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Absgtract

We consider a finite Markov renewal process with an associated sequence
of nonnegative ;andbm variables, having properties similar to the sizes of
successive generations in a branching process. This process is called a
Markov renewal branching process; it arises in the study of the busy period
in several queueing models.

This paper contains a2 general definition and a discussion of the most

important properties of the Markov renewal branching process.



1. Introduction
On a complete probability space ({2,8,P), consider a sequence {(Jn,xn,Yn);

n > 0} of triples of random variables with the following properties:

a., For (almost) all well, Jn(w)e{l,...,m},xn(w)e[o,m), and Yn(w)e

{0,1,2,...}, where 1l cm <=, n > 0.

b. XO=0, a,s.and ¥, =k > 1, a.s.

0

c¢. The bivariate sequence {(Jn,xn); n > 0} is a regular, irreducible
Markov renewal sequence with transition probabilit& matrix A(x) =

{Aij(x)}’ where

(1) A (x) = P{J < x|x_ = 1},

j pl = 3 X S

for all 1 < i, j g mand x > 0. Recall that the Markov renewal
sequence is irreducible if and only if the stochastic matrix A(+x)

is irreducible.

d. For every n > 1, the random pairs (XO’YO)’(XI’YI)""’(xn’Yn)’ are
mutually conditionally independent, given the random variables

J Jl,...,Jn. Furthermore the conditional probabilities

0’

* - = < = = =
(2) AL (x3) P{Jn+1 X S% Y v|Jn i}

3

=vlg =4, X,¥,J

n’ n’ "n-1’ xn-l’ Yn-l""’

P{Jn+1 =1 x:n+1 £ % Yn+1
Jo2 Xgo YO}, for n > 0,



are indgpendent of n. We set

©

(3) (x;v) = Ag (0,

iJ 1)

forall x>0, 1 <i, § <m.
For use in the sequel, we define the following:
1. the matrices A(x;v) = {Aij(x;v)}
2. the means Bl,...,B of the lattice distributions with densities B v) =

m
ij(+m,v) i=1,...,m. Throughout this paper the means Bys»--.»B are

j= 1
assumed to be finite.

3. the row-vector @ = GTl""’"m) of stationary probabilities of the
irreducible stochastic matrix A=) .

4. the column-vector e¢ = (1,1,...,1)' with m components.

5. the matrix A(E,z) [Aij(g,z)}, where

@ A€ = z f PR

for all § and z satisfying Re § > 0, |z| g 1.

In order to avoid trivialities we assume that Aij6+m;0) > 0 for some
pairs (1,j). This excludeé the uninteresting case where all Yn=0, a.s.
forn > 1.

A number of elementary consequences of these definitions are listed for

future reference: /

/
(5) a. A (0+,1-) = A (0,1-) = A (0+,1) = A (+w).
2 npaten

b. mA (0+,1-) =g, Te-=1,

e 324G ] e=8= Geenp).
z=1-
£=0+



The matrix A(§,z) may be written as the series expansion

)

(6) A(E,2) = AV (®)2,

v=0

for Re § > 0, |z| £ 1. The functional iterates

_ : (v) v
(7) é[n-i-l] (gy Z) - V:OA[n] (g) .A.[n] (5. Z) 3
and
(8) A(E,2) = ; AW @ v,
[a+1]="22 w0 [n)= "%

are well-defined forn > 1, Re § > 0, and |z“5 1. We shall assume that there
exists an integer M, such that the matrices étn](o,l) and [n}é(o,l)'are ir-
reducible nonnegative matrices for all n > M. This irreducibility condition
is satisfied under very mild conditions en the matrix A(E,z) and holds in all

current applications of the present general model.

Description of the Model

The stochastic model of interest arises in the discussion of the busy
period structure of several queueing problems, having substantially different
qualitative descriptions. In order to give a unified discussion of the under-
lying formal structure, we consider the following urn model.

An urn contains initially Y = Z0 = k > 1, identical items. The content

0

of the urn changes only at the transition epochs Sn = X +...+Xn, n>1, of

1
the Markov renewal process with transition probability matrix A(x). At the
n-th transition, one item is removed and Yn items are added, and this is done

for all n > 1, until the urn becomes empty.



