /p() 1T 1

ay

LA (k-l){cn(hn(y)/p(x))}k'zgn(hn(y)/p(A))hﬁ(y)
o I(K_(y,3) ;k-m,m)
iy {Gn(hn(y)/p(x))}k_sb(Kn(y,A)){Gn(hn(Y)/P(A))gn(Y/P(A))

- G O/POAN (v) g, (h (¥)/p(A))}
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: 1,36 (h (y)/p(\) |
§2§§iﬁl = (k_-_-l){Gn(hn(y)/p(A))}k 2.n o CL(K_(y,A) sk-m,m) +
a s 36, (y/p (M)
(6, (b, /PO IO K (y,0)). {6 (h_(y) /p (1)) =g -
| 3_(h_(y)/p(A))
G, (y/p(M)) 3 }
- G, (y/p(1))
where % 0M) = & - mAON
So (1.2.4) becomes VA"
. ' G (h (y)/p(}))
(1.2.10) g (y/A)[(k-1) N {G_ (h (y)/p(2))}
I (Kn(}’,l) ;k'm,m) + b(Kn(YsA))
v BGn(Y/p(A)) : o6_(h (y)/p(3))
{6, ) /P -6 _(y/p (M) — ]

6 (/) -
- — L k=16, (0, ()/p (), (b () /p ()b ()

I(K, (y,A) sk-m,m) + b(K_(y,2))
16, (/P (), /() -h) (06 (/P (), (hy () /p () }]
| > 0 ae in E
v n
Combining terms (1.2.10) can be seen to hold if Vaed!

3G, (y/p()) 36, (y/)

(1.2.11) {g (y/») 0 o 8, (y/P(A))} > 0 ae in E
and

3G (h (¥)/p(X)) | 3G (y/2)
(1.2.12) {g (y/2) = - h g, (h (/PN —5—) x

{(k-1)T(K (y,2) sk-m,m)G, (h (¥)/p(N))-b(K_(y,M))G_(¥)p(1))}

> 0 ae in E
- n
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But by Lemma'1.2.3 the second factor in (1.2.12) is hon negative
since VyeE", AéA' =0 <6,/p()) <G_(h nO)/P(M) < 1. Hence
(1.2.12) and (1.2.11) reduce to (1.2.8) and (1.2. 9). Similar
arguments show that (1.2.7) imply the regularity condifions needed

for Lemma 1.2.2 and hence completes the proof.

Remark 1.2.3. If (1.2.8) and (1.2.9) are 1dent1cally zero then

v(A,n) is 1ndependent of ).

Speciadl Cases

(a) m%l |
=v¢(Y;A) = {Gn(y/p(k))}k-l and a short caléulation shows
(1.2.4) is satisfied if (1.2.9) alone-holdé

(b) m=k '

= ¢(y,A) {Gn(hn(y)/p(}\))}k-1 and again some calculation
shows (1.2.4) holds if (1.2.8) alone holds. Note that any
p* ievel can be attained even when there is no indifference

zone and in this' case (1.2.8) reduces to the result of

. Theorem 2.2 of Gupta-Panchapakesan [33].

Example 1.2.1, Location Parameter Families

The folloWing are assumed to hold

. . Al
(1) The cdf of Tin is Gn(y/ki) = Gn(y—Ai) with support En-R
(2) A= (-w,®) and P(A) = r-6, (6 > 0)
(1.2.13) S
(3) Sup g, (y) <=
- - YeR

(4)  For every n, hﬁ(y) > 1 ae
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Then (1.2.8) Becomes
gn(Y/l)[;gn(hn(Y)/P(X))] - hﬁ(Y)gn(hn(Y)/P(A))(-l)gﬁ(Y/A)

2 (g, (b, (1/p(N))g, (y/0)-g, (h (¥)/P(A))g, (¥/2)=0 ae by (4) of
(1.2.13) and.(1.2.9) becomes

g, /0 [-g,(y/p O] - g, PO [-g (y/N)] = 0 Vy

Hence y(A,n) is non decreasing in A
For the usual choice hn(x) = x+dn where dn+0 both (1.2.8) and
(1.2.9) are identically zero and hence y(A,n) is independent of

Ai.e.

inf w(k n) = y(0,n)
AeA!

Example 1.2.2. Scale Parameter Families

It is a$§umed the following hold
(1) Tin has cdf 6 (/) = 6, &) with support. E) = [0,)

(2) sup g, (y) < » and f de y) < =

(1.2.14) ¥20
(3) A= (0,0) and p(A) = 61 (0 < § < 1)

(4 yh', ) 2h () 20 ae on [0,

Then (1.2.8) becomes

yhl(y). h (y)
—-—-—gn(hn(y)/ck)g (y/x) -

g,h, (y)/ak)g (ry/2)

&n(h, ()/60)g_(y/62)

= — [yhﬁ(y)-hn(y)] > Wx>0 and ae by (4) of

(1.2.14) and'(1.2.9) becomes

g (y/ax)g (y/x) - g (y/s))g (y/A) = OVy > 0 and A > 0.

Hence ¢(A,n) is non decreasing in A.
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For the usual choice hn(x) = dnx where dn+1 both (1.2.8) and
(1.2.9) are.identically zero and heﬁce $(A,n) is independent of
Ai.e. |
'vﬂinf Y(A,n) = ¢(1,n) .
,AEA'

1.3 Properties of {R(n)}

This section will study both the properties of the sequence

{R(n)} and the individual rules R(n). For AeQ define .

(1.3.1) ».' | p;(i) = PA[R(n) selects "(i)]

~

and recall thé-following two definitions.

Def. 1.3.1. R(n) is a monotone procedure means for every AeQ and

1<i<j<k

PyA) <Py () .

Def. 1.3.2. R(h) is an unbiased procedure means for every AeQ and

1 f.j < k

PA[R(n) does not select “(j)] E_PA[R(n) does not select “(k)]'

~

Of course if R(n) is monotone it is also unbiased. Other optimal

properties that will be studied are:

Def. 1.3.3. " The sequence of rules {R(n)} is consistent wrt Q' means

inf P[CS|R(M)] » 1 as n + = ., . :
Q'

Def. 1.3.4. The rule R(n) is strongly monotone in "fi) means
AL LN L Uil : (

4 in A[i] when all other components of A are fixed

n... . : :
P, (1) is |
N ¥ in A[j] (j$i) when all other components of A are fixed.
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Remark 1.3.1. If a rule R(n) is strongly monotone in “(k)’ then
inf PA[CSIR(n)] = inf px[csln(n)].
Q(p) ~ o
e (p)

Theorem 1.3.1. .If there exists a AoeAf and N > 1 such that

vn > N, inf y(A,n) = w(AO,n), then any sequence {R(n)} defined by
AeAt ’

(1.1.4) is consistent wrt Q(p).

Proof. From the hypothesis of the theorem and the result of

Theorem 1.2.2 there exists N such that for all n >N

inf P, [CS|R)] = [ {6 (h (1)/p( ))}k'II(GH(Y/P(*o)) o)
2 1in n = y)/p(a » ? sk-m,m
a(p) 2 | @ TN 0 G, (h ")/p(xy)
G (y/2y)
§ 0, y<y
Also Tin E Ai = P[Tin <yl = Gn(y/}‘i) > l s .
’ i

Since inf PX[CSIR(n)] < 1 we need only show that given
alp) ~

[+ -3

€>0INd3vyn>N= f V(y,AO)dGn(y/AO) > 1 - € where

G, (v/p(3y))
L, ;
G, (hy 1) 7p (3y))

VyaAg) = {6, (h (1 /py)) 17! k-m,m)

Since p(rg) <Ay %od p(ay) < a <Ay =given €> 0 EM (> N) such
that vn > M | |
@ ‘Gn(qlxé) <€ (since a < Ay
{j(b) {Gﬁthh(a)/p(xo))}k-lI(G#(a)p(AO));k—m,m) >1- €
(since h (a) > a > p(ay))

Now take A = [a,x)
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=2 yeA
@ 126 (h (1/P()) 26 (h (a)/p(hy))
) G lr/P(Ag)) 2 G (a/p(hy))

=2Vy e A
Cala/p(g))
G, (¥)/p(2y)°

Viy,Ag) 2 16, (h (a)/p(a)) ¥l k-m,m)

2 16, thy (/D () Y16, (@/p () skem,m) > 1-€

So ¥n 3_M

o«

= f_mV(y,Ao)dGﬁ(y/Ao) 3_fa V(y,29)dG (y/2,)
3_(1—6)[ dGn(y/AO) :_(1—6)2 and the proof is completed.
a -

Remark 1.3.2.v Theorem 1.3.1 shows that any P* requirement (1.1.5) can

be met by.choosing a sufficiently large common Sample size n. In
particular if the conditions of Theorem 1.2.3 hold and there exists
a least element A.eA' = inf ¢(A,n) = w(AO,n) for all n and hence

. 0 AeA!
Theorem 1.3.1 applies.

Example 1.3;1. The Location Parameter Case

Assume Tys++-»M are populations with cdf's F(Y/Ai)=F(y-Ai) and

also that

-}

(a) F is known, has bounded density and [ |y|dF(y) < =

(b) A =R' and P(A) = x-8, (8>0 is specified by'the experimenter)

(¢) For all n, hﬁ(x) = 1 ae
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. N
Let T, =T (X, ,...,X. ) == ¥ X.. and then it can be
in nil in n j=1 i)
easily seen
(a) T, 3 A; + u where u = [ mde(y)

(®) Gh(y/li) =-Gn(y-ki) is again a location parameter family.

From Example 1.2.1 it follows that inf w(A,n) = v(0,n) Vn.
' ) Ael! ‘

So finally an application of Theorem 1.3.1 gives the result

inf,PA[CSIR(n)] + 1 as n > =,
a(p) -~ '

Example 1.3.2. The Scale Parameter Case

Analogous to the above situation let 7.

i have cdf F(y/xi) =

F(§TD on (0,») and suppose that
i :

[+

(a) F is known with bounded density and f ydF(y) < =
. 0
(b) For all n, h (y) is defined on [0,=) and satisfies
\ ? Y -
yhi(¥)= h_(y) > 0 ae
() A= (0,=) and p(A) = 6, (0 < 6 < 1)
Again letting T. == J X.. it can be shown
_ e in " n jop i
(a) Tin R-Aiu where y = fo ydF (y)
(b) For every n, Gn(y/xi) Gn(Ai)
So from Example 1.2.2 it is seen that inf v(A,n) = y(1,n) for

AeA?!

all n and hence inf PA[CSIR(n)] +1as n-—+ =,
e -

Some standard properties of the individual rules R(n) are now

studied.
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Theorem 1.3.2. For any i = 1,...,k énd every rule R(n) of form

(1.1.4), R(n) is strongly monotone in w

1)’
Proof. Since p?(i) = EA[“i(T)] where

o = Ty 2 Thenn ) Tpg!?
L~ 0, otherwise

the result of Lemma 1.2.1 can again be used to show the desired

monotonicity. - It suffices to show

(A) ni(T) is non increasing in T(j) (j*i) when all other
components are fixed.
(B) ni(I) is non decreasing in T(i) when all other components

are fixed.

Part (A) has essentially the same proof as Theorem 1.2.2.

To prove part (B) it is only required to showvni(T) = 1 implies

ni(T') = 1 for any T (T .,Tk) and T' = (T}

12"

" 3 -
10 ,Tk) satisfying

Tw 7 Tay) ™ T =Ty I
n(T) =1
hn(T(i)) Z-maX{hn(T[k-m+1])’ T[k]}

@ (é) T

(1) 2 T[k-me1]
~and
®) Ry (Tigy) 2 Tpyg

Now (a) = either

(1) Ty = Tmen] = Themer] = 0T Themay? < Tl
or :
2) T

(i) > T[k-m+l] = Ttk-m+l] = T[k—m+1] S-T(i) < Tki)'



So (@) =Ty 2 Tl pe)

Similarly in case (b) one of two possibilities occur
(1) TV, <TH,=T!

(1) = k] 7 Tk) T Ty S0 (Tigy) < hp(Ty5)
or »
@ Ty > Ty @ Theg = Ty < aTpy)

(

max {Tik]’ hn(Tik-m+l])} which implies n(T') = 1 and énds the proof.

Again (b)’='hn(T'i)) z_Tik], Finally we get hn(Tzi)) >

Corollary 1.3.1. All rules of form (1.1.4) are monotone and hence

unbiased .

Proof. It suffices to show that pl(i) f-px(i+l) for any AeQ and

i=1,...,k-1. Assume wlog that A2=A[2] for notational ease then
n,, n .
p, (i) = p, (1)
A ‘(Al""’xk)

. n,.. . :
A ,Ak)(l) since p (1) is #+ in

.

<p

i CITIRE VT Ve VS VP
il

,Ak)(i+1)‘sin§e both "(i) and

n
=p
(S TTRRY FRTE YORTY VRTT Py

"(i+1) have thersame cdf.
< ,Ak)(i+1) since pg(i+1)+ in A

n .
Pex. .
(PR WYY VI S

p;(i+l); This completes the proof of the cbrollary.
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1.4 Expected Number of Selected Populations

If S(n) is the number of populations selected by R{(n), T(n)
is the number of non best populations selected by R(h) and p?(i) is

defined as.béfofe_by (1.3.1) and if

. | } |
Witﬁ) = {:0 ’ T(i) = max{T[k—m+1]’hn (T[k])}

1 » Otherwise

then the following representations hold

. k
(1.4.1) - S(m) = ] W.(m)
i=1
k-1
(1.4.2) T = ] W, ()
SR i=1
(143 PG = E @),

Theorem 1.4.1. -For any Eeﬂ(?)
' k-1
E_[S(n)] = 'E - kil ( § )f Ton ¢y r 6Dy -
F i=lpskem w2l Tew jeP) T T jedPy MM

(3) (1)
6, 1 a6 )

where ,~.G£i)(y)

!

60/ gsy)

k-1

p )} is the collection of all subsets

1,..0,(

CAESI

of size p from Y(i) = {1,...,k} - {i}

Proof. From the representation (1.4.1) it can be seen that it suffices

to calculate_p?(i) fori=1,...,k.
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p?ci) = P75, 2 Temer]® aT)) 2 T35 ji].
= P}[hn(T(i)) 3-T(j) j*i,T(i) > at least (k-m) T(l)'s w/e$i]
Analogous to the argument of Theorem 1.2.1 let

Bp=ﬂﬁ5>qﬂvh{ﬁLT < Tygy Viedh(i)]

v @ < T
e &h
"R - b Vgl PAlbn(T(3)) 2 T5) 34i, B
e h | o
) P=Evm vgl PALT ()T (5 W3 (30T (43 <T (55 <hy (T (5 WieR ()]
k-1 ho.

| () G) ()
. T G(y) m {G(h_(¥))-G:7(y)}
p=£-m vgl I-w jedg(i) n jesﬁ(i) noon "

46 (y) and

completes the argument.

Remark 1.4.1. Again note that the expected number of selected popula-

tions depends‘bn F only through )(F) and hence the notation EA[S(n)]
will be used rather than EF[S(n)]. The expected value of T(n)'can be

~

easily derived in a manner similar to the above using (1.4.2).

Example 1.4.1. Slippage Configuration

Suppose A= (Al,...,xk) has the form A[l] = A[k-l] = p(A[k]) = X

- *

. . k-l k-1 i P~ o k-l—p
Elsm)] = p=g_m( p ) (GO IHG, (h (1)/30) -6, (/2y}

dG, (y/x*)
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. k-i
+(k-1) ')

k-2 ® p_l . o
p=k_m(p_1)f_m{cn(y/xo)} (6, /A HG, (b (¥)/2g) -

k-1-p
Gn(y/ko)} »' dGn(y/AO)
k-2

+ck-15b=g_m(k;2)f_m{cn(y/xo)}P{cn(hn(y)/xo)-cn(y/xo)}k'z‘P

{6, (h (¥)/2*) -G (y/2*) }dGn(y/ko)

In the remainder of the section three topics will 5e studied:
(a) Asymptotic.properties of the séquence {S(n)} |

(b) The supremum of EA[S(n)] over for fixed n

(c) Both (a) and (b) for T(n).

