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Abstract

A number of arguments are presented in favor of a greater effort in
computational probability. Examples are given to illustrate the use of

numerical methods in the teaching and research of probability models.



In this discussion, I shall describe some of the profound changes,
which are taking place in Applied Probability through the wide availability
of the computer. Many of my remarks are applicable to all of applied mathe-
matics, but given the interests of this audience and my own area of com-
petence;, I shall limit myself to examples taken from the study of probability
models.,

It is difficult to keep the development of modern computing facilities
in a proper historical perspective. Without exaggeration, one can say that
up to World War IT, computations of great complexity were essentially
impossible. Only very special problems of paramount scientific or military
significance were subjected to extensive computations. These were accomplished
only at a great cost in money and, perhaps.more importantly, in excruciatingly
tiresame effort by individuals whose talents could have served greater ends.
This is neither the time, nor the place to survey the history of the computer;
I shall only refer you to the excellent book "The Computer from Pascal to
von Neumann" by H. H. Goldstine [4]. It is still a source of wonder and awe
that in the span of approximately twenty five years, a tool of such power
and versatility has been fully developed and made widely available. Today
we pefform at very higﬁ speed and low cost, computations beyond the wildest
dreams of scientists of a few decades ago. The changes being wrought in
scientific investigation by the computer, are far greater aﬁd perhaps more
fundamental, than the impact of the introduction of the printing press on the
learning of past centuries. This isbnot yet sufficiently appreciated, which
is not really surprising. Thé first gemeration of students of the computer
era, has only recently left the universities. For a visionary discussion of
the broad cultural impact of the computer, I refer to the pleasantly written

book '"Man and the Computer" by John Kemeny [6].



In order to derive the greatest benefit from the computer in scientific
work, it should be integrated quite early in the development of an investigation.
The traditional approach in applied mathematics is to postpone all computation
to the end; more commonly still it is left to the initiative of others and
so, does not get done.

At the risk of walking a well-trodden path, I should like to retrace for
you the classical evolution of a mathematical problem of practical significance.
This, in order to stress which steps in this evolution are most profoundly
affected by the computer. I shall also discuss in passing, some related
issues such as the value of tables and social attitudes which affect computational
mathematics.

If necessary, kindly overlook these digressions. 1In discussing compufational
probability, my prime objective is to indicate the resulting and considerable
gain in the practical importance of mathematical models to the applied worker,
as well as the rich source of new problems to challenge the theoretical
probabilist.

In the first or premathematical stage the qualitative formulation of a

problem in applied mathematics originates in a related field of science. This
stage usually does not require computation.

The second stage deals with the development of the formal properties of

the problem; the latter becomes embedded in a mathematical structure and the
relevant questions are stated in precise mathematical terms. This step usually
results from a dialogue between those interested in the quantitative.aspects

of an application and mathematicians interested in reality-related problems.
This dialogue may last for many decades and for certain problems of physics

has continued for centuries. Many of us have been involved with instances of

this process and we are all aware of the somewhat different criteria and values



held by the mathematician and the applied worker in such discussions. For
the applied researcher, the mathematical model stands or falls on the degree
of agreement between its theoretically predicted values and the empirical
results of careful observation. He is also interested in specific questions
of significance to his speciality; the model is of use only if it gives
satisfactory answers to these questions, and this often regardless of the
inherent mathematical elegance of the structure. The mathematician is more
charmed by the intellectual beauty of the problem for its own sake. By the
nature of his training, he searches for generality and elegance, sometimes
at the expense of the specific questions raised by the practiomer.

Much of the strength of modern mathematics springs from its concern with
generality and elegance. 1In my opinion however, this concern has also led

to a_truncation of the solution concept in much of mathematics. An elegant

existence - and - qniqueness theorem may be admired, while a good algorithm
for the computation of that unique solution is disdained as '"a routine applica-
tion of the theory".

In the theory of queues, my area of research for the past years, this
truncation is particularly apparent. Practioners tell me that mbst papers
require a large expenditure of time and effort to read, only to discover in
the end that few, if any, specific questions are answered ﬁy the intricate
structural and analytic material in the paper. After a few frustrating
experiences, many practioners turn exclusively to simulation studies or use
only the most trivial explicit results of the theory. With some justification,
they may even become hostile to all theoretical work and question the support
given to this type of mathematical research.