So, provided Zl(uD # 0,...,Zn_1(u9 # 0, the comntent Zn(uﬂ of the urn

at the time X1+...+Xﬁ+ is recursively defined by

9) 2 (@ = [Z_ (@ +Y (@ -1]".
The random variable K(w) is defined by
(10) K(w) = min{n: Zn(w) = 0}.

Clearly K(w) > k for every w. K is the index of the transition at which the
urn becomes empty.
Furthermore let I(w) = JK(QJ

defined whenever K(w) = +w. I{w) is the state of the Markov renewal process

y? whenever K(w) is finite; I(w) is un-

immediately following the time at which the urn becomes empty.

Finally the random variable U(w) is defined by Ulw) = Xl(w)+...+XK(¢)(w),
provided K(w) is finite and is infinite otherwise; it measures the time
until the urn bécomes empty for the first time.

The object of this paper 1s to study the probabilities

(k)

(11) Gij

(x;n) = P{I =13, Ugx, K=nlJ0 =i, zO =k},

for 1 g1,j gm n >0, x >0, and in particular to derive a necessary and

sufficient condition for the equality

m @
(k)
(12) T T c;i ]

j=1 n=0

(+=3n) = 1,

to hold for all i=1,...,m.

There appear to be at least three different approaches to the study of

(k)
1]

first given for the classical M[Gll queue. It is interesting to note

the probabilities G,/.” (x;n). Each of these are generalizations of arguments



however that the difficulty of the proof of any given theorem or lemma
depends substantially on which of these approaches is used.

The three approaches are respectively: (a) the use of recurrence
relations for appropriate taboo probabilities, (b) the Markov renewal

branching model (c) the nonlinear matrix integral equation.

2. Recursion Formulas

(k)
Let OGij

itions occur in the Markov renewal process before the urn becomes empty,

(x;v,n) be the conditional probability that at least n trans-

that immediately following the n-th transition there are v items in the urn,

that the n-th transition occurs no later than time x and that Jn = j, glven

that Jo =1, ZO = k., Formally
(13) o f )(x,v,n) =PI =1, Z= v, XK <%, 240,
n n r
for 1 g v gn-1{Jy= 1, Z,= k}.
Clearly
(14) oCry (Kiv,0) = 88 L UG,

where U(-) is the distribution degenerate at zero. Also for n > 0,

) - (k)
(15) o8 14 (x;v,n+l) = hgl S _1 J 0%ih (x=y;v',n)d Ahj(y;v-v'+1),

by an application of the law of total probability.

Introducing the generating functions

(16) (§)(§,z w) =



-}

“xy (0

s z° Tw J oCqy (%5vim)

v=0 n=0 0

and the matrix H(k)(g,z,w) for Re € > 0, |z|‘5_1, |w| < 1 we obtain succes-

sively that

wl

aan ij

© V‘"l m co
(§,z,w) = z 6 S5y T J ~5x de G(k)(x'ysv',n)
0

n=0 =0 -1 h=1 °0 0"ih

II ™~ 8

i.‘l
d Ahj(y;v-v'+1)

(k)(g,

k
- 2%y, + z— W (€, 2,9) - 0.} &y, (€2,

and in matrix notation

+1

8% (€, 2,001 - A, 2] = 21 - W™ (€,0,mAE,2).

(18)

We note that

-

(19) (§)(§ 0,w) = % w I "5 d G( )(x ;n),
n=0 0 1]
where G§§)(x;n) is as defined in Formula (11). For notational simplicity we

write x(k)(g,w) for the matrix u(k)(g,o,w).

