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1. Introduction. Let §1, 3 be a sequence of indépeﬁdent and identieally

2,.0-.;

distributed (I.I.D.) real random variables (r.v.). Let

n
=0,8 = % §r 8, = max ©, s

1) S
' k=0

12000 Sn), n>1,
In 1952 Pollaczek t3] and in 1956 Spitzer [7] obtained, using different
methods, the result

k

) T p"Efexp(-sb )} = exp{ = RE E[exp(-sS;)]},
=0 n k=1

: = max(0,5,). Earlier in 198,

Wald [10] had suggested a method for studying the distribution of 6n based

valid for |p| <1 and Re(s) > 0, where S

on the following observation:

Define a sequence of r;v.'s, ﬂo, ﬂl, nz,..., recursively with
_ _ +
It is easy to seé_that

@) N o= max(0, £, & L+ € ., &y beuk B, B+ E Hauik E),
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for n=1, 2,... On the other hand when EO = 0, since El, §2,... are 1.I.D.,
the distributions of én and ﬂn are identical. Thus this pgves a way of
finding the disfriﬁutions of § via ﬂn.

The sequence {ﬂn} is important by itself in that it atises in stochastic
models pertainiﬁg to several live situations. One such'sitﬁationvwill be
described briefly liétle later. Recently Takdcs ([8], [9]) has studied this
sequence for the c#se whe¥e §0 is.a nonnegative random variable independent
of the other Enfs, vhich are I.I.D. for n > 1., The purpose of this paper is
to study the sequence {ﬂn}, when §n's are not necessarily I.I.D. and instead
their distributions vary with the states of a finite state Markov chain
(M.C.). To this end let {Jn, n=0, 1, 2,...} be a K-statebM;C. with stationary
one-step trdngit;qn'probabilities matrix z'= (pij)’ i, j=1, 2,..., K. Let

_Fi(-), i=1, 2,..;,K. be K arbitrary but given cumulative distribution functions

(C.D.F.). We then define for n > 0,
: Y4 |
(5) _"ﬂn+1 = [‘ﬂn + xg_i] » when J_ .= j, j=1, 2,..., K,

where ﬂo is an arbitrary nonnegative r.v. Here all the X's are mutually
independent and are 1ndependent of ﬂo. Also, the C.D.F, of an X with super-
script j is given by Fj(-). The problem then is to obtain an expression in

closed form for the transform

(6) V(s,p) = I p"Elexp{-sT 1],

n=0

valid for |p| < 1 and Re(s) > 0.



A continuous time analogue of the special case with K=2 has been
recently studiedrbj Senturia and Puri [6]. This case, although originally
arose in the context of stochastic models on quantal response assays in
ﬁiology (see Puri and Senturia [4]), also serves as a natural model in the
theory of storagg.. Wévéhall describe it briefly here fof_a later reference.
Let {W(t); t > 0} be an erdinary two-state semi-Markov process defined in the
sense of Pyke [5], through a bivariate sequence of r.v.'s {(Jn, Tn)’ n=0, 1, 2,...}
with T,=0, where | |

Q) P(J = §, T < len_1 =1i) = Ps H, (x);

0 < pij <1, i,.j=1? 2; and Hi(-) denotes the C.D.F. of the nonnegative waiting
time in state i,'Sétisfying Hi(O) { 1. The state 'l' can be visualized here
as a 'releasg' state, while state '2' as an 'input' stafe for the storage, in
thebfollowingrsensé. Each time the process W(t) moves to an.input state, a
random_nonnegativé amount X of the commodity is added to thé storage. On

the other hand, when it moves to a release state, a random nonnegative amodnt
Y is released, if a# least that much is available at the time; if less is
availablé, all of it is released. Let T(t) denote the amount available in
the storage at time t. T(t) then is the continuous time analogue of .,
defined earlier.