The results for (a) begin with the following

Theorem 1.4.2.  For any AeA such that )

(k] ” *k-1]
v n 1 , 1=k
(1.4.4) P > as n -+ w.
~ 0 s 1l<ic<ck

ince T... P (i), . g
~Proof. Since T(i)n > A[i] and Gn (y) = p[T(i)n < y] it follows

. 1 s Y > Ap.
(1.4.5) that Grgl)(y) +{ [i]

0. , y«x A[i]'

Also A[k-l] < A[k] = oD A[k-l] < o < A[k]' Let I(Q) = [q’m)

Case A: i = k

k-1

:

where £:°(y) = 1 ¢y 1 P ¢)-69 )

Jeah () jek (k)

(G

T PV ga(K)
[ 57 me m

1 -

" k-1
p,(k) =
< p:k_m» v
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Subcase (1): .‘For k-m < p<k-2and 1 < v < (k;)l)_

-p .
=s/ (k) + ¢
=2V < v 6w ey < 1 16y
n je;’vp(k) n n n je;{:(k) n
Now given € > 0 pick NDV n > N
M) < €2
n .
and '
169 )1 < €2
. 7P L
O
which is possvvib,le since A[k-1]> <a < A[k] and (1.4.5) holds.

SOVn_>_N

0<f £nw6®e) = [

o «© ‘
P,V (k) + p,V (k)
BTG 06 )

a . o
<f 16w+ [ €2 a6 )
- Qa

(since vy ¢ I(a), fp’v()’) ii m {l-G(j)(y)} < .= {l-G(j)(a)}
" jebay " jePay "

< €/2)
<6 v 2. 1<

i.e. f fg’v(y)dGr(lk)(y) + 0 as n'> = for any such p and v.

Subcase (2): p=k-1 and v=1

Since ffk"rll’l(y)dcr(lk) (y) <1 it suffices to prove y€ > 0 @N3yn > N
= f::'l’l(y_)dGrEk) (y) > 1-€ in order to show fflri_l’_l(_y)dGIEk) (y) > 1

as n » =, Now p=k-1 implies
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(@ 210 = 0, ke ana s -
and » :
k- RNED k-l G)
(2) Vyel(a), fn iy - H G ) > Hl SNag C) I
. j=1 j=

Given 1 > € > 0 let €' = ] - V.I-E and choose N such that Vn >N
Gﬁk)(a)'é €
and

k-1 s

I 6 () > 1-€r
. n b

=1

which is possible since yj < k-1= A[j] <a < A[k]' Soyn > N

[y onas® ) 5 g mas o)

_ k 1
1 hii G(J)(a)f dG(k) ()’)
j=1

> 1-€901-6 @) > (1-€n? - 1-€.

Case B: 1 <i <_k--1

Fix i in the above range and let hg’v (y) = v lrEJ)(y)
a’p(l)

i3) (3)
T {6 (o y))-69) ()3
ey " n

4 C.) :
n. _ K1 f P oy (i) . PV oy g ()
py (i) = % 1 [ n} ()G " (y). Since [hf*¥(y)d6 * (v) > 0
~ p= —m v: =00 .

it suffices to show that given € > OEINBV n > N, fhp v(y)dG(l)(y)

in order to prove fhp v(y)dG(l)(y) > 0asn-+ w,
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Subcase (1): For p,v such that keop;(i)

| 6 (@) < €2
Given € > 0 pick N so thatvn >N (i) v
' G (a) > 1 - €/2

where a is as above. HenceVy < a, hg’v(y) < GrEk) ) < Gr(lk)(a).

So finally we obtainyn > N,

o . a . - .
[ 2 mna e = R ea® mef 1Rt o)
-00 - -00 o
0 4 . ® .
< 68 mnaM o) + [ 166D )
W .

_<_§ . 1 + ‘(1-Gr(li)(a)) < €,

Subcase (2): For p,v such that ke (i)
 pick o such that o < a' < A;. Now since h () » o and
a' < Ap@ N such thatvn > N

é-lfk) (@') < €/2

N

| ‘cﬁi’-)(a) > 1 - €/2
= Vn'_>_N.a-nd Yy < a
V) < (60t ()68 ()
<6® )
<6 (@) <M @ < e

So once again by arguments similar to the above
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J hﬁ’v(Y)dcﬁi)(Y) < €yn>N. This completes the proof of

the theorem.

Corollary 1.4.1. For any AeQ such that A[k] > A[k-i]

- o 1 , 1=k
(1.4.6) Wi(n) q; : as n -+
. ” 0 , 1i<ic<k '

Proof. When i = k

+

Bl ®)-D] = 0 - PR @)=1] + 1 - P, [ (m)=0]

1-p, (k) 0 as n > = by (1.4.4)
For i <k, Eé[{wk(n)}?] =0 - pé[wi(n)=01+1 : Pg[wi(“5=1]

= p?(i) +0 as n > by (1.4.4).

Remark 1.4.2. The following types of asymptotic behavior also

hold for any'kéﬂ-satisfying A[k] > A[k-l]’

' 1 , i=k ‘ 2
(1.4.7) Wi(n) R as n + » since convergence in L
. 0 , i<k| implies convergence in probability.

Ul s

(1.4.8) S(ﬁ) E l as n » » since S(n) =

. W, (n)

1

(1.4.9) S(n) Q;m. 1 as n + = since [S(n)-1]| < m-1 :
(1.4.10) EA[S(n)] > 1 as n » = since (S(n)-1)< (S(n)-1)2

The next results will study some properties of S(n) when n is
fixed. In particular, conditions will be given which guarantee that

the supremum of EA[S(n)] in Q occurs at some point A=(A1,...,Ak) for

~

which A[l] % A[k]'
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It will be assumed that the regularity conditions (1.4.11)
hold in somefof the theorems which follow.

-(i) EQ = En for every XeA
(1.4.11) |
(ii) For any [xl,xz] © A there exists r*(y) depending
a6, (/)

on A,, A2
2 R

1,

< r*(y) VyeR' and

_VAe[Al,AZ] where r*(y) satisfies
[r*(h, ()46 (y/A") < ¥ X' > ), and
[r* (46 (h (/A1) <= Var s 4,

Theorem 1.4.3. If the condition (1.4.11) is satisfied and

Vkl, Az in A>W1th Al <A

2
3G, (b (y)/A,) 3G, (/1)
1:4.12) g, 0/2y) - -——3;;—--g (hy, (")/A)h!(y) > 0

ae in En
then EA[S(n)] is non decreasing in A[l] on A(A[Z]) = {AeAlxg}[Z]} for

~

any fixed (A[Z]’ "’A[k])'

Proof. Fix A[Z] < —-A[k] for the following argument and then

EA[S(n)] = Tl(é) + T2(5) where

k-1
L
T, () = E S (y)dc(l)(y)
- p-k m v-l n
K k  ¢5h e
TZ(é) = Z § f p v(y)dG ) (y) where

r=2 p-k -m v=1
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V= 1 Wy 1 6D 6P 1.
' jet (i) jey *T R
Now T (A) can be rewr1tten as
k-1 Y ) .
T,(A) = - PV (y)d6 ) (y)
2"~ p=l§(:—m v=1 raleog(r) IEn T n
k-1
p=k-m =1 rale;g(r) E_ ¥ n
- For any A C {1,...,k} of size s, let {JB(A)|v=1,...,(k;s)} be the
collection of all subsets of size p from {1,...,k} -'A. Note that
for any fixed p=k-m,...,k-1 and r=2,...,k |
(1.4.13) {JE(r)|leJ€(r)} - {J;‘l(l,r)uu}lwl,...,(I‘:f)}
while for any. p=k-m,...,k—2 and r=2,...,k
(1.4.14) P |16A @) = {in)(l,r)lv=l,...,(k;2)}'.
So o k-2 :
kLK (p- ) v n (r)
W= 1T mer o )
p=k-m r=2 y=1 En :
(k-2
k2 ok § 2V (yy (6D (1) s (1)
=£ Z L TG, (B ()= (Y) 3G (y)
where (1) Wp’v(y) = ™ (J)()') {G(J)(h (r))-
r Jaa"p l(1 T) Jeo/p (1, r)
)
@ 2Vm = 1 Dy {G(J)ch (y))-
T je (1,1) i (1,1)

(1)
G," ()}
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Tl(g) can be rewritten as follows. For any p=k-m,...,k-2

and v=1,..., (7Y, [ P VacM ) = [ upiavey) for
| S E n E
n n

Vi) = a6V mdvm- 1 Doy 1 6D -

et 1) i (i)
(i)
| G, ()}
=1 ;e v
. |
C=- 3 ™ OO N SN IS DY WS DR ACRI OB

re/S (DB JA - " P
61 ()46 )

L SRR SN B S LIS W <D 16
reh () E e T T P )-1r)

et o )-8 )1y

For p=k-1 and v=1

o

[ 16 (”(y)dc(”cy) - 1- Z [ G(”cy)dc(” ).
E_ j=2 r=2'E_ j=1

J
n
' jtr
Now note that for any fixed p=k-m,...,k-1 and r=2,...,k

(1.4.15) P raP 1)} = sz'l(l,r)U{r}lv=1,.--,(;:f)}

while for aﬁy.p=k-m,...,k-2 and r=2,...,k
AW AW = GBan v, )
*-2)
k-1 k p-1 D,V () (r)
=Ty =1- 0 1§ [ WY oe, T (0de T ()
p=k-m r=2 v=1 E '
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E f ZP'\’,(y)GrEU ) {grgr) (hn(y))hﬁ(y)egﬁr) (y) My

p -m r= 2 v=1
So

T () + T (A)

Eéls(n)]

P> (1) (r)
pEM_ E f 2" 6 (hy g™ -

(1) (r) 1
G, " e, " (h (X)) () }dy

and finally

k-2)
dE\[SM)] k-2 k ¢ S
(1.4.16) ~—p——= 7 7§ E J zf_’ »).
[1] p=k-m 12 val E_
(1) (1
3G_""(h_(y)) 3G (y)
n n (r) (r)
- ‘—» (h_(y))h'(y)}dy.
| aA[l] ax[ll n n n
By (1.4.12) fof every r=2,...,k
(1) (1)
3G_"" (h_(y)) 3G (y) :
n n (r) n (r) fovY .
3*[1] g, (Y)-—SKEEE——-gn (h, (¥))h!(y) > 0 a.e. in E

= the derivative in (1.4.16) is non negative and completes the proof.

Remark 1.4.3. If G (+) is a location parameter family and h (y)

y+d (d +0) then (l 4.12) is simply the requirement of monotone likeli-

hood ratio; i.e.
(1.4.12) « 8y (r+d A )en (r-2)+g, (y-2 g (y+d -2,)>0 VA <d,, yeR!

o & (’y+d -A,) 8 (y-AZ)
g(yd -A) = g(yk)

® g (y-1) has MLR.
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Similarly if Gn(-) is a scale parameter family on (0,~) and
hn(y) = dny(dﬁ+l) then (1.4.12) is equivalent to MLR.

dEA[S(n)]
Corollary 1.4.2. 1If for every fixed A[Z] :3"5-A[k]"——75r——"-> 0

(11 -

for A[l] in A(A[Z]), then the sgp EA[S(n)] = sup y(A{n) where

el
o1, G 07N )
(1.4.17) y(A,n) = kaA{Gn(hn(y)/l)} I (E;TE;T;T7Xjukfm,m) G, (y/2)
n

Furthermore if the hypotheses of Theorem 1.4.3 hold for A=A
then y(A,n) is non decreasing in A and hence if there is a greatest

element AOEA = sup EA[S(n)] = Y(Ao,n).
Q ~

Proof. It suffices to provevq < k and fixed A[q+1] 55"5-A[k] that

Eé(q)[S(n)] + iﬁ A on A(A[q+l]) where the underlying

A = (A, AA seeesA . Let A' = () seeasA and note
2@ = [ar1]** " kp) s BT AT = Gpgpeeeadpgg)

from Theorem 1.4.1 that EA,[S(n)] is invariant under permutations of

At

-~

= dEA(q)[S(n)] _ g 9E,,[S(n)]

“ is1 Pl [a@
Q2E,  [S(n)]
A A ()
3E,,[S(n)]
But from the previous proof ASA > 0.
| [1] Alq)

Hence the supremum over Q of E[S(n)] occurs at some point where all

the A,.,'s are equal.
[i] i
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Since y(A,n) = E[¢(Y,r)] for

. k-1 Gn()'/A) o
¢(Y‘,>\) = {Gn(hn(Y)/A)} I (W sk-m,;m)

Lemma 1.2.2 can be applied and the sufficient condition (1.2.5)

that y(A,n) be non decreasing reduces to

36, (h, (¥)/2)  36_(y/2)

oy 1k-3
{6 (h /MY g (y/N) X T T

g, (h, (¥)/ )2 (y) )

G_(y/2) Gn(y/A)

! n .
{(k'l)Gn(hn(Y)/k)I (a;TH;T;T7K73k-m,m) - Gn(Y/A)b.(a;TE;T;T7Xy} >0

V A and ae Yy

136, (h, (/N 36 (y/2)

(1.4.18) sa{gn(Y/A) = - 55 g,(h, (¥)/M)h (y)} > 0

Vv X and ae Yy

since the third factor is non negative by Lemma 1.2.3. But (1.4.18)
is precisely the hypothesis of the Theorem 1.4.3 and hence y(A,n) is

nondecreasing in A. The final part of the result is obvious.

Remark 1.4.3. Theorem 1.4.3 generalizes the result of Gupta-

Panchapakesan [33] which shows that (1.4.12) implies that the
supremun of E[S(n)] occurs at some point having A[l] = A[k] in
the special éase m=k .

Finally it should be noted that y(A,n) is independent of 2
when Gn(-/A) is a location or scale parameter family and hence
the evaluation of sup E[S(n)] is complete.

Q

Another associated random variable of interest is the number

of non best populations selected, T(n). The expected value of the

number of non best populations selected can be written

EALT(] = Ey[S(m)] - pgck)u

~
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As usual, the dependence of Tin on n is suppressed in the

notation.

Goal: Given P*, u(-) and the sequence of rules {R'(n)} find the

smallest common sample size n necessary to achieve

(1.5.6) '-Pé[CS|R'(n)j > P* VFeq' (u).

The event [CSIR'(n)] stands for the selection of any restricted
subset containing ﬂ(l).
Once again the notation introduced in Section 1.2 will be used

to emphasize the dependence of the various quantities of interest on

the A.'s.
1

Theorem 1.5.1. For any AeQ

o h
P [CS|R' (n)]= kil 17 o 0e@en 1 G-
A p=k-m v=1 - jeig(l) n jesg(l) !
where » 69 1 (v)146{H ()

G) _ .

{Jg(l)lb=1,...,(k;1)} is the collection of all subsets of size

p from {2,...,k}.

Using the assumption concerning the stochastically increasing
nature of the family {Gn(y/A)]AeA} and the method of Theorem 1.2.2

the following reduction result can be proved.

Theorem 1.5.2.

(1.5.7) inf P [CS|R'(n)] = inf P[CS|R'(n)] = inf n(A,n)
AeQ(u) * AeQO(u) “Aeh!
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Analagous to the definitions of Section 1.1 let

}

Q(u) {5esz|u(x[l]) < A[z]

(1.5.2)

° (u)

{geglu(x[l]) = A2 7 Aug!

and then

(1.5.3) Q' (u) {EEQG¥)|5(E)EQ(u)} specifies a préference zone

in Q).

Example 1,5.1. Let A=[0,=), 61 >0, 6§, > 1 and

2
A +61, 0
u(A)=
S5, A

2

| A

} 5_61/(62-1)

| v

61/(62-1)

then A'=[0,«) gnd Q' (u) = {E|x[2] 3_max{k[1]+61,azk[l]}}

Suppose that {Hn(x)} is a sequence of real valued functions
defined for each n on a portion of the real line containing

v EA and such that
n
Aeh .

(i) Hn(x)‘ < xVx and n
(ii) For each n, the function Hn(x) is continuous and
strictly increasing

(iii) For every x, Hn(x) 4 xasn->e
The following selection procedure, R'(n), is proposed for selecting

"1y’

-1

(1.5.5) Rf(ﬁ): Select m, & T, f_min{T[m], H (T[l])}
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Corollary 1.4.3. If the hypotheses of Corollary 1.4.2 hold then

sup E, [T(n)] = (kil) sup y(A,n) where y(A,n) is defined by
Q .

- Ael

(1.4.17). 'Furthermore if the hypotheses of Theorem 1.4.3 hold

for Al= Az then y(A,n) is non decreasing in A and hence if there

is a greatest element AO

eh = sup E, [T(n)] (k-l)y'(xo,n)/k.
Q ~ .