The matrix 1(k)(§,w) may in principle be determined by using the observation
that E‘k)(g,z,w) is a matrix with analytic entries in £,z,w for Re £ > 0,
|z| <1, ]w] < 1, which is suitably continuous on the boundary; therefore

the matrix

k+1

(20) (21 - w % €, waE, ][I - waE, ]!

can only have entries with removabls singuiarities inside this region.
This approach, which was used in a number of queueing models discussed

by ginlar [1,2] and Neuts [8,9], appears to require the introduction of a



number of technical nondegeneracy assumptions in order to be able to comn-

(k)

struct the matrix y ~ (E,w) at those points (,w), where the eigenvalues of
the matrix wA(€,z) exhibit certain singularities. By using alternate
approaches, we shall show that these conditions, which are usually impossible

to check explicitly, are in fact not needed.

Theorem 1
If N(€,z) and u(€,z) are respectively an eigenvalue and the corresponding

right eigenvector of the matrix A(€,z), then

H(k) -1. k+1 (k)

(21) (§s2,W)y_(§,Z) = [Z = Wn(i,z)] [z E(giz)- W’ﬂ(g,z)x (E,W)g(g,z)]-

If the quantity X(£,w) satisfies
(22) X(8,w) = wh(E,x(§,w)], 0 <|x(g,w)]| <1,

at a point (§,w) and 1f u(€,X(E,w)) can be defined so as to be analytic in a
neighborhood of the point (§,w), then xk(g,w) is an eigenvalue of y(k)(g,w),
with corresponding eigenvector u(g,X(E,w)).

In particular, for § >0, 0 < z < 1, the matrix A(E,z) is an irreducible,
nonnegative matrix. Its maximal eigenvalue TN°(E,z) of algebraic and geometric
multiplicity one, sc that M°(E,z) is analytic in a neighborhood of every |
such point (§,z). Moreover u°(€,z) can be defined so that all its components
are strictly positive and are also analytic in a neighborhood of every such
point (E,z). |

The smallest positive root X°(§,w) of the equation

(23) x°(E€,w) = wN°[E,x°(E,w)],

(1)

satisfies 0 < X°(§,w) < 1, and is the maximal eigenvalue of the matrix y

(§,w) .



Proof
By multiplying the matrices in Equation (18) on the right by u(g,z) and _

simplifying, we obtain (21). The stated assumptions imply furthermore that>

the point z=X(E,w), which lies in the unit disk must be a removable singularify

of the expression on the right of Equation (21). Therefore we have that
(24) Xk+1 (§ ,W)E[g,X(g,W)] = WT][§ ,X(§,W) h(k) (gaw)gtng(gxw) ] .

By use of Equation (22), we obtain
(k) k
(25) x 7 (€,wulE,x(8,w)] = x"(§,Mulg,X(E,w) ].

In particular, for the maximal eigenvalue the analyticity conditions are

always satisfied for § > 0, 0 < z < 1. We shall show below that the equation
(23) has a unique solution satisfying 0 < X°(§,w) < 1. Replacing X(E,w) by

X (E,w) in Equation (25), we note in addition that the eigenvector u[€f,x °(§,w)]
has all its components strictly positive. Since for £ > 0, w > 0, the matrix
x(l)(g,w) is irreducible and nonnegative, it follows that Y °(E,w) must be

the m;ximal eigenvalue of 1(1)(§,w). Indeed, the Perron-Frobenius eigenvalue
of an irreducible, nonnegative matrix is the only eigenvalue having a real,

(k)

strictly positive right eigenvector. The irreducibility of vy~ (§,w), k > 1,

is a ready consequence of the irreducibility assumptions stated in (7) and

(8).

3. The Markov Renewal Branching Process
(k)

The matrix v ~ (§,w) in Formula (20) may also be determined by an argu-

ment similar to those used in the theory of branching processes.



The Y.= k items initially in the urn guarantee that at least k transitioms

0
will occur in the Markov renewal process {(Jn,xn), n > 0} before the um
becomes empty. We refer to these k items as the first generation of items.
Any items added to the urn as a result of the first k transitions make up

the second generation of items. There will be M = Y1+ "+Yk’ such items. If

M,= 0, the urn is empty after exactly k transitions, but if Ml > 0, then Ml

1
additional transitions at least occur before the first emptiness of the urn.
The MZ- Y k+M1 itemg added during these M1 transitions make up the
third generation of items.