Senturia and Puri [6] obtained several 1limit results fér the process
N(t), while putting practically no restrictions on Hi(;), i=1l, 2, or on the
distributions of X and Y. As such, here we shall be only concerned with the
problem of obtaining explicit transform of the distribution of T(t). The

authors of [6] obtained this only for the following two cases:



(i) X and Y's are both exponentially diétributed, while H1 and H2 are
arbitrary.

(ii) X is exponentialiy distributed; distribution of ¥ is'arbitrafy and
Hi(x) = 1-exp(-aix), @ >0, i=1, 2.

The general case where X and Y are both arbitrarily distributed was
found too difficult for this purpose while using the methods of [6]. Also
the more general case for K > 2, appears quite intractable. However for the
above case with K=2, we shall present a complete solution for the discrete
time case in section 3 and for the continuous time case in section 6. But

first in the next section, we introduce the approach adopted here, which is

due to Takacs ([8], [9J).

2. PRELIMINARIES. 'Fbr the present situation one could easily adopt the

~

approach due to Kingman [2], which involves considering the space of signed
measures on the Borel sets of the real lines. However, instead we find it

more convenient to adopt a soﬁewhat analogous approach due to Takacs ([8],
[9j) as described below. Let # be the space of functions ¢(s), defined for

Re(s)=0 on the complex plane, with the property that
(8) ¢(s) = E{E exp(=sM}

for some complex (or real) random variable € with E|§| <, and a real r.v.

TN. The joint distribution of € and T uniquely determines ¢(s), although there
are infinitely many possible distributions yielding the.same $(s). We define
the norm of ¢(s) by

(9) o]l = igf E|E]



where the infimum is taken over all those £ for which (8) hoids. Now,
since |¢(s)]| < E|§|; we have |¢(s)| < ||#]|| for Re(s)=0. Again, it is easy
to establish that # is a linear space and with the above nor:ﬁ, it is also
complete. Hence.? is a Banach space. On this we define ah operator A in

the following manner. For every ¢e o as defined by (8), let
o +
(10) Ap(s) = ¢ (s) = E{Eexp(-sT')},

for Re(s)=0, where T]+ = max(0,T). It is easy to see th#t the function ¢+(s)
is independent of the particular representation (8) éf ¢. Also ¢+(s) is a
ré'gulér function of sr in the domain Re(s) > 0 and continuous for Re(s) > 0.
Furthermore, since A is linear and |A¢(s)| < ||¢|| for Re(s) 20, we
have HAH = 1, so that A is an operator. Also since for every é¢¢ B’, ¢+e o
and A2=A, it is a éfojection. In-the following lemma we state some of the

properties of the operator A, that we shall find useful later.

1EMMA 1.

(i)  If ¢,,0,¢ %, and A¢ | = ¢, and A, = ¢,, then A(4;9,)= ¢,9,.

. y .
(i) If ¢ ,6,¢ ¥ and Ad = C,

(or. real) cons-tants, then A(¢1¢2) = CICZ.

| (iii) For 4)16 4 if A¢1=C,'then A(¢1A(¢2)) = A(¢i¢2) for all ¢2€ o, where

and A¢2 = CZ’ where C1 arffi C2 are complex

C is_a complex (or real) constant.
(1v)  Afexplé(s)-26(s)]} = 1, for all ¢e . |
v) For every ¢¢ ¥, there exist unigue ¢+e # and ¢ ¢ #, such that

6 =6+ 07, 6" = ¢ and A¢7=0.



The proof of this lemma is omitted, since most of its parts can be

easily established, and also some of these can be found in Takacs [9].

We now return to the process {ﬂn} defined in (5) on a K-state M.C.