Proof. For apy A= (A[l],...,A[k])eQ let %([k]) = (A[k]""’l[k])

then yieQ the hypotheses imply EA[S(n)] E_EA([k])[S(“)]- Also the

strong monotonicity of R(n) implies p?(k) 3-p2([k])(k)' So

B\ [TM)] < By eqy [T = 52 v0y p0m)
= sup EA[T(n)] = (kil) sup v(A,n) and the remaining conclusions
Q ~ ' Ael

follow from previous work.

. ' p
Remark 1.4.4f For any 559 such that A[k] > A[k_I],_T(n) 5 0 as
n -+ o,
1.5 Selection for the Smallest Parameter
In the present modification, k populations Myseee»M are

studied where each population is characterized as in Section 1.1.
The experimenter isnow interested in determining n(l)'the population
characterized by A

a preference zone is specified by a functionu: A + R!' satisfying

[ The assumptions (1.1.1) are supposed met and

(i) u(-) is continuous and non decreasing on
(1.5.1) A = {xerfu(M)en}

(1) u(x) > A ¥V ren
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where

1-G_(y/u(n)
I G N (y)/u(»)’k m,m dG, (y/2)

(1.5.8) n(Oum)=f {1-G_(H_(y)) "1 ¢

The next goal of interest is to discover conditions which allow
the evaluation of the one dimensional infimum of (1.5.7). As in
Theorem 1.2.3 regularity conditions of the type (1.2.9) are required.

They take the following form in this case: For any [AI,AZ] C A' and

Azel' there exist e;(¥) and e,(y) such that

9G_(y/u(A))
- (1) -_ILTﬁT__—_—I.i el(y) VAe[Al,AZ] where

(Je1 ()46, (7/23)) (fe (H, ()46 (¥/2,)) < =
(1.5.9) '

o 96, (/N -
-(11) |———7;r———|_§ ez(y) VAe[Al,Az] where

(Je, ()46, (H (1) /1)) (fe,(1)d6_(y/25)) < =

Theorem 1.5. 3. If E = E VeA' and G L (Y/A), H | (¥) and u()) are

suff1C1ent1y regular so that both (1.5.9) holds andV XeA':

36, (y/) 36, (H, () /u(r))

(1.5.10) H'(y)g M (y)/u(x))———————— g, (y/2) EPN 2 0

for ae y in En
and

3G (y/A) 3G (y/u(r)) .
- 8, (y/2) =

(1.5.11) g, (y/u(n)) > 0 for ae y in E

then n(A,n) is non decreasing in A.
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The proof of this result is similar to that of Theorem 1.2.3.
Note that if (1.5.10) and (1.5.11) are identically zero then n(X,n)
is independent of A.

Next it is shown that (1.5.6) can be attained for all P* levels

by taking n sufficiently large.

Theorem 1.5.4. 1If there exists AOEA' such that for all n suffi-

ciently large

(1.5.12) inf n(A,n) = n(A,,n)
] 0
Ael

then {R'(n)} is consistent wrt Q(u).
Formally the definition of consistency is the same as in

Section 1.3 but the meaning of a correct selection is different.

Remark 1.5.1. If the conditions (1.5.10) and (1.5.11) hold for every

n sufficiently large and there is a smallest A*cA! then (1.5.12) holds
with A0=A*.

Some properties of the rules R'(n) are now studied. For e
let

Pin(i) = Pé[R'(n) selects ﬂ(i)]

Def. 1.5.1, The rule R'(n) is reverse strongly monotone in 7

(1)
+ in A[i] when all other components
' .
means Pxn(i) is are fixed
N 4 in A[j](j+i) when all other compo-

nents are fixed.

Def. 1.5.2. The rule R'(n) is reverse monotone'meahsy'l_i i<jc<k

] 1
and 2e p,"(1) > p,"(j).
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Def. 1.5.3. The rule R'(n) is reverse unbiased means Vk > i > 1 and
. Aef

P}IR'(n) rejects "(i)] Z.Pé[R'(") rejects "(1)]'

Note that reverse monotonicity implies reverse unbiasedness.

Theorem 1.5.3. For any i=1,...,k, any procedure R'(n) of form (1.5.5)

is reverse strongly monotone in i)

The result analagous to Corollary 1.3.1 is

Corollary 1.5.1. All rules of form (1.5.5) are reverse monotone and
reverse unbiased.

The next area to be studied concerns S'(n), the number of
populations R'(n) selects. S'(n) is an integer valued.random
variable taking values between 1 and m. Using the representation

k
(1.5.13) S'(m) = ] Z,(n) where
, i=]
1 T < min{T H%I(T )}
’ G) - [m]” "n *7[1]

(1.5.14) Zi(n) =
: 0 R otherwise

the following results can be obtained.

Theorem 1.5.6. For any AeQ

_— ko ket € ® ),
(1.5.15) Ey[s'm)=] ] E f .. p. oo 1
~ i=1 p=k-m v=1 -« je¢ v(l) je v(l)

(3) (3) (1)
(G -6 (H ()46 ™ (v)
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The general expression (1.5.15) shows that EA[S'(n)] depends
only on the Ai's and is symmetric under permutations of the coordi-
nates. If larger and larger samples are drawn from each ™ the

number of populations selected decreases to one if there is but

one ''best" population.

Theorem 1.5.7.  For any XAeQ such that A < A

(1] [2]

L]
—

‘n 1, i |
(1.5.16) v Py i) » as n > o
~ 0 » 2 <1<k

The proof follows along the lines of the corresponding result

for = .

(k)

Remark 1.5.2. For any AeQ such that A[l] < A[Z] the result (1.5.16)

implies the following asymptotic behavior.

) 1 , 1 =1
@ z;m % | as n > w
0 » 2 <1<k

(ii) S'(n) R lasn-» e
(iii) EA[S;(n)] +-lasn-»> o

Similar results hold for T'(n), the number of non best populations

selected.
As in Section 1.4 certain regularity conditions will be needed
for several of the remaining results. One such set of conditions is:

A

n = En for every ieA

(1.5.17) { _(i) .

(ii) For any [Al,)\z] C A¥ s*(y) depending only on i,

and A2 such that
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I 36, (y/2)

3% l < s*(y) VAe[Al,AZ] where

fE s*(H_ (y))dG_(y/A') < =V 2! > A, and

n

\"
>

IE S*(y)dG, (H (y)/A") < =V > A,
n

Theorem 1.5.8. If the conditions (1.5.17) are satisfied and

vxl,xz in A with Al < Az

3G, (y/A) 3G (H (y)/A))

? | n
(1.5.18) Hi(y)g (H (Y)/2,) ; ™, g,(y/2;) > 0
ae in E
n
then EA[S'(n)] is non decreasing in A[I] on A(A[z])={AeA|A§}[2]} for

~

any fixed (A[z],...,x[k]).

Remark 1.5.3., If Gn(y/x) is a location (scale) parameter family

and Hn(y) = y-dn(y/cn) with dn >0 (cn > 1) then (1.5.18) is the
condition that gn(y/x) has monotone likelihood ratio.

- 9E. [S'(n)
sl

I WS Je
[2] [kJ N

Cotollary 1.3.2. If for every fixed (A

on A(A.,,) then sup E,[S'(n)] = sup yv'(A,n) where
[2] f A Aeh

, k"l l'Gn()'/A)
O] 06,0, 00/ (g ykenm 46, 070

n
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Furthermore if the hypotheses of Theorem 1.5.8 hold for
Al = AZ then y'(A,n) is non decreasing in A and henée if there

is a greatest element AOgA, sup EA[S(n)] = y'(AO,n).
. Q -~

Remark 1.5.4. 1If Gn(-/x) is a location or scale parameter family,

v'(A,n) is independent of A.

Example 1.5.2. Location Parameter Family

Let wl,;..,wk, A and T. be as in example 1.3.1. Suppose
u(A) = A+8 (8 > 0) and {H (x)} is any sequence sat15fy1ng (1.5. 4)

and the additional assumption H!(x) < 1. (1.5.10) becomes
Hﬁ(y)gn(Hn(y)/U(A))(-gn(y/k))-gn(y/k)(-gn(Hn(y)/U(k))
2 £, (/08 (8 (v)/u(0)-1-g, (y/N)g, (H_(v)/u(r))=0 y'y, A in R
and (1.5.11) bécomes
8 (/N8 (y/u(0)) g, (y/u(\))g_(y/2)=0 vy 4 in RL.

Hence n(A,n) is non decreasing in A. For the usual choice
Hn(x) = x-dn(dn+0) both (1.5.10) and (1.5.11) are identically zero

and hence

o 1-G_ (y-6)

inf P [CS]R'(n)] {1 G (r-d_ 6)} I( ;k-m,m) dG_ (y).
Ae(u) 2 f 1- G (y §-d. )

Finally if it is known that gn(y/x)=gn(y-k) has monotone

likelihood ratio then

© k-1, 16, ()
sup E, [S" (n)]=k {1-6, (y-d )17 1 ¢ T‘E‘T}T?Fj“k m,m) dG_(y).
Q = -

The results for the scale parameter family follow in exactly the

same manner.
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Conclusions for T'(n) corresponding to Corollary 1.4.3
follow along the same lines as before and will not be explicitly

stated here.

1.6 Some Alternate Formulations

Formulation I

The idea of this formulation is to show that by taking larger
indifference zones the same rule R based on a fixed number of
observations. from each population can be made to attain any P*
level. Bechhofer [8] provides an example showing that his proposed
rule for the normal means problem has this property.

In the general case the machinery of Section 1.1 is assumed
and also that (0,0) € A. P*,n,m and hn(y) are fixed. Finally it
is assumed there exists a class of indifference zones |
@'= {pE:A > Rl|£eI} where I is an interval and if:£0=éup{§|gel},

the following hold

(i) For every kel, pg(x) <A
(ii) For every &el, p_(A) is continuous and strictly
(1.6.1) » 2
increasing in .

(iii) pg(x) > as £ > g, for every AeA

The following theorem gives conditions under which (1.1.5) can

be met

Theorem 1.6.1. If for every eI, inﬁ w(A,n)=¢(xg,n) where Ag
Ael
satisfies p (AE)=A and if Vye U EA, é (y/x) » 0 as A+ then
£SO 0 Aed n n

inf P[CS|R] + 1 as £ - £
2(p,)
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Remark 1.6.1. Note that y(A,n) depends on the particular

indifference zone used, (A), even though the notation su presses
Pe P

this fact.

Proof. By hypothesis vgeI
k-1

inf PICSIR]= T (O [{6, (/20 IPLG, (h ()/30) -6 (y/3 ) 1P
2(p,) p=k-m P :

dGn(Y/uE(lo))
where uE(A)-= pél(x).

Let g (y) = {Gn(y/Ao)}p{Gn(hn(y)/Ao)-Gﬁ(y/AO)}k'l'P and then two

cases will be studied:

Case A p <k -1
=‘gp(i =)=0 and vy, Gn(y/ug(xo))+ 0 as £ » EO
= fgp(y)dGn(y/ug(Ao)) > 0 by the extended Helly Bray Lemma.

Case B p=k-1

Integration by parts gives

I8 096, 6r/u, )=1-kf6, (v/70, 00116, /2 )26y )

+ 1 as £'+,£0 by dominated convergence, (1.6.1) and the
hypothesisrof the theorem. This completes the proof of
the theorem. |
The main application of Theorem 1.6.1 will be to location and:

scale parameter families as the examples of Chapter IT will show.
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Formulation II

The following formulation is commonly specified in the
literature when using thé subset selection approach and although
the approach here will even employ an indifferencebzone, difficulty
still arises as example 1.6.1 will show. It is assumed the experi-
menter has a priori specified P*,m,p(}) and n. The statistician
must construct a rule attaining the given probability requirement
(1.1.5).

Again let us adopt the notation of Section 1.1 where n is fixed
and let H denote any class of functions satisfying the requirements
of Gupta-Panchapakesan [33]. Specifically these requirements are

that if E = U E) then H = {h E > R'|ce[1,),de[0,%)} is a

Aeh
class of functions such that

c,d:

(i) For every pair c¢ and d, hc d(x) > x vxeE
J _(11) hl,ch) = X
(1.6.2) (iii) For every x, hc d(x) is continuous in ¢ and d.

(iv) For every xeE and c, hC d(x) + o as d-»= and/or

for every xeE and d, hc d(x) + © a5 ¢ »> o,
b .

Again for ease of notation it will be convenient to simply

write h(.) rather than hc d(-). For each heH define

R(h): Select e h(Ti) > max{T[k], h(T[k-m+1])}

Gupta-PanéHapakesan [33] prove that (1.6.2) are sufficient to
guarantee the existence of a rule in H satisfying any given P*
requirement (1.1.5) in the subset selection case (m#k). The follow-
ing example shows the typical behavior in the restricted subset

selection case.



55

Example 1.6.1. Suppose each T i=l,...,k is characterized by Qi
and one observation, Xi, is taken from ™. which has cdf F(y/Oi) =
F(y-Oi). Let

H= {h,: R > & |hd(x) = x+d, de[0,=]}

and suppose § > 0 is given.

Goal: Given P*,m and 6 find a rule R(h), heH satisfying

PgICSIRM)] 2 P*VQea(8)=(0lopj-0,, 1 > 83

Now for each heH, R(h) is defined by

R(h): Select m, ®X. > ma"{x[k-md]’x[k]-d}

It can easily be seen that the maximum P* attainable in the class

of rules {R(h)|heH}, P;ax’ can be computed as

P* = sup inf P[CS|R(n)]
maX 450 a(8)

(k-m) (o) [ T1-F (0-6) HF 0 5™ 118 ) ™ L )

Two difficulties should be noted
(i) If it is desired to meet the P* condition on all of Q(i.e.8=0)

= p;axé (k-m) (]1::;:") f-oo{F (W) }k'm-l{ l-F(W) }mdF (W)

=m/k is the maximum attainable P* level and this is
achieved for the fixed size subset rule which chooses the m
populations corresponding to the m largest order statistics.
(ii) Even if a preference zone is specified (8>0), since 1-F(w-8) <

Ivw



= Plax f(k'm)(i:;)f_m(l){F(W)}k-m-l{l-F(w)}m-ldF(w)=1.

So even in this case not all probability levels can be

achieved over the preference zone.

56
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CHAPTER 11

APPLICATIONS OF RESTRICTED SUBSET SELECTION PROCEDURES

2.1 Selection of the Normal Population with Largest Mean

Because of the importance of normal theory in practical
applications this problem will be discussed in some detail and
a set of tables provided to facilitate the use of the proposed
procedure. From a formal point of view the goals in Sections
1.1 and 1.6 can be combined into a general goal for wﬂich the
subset selection approach and the indifference zone approach
become special cases. Also the rules proposed by Bechhofer (8],
Gupta [20,26] and Desu and Sobel [15] are special cases. of the
proposed rule, R(n).

Let wi.~ N(ui,cz) for i=1,...,k andisuppose the common 02
is known. Each population is characterized by its mean and if
“[1] 2.2 utk] are the ordered means and i) is Fhe populations

with mean u[i] then the best population is 7 For d >0 and

k)’

n > 1 define

(2.1.1) R(h): 'Select m,® Xi 3_max{X[k_m+l],X[k] —»dc//ﬁ}

where ii is the sample mean from m.- In the terminology of

i =x. P =
Section 1.1 Tin Xi > My Ai and the goal reduces to
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Goal G': Given P*, § > 0 and {R(n)} (i.e. m and d) find the

smallest n so that

(2.1.2) PE[CSIR(n)] > P* YV uef(s) = {ylu[k]-u[k_ll > 8},
Theorem 2.1.1;
/ns Q(y+/§5),
(2.1.3) inf P [CSIR(n)] =f {¢(y+d+ /ndy k- IC——————————;k-m,m) de(y)
JOR " ¢(y+d+{§b)

From Example 1.3.1 dealing with the location parameter family or
directly by'an application of the dominated convergence theorem the

following equalities can be verified.

(2.1.4) (i) lim inf P [CS]R(n)] =1
e Q(8)

(2.1.5) (ii) 1lim inf P [CS]R(n)] =1
&+ Q(8)

(2.1.6) (iii) lim inf P [cis(n)] sup inf P [CS|R(n)]
' © dre Q(8) M d>0 q(s) *

vns k-m- 1,

= (k-m) (k m)f {1 <I>()’-——)}{¢()’)} {1-6(») 1" e (y)

Note that for a fixed sample size, any P* level in (2.1.2) can
be met by choosiﬂg § sufficiently large, however not all (P*,5) goals
can be met by selecting d sufficiently large. In particular, when
attempting to meet a subset selection type goal the difficulty of

example (1.6.1) arises i.e. sup inf P [CSIR(n)] = m/k.
d>0 @

Since all or some of n,d and § may be flexible within bounds in
a practical problem, the following more general goal may be required

in certain situations.
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Goal G: Givgn P*,m and also possibly n and/or § > 0 define a
procedure R(n) based on a sample of common size n from
each population which selects a subset of populations
containing "(k)’ does not exceed m in size and yet
satisfies (2.1.2).