Continuing in this manner, we define recursively the random variables
Mr’ r=0,1,..., until an index r' 1is reached for which Mr, = 0, When this
occurs, we say that emptiness occurs after exactly r' generations of items.

We so obtain a sequence (of random length) of integer-valued random variables

M0=k, Ml""’MR’ where

(26) {(Rw) = '} = {w: MM ..M, £ 0, M= 03.

' * = * =
We also introduce the random variables M0 0, M1 Mb""’MR M + M +. +Mk 1
and note that Mﬁ = K, a.s. The random variable M: counts the total number
of items in the first r generations. Furthermore, the randoh variables
I¥x=J, I*x=J _,...,I1¥ =7

07 % 17 TR T TME

the underlying Markov renewal process and the states of this process after

describe respectively the initial state of

all transitions corresponding to the first, second,...,R~th generations have
been completed.
The random variables To= 0, and Tr’ 1 € r <R, are defined by
M*
o

(27) TI‘= z xs
v=l VY



10

and we note that Tr is the total length of time until all transitions due to

the first r generation of items have been completed. Moreover TR= U, a.s.

Setting T,= 0 and = T.-T for 1 € r < R(w), it follows that the

0 r-1’

sequence

28 (@, o,

Tr),0_<_rSR}
is a Markov renewal sequence (with a random stopping time R), [3].

Let 0.Q(r)(i,k; jsk'; n; x) with Laplace-Stieltjes transform

oq(r)(i.k; j,k'; a; €) be the probability

(29) P[I: =3, M= k', Mk =1, T <X, Mv# 0, v=1,...,r-1|13 =1, Y=

then we have

(30) 0

for r > 0, provided we set

@D @Dk e = s so0

where the deltas are Kronecker deltes.

Introducing the generating functions

[} o0 '
(€,z,w) = T )X oq(r)(i,k;j,k';nzg)zk W,
n=1 k'=0

(r)

(32) OQij

the equation (30) implies that

5 (x+1)

(33) 01 (€,z,w) = T T T Oq(n)(i,k;h,v;n;g)wn[wvév(i,z)]hj-

h=1 y=1 n=1

k},

m (
dTP kg = 5 5 g @lshyviny gD yuif k')
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We observe that the matrix Q(r+1)(§,z,w) may therefore be written as |

0

(34) ™ (g,2,0) = 2P [g,w A€ 9] - 2P (5,0,

0

where the substitution of the matrix w A(€,z) for the scalar variable z is
performed as follows. The matrix oé(r)(g,z,w) may be written in the general

form

(35) oé(r)(g,z,w) = ZOBir)(§,w)zv,
V=

for Re § >0, |z] <1, |v] <lorRe€ >0, |[z2| g1, |w| <1. Since in this

region the norm of the matrix w A(€,z) is at most one, the series defined by

@36 £37Ewv G,

v=0

converges. The resulting matrix with analytic entries in §,z, and w in the

¢ (r)tg’w é(g,Z) ,W] .

region of interest is denoted by 0
Formula (34) can be most conveniently written in terms of the matrix

functional iterates A ](g,z,w) defined by

(k) k A ()

37 _Toj(g,z W) =z I, Aros

k
11z = ATEw AG2), W],
forn >0, Re € >0, |zl <1, |w] <1l, or Re € >0, |z|‘5 1, |w| <1l. A
direct induction argument shows that

@ @ QPezw -, 1P enw - a8 - 4P 160w,

forr>1, k> 1.

Remark
It is worthwhile to stress the fact that in general A ](g,z ,W) 1s not

the k-th power of the matrix A ](g,z,w). Also, it is not in general true that
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A k)

—fm-l](g’z »¥)

is equal to w A (g, _éka(g,z,w)].

These invalid equalities were inadvertently used in Neuts [10,13];
thereby invalidating some steps in the discussion of the busy period in
both queueing modéls. Fortunately none of the substantive theorems in
these papers are affected by this error. Since the Markov‘renewal branching
process under discussion here, is precisely the abstract formulation of the
busy period in beth papers, the minor cotrectioms needed in ﬁhe proofs are
obtained by particularizing the arguments in the present papér to the
spe?ial problems discussed in [10] and [13].