J - Let for n=0, 1, 2,...; i=1, 2,..., K,

Yi(s) = E{exp(-sx(i))}, Re(s)=0,
(11)

r{D o) = Bt exp(-s1)3, Reto) 2 0,

where the C.D.F. of X(i) is given by Fi(-) and Iéi) =1 if‘Jn=i and is equal

to zero otherwise. An argument based on the forward Kolmogorov equations

‘easily leads to

) o |
(12) r‘lﬁ_l(s) =‘A{i§1pijr‘n (S)Yj(S)}’ n=0, 1, 2,...; j=1, 2,...,K,

where Féi), i=1, 2,..., K are given. Let En(s) = (Fél)(s),..., FiK)(s))'

and D(y) = (Gijyi(s)), where 61j is the Kronecker delta. Then the system

(12) can be equivalently expressed as

(13) L1 () = A[E(Y)E'En(s)}, n=0, 1, 2,...
Let
(14) U(i)(s,p) = I pnréi)(s); lo] < 1, Re(s) >0, i=1, 2,..., K,

n=0

and U(s,0) = UP (s,0),...,U (s,p))'. Then we have



K
(15) V(s,p) = X U(i)(S,p),
i=1

where V(s,p) is as defined in (6). ‘It easily follows from (13) that for

lol <1 and Re(s)=0, |

(16) U(s,p) = Ty(s) + pA[D(VIR'U(Gs,p) },
or equivalently

an A{(I-pD(MEHU} = T,

bearing in mind that AU = U and, since ﬂo is a nonnegative r.v., AED =T..

Thus in order to obtain an expression for (15), ene needs to solve for U

~

the system of equations (17) involving the operator A for given D, P and ED'

Unfortunately in this generality it appears quite intractable to obtain a
solution in a closed form. As such we specialize this in the next section

to the case of the storage model introduced earlier with K=2.

3. THE CASE OF STORAGE MODEL. Let us consider the case with K=2, where for

~ P T Y A o o o e e A o oo

convenience, we write p=p12=1-p11 and q=p21=1-p22. The case with p + q=1
becomes equivalent to the case of I.I.D. r.v.'s with common C.D.F. given by

qFl + sz. Since the results for this case are already known, we assume that

N :
p + g#l. For the same reason we also assume that 0 <p <1l and 0 <q < 1.

The equation (17):can be rewritten for this case as



u . p(l-p)A(le(l)) - qu(YlU(Z)) = r‘(()l)
(18)
U oty u ™) - pa-gau®y - 1P

We shall attempt tb'solve (18) assuming that Ayz = Y,» while Yq remaining
arbitrary. The assumption Ayz =Yy is consistent with the fact that the
state '2' of our M.C. is the 'input' state corresponding to our storage
model, so that Fz(j) is cqncentrated only on the nonnegative half of the
real line. We shall need the following theorem which is a generalization

of a result due to Takacs [8].

(o]
THEOREM 1. Let for |p| <1, Re(s) >0, W(s,p) z p“wn(s), where,wne o,

<) -n=0

AW =W for n=0,1,2,...,and I an“pln < ®, Let W(s,p) satisfy the equation
n=

(19) A{(_l"p ¢(s,p))W(s,p)} = A(R(S,p)), |p| <1, Re(s) = o,

for given ¢(s,p) and R(s,p) satisfying

@

(20) #(s,0) = Zp"¢ (s), R(s,p) = T p"R (s), |p| <1, Re(s) = 0,
-~ n=0 " n=0 ®

with ¢ ¢ %, R e #, n=0, 1, 2,..., and

(21) 2 leMel <1, = [pl?R | <.
n=0 ' n=0

Then we have



W(s,p) = exp{- A log (1-p¢(s,p))]}
(22)

x A[R(s,p) exp{- log (1-pd(s,p) + A log (L-pd(s,p)}].

PROOF. Substituting the series expressions for W,$ and R in (19) we obtain

on comparing the coefficients of pm on both sides.

Wy(s) = Al—;R0 (s)]
(23)
m

LA O R A[Rﬁ+1(s) + iZ:O¢m_i(s)wi(s)], m > 0.