The prbposéd proceduré is (2.1.1) where both n and d are

constants to be determined.

Remark 2.1.1.: Equation (2.1.6) shows that it may be impossible

to attain €2.1.2) for certain combinations of P*,n and §. In this

case the requirements on n and & must be relaxed.

Remark 2.1.2, The following previously studied cases are special-

izations of the goal G and rule R(n).

(1) Given: P*, m=k, 6=0 and n
= G: Define a procedure R which selects a subset of
: {wl,...,nk} containing "(k) and satisfies

Pu[CSIR] E_P* VueQ. The proposed rule reduces to

R: Select m e X > X[k]—dc//ﬁ

This goal and procedure were studied by Gupta [20,26].
(ii) Given: P*, m=1, § > 0

= G: Define a sequence of rules {R(n)} each of which
chooses a single population and find the smallest
n so that Pu[CSIR(n)] > P*V peQ(8). The rule R(n)

. reduces to
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(k]

Bechhofer [8] studied this goal and procedure.

R(n): Select m, corresponding to X

Also note that the rule proposed by Desu and Sobel [15] is a
special case of R(n) for the choice m=s(l < s < k) and d=+=, All
the results obtained for these three rules are special cases of
the general results for R(n). ‘In particular (2.1.3)-reduces to
give the results of:

(i) Bechhofer (m=1)

k

inf Pu[CSIR(n)] = [ {o(y + /ns 'ld¢(y)

)}
a(s) X - ¢

(ii) Desu and Sobel (1 < m < k, d=+)

k-l
inf P [CS[R(M)]=f ] (k;l){¢(y » J08yp

9(6) ~ - p=k-m

©{1-e(y + 1§§a}k‘l'P de(y)

= kem T H ) 0009 1e ) K -0 () Loy

(iii) Gupta (m=k, d > 0)

' o k-1
. _ k-1 k-1,:8(y) ,Pry_0(y) .k-1-p
e RIOSIR=] om0l ] OO GG syt o)

=f (o+d) Y dey)

Since {R(n)} is of the form (1.1.4) with h (x) = x + do/vn
satisfying (1.1.3) and all the other hypotheses of Section 1.1 are

satisfied, the general theory gives the following results:

A. For any i=1,...,k and any n, R(n) is strongly monotone in =

(i)’
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B. If pzci) = P [R(n) selects ;] and S(n) is defined as in

Section 1.4 then VgeQ'such that u[k] > u[k—l]
n 1 , i=xk
(1) p (1) » as n -+ o«
¥ 0 , 1<ic<k

(2) S(n) - 1 in probability as n + «

C. For any peQ

k
, _ /n
E sl = [ ) i O P e TR

1 p=k-m v=1 - jadg(i)

/& i
R YO LT T TR ) B T2 o PRI ) E LY ()
SR @) o W17 (117403

o

EE[S(n)].is 4 in Mg on ('“’“[2]]

E. sup Eu[S(n)] = k! {¢(y+d)]’ ( (¢4(_d; :k m’m) dq’()')
Q -0

Some shorticomputations also show that

F. sup Eu[S(n)] is non decreasing in d.
2

G. If n(d) is the sample size needed for the rule R(n) in (2.1.1)
to attain a fixed (P*,8) requirement, then n(d) is non increasing

in d.

Table I has been prepared for the purpose of implementing

{R(n)} and it lists the values of vné/c satisfying

o (y+22)
(2.1.7) P*= f {¢(y+d+¢ﬁ3 k-1y (-———————————;k-m,m) de(y)

- 00

for various P*,k,m and d values.
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Table 1

Lists the value of /Eg needed to attain P* levels .75, .90 and .975
for the rules'given by d = .4, .8, 1.2 and 1.6 for various k and m.
d N/ .8
p* : p* :
k m 75 .90 .975 .75 .90 . .975
2 1.070 . 1.859 2.750 .788 1.561" 2.436
2 1.335 2.093  2.952 1.098 1.836 2.680
3 1.287 2.057 2.932 .916 1.678 2.537
5 2 1.510 2.252 3.096 1.297 2.019 2.832
3 1.454 2.204 3.063 1.106 1.845 2.688
4 1.447 2.201 3.060 1.055 1.805 2.664
6 2 1.639 2.370 . 3.198 1.442 2.153 2.958
3 1.577 2.319 3.163 1.248 1.970 2.798
4 1.569 2.312 3.155 1.183 1.921 2.765
5 1.569 2.311 3.155 1.170 1.913 2.756
7 2 1.739 2.461 3.282 - 1.556 2.257 3.054
3 1.676  2.406 3.242 1.360 2.074 2.887
4 1.664 2.398 3.234 1.288 2.015 2.843
5 1.663 2.397 3.233 1.267 2.002 2.838
8 2 1.822 2.537 3.349 1.647 2.342 3.131
3 1.756 2.480 3.308 1.452 2.157 2.962
4 1.742 2.473 3.301 1.375 2.093 2.914
5 1.741 2.472 3.300 1.348 2.075 2.903
9 2 1.892 2.603 3.408 1.724 2.415 3.196
3 1.824 2.543 3.363 1.530 2.229 ' 3.026
4 1.810 - 2.533 3.361 1.449 2.160 2.972
5 1.808 2.531 3.359 1.418 2.137 2.957
10 2 1.953 2.656 3.460 ° 1.791 2.478 3.252
3 1.882 2.597 3.410 1.596 2.290 3.079
4 1.868 2.587 3.407 1.512 2,219 3.024
5 1.864 2.583 3.403 1.479 2.193 3.006
15 2 2.169 - 2.860 3.641 2.027 2.698 3.464
3 2.09  2.793 3.590 1.837 2.513 3.278
4 2.074 2.778 3.582 1.744 2.431 . 3,212
5 2.069 2.776 3.581 1.699 2.397 3.193
20 2 2.309 2.992 3.766 2.179 2.843 3.593
3 2.232 2.924 3.705 1.991 2.659 3.417
4 2.209 2.905 3.702 1.898 2.573 3.347
5 2.203 2.903 3.699 1.848 2

.533 3.314
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d 1.2 1.6
P* P
kK m .75 .90 .975 .75 90 .975
3 2 .590 1.351 2.211 462 1.223 2.075
2 .954 1.684 2.504 .875 1.602 2.414
3 .599 1.345 2.189 .359 1.093  1.921
5 2 1.181 1.892 2.696 1.123 1.830  2.627
3 .841 1.560 2.380 .669 1.376 2.173
4 .686 1.429 2.272 .375 1.101 1.929
6 2 1.340 2.041 2.830 1.295 1.99 2.775
3 1.016 1.719 2.516 .881 1.572 2.353
4 .849 1.572 2.400 .597 1.300 2.097
5 .783 1.521 2.365 428 1.155 1.983
7 2 1.464 2.157 2.939 1.426  2.115 2.897
3 1.153 1.844 2.633 1.039 1.722 2.488
4 .980 1.687 2.499 .768 1.456 2.237
5 .896 1.623 2.451 .588 1.295 2.100
8 2 1.565 2.251 3.024 1.530 2.213 2.987
3 1.261 1.946 2.728 1.164 1.840 = -2.597
4 1.087 1.786 2.583 .904 1.584 - 2.349
5 .995 1.708 2.520 .722 1.413 2.202
9 2 1.648  2.329 3.095 1.617 2.297 3.062
3 1.353 2.033 2.799 1.266 1.934 2.692
4 1.178 1.868 2.649 1.016 1.688 2.446
5 1.080 1.783 2.588 .836 1.518 2.291
10 2 1.719 2.397 3.163 1.691  2.367 3.132
3 1.431 2.105 2.870 1.352 2.018 2.768
4 1.256 - 1.940 2.721 1.110 1.778 2.528
5 1.153 1.851  2.647 .933 1.607 2.372
15 2 1.969 2.637 3.387 1.949 .  2.613 3.363
3 1.704 2.365 3.107 1.650  2.303 3.037
4 1.537 2.201 2.951 1.435 2.083  2.818
5 2.428  2.100 2.866 1.273 1.923 2.666
20 2 2.130 2.788  3.530 2.113 2.769 3.511
3 1.879 2.529 3.263 1.834 2.478 3.205
4 1.716  2.368 3.110 1.635 2.276 3.003
5 1.607 2.265 3.015 1.484  2.122 2.849
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All computations were made on a CDC 6500 using Gauss
Hermite quadrature based on twenty nodes to perform the numerical
integration. Checks on the accuracy of the program for m=1 showed
that the algorithm produced values which were off by at most one or
two digits in the third place. The author assumes full responsi-
bility for all tables constructed in the thesis.

In general, given P* and &§ there will be many choices of d and
n satisfying (2.1.7). Since each R(n) will always select at most m
populations no matter which d (> 0) is used, the following list of

possible criteria is proposed for choosing d.

A. A Minimax Approach. Consider the following three loss functions.

(i) Ll(B,d) = EE[S(n)] where R(n) is based on d. Ll(-,-) is an
appropriate loss function if the cost of taking additonal
observations from a population is cheap given that some have
already been taken. In this case the loss can be considered
solely due to selecting a large number of populations. Since
sup.LICE,d) = sup E [S(n)] is 4 in d,

u
Q @ =~
- = inf sup»Ll(u,d) = 1 and is achieved at d=0. Hence the
0<d<w @ ” -

minimax rule is:

Rl(n): Select m, corresponding to X[k].

Remark 2.1.3. 1In some cases it seems more appropriate to let

LI(E’d) = Eu[T(n)] where T(n) is the number of non best populations

selected rather than Ll(u,d) = Eu[S(n)]. It can be shown that the

.

same rules are picked using both loss functions.
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(ii) LZ(B’d) = e (P*,8,m,d)=n(d)/n(») where n(d) is the solution
of (2.1.7). L2 is the ratio of the sample sizes of the
rules using d and « needed to attain the same probability
level. It is appropriate if the expefimenter only cares to
keep the cost of the total number of observations small since

he kndws 1 < S(n) <mholds. Since
sup Lz(g,d) = n(d)/n(~) is + in d
Q

= inf sup Lz(u,d) = 1 and is achieved at d=w«.
0<d<= Q -

Hence the minimax rule is

Rz(n): Select the populations corresponding to x[k-m+l]""’

i[k]'

(iii) Ls(u,d) = f(Eu[S(n)], n(d)) where f(x,y) is non decreasing

in x and y. L3 penalizes the experimenter for both large

sample sizes and large expected subset sizes.

(2.1.8) sup Ly(u,d) = £(kJ {o(ysd)}*" 1 GREyik-mmde(y), (@)
up L3 (n

For any given P*,5,m and k (2.1.8) can be minimized using

numerical techniques to determine the minimax rule.

B. An € Minimax Approach. The objective is to choose rules which

are less conservative than the minimax rules of (A) in that they
take advantage of the subset selection nature of R(n) for de (0,=).

(1) Choose d* so that

sup Ll(u,d*) = inf sup LI(E’d) + €=1+¢€
Q - 0<d<e Q
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= d* satisfies

(ii)

(a)

(b)

«©

, wyik-1. . o(y) . -
f_e° {o(y+d*)} I(ET;%E;73k—m,m) do(y) = (1+€)/k

Choose d*.to satisfy e(P*,8,m,d*) = 1+€ |

= choose d* 3 n(d*) = n(~)[1+€]. Table II shows that even
for small values of d, e(P*,8,m,d) is close to one indica-
ting only a slight additional cost for using the rule

defined by d. On the other hand the savings realized by
using R(n) over the fixed subset size rule (d=+=) is measured
by (m-Eu[S(n)]), This difference, of course, depends on the
unknown~y. To, investigate this quantity numerically Tables
IIT and IV have been constructed which list E [S(n)] under

the fOllOWlng configurations:

Equispaced Means = u= (a,0+8,...,a+(k-1)6).

For certain values of P*,d, vhé/o and k, Table III lists
k-l)
: k k-1 ( o ﬁ;
Elsm]= ] ] § / T ey (i-5)8) x
K i=1 p=k-m v=1 -= jeaﬁg(i)

a,;‘(.)ww“—f (i-j)é)-¢(y+‘/—§ (i-3)6)}de(y).
Jer (1

Slippage = u = (o,...,0,a+8)

Again for certain P*,d, v/n§/o,k and m values Table IV gives

k-1 Y -1-
B Isml= T (h) {@(yf‘s)}l’w( rar D08 _g (ya Y08y 1K 1-Pgy,

k-1

@D T D] 0= e 1P ey -0 () s (1)
p:k_m -0
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Table III

Using the rule R(n) and under the configuration (o, ot+d,...,a+(k-1)
6) this table gives in order the triple a) the expected number of se-
lected populations, b) the expected sum of ranks of the selected pop-
ulations and c¢) the expected proportion of selected populations ((a)

divided by m)
Number of Populations Studied

e

2 4 1.3111 1.2800 1.2237 1.1649 1.1156
2.5300 2.1262 1.7606 1.4906 3.3121
0.6555 0.6400 0.6118 0.5825 0.5578
7 1.5039 1.4588 1.3751 1.2839 1.2038
- 2.9134 2.4731 2.0453 1.7073 1.4698
0.7520 0.729 0.6875 0.6420 0.6019

k=4 '
2 4 1.3619 1.3090 1.2316 1.1660 1.1157
3.2056 2.3924 1.8184 1.4971 - 1.3124
0.6810 0.6545 0.6158 0.5830 0.5578
.7 1.5691 1.4972 1.3862 1.2855 1.2039
3.7113 2.8056 2.1237 1.7172 1.4704
0.7845 0.7486 0.6931 0.6427 0.6020
3 4 1.4391 1.3629 1.2568 1.1750 1.1183
3.3970 2.5213 1.8765 1.5173 1.3183
0.4797 0.4543 0.4189 0.3917 0.3728
.7 1.7789 1.6483 1.4611 1.3139 1.2126
4.2343 3.1766 2.3037 1.7845 1.4910
0.5930 0.5494 0.4870 0.4380 0.4042

k=5

2 4 1.3956 1.3208 1.2326 1.1660 1.1157
3.8362 2.5299 1.8277 1.4973 1.3124
0.6978 0.6604 0.6163 0.5830 0.5578
.7 1.6097 1.5119 1.3875 1.2855 1.2039
4.4502 2.979% 2.3170 1.7175 1.4704
0.8048 0.7560 0.6938 0.6428 0.6020
3 4 1.4995 1.3845 1.2588 1.1751 1.1183
4.1402 2.6964 1.8893 1.5176 1.3183
0.4998 0.4615 0.4196 0.3917 0.3728
.7 ~1.8785 1.6862 1.4650 1.3140 1.2125
5.2408 3.4475 2.3276 1.7851 1.4910
0.6262 0.5621 0.4884 0.4380 0.4042
4 4 1.5165 1.3920 1.2601 1.1752 1.1183
4.1910 2.7184 1.8932 1.5180 1.3183
0.3791 0.3480 0.3150 0.2938 0.2796
.7 1.9571 1.7230 1.4724 1.3148 1.2126
5.4774 3.5593 2.3499 1.7875 1.4912
0.4893 0.4308 0.3681 0.3287 0.3031
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Table IV

Using the rule R(n) and under the configuration (&,q,...,o + &) the
table gives in order the triple a) the expected number of selected
populations, b) the expected sum of ranks of the selected populations
and c) the expected proportion of selected populations ((a) divided
by m)

Number of Populations Studied
7~ k=3
\>\<h5
g

.10 .50 .90 1.30 1.70
2 b 1.3120 1.2996 1.2702 1.2270 1.1766
- 2.5773 2.3611 2.1156 1.8627 1.6259
0.6560 0.6498 0.6351 0.6135 0.5883
7 1.5052 1.4872 1.4437 1.3783 1.3003
2.9629 2.7352 2.4657 2.1740 1.8861
0.7526 0.7436 0.7219 0.6892 0.6502
k = &
2 A 1.3641 1.3529 1.3243 1.2792 1.2233
3.3491 3.0598 2.7192 2.3554 2.0028
0.6821 0.6765 0.6622 '0.6396 0.6116
.7 1.5720 1.5568 1.5169 1.4523 1.3696
3.8654 3.5571 3.1877 2.7804 2.3685
0.7860 0.7784 0.7585 0.7261 0.6848
3 4 1.4423 1.4266 1.3877 1.3288 1.2583
3.5441 3.2426 2.8768 2.4792 2.0908
0.4808 0.4755 0.4626 0.4429 0.4194
.7 1.7844 1.7578 1.6920 1.5915 1.4701
" 4.3959 4.0606 4.6299 3.1363 2.6292
0.5948 0.5859 0.5640 0.5305 0.4900
k =5
2 4 1.3993 1.3893 1.3622 1.3172 1.2587
4.1254 4.7752 3.3491 2.8800 2.4125
0.6997 0.6947 0.6811 0.6586 0.6294
.7 1.6145 1.6015 1.5653 1.5033 1.4198
4.7653 4.3894 3.9297 - 3.4130 2.8799
0.8072 0.8007 0.7827 0.7516 0.7099
3 A 1.5055 1.4904 1.4512 1.3887 1.3108
4.4422 4.0725 3.6089 3.0886 2.5649
.5018 .4968 .4837 4629 4369
.7 1.8882 1.8635 1.7988 1.6946 1.5627
5.5835 5.1660 4.6218 3.9837 3.3107
0.6294 0.6212 0.5996 0.5649 0.5209
4 4 1.5230 1.5067 1.4649 1.3990 1.3177
4 .4949 4.1216 3.6502 3.1198 2.5859
0.3808 0.3767 0.3662 0.3498 0.3294
.7 1.9692 1.9392 1.8631 1.7437 1.5964
5.8267 5.3950 4.8181 4.1356 3.4161
0.4923 0.4848 0.4658 0.4359 0.3991
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The same two tables also list

(1) The expected sum of the ranks of the selected populations
(k+1-1)p] (1)

(2) The expected proportion of selected populations = Eu[S(n)]/m

for their respective underlying configurations.