Setsing z=0 in Formula (32), we observe that

69 3P E0m = = 0P s oo

is the transform of the conditional probability that the-urn becomes empty
no later than time x, in exactly r generations of items, in exactly n trans-
itions of the underlying Markov renewal process and that the final state Jn
of the Markov renewal process is j, given that J0= i, Y0= k.

By use of Formula (38), we observe that

N
s (D) (k)

so that the quantity on the right is the transform of the conditional prob-
ability that the urn becomes empty no later than time x, after at most N
generations of items and after exactly n transitions of the underlying Markov

renewal process and that Jn= }, given that Jo= i, Y0= k.
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For every N > 1, the matrix A (g 0,w) is the transform of a bivariate,

"ENJ
substochastic, semi-Markov matrix. Moreover for every € >0, 0 < w <1, the
¥ '

entries of the matrix A 4] (2,0,w) are monotone nondecreasing in N by Formula
(40). Since the family of all m x m substochastic semi-Markov metrices is

weakly compact, it follows that the matrix

41) lim éék)

Noo

(€,0,w),

exists and is the transform matrix of a (possibly substochastic) bivariate
semi-Markov matrix. Also, by the probability interpretation of the matrix

in (41), it follows that

y(k)(g,w) lim A(k)

(E,G,W) .

By analytic continuation, Formula (42) is valid for all (§,w) with Re € > 0,

lw‘ < 1. This result is summarized in the following theorem.

Theorem 2

The matrix y(k)(g,w) is the limit of the matrix functional iterates

2 0

rN](E »0,w), defined in Formula (37).

For every £ > 0, 0 < w < 1, the convergence in (42) is monotone, non-

decreasing in N.

Theorem 3

The matrix Y(k)(g,w) satisfies
@  y®ew = yPent

for all (g,w) with Re § >0, |w| <1, and all k > 1.
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Proof
We recall the probability interpretation of the entries yiﬁ)(g,w) as

given by Formula (19), and consider the event that in the urn model, the
first emptiness occurs no later than time x after exactly n > k transitions,
0= i, Y0= k.

denote respectively the first

that Jn= j, given the initial conditions J

Let the k random variables U],. K

passage times from the urn content k to k-1, k-1 to k-2,...,1 to 0., Let

--,U

' Ui""’Ui denote the number of transitions in the underlying finite Markov
renewal process, while the urn content decreases from k to k-1 for the first
time, from k-1 to k-2 for the first time, and so on. Finally let VO= Jo, a.s.
and let Vv be the state of the finite Markov renewal procgss at the time
U1+"'+Uv+ 0, for v=1,...,k. A classical property of the first passage times
in Markov renewal processes then implies that the k pairs(Ul,Ui),...,(Uk,U;),
are conditionally independent gziven the k+l random variables V ,Vl,..},Vk.

Furthermore the conditional probability P{Uv < x, U;= n, Vv= j|Vv_1= i},

(1)
1j

process. Its transform with respect to x and n is therefore given by vy

(x;n), because of the spacial Homogeneity of the content
(1
ij

, K= Ui+...+U,:<, and U = U1+...+uk, it follows that

is equal to G
) €,w.

Finally, since I = Vk

m m
R P T L

1=14 =1

and hence Formula (43) holds.

(k

(44) \7F

Remark
Theorem 3 could be anticipated in view of the property of the eigenvalues
and right eigenvectors of y(k)(g,w), shown in Theorem 1. A direct analytic
proof seems to involve a complicated discussion ¢f the singularities of the
eigenvectors of the matrix zI - w A(E,z), which is avoided by the probabilistic

proof given here.
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Theorem 4

(

The matrix vy 1)(§,w) = y(E,w) is the unique matrix with entries analytic

in € and w for Re € > 0, |w| < 1, which satisfies the functional equation
45) Z =w A[g,Z], with ||Zi“s 1,

for every Re § >0, |w| < 1.
Proof

Consider the probabilities Giﬁ)(x;n) as defined in Formula (11). By
conditioning on the number of items in the urn and on the state of the Markov

renewal process at the time of the first transition we obtain

m n~l .x )
A (x0) + £ 3 Ay, Geoysv)d Ghj (y;n-1),

@8 6 Gum) =5
J . h=1 y=1 Y0

for all x >0, n>1, 1 <1, j <m.