At the risk of yet another digression, it is worthwhile to compare the

evolution of mathematical programming to that of the theory of probability



models. A comparison between those two fields is appropriate; they blossomed
during the same period in time and occupy substantially similar positions in
relation to applications and to pure mathematics. Mathematical programming
has a mﬁch narrower base of formal mathematical structure, yet its social im-
pact far exceeds that of probability theory. In my estimation, this is due
to the ardent concern for good algorithms for the solution of linear and non-
linear programs, on the part of the same talented mathematicians to whom we
owe the theoretical developments.

Taking an example from statistics, a distinguished colleague drew my
attention to some highly regarded optimality results in large sample theory,
which are mathematically correct, but only for sample sizes of the order of

1020y

! Such sample sizes are hardly meaningful, but it took substantial
theoretical insight to see that such forbidding limitations were inherent in
this wqu.

I believe it is in the best tradition of science for society to require
that theoretical results be backed up by an assessment of their concrete range
of applicability. One important way to do this is through numerical analysis.
Having the power of the computer available to us, we can as a community no
longer afford not to do so.

Passing to another aspect of research, if the mathematician hopes to be
at all successful in solving a problem, he must be able to relate it quite
closely to the realm of presently known mathematics. For example, a problem
leading to a nasty partial differential equation of higher order with non-
linearities will probably not receive much mathematical attention. Even today
we do not have a good theoretical framework for the analysis of such problems.

This shows the other side of the coin. Without a sound understanding of

the structure involved, computation is usually meaningless. However relevant



and urgent a problem might be, the quality of computer solutions only reflects
the degree of understanding of the designer of the algorithm.

The third stage is reached when the problem is well formulated and its

investigation is likely to be fruitful. A 1is£ of precise questions can now
be drawn up; some of these arise from the area of application, some originate
with the mathematician and others still spring from the answers to earlier
vquestions. At this stage, classical applied mathematics begins its quest for
explicit solutions, which express the quantities of interest in terms of known
functions. This endeavor has evolved the parts of mathematics, colloquially
referred to as "hard analysis'". Explicit solutions can be derived only in
rare cases however. Even then, the resulting expressions may not be very
elucidating, nor lend themselves well to numerical analysis. In the absence
of simple explicit results, the mathematician looks for qualitative theorems,

which are primarily of two types. The first type clarifies the nature of the

solution, rather than its explicit form. Examples abound in the qualitative
theory of differential equations. Equilibrium conditions for queues are results

of this type in probability theory. The second type encompasses limit and

approximation theorems. These are much more useful to numerical work, as they
facilitate computations and are useful in testing the validity of the model
at least in the range of the approximation or limit results.

The central limit theorem of probability is an outstanding result of this
type. Among its many merits, it accounts for the robustness of most useful
statistical procedures. The diffusion approximations of recent vintage are
other important results of this type. However even for such theorems of
central importance, far too little numerical work has been done to date. Valid
1imit theorems may be practically useless or misleading, when very slow con-

vergence is involved. While this is well~known in classical analysis, the



corresponding pitfalls in probability theory are not so clearly marked. Let
me interrupt this general discussion with an illustrative example.

Consider a sequence of independent Bernoulli trials in which the probability
of success at the n-th trial is P, = %, and denote the number of successes in

n trials by Xn. An application of the central limit theorem yields that

X 2
¢H) lim P{ans log n + x /1log n } = fé: I e ¥ /Zdu.

n-— o J2m =

This result is so easy to apply that one is tempted to use it as an approximation
of the distribution Fﬁ(x) = P{Xn < x}, rather than to compute the latter. I
used both methods for n=1000, and offer the following numerical results for

your consideration.

Table 1
Flooo(x), for x = ﬁﬂ...,lS
X exact normal approximation
1 0.00100 0.0060 003
2 0.00848 0.000 094
3 0.03567 0.001 471
4 0.09980 0.013 460
5 0.21059 0.073 289
6 0.36047 0.244 857
7 0.52615 0.527 980
8 0.68028 0.797 057
9 0.80365 0.944 320
10 0.89003 0.990 690
11 0.94365 0.999 077
12 0.97348 0.999 947
13 0.98850 0.999 998
L4 0.99538 1.000 000
15 0.99828 1.000 000




The approximation is clearly atrociously poor and remains so, even for
n=10000. In this simple case, it is easy to see theoretically why the con-
vergence is so slow, but many 1imit theorems are being recommended to
the practioner without any concern for their quality as approximations. In
an informal survey, many students assured me that the central limit theorem
"holds" as soon as one has thirty or more summands. In the case of non-
jdentically distributed random variables, they may be in for unpleasant
surprises.