A similar choice of d* can be made corresponding to L3(u,d).

2.2 Selection. from Gamma Populations for Scale Parameters

The object in this section is to formulate a restricted subset
selection procedure for selecting the normal distribution with
smallest variénce. The problem for selecting in terms of the
largest variance is analagous. The more general problem of select-
ing the gamma population with the smallest scale parameter will be
studied first.

Suppose L P(r,Ai) and that ™ is characterized by
Ai(= A = (0,)). Furthermore suppose iid random variables {Xij}?=1
are observed from ™, and hence Xij has cdf
y/>\i Xr—le—x

——fT;j—-dx

F,0) =E. D =
i 0

It is assumed r is known. Let
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<...< A < = be the ordered A.'s,
[1] = "= "[k] i
. 1 n _
(2.2.1) T, == 7§ X.. =X,
in n . ij i
J=1
d >1 and

1/n ¢

(2.2.2) R(n): Select m, & Xi < min{d X[I],i[m]}.

The object is to select m1)? the population with paiameter A[l]'

Goal G': Given P*, 8¢(0,1), {R(n)} (i.e. d > 1 and m) find the

smallest n such that:

(2.2.3) P,[CS|Rm)] > Pp* Vaea(s) = {glx[l] = 8yt

~

The event [CS|R(n)] stands for the selection of any restricted

subset containing w

(-

Theorem 2.2.1.

. ® 1-E__(y$)
(2.2.4) inf P [CS|R(m)]=f {1-E__(yd™}/Mg)}*-1p 0¥ T—ikem,m)
Q(s) ~ o T 1-E__(yd" /Mg
| Fox
dE__(y)

Proof. The proof follows from the observation that Gn(y/Ai)=Enr@%XJ.
i

Analagous to the normal means procedure

(2.2.5) (i) 1lim inf P[CS|R(m)] = 1
640 Q(8)

(2.2.6) (ii) Lin i?f)P[CSIR(n)]=(k—m)(i:;)[ [E . (w/8)][E__(w)]™?
o (6 0

[1-8__ 01 ™ 1aE_ )

nr

which follows the usual pattern established for formulation I and II

in Section 1.6.
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As remarked in Section 2.1, in a practical problem where some
of d,§ and n are flexible within certain bounds, the goal of

interest may really be:

Goal G: Given P*, m and also possibly n and/or 0 < & < 1 define
a procedure R(n) based on a sample of common size n from
each population which selects at most m populations,

which contains =« and which satisfies (2.2.3).

(1)

In this case, the proposed procedure R(n) is just (2.2.2) where

d > 1 and n are constants to be determined.

Remark 2.2.1. Equation (2.2.6) shows that it may be impossible to

satisfy (2.2.3) for certain combinations of P*,n and.s., In this
case the requirements of the experiment on some (or all) of &,n and
P* must be relaxed.

G and R(n) reduce to the goals and rules of Bechhofer-Sobel [9]
and Gupta-Sobel [23] for appropriate choiées of the defining
parameters.

Since H_ (x) = d"Y"y and u(d) = A/8 satisfy the regularity
conditions and hypotheses of Chapter I, all the usual results hold.
In particular:

(i) For any 0 < & <1, inf P[CS|R(n)]=n(1,n) + I as n>» since leA
2(8)

ii For any Aef such that ) < A
(i1) Y e [1] < *2)

S(n) 2 1 as no

n,. 1, i=1
pé(l) -> {0 i > ] @ me

b
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(iii) For ahy AeQ

k-1
.M ‘
k k-1 w0 yK[-
E,[S()] = _Z ) § / o -k (5 %])} x
2 i=1 p=k-m v=1 0 J&ig(l) [3]
T {E__(—D-E (P —yyae (y)
O
1-E_(y)

_1/n)}k—11( nr 7
l-Enr(yd )

(iv) sgp'Eé[s(n)]=kf0{l—Enr(yd sk-m,m)dE_(y)

Application to Selection of Variances of Normal Populations.

Let L N(ui,oi) for i = 1,...,k where Ms is either known or

unknown and oi is unknown. Also let

(1) 0 < 0%1] j:..f_c%k] < @ be the ordered variances

1 2
T .z (Xij-ui) , if My 1is known
J=1
2
@ 557 1 2 o |2
— Z (X..-X.) » if u, is unknown.
n-1 j=1 ij i i
_2 2 2,1.2 2 '
(3) 2(8) = {¢° = (01,...,ok)|o[1] 5_50[2]} (0 <8< 1)

. 2 :
Choose sampies from each ™, SO that each s; has the same

number of degrées of freedom, say v
Vs
=’—7 - r(\)/zs l)
20.
i
Goal G: Given P*,m and also possibly n and/or 0 < § < 1 define a

procedure R(n) based on the {si} which selects at most m

populations and satisfies P 2[CSIR(n)] Z_P*\!gzeﬂ(d).
. ‘

~



74

The proposed procedure is:

R(n): Select ™. & s? f_min{dl/n s

2 2 }
i [11° °[m]

Theorem 2.2.2.

L-E, 5 (¥6)

1-E ,,(y8d

. _ ® _ -1/n, k-1 e
;?ﬁ) p[cis(n)]-fo{l E, /o (8”7 1( 1/n),k m’m)dEv/Z(Y).

The choice of d can be made by considerations similar to those

of Section 2.1.

2.3 Selection in Terms of Generalized Variances

Suppose ﬁi’ i=1,...,k, is distributed as p-variate normal

with mean vector p., and covariance matrix Zi(ni~Np(ui,§i)) where it

-~

is assumed §i is positive definite. For each ™ the experimenter is
interested in the measure of dispersion specified by A\ = |§i|, the

generalized variance of ™S The following terminology will be used

(1) Q(%) is the set of all possible k vectors of cdf's of
p-variate normal random variables with positive definite
variance-covariance matrices.

11 o _' . = oo

(ii) If 0 < A[l] 53"5-A[k] < are the ordered Al s = AleA {0,x)

n
. 1 o I N
(iii) 5, =3 jzl(xij-xi)(xij X;)' is the sample variance

covariance matrix (n > p assumed).
(v) Tin = |SinI
A{ P
It is known T, has the same distribution as ——— T Y.. where
m (m-1)P j=1 %

{Yij}?=1 are independent random variables with Yij ~ xz(n-j).
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However for any j = 1,...,p it is known xz(n-j)/(n—l) P, 1 and hence

Tin E )‘i' So the elements of the present problem have been brought

under the structure specified in Chapter I.

Assume the experimenter's interest lies in selecting W(k)' For
any d > 1 define
R(n): Select mo® T, > max{T d—l/n T -}
i i-— [k-m+1]° [k]

As usual, the goal is to find n so that PA[CSIR(n)] >. p¥

~

wherever AeQ($) = {M}‘[k] > Gk[k_l]}(6>l). If
p Y.
£ (y) =P[ 1 (—l < y] where the {Y 3 _, are as above
n j=1 l jj=1
= Gn()’/Ai) = P[ISinl <yl =£n(iiz) is a scale parameter family.
Since hn(x) = dl/n x it follows that
(y$6)

(1) For any n > 1, inf P[CS|R(n)]= j © (yd!/Mey k11 _2__—_75——=k-m,m)

Q(8) £ ()’d 8)

o (v)

= y(1,n)

(2) inf P[CS|R(n)] = ¢(1l,n) - 1 as n+» since lgp
(8)

(3) For any A 3 >‘[k] > A[k-l] = S(n) R 1 as now,

Remark 2.3.1. The following are special cases of the general results.

(i) p=1

The univariate case is discussed in detail in Section 2.2.
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(ii) p=2
2
It is well known 2( T x*(n-j) Y2 ~ ¥ (2(m-2))
j=1
2 20
=£ (y) = p[ 1 Xi)y o g Ly >0
n j=1 n-1 —
= PP 20-2)) < 2m-1)%] L, y > 0
i 2(n-l)/)7xn-3e-x/2dx y >0
0o I(n-2)2"2
i f/; _[in—l)w]n-se_w(n—l) e
0 '(n-2)
= E;(/?) where E;(-) is the cdf of a gamma random
variable with parameters (n-2) and 1/(n-1).
‘ 1
© E. (w/8)
= inf P [CS|R(n)]=f {E}wal/2n/5))k-1p (D 5= 3k-m,m)
o) A o I E;(wd /8
dE;(w)
(iii) p > 2

Since the distribution of |S;,| can not be expressed in a
reasonably simple form when p > 2 the following approximation

suggested by Hoel [34] will be used. The distribution of

(n Y..)l/p can be approximated by a gamma random variable
o, i PP
J = .

with density
ARLEEBL y[g-(n-p)-ll

rm-p))

e N

» Yy >0

eﬁ(y)=‘
0 ,)’iO
where A:(gg[l_( “;z( '2)]1/P
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Gnanadesikan and Gupta [19] have studied this approxi-
mation and found it to be quite accurate when n is large

relative to p. For p=1 and 2 it is exact.

P
=& (y) =P[m
3=

Y..
D <v1 £ E(@-1y"P)
1

y
where Ez(y) = f ez(w)dw
n o M

To find the n (approximate) guaranteeing a given P* level the
following equation must be solved.
e2(ys'/P)

EZ (ya!/Ps1/Py

pr=[ {EZ(yal/™Psl/Pyjk-1y sk-m,m)dE2(y).
0

2.4 Selection from Noncentral Chi Square Populations

Suppose L is a non central chi-square population with
p degrees of freedom and non centrality parameter Ai (abbreviated
xz(p,Ai)). Each ™ is characterized by the scalar Ai and it is

assumed "(1) is -of interest. If the random variables {Xi.}q are

j’i=1
observed from 7. then each X.. has cdf
i . ij
i

—= o A]

2 i
2.4.1 F_(x/A.)= E .(x), x>0 and X.>0 where
2.4 FGipme® ] T By @ ;>

P %'— le-y/2
007 r@22
Fp(x/ki) is a convex mixture of central X2 cdf's. The following
properties of this distribution are well known.

oF (x/1) 1
(2.4.2) _—237___i= 5—[Fp+2(x/k)—Fp(x/A)] = £ ,,(x/2) where



78

dF_(x/A)
,fp(x/A) = ——Ba;———- is the density of Fp(x/x).

£ +2(x/x) . . . .
(2.4.3) fp(x/x) is non increasing in A\.

The following lemma due to Lehmann [37] will be needed.

b.zJ/ Z a.z) where the constants

Lemma 2.4.1. "Let h(z) =
=0 J =0

J

aj, bj > 0 and where Zasz, ijzJ both convergeVz > 0. If

{bj/aj} is monotone in j then h(z) is a monotone function of

I~ 8

z in the same direction.

An application of Lemma 2.4.1 shows that the following

monotonicity properties hold:

A f +2(x/A) » :
(2.4.4) CRCTEN) is non decreasing in A for fixed x,p.
' p

f 42(x/x) non increasing in x for fixed A and p.
(2.4.5) i {j

is
xfp(x/A) non increasing in (xA) for fixed p.

Following Alam and Rizvi [1] the preference zone is taken to

be
Qu) = Ql n 92 where
{szl = {5|A[2]-xm > 68} (8, >0)
2 = (2 2 6, ‘gt > D)

(2.4.6) = Qq(u) = {Z\|A[2] 2 max{dpyy + 8y, 8y Apjq)

The remainder of the problem is formalized in the notation of

Chapter I by:
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(i) A = [0,») since O f-A[l] <...< A[k] <

A+8 » 0 <A <68./(5,-1)
(ii) u(x)={ 1 - e

8,2 » A2 8,/(8,-1)

gives (2.4.6)

(iii) Hn(x) = bl/nx where 0 < b < 1
. ‘1
(iv) T. = T

Now 'I‘in E P+ Ai as n>» by WLLN and hence selection in terms
of‘Tin is equivalent to selection in terms of a consistent sequence
of estimators for Ai. As noted the goal of interest is to find

ﬂ(l) although‘selection for ﬂ(k) is a completely analagous problem.

The proposed rule is:

. -1/n

1 .

R'(n): Select m a'Ti j_mln{T[m], T[l] b }

Goal G': Given P*,m, 61 >0, 62 > 1 and the sequence of rules

{R'(n)} find the smallest common sample size n needed to achieve
PA[CS|R'(n)] > P*V AeQ(u).
Since n T 2(n na.)
in ~ X o i
= Gn(y/Ai)-P[Tinfy]—an(ny/nAi) and En—[O, ) V AeA.

Furthermore since the non central X2 family of densities has MLR
in x it follows that ¥n {Gn(y/A)IAEA} forms a stochastically

increasing family. Hence by Theorem (1.5.2):

inf P[CS|R'(n)] = inf n(A,n) where
Q(u) A>0
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® 1-F__(y/n(A+3$.))
(1 -7, 06 Pm s ) IR L i
0 l-an(yb /n(A+8,))
%
anp(y/nA), 0 <A <3 ]
2
n(A,n)=
© 1-F__(y/nAé.)
[f {l—an(ybl/n/nAGZ)}k-lI( np 1/n2 — k-m,m)
{1 0 . l-an(yb /nAGZ)
%
. dFpp /00, A e

Theorem 2.4.1. For any be(dél,l) and n > 1

non increasing in A on [0, 61/(62-1))
n(a )n) is

non decreasing in A on (61/(62—1),w)

Hence inf n(i,n) = n(Gl/(Gz-l),n)
A>0

Proof. The proof is an application of Theorem 1.5.3. From the
proof of that theorem note that if (1.5.10) and (1.5.11) are both

non positive it follows that n(A,n) is non increasing in A.

Case A: Ae[O,Gl/(Gz-l))

Using (2.4.2) the equation (1.5.10) can be seen to reduce to
(2.4.7) £ (/n0E 0 y/moes))-bY 0 oy /mors. )
Y np np+2 1 np 1

fnp+2(y/nk) < 0.

But be(s;', 1) |
61 ' bGl

= b(62-1) > 1-b = (62-1) < =)

So finally we see that for Ae[O,Gl/(sz—l)), n>1 and y > 0



81

1/n
b61 ) b 61
1-b (l—bl/n

A<

)

1/n

= A(1-b/My < p1/ng

1
= bl/n(k+61),> A

= Yynes)) > ym

AN ¢72)
But from (2.4.5) v fp(y/A) is non increasing in (yX)

for fixed p = (2.4.7) holds.

Similarily it can be seen (1.5.11) reduces to

(2.4.8) fnp(y/nk)fnp+2(y/n(k+61)-fnp(y/n(k+61))f (y/n}) < 0.

np+2
Now 61 >0
= n(A+6:) > nA and applying result (2.4.3)

fﬁp+2(y/n(l+61)) fhp+2(y/nl)

EpO/MOR ) S F 7m0

= (2.4.8) holds.