Thus we can solve (23) recursively for Wn(s), n=0, 1, 2,... Consequently the
solution of (19) exists and is unique. To complete the proof all we need to

show is that (22) satisfies (23) or equivalently (19). For this we let
(26)  h(s,p) = expf{log(l-p¢(s,p)) - A log(l-pd(s,p))}.

Then (22) can be rewritten as

(25) (1-p ¢(S,p))¥.4.(s,p) - h(s,p)A{RGs,p) [h(s, 17T,

We note from Lemma 1 (iv) that A[h(s,p)] = 1. Consequently, on applying the

operator A on both sides of (25) and using Lemma 1 (iii) we have

(26) A{L-p §(s, W (s, } = Afn(s,p)A[R(s,p) (h(s,p)) 113

= A(R(S,p))’

which coincides with (19). This complete the proof.

The following theorem now provides the solution to (18).
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THEOREM 2. Let for K=2, AYZ = Y2, while Yl remaining arbitrary. Then we

have for |p| < 1, Re(s) >0,

© Péz) + (l-p(l-p-q)yz)U(l)
(27) z an{e}{p(-sTl )} = 1-p(1-q) - ’
n=0 n P VYy
where
@ U (s,p) = expl-a log (1-pB, (s,p))}

x.A{Bz(s,p)exp[- log (1-pB, (s,p)) + A log (1-931(8,9))]},

P ay,

(29) B, (s,0) = [(1-p) + m Iy,
and

., @
(30) By(s,p) = [Ty~ + T o, r, .

WD - D

PROOF. Since AYZ =Y, and , i=l, 2, by using Lemma 1 (i),

equation (18) becomes

o U pa-pacu®) - pq A u?) =
@ Uy u® - oy u? 1.
(2)

Solving (32) for U 7, we have
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Substituting it in (31), we obtain after some manipulation,
o (1
%) A[-pB, (5,00 (5,00} = A, (s,0)).

Solving this for U(l)(s,p) with the help of theorem 1, one obtains (28).

Ry U@

Finally using (33) and the fact that V(s,p) S,p) + (s,p), one

obtains (27). This completes the proof.

(1)
0

For the special case, where P(ﬂ0=0, I'77=1) = 1 or equivalently Pél)(S)=¢l

and Féz)(s)=0, on using Lemma 1 (iv) the expression (25) simplifies con-

siderably yielding

(35) z an(exp [-sﬂn]) = Bs(s,p)exp {-A 1log [l-pBl(s,p)]},
n=0

valid for |p| < 1, Re(s) > 0, where
(36)  By(s,p) = [1-p(-p-q)y, 1-p(l-q)y,17 .

In the next section we present an alternative but more direct approach
for obtaining (35), although it can with an equal ease be applied to obtain
(27) . This approach appears more revealing, in that it throws some light on
the two factors on the right side of (35), particularly the factor B3.

- 4 AN ALTERNATIVE APPROACH. Let us consider again the special case of the

o~

last section with K=2, Fél)(s)=1, Féz)(s)=0 and Y, satisfying AYZ =Y, Here
P(ﬂ0=0) = 1 and at the step zero the M.C. Jn starts with the release state

'1'. With N(0)=0, define the r.v.'s N(n), n > 1, recursively as

37 N(m) = inf{m: m > N(n-1), I =1},
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so that N(nt+l) - N(n) - 1 is the number of inputs that occurs between the nth

and (n+l)th release, the zeroth release being at step zero. Let for n=0, 1, 2,...

the amounts of these inputs be denoted by the mutually independent r.v.'s
Xizi, i=1, 2,..., N(ntl) - N(n) - 1 (with common C.D.F. F2(-)), whenever
’ .
(2)
O,n

N(n+l) - N(n) > 2 and by X = 0 whenever N(nt+l) - N(n) = 1. Using these

the following algebraic steps follow quite easily, while taking |p| <1, and

Re(s) > 0.