Upon evaluation of the transforms

@7 Y$@m=zwj

-Ex (k}
e >°d G, ,I(x;n),
n=k 0 13

and by use of Theorem 3, we obtain from Formula (46) that

48) v(E,w) = w A[E, v(§,w)].

Since y(§,w) is the transform of a bivariate (substochastic) semi-Markov
matrix, it is clearly of norm not exceeding one for Re £ > 0, |w| < 1.

The proof of the uniqueness of the solution is idencical to that given
by Purdue [17] for the case w=l. As in Purdue's Theorem 3.2, it is sufficient

to show that there exists a number ¢ > O for which the guantity

m m @® (-]
%9) Yo = ¥ ¥ Ta J e 9%y Aij(X;n) <1.
1=1 §=1 n=1 °0
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m
Since Y{(0+) = §1Bi < =, and ¥(o) is decreasing and tends to zero as ¢ tends
to infinity, sich a number g clearly exists. As in Purdue's proof, the
result follows by appealing to a contraction mapping theorem and an analytic
continuation argument.
Remark

For w=1, the Equation (48) is the transform version of a nonlinear matrix

integral equation. The matrix G(x) = {gi*(x)}, where

(50) G, x) = rob

14 n=0uij (x:n),

is then the unique (substochastic) semi-Markov matrix with transform matrix

v(€,1), which satisfies the system of integral equations
i (n)

(51) 6x) = A+ V(x), x>0,
n=0

where G(n)(-) is the n-fold matrix convolution of the semi-Markov matrix G(.).

4. The Probability of Eventual Emptiness

Next we examine the probabilities of eventual emptiness of the urm.

The quantity

m
(52) TG
1t

j(+oo), i=1,...,m,

is clearly the probability that the urn becomes empty eventually, given that

J0= i, ZO= 1. We shall derive a necessary and sufficient condition under

which the quantities in (52) are equal to one for all i=1,...,m.
Theorem 5

The matrix G(+w) = y(0+,1), is stochastic if and only if

(53) T3, <1,

~

m
g=1 171
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Proof

For k=1, w=1l, the Equation (18) becomes
(1) 2
(54) i (§,z,1)[z I- E(E:Z)] =z 1 = .Y_(g’l)é.(gnz)a

For € >0, 0 <z <1, the matrix A(g,z) is an irreducible matrix with nonnegative
entries. Let T(E,z) be the maximal eigenvalue of A(E,z) and let u(€,z) be the
corresponding right eigenvector, which can be chosen so that all components

of u(€,z) are analytic for € >0, 0 <z <1, continuous at € =0, z = 1,

for € - 0+, z = 1-, and so that in addition all comporents of u(g,z) are

strictly positive for € >0, 0 <z < 1.

Multiplying both sides of Equation (54) on the right by u(€,z) we obtain,

)

(55) Hil (€,2,1)[z-N(E,2z) Ju(E,2) = zzg(§.z)- NE,2)y(E,Du(g,z).

Since the vector H(l)(g,z,l)g(g,z), has analytic components for £ >0, 0 <z < 1,
which are suitably continuous as € - O+, z = 1-, the vector on the right must

vanish if z is replaced by X(E), where X(§) is any root of the equation
(56) z = N(E,z2), 0O<z<l, £E>0,

As was shown in [13], by using convexity properties of T(§,z) established in
[12], the Equation (56) has a unique root X(§) satisfying 0 < X(§) < 1, for
g€ > 0, which tends increasingly as € - O+, to the smallest positive root of

the Equation
(57) z = T(0+,z)
Replacing z by X(E) in (55) we obtain

(58) C(©)e[Z,X(E) ] - XE)y{E, DulE,x(E)] = 0.
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for € > 0. Dividing by X(E) # 0, we obtain that X(€) is a positive eigenvalue
of the nonnegative matrix v(g,1), with corresponding right eigenvector u[g,X(€)]

having all positive components. It follows therefore that the quantity X(§)

is the maximal eigenvalue of the matrix vy(E,1) for § > 0, and by continuity

that the maximal eigenvalue of y(0+,1) is given by the smallest positive
root of the Equation (57).
The smallest positive root X(0+) of Equationm (57) is equal to ome, if and
only if the left hand derivative T'(0+,1-) of T(0+,z) is less than or equal
to one. If T'{(0+,i-) > 1, the quantity X{0+) satisfies 0 < X(0+) < 1.