So finally it can be seen that.n(A,n) is non increasing on

[0, §,/(8,-1)).

Case B: A > 61/(62-1)

Using arguments similar to the above together with (2.4.4) and
(2.4.5) it can easily be seen that (1.5.10) and (1.5.11) both hold
for Ae(sl/(dz-l),w) and hence n(A,n) is non decreasing in this range.

The last part of the theorem is now obvious and this completes

the proof.

Remark 2.4.1. The final result for 1 > b > 651 is that
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_ w 5.8

. 1/n_,"°1°2 [ k-1
(2.4.9) inf P,[CS|R"(n)]=] {1-F__(b"'Py/ )}

Q(u) 2 fo np (85-1)

' §.6.n
12
l-an(Y/g;jT—J ' | 5,n
I( 6162]’1 )k'm:m)dpnp()’/(sz_l)

1/n
l-an(b Y/(Gz’l))

Hereafter it will be assumed that 6;1 < b <1 so that
(2.4.9) holds. Now since 6162/(62-1)eA the hypotheses of Theorem

1.5.4 holds and

inf PA[CS|R'(n)] + 1 as nio,
Q) -~

Thus all P* levels are attainable in goal G'. All other usual
properties hold for R'(n). In particular (1.5.18) holds (as verified

by Gupta-Panchapakesan [33]) and hence

sup EA[S'(n)] = sup y'(A,n) where
e - A20

l—an(y/nA)
l/n/nk)

1/n

t - ” k-1 . . '
Y (A,n)-kfo{l-an(b y/mA) I ,k-m,m)anp(y/nA)

l-an(b

Corollary 2.4.1,

sup EA[S'(n)] =m
a A :

Proof. Since (1.5.18) holds for this problem y'(A,n) is non

decreasing in A and hence sup E[S'(n)] = 1lim y'(A,n).
2 Ao 2
First note the following limiting behavior of x“(p,A) random

variables. Suppose Yl,Y2 are iid xz(p,x) and be(0,1).

b(Y,-)  (Yp-h)
S M (U-Dluy

P[bY, > Y,]=P[— g
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where 1 = E[Yl] = p+A

02 = Var(Yl) = 2p+4)

< P[]

b(YI’U) (YZ'U) s (l-b)u]
g B (¢] - a

2
o (1#b%) (2P+4;) by Chebyshev's Inequality

T @-b)? (pen)

-+ 0 as A

Now y'(A,n) can be rewritten as
k-1

youm =k J *H 9 () where
pk-m PP
3, () = IN{I-F"cy/nx)}P{F (y/m)-F_(yoM /) 151 "Pap (y/m\)
P o PP np np - mp
= P[X, < X, for j=2 o1 Y™ < x, < x .for j=p+2 k]
1_. j J ""’p 3 1___ J-_ 1 Jp se 0 ey
p+1 k c
PN A, n ASB.] , p=k-m,...,k-2
j=2 7 jpr2
k
P[N A, ] , p=k-1
j=2 )
where: xl,...,xk are iid xz(p,A)
Aj=X) < ]
1/n
B.=[b X, < X,
3 [ 1 < J]
. k :
By the first part of the proof P[ N B.] + 1 as A+
. j=p+2
pt+l k c
Also note P[ N A. N A ]=P[X. < X. for j=2,...,p+1; X, > X. for
j=2 I jeps2 ! 1= ’ 1
P

j=p+2,...,k]
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(k-1-p)!p! _ 1
k! - k-1
k
(p)
K .
: 1 1
and P[ N A.] = ==
i n ] k k-1
J—z k(k-l)
So we obtain
p+l k c 1
I (N = PN A, N A]B.,]~> ol as M
P j=2 I jepe2 I ) k(G0
k 1
PlN A.] = VA
. j k-1
J_z k(k_l)
k-1 k-1

= y'(A,n)=k | .9 () >k ) __1
p=]§<:—m p p p=]§(:-m P K (k-l)
p

= m as )\«

and this completes the proof of the corollary.

Application I: Selection of the population with shortest Mahalanobis

distance to the origin.
Let 7. ~ N _(u.,Z.) for i=1,...,k where I, is known. Let
i prEiei ~i
Ai = gigil Ei'be the Mahalanobis distance of s to the origin and

- ' . . .
0 f-A[l] ff"f-k[k] < = be the ordered A s. The object is to find

“(l)’ the population with shortest distance to the origin. Let

{Wij}?=1 be a sample from (i) and
-1 2
- ! -~
a5 W I Wit xT(aag)
and
1 ¢ P
in = n J.Zl Y5 5 Py

Given an indifference zone specified by 61 >-O and 62 > 1 and

also P* and m take any be(ﬁé{l) and let
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. . -1/n -
R'(n): Select ., T& f_mln{T[m], b T[l]}' The sample size

needed to attain PA[CSIR'(n)] > P*y XeQ(u) is the smallest n

satisfying né.s

152
né 6, 1-F ol /(6 1))

Y/ )} (
(6 1) l/n ns, s,

k-m,m)

_ ® l/n
= fo{l-Fn

n61

(Y/(c ))

Application II: Comparison of Multivariate Normal Populations with

a Control.

Let ™ ~'Np(Ei,§) for i=0,1,...,k and suppose Ho and § are
known but El":"yk are unknown. Ty may be thought of as a standard
or control population and it is desired to select that populations
which is closest to T in the sense of Mahalanobis dlstance If

= (Ei-yo)'E (u;-19) for i=1,...,k then the population with
parameter A[l] is being sought. If, as before, {wij}?=l are iid

from ™. let

: -1
= W - ! -
X5 = (Wy5-p)'e (W; 5-40)

and then the problem falls into the framework of this section.
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2.5 Selectidn in Terms of Non Central ¥ Distributions

Supposé ™ is characterized by a scalar Ais[o,m) and the
sequence of stéti;tics {Tin} defined in terms of {Xij} from ™
satisfies
(1) Tin has a non central F cdf with p and q'degrees of freedom

and non.centrality parameter Ai (abbreviated Fp’q(y/xi)).

Both p and q may depehd on n but as usual, the dependence is

suppressed for ease of notation.
@ T, B A as me

in >

Remark 2.5.1. If the noncentrality parameter of Tin is not As but

r(Ai) where r(A) is a strictly increasing differentiable function
of A, the conclusions below still hold.
Again let

(2.5.1) Q@) = Qi n Qé where
{Qi = DApg 2 609! (6, > 1)
so.that Q(p) is analagous to Q(u) of Section 2.4.

A-8, s 0 <A< 8,6,/(6,-1)

= p(A)
5 A , 6162/(62-1) < A

' = o
= A= [65),e).

The remaining elements of the problem can be stated in the notation

of Chapter I as
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(i) A= [0,)
G 6,070 = Fp ((r/2)

and

e-A/Z o yp/2+r-

1 by
- _ T'(p/2+q/2+T) A
gn(Y/A)—fp,q(Y/X)- I(q/2)

r=0 (1+y)p/2+q/2+rr(p/2+r)2rr!’

y>0

(iii) h (0 = d/Mx  @> 1

The following are known properties of Fp q(y/A) (q > 2 will be

assumed throughout this section).

oF = (y/1)
P»9 - -1
(2.5.2) = =32 fp+2’q_2(y/x)
(2.5.3) £,,q(/2) has MIR in y
M o2 g2 /2)
(2.5.4) Pr<.9 is non decreasing in A for fixed y>0, P
fp.q(y/k) :
and q.
(y/2) .
(2.5.5) _P*2,9-2 is non increasing in A for fixed y>0, p
fp q()’/A) v
' and q.

In addition, an application of Lemma 2.4.1 shows that

f42,q-2070)
yfp,q(y/x)

is non increasing in both

(a) y for fixed A,p and q.
{(b) ({é;a for fixed p and q.

As usual the rule is defined by

d-l/n

(2.5.8) R(n): Select ™ @ Ti > max{T ' T[k]}'

[k-m+1]°
The goal is to find n satisfying

(2.5.9) P, [CS|R(M)] > P* xeq(p)
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Using (2.5.3) it follows that

inf P [CS|R(n)] = inf ¥(A,n) where

@ -~ A>68,
@ (y/r-8,)
IRG (yd!/ ™25 D 11( P.q sk-m,m)
7o Psa (ydl/n/A-G )
fp.q 1
v(A,n) = { de’q(y/A), el
o (y/G A)'
1/n k-1 Ap{g
\./ {F (yd /8, Loy 1( ;k-m,m)
IO e at/™re3h’

q(Y/X), KEIZ
where I, = [61, 6162/(62—1)]

Theorem 2.5.1. For any 1 < d < 62 and n > 1

v(i,n) is {:non increasing in A on Il

non decreasing in A on I,.

Hence inf y(A,n) = (6,8 o/ (8,-1) ,m)
A>61

Proof. The proof is an application of Theorem 1.2.3 and generally
follows along the lines of the proof of Theorem 2.4.1. However the
details of proving that (1.2.8) is non positive on.I1 are suffi-

ciently different to warrant being displayed.

Using (2.5.2) it can be seen that (1.2.8) being non positive

reduces to
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Qifz.f C/NE yd sy < Lo (y/r-6)
q-2 p+2,q-2Y/ M %p qY "°17 2972 Tpe2,q-2V 770

1

f A)V y>0 and Ael
p,q(y/ )Vy "

1/n

p+
1/n

f d A-6
p,q(y /r-8))

f
1 'p2, .
f A — .1
y p,q(y/ ) d /ny

(2.5.10) ,Vy>0 and

Ael

But 1 < d < 62

6.6 5.d
1%2 1
G,-0) @ 670

3
>
A

(Gld)/(d—l) \‘H\t—:I1

1/n
Gld
1/n

4 _ qi/m
Viel. and n > 1 since < Vn>1
-1 1 - d-1 —dl/n_l -

d

Gldl/n(l+y)
2 A < —————— Vy>0, Ael, and n > 1
(dl/n-l) 1 —

= A

v

a'/M(r-5,)-5,a'/my

1/n

= 2(1+dMy) > apyal/Mocs))

1/n
Ay d y(A-Gl)

= > Vy>O, Ael
(1+y) (L+ydl/™y

landnil

f (y/2) ,
But since — _£%2.9-2 is v in 2 o (2.5.10) holds.

y fp,q(y/k) (1+y)

The remaining parts of the proof are straightforward and thus the

proof is completed.
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Remark 2.5.2, For the remainder of the section it will be assumed

that 1 < d < 6§, so that

2 s
o (y/—D)
: o 1/n, %1 k-1 P2a7 8501 _
inf P,[CS|R(M)]=f {(F_ (yd '™/} "1( —————;k-m,m)
app) 2 o P 8,71 1/n, 81
P F (yd /' /—
P,q 6,-1
5,8
172
de’q(Y/E;fT)

Furthermore the non central F distribution satisfies all other
regularity conditions and hypotheses of Chapter I so that all previous

results hold. In particular

| 5,6, | %1%
inf PA[CSIR(n)] = ¢(TE'?T3’“) > 1 as n+ since (S Ty e A
ap) 2 2 ?

sup E[S(n)] = sup y(A,n) where
1Y) A>0

(y/2)
1/n

o F
YOLm)=k[ {F, q(dl/“y/x)}k‘ll(—P’q
0 >

sk-m,m)dF
F (d P
P:q

’q(y/x)

y/)

Lemma 2.5.1. For fixed p and q, Fp q(x/k) > Hq(x) uniformly on (0,«)

(2.5.11) as dow where H, (x) - Pla/x* (@) < x].

5 'e-x/zkj
Proof. Now F_ (x/A) = ) (=——2-) E__,. (x) where
E— P,q jeo  aJod P+2j,q

E 0 = P here X(r) - X.@*21) v x’(@
p+21,q x) = P[X(r)/Y < x] where X(r) -~ Y T q

and X(r), Y are independent.

X(r) 2
Y >

vergence is uniform on (0,») since the limiting distribution is

Since X(r) E 1 as 1w, q/xz(q) as r+~, Furthermore the con-

continuous.
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So given € > 0 '

(a) ER¥r > R = |Ep+2r(x)-Hq(x)| < €/2 Vxe(0,»)

_ R -A/2,]
(b) 3 > 2y = < €/2.
j=0 2731
Hence vy > >‘0 and xeg (0,«)
F x/A) - H (x
| p,q( /A) q( ) |
R -A/2.j ®  _-A/2.j
e A e A
< ) —=—E . (0-H x|+ § E=24g . (x)-H (x) |
j=0 123 " P*2i.q q j=Re1 2331 P*2i.q q
R -A/2.j w ~A/2. ]
j=0 2751 j=R+1  j127
Theorem 2.5.2.
w H (x) .
sup B, [Sm)] = [ {H_a!/Mxy 1R 1x T kemm)dH (x)
Q o 4 H (@)

where Hq(x) is defined by (2.5.11).

Proof. Since bthe conditions of Corollary 1.4.2 hold, it follows

that y(A,n) is non decreasing in

= sup E;\[S(nj] = 1lim y(x,n).
Q ~ : Ao
kel g @
y(x,n) = p=z;m ( > )jo Ap(y,x)de,q(y/A) where

1/n

_ P _ k-1-p
ApraN=tFy (/P (@ Myn)E) /)

= it suffices to prove ¥ =k-m,...,k-1 that
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[+ ]

IO A, MAE (/) > pr(y)qu(y) as A+

P 1/n k-1-p
h B = {H H (d - H
where p(y) { q(Y)} { q( Y) q(Y)}
Since Fp q(y/A) > Hq(y) uniformly on (0,») as X+~ = given
&o0d AIB
[A,(r,2)-B () | < €/2¥a > A and ye(0,=).

Also since Bq(y) is bounded and continuous on (0,x) =1, > A 2

: - € by th
] BpWIEF, qO/0-f B (D) | < €/2 72 2 3, by the

Helly-Bray Theorem. So, finally, it can be seen that vy > 2

Ifo Ap(y,x)de,q(y/x)-fosp(y)dﬂq(y)|

A

If0 Ap(y,x)qsp,q(y/x)-jOBp(y)de,q(y/x)|+|fosp(y)de,q(y/x)-

fon(y)qu(y)l

| A

A _(y,\)-B dF A)+€/2 < €/2 [ dF A)+€/2 = €
[ IR0 -B () (AR (r/0)+€/2 < €/ f p.q /Y
and the proof is.completed.

Remark 2.5.3. Alam and Rizvi [1] have stated that for the special

case m=k, sup EA[S(n)]=k. Theorem 2.5.2 shows their calculations to
Q

~

be in error and that sup EA[S(n)]=f {Hq(dl/nx)}k-ldﬂq(x). Their

8 - 0 ,

result for the non central X2 case, sup EX[S(n)]=k, is obtained as
Q ~

a special case of the general result in Corollary 2.4.1.
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Application: Selection of the Population with Largest Mahalanobis

Distance.

For i=1,...,k suppose "o Np(Bi,gi) where both By and Ei are

SR B |
unknown. Let Ai = By §i s and 0 :-A[l] 53..§_k[k] be the ordered
Ai's. It is desired to find ™ k) the population having farthest

Mahalanobis distance from the origin. Take

-1 -1 =

.= X. S.” X. where
in i"i i
- 1 2
X, = = z X.. is the sample mean from w, and
i n j=1 ij i
; B _ _
S. = — 2 (X, .-X,) (X..-X.)' is the sample covariance matrix.
i n 521 ij i ij i
It is known LB:El-(if s;1 X.) has cdf F (y/nx.) and hence
P i 71 i p,n-p i
: - (n-p)y
CaOr/Ag) = By o oG5 7/mAy).

Furthermore since X, 2 u. and S. B 5. it follows that
171 1 1

) T | . .
T. = X. Si X; 5 My Zi My - Choosing Q(p) as in (2.5.1) and

1 <dc«< 6, define the selection procedure.

. -1/n
R(n): Select ms coTi 3_max{T[k_m+1], d T[k]}'

Since n is merely a scale factor in the function r(A) = nx, the

proof of Theorem 2.5.1 shows

(2.5.12) inf P [CS|R(n)]=fm{F (ydl/n/ il )ik'l
a(p) 2 o PorP (6D
o1
Fp,n-p(y/(Gz-l) n6162
I( nGl ;k-m’m)dpp,n-p(Y/TE;tT))

1/n
fpap ¥,y
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and n should be chosen to make the right hand side of (2.5.12)

equal to P*., Selection for “(1) is completely analagous.