(38) z me{exp(-sTkp}

m=0

E{ T p"exp(-sT)}

m=0 7
© N(nt1)=N(n)-1 r
- N(n) - r _ (2)
= E{nsz S exp( sﬂN(n)) rzb p exp(-s izgxin )}
® N(nt+1)=N(n)-1
= E{ ZBpN(n)exp(-sﬂN(n)) ZB (pYz)r}
n= r=
N(n+1)-N(n)
® 1 - (pv,)
N(n) _ 2
ZE{p " exn( STy EL T3y LICVNER

On the other hand the process N(n), n=0, 1, 2,..., is known to have independent
increments, so that N(mt+1)-N(n) is independent of N(n). Furthermore it can

be easily established that

P(N(nt+1)-N(n)=1)

1-p
(39)

P(N(m+1) -N(n)=k) = p(1-9)¥ 1q, k > 1,

which after some algebra yields

N(n+1) -N(n) N(nt+1)-N(n)

1 -.py,

1= pv,

(40) E{ |N()} = = B3(s,p).
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Substituting this in (38), we obtain

1) 5 me[exp(~ST%R] = B3(s,p) = E{pN(n)exp(-sﬂN(n))}.

m=0 n=0

This shows that the factor B3(s,p) is nothing but the contribution to V(s,p)
coming from the 'inﬁut' steps that fall between various 'release' steps of
the M.C. Jn. We shall show while omitting details that, as expected, the
sum on the right side of (41) coincides with exp{-A log (1-pB1)}, the term

on the right side of (35). Let

Yn(S,p)

Vl(S,p)

E{pN(n)exP('an(n))}’ n>1,

o ¥ '(S,p),
n=0 "

(42)

with Y0=1. Calculations analogous to those of (41) and a forward Kolmogorov

equation argument easily lead to the recursive relation
(43) Yn+1(s’p) = pA{Bl(s,p)Yn(s,p)}, n > 0.

From this and the fact that Y

0=1, it follows that

44) A{(1-pB, (s,p))V, (s,0)} = 1.
Finally using theorem 1, equation (44) yields

@5 . Vi (s,p) = nEIOE{pN(n)exp(-sﬂN(n))} = exp{-A log (lipBl(s,p))}-

This complete an alternative derivation of (35).

The above approach at least in part indicates why the solution to the
general problem for K > 2 with yi's all arbitrary, is so intractable. In
essence, it involves keeping track of the different types of transitions of

the M.C. Jn’ while allowing the operator A to sweep at every transition.
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Even with K=2, when both yi's are arbitrary, the above approach becomes
already involved. It may be remarked here that similar difficulties arise

when one wishes to study the random variable Gn = max(0, S . Sn)’ where

1,..
the sums Sn's are no longer based on I.I.D. random variables, but on r.v.'s
defined on a K-state M.C. Recently Arjas [1] has considered this problem
unfortunately without any success.

5. METHOD OF FACTORIZATION. The following theorem gives a method of factor-

~

ization which helps the evaluations of quantities such as A log (1-pB1(s,p)),
which arise in the expression for V(s,p), such as (28). The theorem (with-
out a trivial modification) is due to Takdcs [8] and is given here without

proof. Later we apply this to an example.

THEOREM 3. Suppose |p| < 1 and that for Re(s)=0, we have
+ -
(46) - 1-pB(s,p) =2 (s,p) & (s,p),

where @+(s,p) is a regular function of s in the domain Re(s) > 0, continuous

and free from zeros in Re(s) >0, and 1lim 1log @+(s,p)/s=0 (Re(s) > 0);

s} ==

furthermore & (s,p) is a regular function of s in the domain Re(s) < 0, con-

tinuous and free from zeros in Re(s) < 0 and 1lim log & (s,p)/s=0 (Re s < 0).

ls| = =
Then
Y A log[1-pB(s,p)] = log &' (s,p) + log & (0,p),

for Re s > 0.