Finally, it is well-kacwn [1,12], that T'(0+,1-} is given by the quantity

The limit mazrix [’ = yv{0+,1}, plays an important role in many applications
of the Markov renewal branching process. By setting w=1, and =0+, in Equation

(48) we see that

(59) [ = A[0+,I'] = £ AGw; ).
v=0

Furthermore, as shown in the proof of Theorem 5, the spectral radius of I' is

equal to the smallest positive root of the Equation (57). This implies that
m
I' is strictly substochastic, if T ﬁiei > 1, and is stochastic if and only
m i=1
if ¢ =,8. <1.
i=1 i"1
We shall now examine all solutioms to the equaticn

(60) = T A(=;u)XY
v=0

which belong to the class £ of irreducible, nonnegative and substochastic

matrices.



19

Theorem 6

If X ¢ X and satisfles (60), then the spectral radius p(X) is a root of
Equation (57) in (0,1 .

The matrix I" is a minimal solution of (80) in %, i.e. every other solution
X ¢ X satisfies I' < X, where < denotes the entry-wise inequality for matrices.

The minimal solution is unique. The Equation (56) always has a stochastic

m

solution. If I "151 <1, then T is the unique, irreducible solution of
1=1

(60) in Z.

Proof

Let Xu = zu, u > 0. Since X € %, we have 0 < z <1. Equation (60)

implies that

(=]

P .

Za+3viz u = A0+, 2)u,
V=0

(61; zu

it

o8
=

]

in tarms of the matrix A{(§,z) at $=0+. Let v be a left eigenvector of A(0+,2),

corresponding to the maximal eigenvalue N(0+,z) of the irreducible positive

matrix A(0+,z). Let v be chosen, so that y > 0. Equation (61) yields

(62) v(zu) = zyv u = N(0+.2)y u.

Since v u > 0, this impliss that z must be a root of Equation (57).

The solution [' corresponds by Theorem 5, to the smallest positive root
of (57).

Next we construct a solution X* to (60), which we shall show to be a

minimal solutica. We define zrecursively the sequence of matrices X0= o,

<

. v
X = T A@F=v)X, fora = 0.
n+l V=0 n

The sequence an, n > 0}, is morotone, noundecreasing. This is a par-

ticular case of rhe fact that for all X e ¥ and ¥ ¢ X



< o=
(63) X<Y, = DAG®WK < ZAGVY .
v=0 v=0

This implication is proved as follows. Let Xk < Yk, then Xk(X-Y) < 0, and

hence Xk+1 < XkY. Also (Xk-Yk)Y < 0, and hence XkY < Yk+1. Combining both
inequalities yields Xk+1 < Yk+1. Therefore, by induction, X <Y, implies
that Xk < Yk, for all k > 0. Equation (63) is now an obviocus corrolary.
Applying (563), to the sequence {Xn}, proves that Xn.f Xn+1’ since 0 < XO.

The sequence {Xn, 2 > 9) has a limit in %, which we denote by X*. Thé
matriz X* i3 claarly a solurlon of Equation (50}.

Next we show that every other solution ¥ of {80} in 2 satisfies X* < Y.

The matrix Y satisfies Y > 0 = XO’ and therefore

(64) Y= L AGeW)IT > A

?
V=0 1

and by repeated iteration we obtain Y > Xn' Letting n tend to infinity,
we obtain ¥ > X*.