2.6 Selection from Uniform Populations

The examples discussed thus far have dealt only with the
so called 'regular' case in which the support of Gn(y/A) did not
depend on A. The next example illustrates»thé non regular case and
hence Theorems 1.2.3 and 1.4.3 are not applicable iﬁ this problem.
Let nirhave a uniform distribution on [O,Ai] GM[O,Ai]) for
i=1,...,k where A;€(0,) and suppose {Xij}?=1 are iid from T .
Take

(2.6.1) T. = max X...
in . ij
1<j<n

It is known Tin is a complete sufficient statistic for Ay and the
sequence {Tin} is a consistent sequence of estimators for A -
Formally the elements of the problem can be stated in the

language of Chapter I as

A= (0,%)

G (y/2;) = 0 » Y <0
CY/)\i)n s 0 < Yy < )\1
1 s Y 2 A

p(A) =81 , 0<6 <1

D
]

{élkieAVi}

2(p) = {A|a

[k-1] < SAppd
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It can easily be verified that for each n,{Gn(y/A)]Ae(O,w)}
forms a stochastically increasing family. Now pick any d > 1 and

define the rﬁle:

(2.6-2) R(n): Select -n-i ¢$T1 imax{d'l/nT[k], T[k—m+1]}

Theorem 2.6.1.

inf P[CS|R(n)] = inf P[CS|R(n)]
Q(p) 2°(p)

1+kd-k
kd

(2.6.3) = 1+8"{] 11(1/d;k-m,m) + = I(1-1/d;m+1,k-m)-1}
K

Proof. Since {Gn(y/k)|AeA} is a stochastically increasing family,
Theorem 1.2.2 applies and hence the problem is reduced to evaluating

the one dimensional infimum

inf P[CS|R(n)] = inf y()A,n) where
Qo(p) Ae(0,»)
kel o1, ® i K-1-i
w(x,n)=i=]§_m G 16,0780746,, (4 y/60)-G, (y/61) )" 72d6, (y/2)
and d_ = al/n
But |
v(A,n) = Tl(x) + TZ(A) + TS(A) where
. §x/d
K-1 . n . dy .
k-1 n,i n’.n n.k-1-1 n
W= 3G G RGN do/m
k-1 . A . .
k-1 n.i n.k-1-1 n
T,(\) = Q! (DM 1-D™M d(y/2)
2 i=g-m 1 fﬁx/d X 84
A n
T4 = [ dy/»)



96

Making the'change of variables y = Aw shows

‘p(kln) !JJ(l,n)VA.

Now
kel 1/d |
W= ) *h [
k-m 0

k-1-i dz

- .k

k-1-i

- 53. E (kil)(l-l/d) (1/d)?

EE-I(I/d;k—m,m)

' 1 k-1 . .
Tz(l) 5nf z (kil)zl(l-z)k-l-l dz
1/d i=k-m

1 z
=cs"f [ ™™ dxdz
17d 0

‘where C = (k-m) (t:;)

k

/d 1,
xk_m"l(l-x)m_l dx+C6nf xm 1(l-x)mdx

1
cs"(1-1/d) |
0 1/d

Gn{(l—i/d)l(l/d;k-m,m) + m/k I(l—l/d;m+l;k;m)}

T3(1) 1-6" and adding Tl(l), Tz(l) and T3(1) gives the result.

Remark 2.6.1. Since leA the sequence of rules {R(n)} is consistent

wrt Q(p). Also the usual results regarding the alternate formula-

tions I and II again hold:
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lim inf P[CS|R(n)] =1
60 Q(p)

lim inf P[CS|R(n)] = 1-6"+¢"m < 1 for 1 <m < k.

d»>  Q(p) k
For each rule R(n) the properties of strong monotonicity and
unbiasedness hold. Now let S(n) be the number of populations

selected by the rule R(n).

Theorem 2.6.2. For fixed 0 < A[z] f_x[s] 53"5-A[k] < o, E}[S(n)]

is non decreasing in A on (0, A .
g in Ay on (0 Ayl

Proof. The method of proof will be to directly show that

dk[l]

the support of Gn(y/k) depends on A. Throughout this proof A[i]

>0 on (0, A[z]] and the argument will use the fact that

will be written as Ai. Using the first part of the proof of
Theorem 1.4.3 it can be seen, after some cancellation, that

k-2,
k-2 k (p) w

E, [S(n)]=1- T 8.(y) T 9.(yB_(y
A p=Z—m rzz v=1 - jafg(l,r) J js7€(1,r) J 1Y
d8_(y)
k-2 *
S #

+ ) : w g.(y) 1 8 .(y)8 (y) ()

p=k-m r=2 vy=1 -= je,ﬁ(l,r) J jays(lyr) ) 1 t
where

{530’) = 6,072
8300 = 6,@/ My -6 o))
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Using the fact that

8 .(y) = 0 , >'100r>'>8r
n
(y/2.) (@-1) » 0 <y <A /dy
1-(y/a )" A/d <y <A
T ’ r' ' n — T
and 6j(y) = (0 y <0
()’/x )n 0 <y <
i g » j
1 , > AL
Y70

it can be shown after further cancellation that:

E,[S(n)]
A
R k-2 -5 T
) E LU Sy T S.[-diy/Ap"]
r=2 p=k-m v=1 il_ Jz(l,r) J Hp(l T) J
d
n nyn—l '
A dy
T
A o n n-1
7 8.(y) 8, (y) H—ady
r,}’cl T Ra,n T )"
k-2
E kiz (E | i 8. o g™
+ T (y) m 8.(y) 1-d(y/a dy
r=R+1 p=k-m v=1 | *179n A, R, T a" 1 |
WZE
-/ T 8. (y) n&(y)—y——[dlldy

1 JPclr)J Aa,n 0"

A
+f.F n 6.y nﬂ(y)—L—dy
fxr/dn Aa,n T RPan T e

r
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where R satisfies AR < dnxl < XR+1 and the second sum is

zero if R=k. So finally taking derivatives wrt Al(i.e..kll]) it

is seen that:

*2%
dE, [S(n)] k k-2 Cr
—_ : m g.(y) ™ 8.0()
dx) r=2 p=k-m v=1 ~*1/4 jaJS(l,r) J jan(l,r) J
2, 2n-1 :
n-d . dy > 0
(Alxr) >‘1
where Cr = min{Al, Ar/dl/n} and hence the required monotonicity
holds.
dE, [S(n)]
Now by virture of the fact that > 0 on (0, A 1,
dk[l] -~ [2]

Corollary 1.4.2 applies to give the result.

l*tﬁ'kllcl/d:k-m’m> + ¢ 1(1-1/d;me1,k-m) }

(2.6.4) sup EA[S(n)] = k{[
o 2

The supremum tékes place at a point where all components are equal
and by arguments similar to those in the proof of Theorem 2.6.1 this
one dimensional supremum is independent of the common A. The
corresponding results for T(n), the member of non bestipopulations

selected, are similar to the above.
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CHAPTER II1I

A GENERALIZED GOAL FOR RESTRICTED SUBSET SELECTION PROCEDURES

3.1 Formulation of the Problem

Another goal which some experimenters may desire to achieve
is that of selecting at least one of the t best populations using
a restricted subset selection procedure. The structure of the
populations {ni} and the terminology for this chapter will be the
same as that introduced in Section 1.1 except where explicitly
noted. If "(k;t+l)""’"(k) are the t best populations corres-
ponding to A[k-t+l]""’x[k]’ the goal in this chapter‘is to
select a subset containing at least one of these t best populations.

The following terminology will be needed in the next sections:

QF) = {E=(Fl,...,Fk)|Fi(-)=F(-|Ai) and el

Qt(P) = {}Ik[k-t] _<_P(>\[k_t+1])}
.k
0@ = QIR PO gy PO

2, = 1A

(117 (x?

Intuitively it is clear that the subset selection approach is
applicable in certain cases while for others the indifference zone
approach is.needed. When t > (k-m) the subset selection approach

is usable since by choosing the maximum possible number of

populations, m, a correct selection can be guaranteed. When
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When t < (k-m) and even if all m populations are chosen it is
still possible for all t best populations to remain unselected.
Hence an indifference zone must be imposed on the parameter
space and the probability of a correct selection is 6nly main-

tained over the preference zone.

A. Subset Selection Approach (t > k-m)

Let H be the class of functions defined in (1.6.2) and

VheH let

(3.1.1) R(h): Select -n-i @Ti _>_maX{T[k_m+l], h_l(T[k])}.

Goal GA: Given P*,k,m and t find heH such that
(3.1.2) P.[CS|R(h)] > P* Vieq

In this case [CSIR(h)] stands for the selection of any restricted

subset containing at least one of = It will be

(k-t+l)""’n(k)'
shown that GA is always attainable for some heH under the assump-

tions (1.6.2).

B. Indifference Zone Approach (t < k-m)

Let {hn(')} be a sequence of functions satisfying (1.1.3) and

let
h-l

(3.1.3) R(n): Select moe T, i.maX{T[k-m+l]’ n (T[k])}.

which is the same rule as that proposed for the original problem

of Chapter I(t = 1),
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Goal GB: Given P*,m,t, {hn(-)} and p(A) find the smallest common
sample size n needed to satisfy the probability require-

ment:
(3.1.4) P,[CS|R(M)] > P* vaer® (p).

The event [CS|R(n)] has the same meaning as in GA. The theorems in

the next section will show that the indifference zone is needed in
order to attain all P* levels whenever k-m > t. Furthermore it will
be shown that under the hypotheses of Theorem 3.3.1 any P* level can
be attained by choosing n sufficiently large.

In a practical situation the goal may be. somewhat more general,

to select both the sequence {hn(-)} and then the sample size n.

3.2 Infimum of the Probability of a Correct Selection

Since the form of the rules (3.1.1) for heH and (3.1.3) for
hjs{hn} are the same and since a correct selection occurs for either
iff at least one of the t best populations is selected, the following

lemma is applicable in both cases. The symbol R denotes any rule

(3.1.1) or (3.1.3).
Lemma 3.2.1.
4 in A.., for any ied when all other A,.,'s
[1] yore | [3]
are fixed.

(3.2.1) PA[CSIR] is .
- ¥ in A[i] for any ie® when all other A[j]'s

8
8¢

are fixed.

where

{k-t+1,...,k}
{l,...,k-t}
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Proof. Since PA[CSIR] = EA[“(T)] where

- o -1 .

1 , T,., > max{T , h "(T;,7)} for some je 8
“(T) = < (J) - [k'm+1] [k]

0 , otherwise
it suffices to show

A, +in T for any ieg when all other T .)'s are fixed

(1) (G

n(T) is ~ and

B. 4 in T(R) for any 2¢8 when all other T(jj's are fixed.

(i)

T(j)v j*i, it must be shown that n(T') = 0.

Case A: If ieﬂc, n(T) = 0 and T, T' satisfy T} > T(i) and
T!., = '
()

n(T) = 0 ®T ., < max{T

-1 .
i) h (T[k])}VJEQ

[k=m+1]°

(1) If t < k-m+l, there are two possible cases

(i) If h(T[k—m+1]) > T[k] =9VjEIDka) < T[k—m+1]
]
Now Ty me1] 2 Tik-me1]
=>T!., =T < T! Vie d

() () [k-m+1]
=h(Thy)) < h(Th_po0q) < maxdThy, h(Th o))
= n(T'j =0
(1) £ R 10g) €T = h(T() < Ty Vies
Agéin T(i) < Tti) = T[k] j_Tik]
=My TR (gy) < Thg < madTigs M)} Vi

= (") = 0.

(2) If t > k-m+l = T[k] > h(T[k-m+l]) = (ii) applies
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Case B: If ie®, n(T) = 1, and T'., = T,., Vj$i, it

Ty > T G = To
must be shown that n(T') = 1.

n('!‘) =1 @E{joeﬁa h(T )) > max{h (T

Gy k-me1])> Try?

&h (T 3 )) >T and T

[k] (Gg) = T [k-me1]"

Two subcases arise.
(1) 1Ifi=7j =T, >T.. and by arguments similar to the above

it can be shown T!'.

(JO) ’?‘Ti:k—m+1] and h(T', ) > T!

= n(T') =1 since joes

(2) 1If i*j =2T'. ., =T, . Again by considering different sub-
0 () ()

cases it can be shown that either

(a) T > max{T} -1

Gg) [kemea]r B (T

or

1 . ] -1 '
() T(i) 3-maX{T[k-m+1]’ h (T[k])}

= n(T') = 1 since {jo,i} < 8,

This completes the proof.
Hence the infimum of the probability of a correct selection
occurs when for all issf, A[i] is as large as possible and when for

all je8, A[j] is as small as possible.

Theorem 3.2.1.

For t < k-m, inf PA[CSIR] = inf PA[CSIR]
t ~ t ~
2" (p) 2, (p)
For t > k-m, inf P, [CS|R] = inf P_[CS|R]
A A
2 ~ Q ~
0
The next object is to obtain an explicit expression for the

infimum so that
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A. When k-m < t, questions concefning the choice of heH
to attain GA can be answered and
B. When k-m > t, questions' concerning the consistency of
{R(n)} can be answered and computations of required sample
sizes for Gy can be performed.
The main interest here is in Case B although Case A will also be

studied.

Theorem 3.2.2. For any t=1,...,k such that t < k-m and any R(n)

of form (3.1.3)
1nf P [CS|R(n)] = inf B8(A,t,n) where
Ael!
2 (p)

G_(y/p(0)
I(G ONGVIME

(3.2.2) g(r,t,n) = | {Gn(hn(Y)/P(A))} sk-m-t+1, m)
A

E
n

t
d(6, (y/2)}
For any t=1,...,k such that t > k-m and any R(h) as-in (3.1.1)

inf P, [CS|R(h)] = inf ¢(A,t,h) where
A
Y] ~ Aeh

(3.2.3) ¢0,t.h) = tf (6 (y/017HE () /01 G (/)

Proof. From Theorem 3.2.1 it follows that

inf P[CS|R(n)]=inf P[at least one of {T

cassT } >
' (k-t+1)>°""? " (k) "~ =
Qt(p) Ael

maX{T[k-m+l]’ en(T[k])}
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~ '
where T[l] ff"f-T[k] are the ordered Ti s

e, =ty

T(k-t+1)""’T(k) are iid w/cdf Gn(-/A)

\~T(1)""’T(k) are iid w/cdf Gn(-/p(A))

Let Z = maMT(k ta1) "’T(k)}

= P[at least one of {T(k-t+1)""’T(k)} Z.maX{T[k-m+1]?en(T[k])}]

= P[Z > max{T[k_m+1], en(T[k])}]
= PIZ 2T gy P 2 Tl
k -
= i=k§m+1P[Z=T[i],hn(T[i])zT[k]] since [ZzT[k—m+1]] =
k .
U [Z=T,.,]
i=k-m+1 [i]
.
(3.2.4) = , P[Z= Tip S (Tey) 2 o]
i=k-m+1 p=k-t+l [ ] [k]
But [Z = T(p) T[i]]
> s ' (o] oS
_ [T(p) T(Q)bfor (i-t)2's w/eed™; T( ) ( )V 2e8-{p}; ]
. ' [od
T(p) < T(Q) for (k-i)2's w/2e¥
oS
.ﬂl B <
L [Ty > TV seb-p) and viel )3T ) < Ty,

v je;’\i)'t(n)].

So (3.2.4) can be rewritten as
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T(j) < T(p)vjeﬂ-{p} and vjen'i_t(ﬂ);
k-t P T
k ko Got) hn(T(p)) i’ T(J') vitp;
P
i=k-m+1 p=k-t+1 v=1
. =d-t
TH) T T VI @ _

A

kT, | Ty < T, Vjed-{p} and Vil T(8);
" L G () (p) v
| ) 1w
i=k-m+1 p=k-T+1 v=1 T <T... < hn(T( ))VJEp’:; (9)

(p) () p ]

]
o~

(3.2.5)

E 51 6 /e pon e (o ) /p(y)
b Fliet B a0 nY/P(A) 1 | L, (r)/p
n

k-i
-G (y/p(A)}F ~ dG_(y/})

]

B(A,t,n).

The proof of the second assertion follows along the lines of the

first after noting that [Z 3_max{T[k_m+l],en(T[k])}]=[Zzpn(T[k])]

since t > k-m. This completes the proof of the theorem.

Remark 3.2.1. When t=1

G_(y/p(\)

: k-1
B(x,1,n)=/ {G (h_(y)/p(A))} "I( ;k-m-1+1, m)
[E* n-n Gn(hn(y)/p(k))
n 1
d{G_(y/2)}

= y(A,n).