W_
0 =1

EXAMPLE. For the case with K=2, let P(ﬂ0=0, 1
Y, = E[exp(-sx(z))] is otherwise arbitrary. Also let P(X

= 1, and Ayz = Yo where
(1)

< %)

exp (ax)
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for x < 0, o > 0, so that yl(s) = o:(oz-s)_1 for Re(s) < o and Ay1=1. Sub-

stituting these in (29) we have for |p| <1,

@8 1-pB (s,p) = g ([ (-0 A-A-qpy, )],
where
49 g () = s+ (L-q)pay,=(1-)psy, + ap(L-P)=p” (L-p-q)ay,.

Now by applying Rouché's theorem twice it can be easily shown that as long
as |p| <1, gp(s)=0 has exactly two roots, one in the domain Re(s) > 0 and
the other in the domain Re(s) < 0. Let these roots be denoted by sl(p) and

sz(p) respectively. We may now write down

(50) 1-pB1(s,p) = §+(s,p) 3 (s,p),

where

G 8,0 = g (I (s-0) (55, ()]
and

(52) T (s,p) = (-5, ()1~ (L-qpy, ) 1.

It is not too difficult to see that &' and &~ given by (51) and (52) satisfy
the desired conditions of theorem 3. Thus using this theorem we obtain from

(35) after some simplification

(53) V(s,p) = sz(p)[l-p(l-p-q)vz(S)][l-p(lfp'q)]-lf(l-q)(sz(p)-S)]-l,

valid for lpl <1, Re(s) > 0.
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6. CONTINUOUS TIME CASE. Consider an arbitrary K-state semi~Markov process

~

{Ww(t); t > 0} defined through a bivariate sequence of r.v.'s {Jn,Tn), n >0}

with T0=0, where
(54) PO =35 T Sx[3 =D = py B G5 4, 5=1, 2,00, K,

Hi(-) and (pij) are as defined in section 1, with Hi(O) <1, i=1, 2,...,K.
n

Let for n=0, 1, 2,..., T = X Ti' We define T(t) constructively as:

' i=0

My» 0 St <,

(j)]+

) e = {
(ner =) + X

Tk Lt< Tk+1; if Jk = W(Tk)=j,

so that T(t) is continuous from the right. With this, the ﬂn as defined in
(5) is also equal to ﬂ(Tn). We shall study first the joint distribution of

ﬂn and T In particular, we shall obtain an expression for

[s<]

(56) V(sl, Sy5 p) = nzgan{exp(-slﬂn-szTn)},

valid for |p| <1 and Re(s;) 20, i=1, 2.. As before, let

vy (8) E{exp(-sx(i))}, Re(s)=0,

(57)

L}

Oi(s) E{exp(-sT(i))}, Re(s) > 0,

i=1, 2,..., K, where the transform Qi corresponds to the distribution of
the waiting time in state i. Analogous to (11) and (14), let for lpl <1,

Re(sj) 20, j=1, 2,

(58) Téi)(sl,'sz) = E{Iéi)exp(-slﬂn-szTn)}, n>0,
and
6 VPG, 0= 2t 8,

n=0
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for i=1, 2,..., K, with En and U denoting the corresponding vectors. Also
let Efv) = (Gini(s)) and EKQ) = (6ij91(s)).

At this stage we need to reconsider as follows the approach due to Takacs
with a slight modification. Consider the space H& of functions ¢(sl,sz)

defined for Re(si)=0, i=1, 2, on the produck space of two complex planes,

with the property that
(60) ¢(s1,sz) = E{E exp(-slﬂ-szT)},

for some complex (or real) r.v. € with E|§| < o, and two real r.v.'s T and T.
(It is evident that the old space # is contained in d&. On the other hand
treating the factor § exp(-szT) of (60) as the r.v. § of (8) and with s, in
(60) replaced by s, it follows that 'a C o, so that the two spaces 7 and d&
are identical.) With the norm as defined before in (9), the space H& is a
Banach space. Again, as in (10), we define for every de i&, an operator A1
as

61) A #(s»8,) = E{E exp(-s;T -s,M3,

for Re(si)=0, i=1, 2, Treating.the factor § exp(—sZT) as the r.v. § of (10),
it is evident that the operator A and A1 are essentially the_same. As a
result the operator A1 has the same properties as those of operator A. In
particular, this operator satisfies the properties listed ip Lemma 1, with the
slight modification that we now allow the various C's to be functions of S,-
Consequently, the result parallel to that of theorem 1 holds.