Without denying the genuine value of limit and approximation theorems,
we should be much more prepared to use the structural features of probability
models to perform exact calculations. As long as we remain committed to the
scientific method over scholastic speculation, we must validate our models
by comparing their numerical results to empirical quantities. Rejecting a
valid model, on the basis of a poor approximation theorem is a scientific
tragedy.

A word about numerical tables is in order here. One of the barriers to
scientific computation is the considerable difficulty of getting tables pub-
lished. The economic reasons for this are sound. Extensive tables are costly
to reproduce and take up journal space, which can be put to better use. The
number of users of any given table is typlcally small. The obvious alternative
to this is to make well-documented computer programs in a general purpose
language available to the scientific community. Most scientists today have
ready access to a computer at their home institutions. They may, in most
cases, compute a table for the range of values of interest to them at a fraction
of the cost of general purpose tables.

Costly tables should be computed once and could be available, through a

clearing house, on punched cards or magnetic tapes. An example of this approach



is the table of coefficients for use in Fda di Bruno's formula which was
computed by Professor E. Klimko of Purdue University. This table of more
than a quarter million entries exists on a magnetic tape in a format usable
on all Control Data computers of the 6000 sefies.

As of today, there exist too few vehicles to convey such material to the
scientific community. This is, in my opinion, a regretable situation, since
I have éeen many computer programs of far greater import than many marginal
papers which are given journal space.

The fourth stage in the development of a problem of applied mathematics

is again outside of the realm of mathematics. It is the stage of validation
and testing against empirical data. After this stage, either a scientific
discovery is made or the problem returns to stage one and stimulates further
investigation to explain the negative results of the proposed model. 1In
comparison with the amount of model building and structural theory, too féw
studies of validation are undertaken. I am convinced that this is due in
large part to the reticence of many workers to do numerical work. Some of
the more valid criticisms of science, which find wide currency today, might
be avoided by pushing more scientific investigations to this final stage.
This will certainly involve a much greater effort in coﬁputational méthematics.
Today few of us are involved with more than one of these four stages.
The most fruitful use of the computer requires its integration into the latter
three stages. A fairly broad range of interests and competence is therefore
needed of those who become involved in computational mathematics.
After this general discussion, I now turn specifically to the area_of
probability models. Through illustrative examples, I shall argue for the
following three theses:

1. The computer is an invaluable tool to the teaching of probability;
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2. Well-planned computation enhances the understanding as well as the practicél
value of probability models;

3. Far from being a threat to theoretical investigation, computer investigations
raise large numbers of theoretically important questions. Every algorithm
has natural limitations which call for approximation theorems. Every
large computation poses serious problems of efficiency, which can only be
resolved through a profound understanding of the theoretical structure,
both of the problem and of the computer.

I now turn to these theses in order.

The Computer in the Teaching of Probability

Our non-measure-theoretic texts on probability or stochastic processes
place nearly exclusive_emphasis on special distributions and on problems with
easily tractable answers. The authors and lecturers properly do not want to
burden the student with problems, requiring tedious anélytic calculations with
unwieldy answers that offer little insight. As a result hoﬁever, many students
underestimate the value of structure and overestimate that of "explicit" simple
answers. As an illustration, we consider problems involving two classical
games, table tennisvaﬁd billiards.

Table tennis

Let the successive points in a game between players I and II be modeled

as Bernoulli trials. Denote by p the probability that I wins any given point.

The probability that player I wins a set is found by setting n=21 in the

formula

n=-2
ntr-1 - - p
2) P= 1 <n-i > g+ (:?12> Pq" ' < 2 2 )
=O +
T P q
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This is readily shown by a combinatorial argument, which students with little
mathematical maturity find rather difficult. If one generalizes the problem
by saying that in order to win, a player must score at least n points, and
must lead his opponents by at least k > 2 points, then a result from the‘
gambler's ruin problem is needed to show the probability that player I wins

a set is given by

n-k - k k=1 .. -
_ ntr-1 . n r ) 2n-j-1y n-j j-1, j 3
® P—rEOQH-l Pl +pk+ qkjle""1 JP e,

This pushes the problem almost beyond the scope of an introductory prob-
ability course. It is possible however to present a computational solution,
which illustrates all the probabilistic arguments involved, yet is accessible

to high school students. Denote by A(i,j) the probability that I wins, given

that the score has reached i for I and j for II, then for a general n and k=2,

the A(i,j) satisfy the equations

@) A(1,3) = pA(i+1,]3) + qA(1,j+1),

.for i >0, j >0, with boundary conditions

(5) A(n,j) =1, 0 <j<n-2,
A(i,n) = 0, 0 <i<n-2,
A(n,n-1) = A(tv, ntv-1), v >0,
A(n-1,n) = A(ntv-1, nt+v), v>0,
A(n-1,n-1) = A(ntv, ntv), | v > 0.