The evaluation of the k dimensional infimum has been reduced

to the evaluation of a one dimensional infimum. In the location and
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scale parameter cases B(A,t,n) is independent of ) and hence the
~ infimum of the probability of correct selection is completely
evaluated. In the general case the following theorems allow

evaluation.

Theorem 3.2.3. When Gn(y), hn(y) and p(X) are sufficiently smooth

so as to satisfy the hypotheses of Theorem 1.2.3 then B(A,t,n) is

nondecreasing in .
Proof. g(A,t,n) can be rewritten in the following form

BOLER) = [ {6, (h (/PO I (v, 0)sk-t-mel,m)  dGX(y/A)

E
n

where

* t
G(y/\) = {G_(y/\)}

6, (y/p ()
W00 = T mmon

= E,[{6, (0, ) /p O YU LK (y,0) skemetel, m)]

Now using Lemma 1.2.2 and the same method of proof as in Theorem 1.2.3

where

3G* (y/2) 6G_(y/r)
n t-1 n
—7— = t{G_ (y/N)} —

g1 (/0 = 6, /M g (y/0)

the result follows.
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Remark 3.2.2. Since the hypotheses of Theorem 1.2.3 are satisfied

for the first five examples of Chapter II, the present theorem
allows complete evaluation of the infimum of the'probability of

correct selection for these cases.

Remark 3.2.3. In the case k-m < t since ¢(A,t,h)=EA[{Gn(h(y)/x)}k=t]

where the expectation is taken wrt G;(y/l) above, some additional
computation shows that if Eﬁ = En VieA and (1.2.7) holds when p(XA)=X

and

3_(h_(y)/\) 3G (y/3) _
(3.2.6) gn(y/k) 3 - N gn(hn(y)/k)hé(y)zp ae in En

then ¢(A,t,h) is non decreasing in A. This result is a generalization

of Theorem 2.2 of Gupta-Panchapakesan [33].

3.3 Properties of {R(n)}

Since thersequence of procedures {R(n)} proposed for the present
_problem is the same as that studied in Chapter I some of the questions
concerning its properties can immediately be answered from the work
of Seétion 1.3. However, the most important question is not answered
by the earlier fesults-namely given a P* level can n be found to
achieve (3.1.2). Note that the formal definition of a consistent
sequence of rﬁles is unchanged but now the event [CS|R(n)] has a

different meaning than before.

Theorem 3.3.1. If there exists AoeA' and N > 1 such that

(3.3.1) inf g(x,t,n) = B(A,,t,n) Vn > N
~ Aed! 0 -

then {R(n)} is consistent wrt Qt(p).
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Proof. Under the assumption of the hypothesis (3.3.1) and by

Theorem (3.2.2) it follows that

inf P[CS|R(n)] = B(ry,t,n) for n > N
t : ‘
Q (p)
Hence it suffices to show B(Xo,t,n) + 1 as n»>e, Since p(ko)<ko

there exists a 3 p(AO) <a <A

Claim A: For any k-m+l < i <k

3
fjglf?(y)dcn(y/xo) 0 as moe
(3.3.2)
where
£ = 6 (/A1
£0) = {6 (/pO "
£50) = {G_(h_()/p(A))-6_(r/p(1)) ¥

G (a/Ag) < €/2

Given € > 0 pick M > N so that Vn > M = {Gn(a/p(ko)) >1 - €/2

3
=vy 2a, T f50) < f30)
j=1
< {6, (h (¥)/p(3p))-6, (y/P(Ry))}
< 1-G (y/p(Ay))
< 1-G (a/p(2())
< €/2 Vo> M
So
w0 3 fn o ©
o< 5 0036,0/) =S 16,0/ €2 46, (r/ag)

f_Gn(a/AO) + €/2-1<€ Vn > M
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Claim B:
00 2 n
(3.3.3) tf-w jflzj(y)dcn(y/xo) > 1 as noe
n t-1
2.00) = {6 (y/2,)}
where
50 = (6 (/pO T

Note that for every n > 1

| A

2 . g -
=t 12206, (7/2) tf_m{cn(y/xo)}t bae (y/rg) =1

j=1
. . k-t cty . .
Now given 1 > €' > 0 choose € so that (1-€) (1-€7) = 1-€

and then choose M > N so that for every n >M

= {:Gn(a/lo) < €

G, (a/p(Ay)) > 1-€
= 150 2 16, /p0 > 1-0 vy > o, n oM

So finally it follows that for every n':_M
o 2.n © 2
1>¢tf 1 25 ()dG (y/2) > tf T

J

21 ()46, (¥/)
~o j=1 a j=1J

2 tf 16,1 1-6 a6 _(y/a)
[

> (-6 [1-(6_ (/2 "]

> (1-6% ety - 1-e

Since (3.2.3) shows that B(Ao,t,n) is just the sum of (m-1) terms
having form (3.3.2) and one term having form (3.3.3) the above

argument completes the proof.
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Remark 3.3.1. Under the hypothesis that there is a AOEA such

that the one dimensional infimum can always be evaluated at Ap 1-e-

inf ¢(A,t,h) = ¢(X,,t,h) VheH (A, independent of h)
Aeh

then the following holds

(3.3.4) lim inf PA[CS]R(h)]' = 1.
cro ~
or
d-+oo’
For a given heH the evaluation of the infimum over Q may be
accomplished using (3.2.3) or by some other method. The point is
that ¢ and/or d may always be chosen sufficiently large to attain
any P* level. An example will be given in Section 3.4.
The remaining properties to be mentioned are those of the
individual rules R(n) rather than the sequence {R(n)} and are
stated in terms of the monotonicity properties for the probabilities
of selecting individual populations. They are the standard proper-

ties defined in Chapter I and are listed here in catalog form for

the sake of completeness. Let
px(i) =‘PA[R(n) selects “(i)]
S(n) = Number of populations R(n) selects
T(n) = Number of non best populations R(n) selects
(1) For any n > 1 and any i=1,...,k R(n) is strongly monotone in

Tl'(i).

(ii) For any n > 1, R(n) is unbiased and monotone.
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(L) IE Ay > Ay = bin Py (1) = o i Z_f T
S(n) 2 1 as now
T(n) £ 0 as n
(iv) For an arbitrary Aed
N G
E\sml= [ ] A (J)(y) 69 o))

i=1 p=k-m v=1 ‘“J&Jp(l) JaJp(l

() (i)
-G_7 7 (y) 3G (y)

(v) Under the assumptions of Corollary 1.4.2
G, (y/2) ,
sup E~[S(n)] sup kf_m{sn(hn(y)/x)} 1(5—75—7—37;7-k-m,m)dGn(y/x)

Furthermore this last integral is non decreasing in A. Hence if

there is a greatest AoeA

[S(n)]=k/ { (th_()/2) ¥ (G O7%) k-m,m)dG_(y/A.)
= sup E[S(n)]= G y)/A = _;k-m,m y
g Gn(hn(y)/xo) n 7%

In the location and scale parameter cases this one dimensional

supremum is independent of Ao

3.4 Application to the Normal Means Problem

The normal theory example will be discussed in some detail since
it is a commonly used model in practical work. The goal in this sec-
tion will be enlarged from that stated in Section 3.1 to a more prac-
tical goal which includes partial specification of the {hn(x)}

sequence.
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Let L N(ui, 02) for i=1,...,k and suppose the common 02
) \
is known. Also let u[I] :,..:_u[k] be the ordered means, "(i)
the (unknown) population with mean u[i] and let "(k~t+1)""’"(k)

be the t best populations.

Goal G: Given P*, m and also possibly n and § > 0 define a
selection procedure, R(n), based on n observations from each T
which selects a subset of populations not exceeding m in size,

which contains at least one of "(k-t+1)""’“(k) an§ satisfies
' t
(3.4.1) PH[CS|R(n)] > P* Vueq  (8) = {glu[k_t+l]-u[k_t] > §}

The event [CS|R(n)] occurs iff at least one of Tlk-t+1)" T (k)

is included in the selected subset.

The proposed procedure is of the form

i[k] - do/vn}

where the dependence of the sample means on n has been suppressed

(3.4.2) PR(n): Select LA ii > max{X

as usual. Bofh n and d must be determined before the rule R(n) is

completely specified.

Theorem 3.4.1. If t < k-m so that the indifference zone approach

is used,

" /a8, 1k o(r+8
(3.4.3) inf P[CS|R(n)]=/ {@(y+d+—:—)} T (T k-t-m+1, m)

ot (8) - o (y+d+ﬁ§i)

d{d>(y)}t
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Proof. Note that G_(y/w) = Pu[i <yl = ¢(£§ (y-#)) and after
substituting in (3.2.2) and making the appropriate change of
variables the result follows.
Using (3.4.3) and dominated convergence the following can

easily be computed:

(3.4.4) lim inf P[CS|R(n)]
2t )

1}
—

sup inf P[CS|R(n)]

2t (p) 420 at(s)

(3.4.5) 1lim inf P[CS|R(n)]

do=

“EB);k-t-m+1, m)

[ 1(e(y+

- 00

d{<I>(y)}t

Remark 3.4.1. The fixed subset size rule (d=+») which selects the

m populations corresponding to the largest m sample means has infimum
of probability of correct selection‘specified by (3.4.5).

If a subse; selection type requirement (§=0) is desired for a
rule of form R(n) when 1 < t < k-m the highest P* level that can be

attained is

(k-m)
(3.4.6) sup inf P[CS|R(N)] = l-oo——-— , 1 <m< k-t
T 40 @ (k). - -
where n, = n(n-1)....(Mn-2+1)

2
For t=1 this feduces to the result m/k which was obtained previously.
Equation (3.4.6) shows that if both n and § are fixed by the experi-
menter it may be impossible fo attain a given P* level by merely

increasing d. It may be necessary to increase n or §.
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Remark 3.4.2. If n is fixed and the subset selection approach is

to be used (k-m < t) then take H = {hd(x)|hd(x) = x+d/v/n for

de[0,») }. The rule corresponding to hj € H is
(3.4.7) R(d): Select m X, 3_max{X[k]—do/ﬁi, x[k-m+1]}

From the general result and a change of variables the following
can easily be derived
. ” k-t t

(3.4.8) inf P[CS|R(d)] = [ {o(y+d)} ~d{e(y)}
, Q o
Setting the right hand side of (3.4.8) equal to P* gives the d value
satisfying the requirement (3.1.2).

Since R(n) is of the form (3.1.1) with h (x) = x+do/vn satis-
fying (1.1.3) the general theory applies to give all the usual
properties of R(n). A few of these properties are stated for this

special case.

(1) For every d > 0 and § > 0, lim inf P[CS|R(n)] =
nre  Q(8)

(ii) For any i=l,...,k, {R(n)} is strongly monotone in ﬂ(i)'
.. : P
(iii) For any EEQ such that ”[k] > u[k-l] = S(n) 5 1 as me,

oo

. o(y)
(iv) sgp E[S(n)]= kf_ {@(y+d)} (¢(y+d)’k -m,m)d¢ (y)

For the purpose of implementing {R(n)}, Table V has been

prepared which lists the values of vns/o satisfying

" /s, k- 0+ 2%
(3.4.9) P*=f {¢(y+d+ tI(—————9-7=——;k—t—m+l, m) d{(b()’)}t
- o (y+d+ 26)
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for various P*,m,k,t and d. In general, for given P* and § there

will be many combinations of d and n satisfying (3.4.9). The choice
of d should be made by considerations similar to those in Section 2.1.
In particulér tables of the following quantities have been constructed

for various parameters:

(i) e(P*,k,m,d) = n(d)/n(x) is a measure of the additional sample
size needed over and above that for the fixed subset size

tule to attain the same probability requirement. (Table VI)

(1i) Eu[S(n)] measures the savings realized for the rule R(n) over

the fixed size subset rule when p is the true underlying vec-

tor of means. (Table III and IV)

Having chosen d the required sample size can now be determined

and the experiment performed.
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Lists the Value of 7?6 needed to attain P* levels .75, .90 and .975

for the rules given by d = .

.8, 1.2, 1.6 for various k, m and t.

d 4 .8

p¥* pP*
k m _t .75 .90 .975 .75 .90 .975
4 2 2 .419 1.121 1.914 .136 .818 1.585
6 2 2 .853 1.498  2.234 .638 1.261 1.960
3 2 .797 1.457 2.203 447 1.089 1.828
4 2 .791 1.453 2.203 .398 1.054 1.804
8 2 2 1.080 1.701 2.406 .894 1.492 2.164
3 .656 1.250 1.921 458 1.025 1.664
3 2 1.015 1.650 2.375 .698 1.308 2.007
3 .596 1.203 1.898 .263 .848 1.523
4 2  1.005 1.644 2.375 .627 1.257 1.976
10 2 1.230 1.837 2.531 .061 1.644 2.304
3 .835 1.410 2.062 .660 1.207 1.828
4 .546 1.105 1.750 .361 .892 1.492
3 2 1.162 1.781 2.492 .865 1.460 2.140
3 771 1.359 2.031 462 1.023 1.671
4 484 1.058 1.718 .164 712 1.343
4 2 1.150 1.773 2.484 .785 1.396 2.093
3 .759 1.351 2.031 .387 .966 1.632
15 2 2 1.468 2.054 2.726 .323 1.886 2.523
3 1.103 1.652 2.281 .954 1.478 2.070
4 .853 1.380 1.984 .701 1.199 1.765
3 2 1.395 1.994 2.679 .130 1.701 2.351
3 1.031 1.593 2.234 .759 1.293 1.898
4 .783 1.324 1.945 .505 1.011 1.601
4 2 1.377 1.982 2.671 .041 1.625 2.296
3 1.015 1.582 2.234 .669 1.218 1.843
4 .767 1.314 1.945 481 .943 1.554
20 2 2 1.619 2.195 2.851 .486 2.039 2.664
3 1.264 1.880 2.406 .128 1.642 2.214
4 1.029 1.539 2.125 .891 1.375 1.925
3 2 1.543 2.128 2.796 .298 1.853 2.492
3 1.189 1.736 2.367 .937 1.457 2.039
4 .953 1.476 2.085 .701 1.187 - 1.757
4 2 1.521 2.115 2.789 .204 1.771 2.421
3 1.169 1.722 2.359 .842 1.375 1.984
4 .934 1.466 2.078 .607 1.109 1.695
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be attained over all © no matter what n is used.

d 1.2 1.6
p* P*
k m t .75 .90 .975 .75 .90 .975
4 2 2 * .605 1.351 * 476 1.218
2 2 .521 1.130 1.812 464 1.070 1.750
3 2 .181 . 800 -1.500 .009 .613 1.289
4 2 .029 .675 1.414 . * .343 1.062
8 2 2 .802 1.390 2.046 .763 1.347 2.000
3 .356 .910 1.531 .310 .859 1.476
3 2 .490 1.076 1.742 .377 .949 1.593
3 .031 .587 1.218 * 435 1.039
4 2 .316 .921 1.617 .104 .687 1.343
10 2 .984 1.558 2.203 .954 1.525 2.164
3 .576 1.113 1.710 .543 1.074 1.664
4 .270 .789 1.367 .231 .746 1.320
3 2 .668 1.257 1.898 .601 1.160 1.781
3 271 . 804 1.406 .173 .693 1.273
4 * 472 1.062 * .343 .906"
4 2 .513 1.095 1.765 .351 .912 1.546
3 .095 .648 1.281 * 437 1.031
15 2 2 1.263 1.820 2.445 1.242 1.796 2.414
3 .892 1.406 1.796 2.870 1.380 1.945
4 .636 1.125 1.761 .612 1.097 1.640
3 2 .99 1.541 2.156 .935 1.474 2.078
3 .617 1.125 1.687 .556 1.052 1.601
4 .357 .835 1.382 .292 .757 1.281
4 2 .824 1.377 2.007 .716 1.252 1.859
3 4b44 .960 1.539 .332 .826 1.375
4 .183 .671 1.242 .062 .525 1.054
20 2 2 1.435 1.980 2.593 1.418 1.962 2.570
3 1.076 1.582 2.140 1.059 1.560 2.117
4 .838 1.312 1.843 .820 1.291 1.820
3 2 1.180 1.716 2.320 1.134 1.664 2.257
3 .818 1.314 1.859 771 1.257 1.789
4 .579 1.039 1.566 .530 .980 1.492
4 2 1.017 1.554 2.171 .933 1.457 2.054
3 .650 1.152 1.710 .566 1.050 1.578
4 413 .875 1.418 .324 .765 1.277
*This choice of d insures that the probability level P* can even
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