The analogue of (13) for the present case is now given by

(62) P (51089) = AI{E(Y)E'B(O)En(sl,SZ)}; Re(s;)=0, i=1, 2,

n=0, 1, 2,..., where Féi), i=1, 2,..., K are given. From this it follows that
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(63) Al{[i-pD(Y)P'D(Q)] Uul=r,

with A19,= Eland A1£D=£D, taking ﬂo to be nonnegative. Finally for the case

= = = = < < =+
with K=2, and A1Y2 Y, (taking Py,=Ps> Pyy=0s 0<p<1, 0<gq<1, and ptq#l)
we obtain the result analogous to that of theorem 2, namely for |p‘ <1,

Re(si) >0, i=1, 2,

- 1"52) + [1'9(1"q)92¥2 + ppvzoll v
(64) V(Slsszsp) = H
1'p(l'q)'Y292
where
1 _ _ =
(65) U = exp{ A1 log [1 PBl(Sl,Sz,P)]}

x Al{gz(sl,sz,p) exp [~ log (l-pﬁl(sl,sz,p)) + Al log (1-p§1(81,52,p))]}

| - PPAY,9,
(66) Bl(SlsSZ,P) = [(1'P) + 1'9(1'q)Y292 ] Ylglf
and
- 1 2 -1
67 By0s,0500) = ISV + pa8yv,TED (1-p(-giv,9) ™.

As before, with Fél)=1, Téz)=0, (64) simplifies to

(68) V(SI’SZ’p) = B3(Sl,52,p)exp{-A1 log [l-pBl(sl’Sz’p)]}’
valid for |p| <1, Re(si) >0, i=1, 2, where

- -1
(69) By(s155,,0) = [1-{p(1-9)0,-pp0, }v,][1=p(1-q)v,8,1 ~.

In order to obtain the transform for T(t), besides V we also need the

expression for

- n
(70) Vl(sl,sz,p) = nzgp E{exp(-slﬂn-szTn+1)},

valid for |p| <1 and Re(si) >0, i=1, 2, For this, let fo; i=1l, 2,..., K,
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[}
(i) (1)
(71) W (s1,5,,0) = I p'L " (s1,8,),
L] n=0
where
: (1) _ (1) _ -
(72) L " (sy25,,0) = E{I “exp(-s,M -s,7 )},
so that Vi = W(1)+...+W(k). A modified version of equation (63) for the
vector W=(W(1),...,W(K))', is given by
(73) Al{[I-pD(G)D(y)P']W} =L,

where A _W=W and AlED:ED' As before when K=2, A

1.~

1y2=y2, the solution for V1

turns out to be
(74) V. (s,,8,:p) = [L(Z) + (1 + po,Y (1-p-q))w(1)][1-p(1- R ]'1
1+°1°°%2° 0 272 /89¥od s

with |p| <1 and Re(si) >0, i=1, 2; Here W(l) is same as U(l) of (65) with

B2 replaced by C(sl,sz,p), where

(75) Cls;,8,,p) = Lél) + pquylLéZ)[l-p(1-q)Y292]-1.