Let Y now be any solution to (60), whose maximal eigenvalue is equal to
the smallest positive root of the Equation (57). Since X* <Y, the maximal
eigenvalue 7 (X*) does not sxcead the maximal eigenvalue p(Y) of Y. Therefore
p(X*) is also equal to the smallest positive root of Equation (57), or p(X*) =
0(Y). This in turn Implies that X* = Y, and in particular that X* =T,

The Zguation (60) always has at least one stcchastic solution. This

-follows by application of Brouwer's fixed point theorem to the set of
stochastic matrices.

We can ncw summrarize the results about the solution sat of (60) as follows:
a. If m[zl'n,SJ <1, then T

i=t > *
stochastic zoiution X must satisfy I < X, we obtain I'=X and [' is therefore

ig Irredacibie and stcchzeisic. Since every other
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the unique solution to (60), since there are no substochastic solutionms.

m
b. If T n B, >1, then! is irreducible and strictly substochastic. p ()

it
i=1
is the smallest positive root of Equation (57). The matrix I' is the
only strictly substochastic solution to Equation (60).
The Equation (60) also has at least ome stochastic solution X and

[' € X. We do not know whether the stachastic solution in this case is

also unique.

5. Applications
The Markov renewal bramching process occurs in the study of the hnq,»

period of a large number of queueing models. We list several of these as

examples.

a. The MIGl1 Queue [11]

In this case m=l, and the matrix A(S,z) reduces to a single entry.

(65) A(§,2) = h(§ + A - Az),

where h(:) is the Laplace-Stieltjes transform of the service time distribution
H(.) and A is the arrival rats.

In the case of group arrivals,

(66) AZ,2) = hlE + \ - ()],

where @(.) is the probability generating function of the group size density.

b. The M|SMi1 Queue

This model was studied by Cinlar [1] and by Neuts [8]. If the service
times are governad by the sémi-Markov matrix Q(.} with matrix q(§) of Laplace-
Stieltjes transforms, then the busy period process is a Markov renewal

branching process with



(67) A€,z) = g[§ + A-Az].

Many queueing models with group service or with dispatching are par-
ticular cases of the MlSMll model.
c. Two Servers in Series with a Finite Intermediate Waitingroom

This model was discussed in Neuts [9,10]. The matrix A(E,z) is com-
plicated and will not be given here. The equilibrium condition for this case
1s also fairly complex and involves the computation of the stationary prob-
abilities of the matrix A(0,1), The resulting expression for the traffic
intensity does not have the intuitive simplicity of that in other queues.
d. A Queue with Fluctuating Ar;ival and Service Rates

Two closely related, but not identical, models of queues subject to
fluctuations in arrival and service rates were studied by Naor and Yechiali
[7] and by Neuts [13]. See also Purdue [16] and Yechiali [18].

For the model studied in [13], the matrix A(E,z) is given by

O

-8u
(68) Aij(g,z) = jo e Pij(z,u)d Hi(u)’

where Hi(-), i=1,...,m, are probability distributions on [0,2). The function

Pij(z,u) is the (1,3)-th entry of the matrix
(69) B(z,u) = exp{-u{A(1-z) + A(I-P)]},
where A = diag (kl,...,Km), Xi >0, i=1,...,m; & = diag(crl,...,o’m), gy >0,

i=1,...,m; and P is an irreducible stochastic matrix of order m. The busy
period process is again a Markov renewal branching process.
e. Discrete Time Versions of the preceding models

The numerical analysis problems related to the preceding models ﬁave

not been investigated extensively. These problems are very substantial and
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require further theoretical investigation. The enormous numerical difficulties

are somewhat easler to overcome for the discrete versions, than for the con-

tinuous parameter models. For an extensive discussion of the value of discrete

queues, we refer to Dafermos and Neuts [4], and to the investigation of models

of the M|G|1 type in Neuts [14], Klimko and Neuts [5,6] , Neuts and Heimann [15].
It is clear that the equations governing the busy period structure in

these cases are the formal analogues of those for the corresponding continuous

parameter cases. The discrete time queues correspond to lattice Markov

renewal proceses, while tne sojourn times for the continuocus parameter ﬁodels

have general distributions.
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