Also, as is evident from the definition

(1) _ . (1) -
(76) L, (sl,sz) = 91(52) FO (sl,sz), i=1, 2f

Again, for the case with Fél)=1 and Fé2)=0, expression (74) simplifies to

1+ pOZYZ(l-p-q)]gl
1-9p (l-q) 92Y2

(77) Vi(sl,sz,p) = -exp {-A, log [1-p§i(sl,s2,p)]}.

with |p| <1, Re(s,) >0, i=1, 2.
Finally the following theorem gives the expression for the desired trans-

form for T(t), namely

e o]

(78) G(sl,sz) = Io exp(-szt)E[exp(-sln(t))] de,
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valid for Re(sl) >0 and Re(sz) > 0.

THEOREM 4. Let 0 <p <1, 0 <q <1, pkqfl, H(0) <1, for i=l, 2,..., K,

Re(sl) >0, Re(sz) > 0 and Ip‘ <1l. Then

(79) G(sy»s,) = ;i pliml[ﬁ(sl,sz,p)-Vl(sl,sz,p)],

where V and -\71 are defined by (56) and (70) respectively. In particular,
when K=2, Ay,=y, and B(I\"=1, N =0)=1,

(80) G(s;»s,) = exp[-A, log (1-B,(1))]

x [1-(1-q)y,0,-py,6, -6, - (1-p-0)v,8,6, 1[5, {1- (1-9)1,9, 117,

where Bl(l) = B1 (sl,sz-,l).

@

PROOF. Since H (0)< 1, i=1, 2,..., K, T B(T <t <T ) =1, so that

n=0
(81) P (M(t) < x) = TP(M() <x, T<t< Tml)
n=0
= ZP(T]nSx, T St <'rn+1)

=0
©

z [P(TI11 <x T <t)-PM <x, 7, < t)]

n=0
"o ®
= < - 3
TP <x, T St - TR Sx, T, S )
n=0 n=0

@

the last step follows from the fact that IT P('rn < t) <o, which itself is a
n=0

simple consequence of the assumption that Hi(O) <1, i=1, 2,..., K. Thus

using (81), we have for Re(si) >0, i=1, 2,
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(e o]

(82) G(SI’SZ) = Io exp(-szt) JO exp(-slx)dP(ﬂ(t) < x)dt

i}

sy JO exp(-szt) IO exp(-slx)P(ﬂ(t)lfvx)dxdt

© ®© L©

= - - . <

8y z j X exp ( 5% szt)P('ﬂn <x, T < t)dtdx
n=0 0 O

©

- - =g, 8
512 IO jo exp(-s,x=s, PN L x, T, < O)dedx

o] ©
1 v
=—= I E{exp(-slﬂn-szTn)] L5 E{exp(-slnn-

s.T )}
52 n=0 S2»n=0 2 ol

Here the interchanges of the summation and the integral signs can be easily

justified from the fact that

(83) | nEBE{exp(-Re(sz)Tn)} < nEbE[exp[-Re(sz)(§1+...+§n)]} < ®,

where §1,...,§n are mutually independent with common distribution same as

that of min(vl,...,vk), where v.'s are independent with C.D.F, of vy given

i
by Hi(-), i=1, 2,..., K. The last inequality in (83) holds since Hi(O) <1,
for all i and Re(sz) > 0. In (82) we have also used the standard fact that

for Re(si) >0, i=1, 2,
(84) E{exp(-slﬂn-szTn)} = 5,8, IO Io exp(-slx-szt)P(T]n <x T < t)dxdti

The relation (79) now easily follows from (81) and from the‘definitions of

V and Vl' Again (80) is an easy consequence of (79), (64) and (77), keeping
in mind that the process of taking limit as p - 1 under the operator A1
remains valid as long as Re(sz) > 0. Finally by continuity it follows that
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(79) and (80) also remain valid when Re(sl) = 0. This completes the proof
of the theorem.

We close with the remark that for the case with K > 2;'it.is obvious
that the above derivations will go through in an analogous fashion as long
as all but one,yi's.satisfy Ayi =Yg However the problem.df getting a
solution of (17) or of (63) in a close form, for the general case with

K > 2 and arbitrary v;'s, remains open.
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