We can readily show that

2
(6) A(n,n) = —P—,
P +g4q
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A(n-1,n) = -2
p +4q

3+
A(n,n-1) = EE—-—BQ.
p +4q

Setting B(i,j) = A(n-i, n-j), we obtain a simple recurrence relation with

initial conditioms i.e.

) B(0,0) = p2/ (> + a2,
B(1,0) = p/ (% + ¢,
80,1 = (& + p)/ (2 + 42,
B(0,1) = 1, 2<j<n,
B(1,0) = 0, | 2 <i<n,
B(1,) =

PB (i'lsj) + qB(i’j"l) ’

for 1 <i<n, 1<j< ﬁ. For general k, only the ini;ial values of B(i,0) and
B(0,j) are different.

- Programming these recurrence relations for the computer is trivial. The
probability that I wins a set is given by B(n,n). Several conditional prob-
abilities, whose explicit formulas are uninspiring, may be readily computed
from the array B(i,j). If one further assumes that the probability of I win-
ning a point is P> if I serves and is Py» if II serves, then the exflicit
probability, which generalizes (2) is messy and involves quite tedious cal-
culations. 1In contrast, generalizing the recurrence relations (7) and the
computer program to handle this case, involves only trivial-changes in the
formulas (7).

The following is a short table of the probability P for n=21, k=2, given
for those interested in the lore of table tennis, this delightful game of

recent global significance.
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Table 2

The probability of winning a set in table tennis

p ’ P
0.40 T0.091
0.41 0.116
0.42 | 0.144
0.43 . 0.177
0.44 | 0.213
0.45 0.254
0.46 0.298
0.47 0.346
0.48 0.396
0.49 0.447
0.50 0.500

Billiards

Probability problems related to billiards are beyond most undergraduates,
largely because of the complicated expressions involved. They are not commonly
found in probabilitj texts. The game may be formalized as follows. Successive
trials are modeled as independent Bernoulli trials. If player I is at play,
he makes a point with p:obability Pys the corresponding probability for player
I1 is P,- Player I wins if he scores n, points before player Il scores.n2
points. Player II wins in the alternate case. The game starts with a turn
for player I and he continues playing for as long as his trials are met with
success. At the first failure of player I, his opponent gets a turn which
las;s until his first failure. The players take turns alternatingly until omne
of them reaches his aliotted score, Many probabilities related to billiards

were calcuiated explicitly by 0. Bottema and S.C. Van Veen and published in

two papers in 1943 [3]. These papers are in Dutch and are not easily accessible.
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Among the many problems, related to this game consider the handicap
problem. Let Py > Pys and let n, be given. Find n, so that the game is
approximately even. More precisely, let Pl(nl,nz) be the probability that
I wins if he starts and Pz(nl,nz), the probability that I wins if II starts

the game. For given e, P;sPy and n,, we wish to find the values n, for which

Pl(nl,nz) or P2(n1,n2) or bothi are in the interv;iﬁ(b;s-e,"6:5+e5:

Assuming that the formulas in [3 ] have been derived in class, the com-
putafion of n, is still not easy, since the explicit expressions are not well
suited for numerical computation. There is however, a computational solution,
which can be done by a freshman class; it completely obviates the messy
analytic calculations. It suffices to note that the probabilities Pl(nl,nz)

and Pz(nl,nz) satisfy the recurrence relations, (p1+q1 = pytq, = 1,

(8 P, (n;,n,) = p,P; (n;-1,0,) + ql[l-PZ(nl,nz)],
B, (n;,n,) = PyPy 0y my-1) + qp[1-Py (n5m) ],
forn, >1, n

> 1, with boundary conditions

9) P (n,0) = By(n;,0) = 0,

P1(0,n2) =_P2(0,n2) 1,

for n, > 1, n, > 1. The equations (8) may be written as

1 2
P Pyq . q.P
1 271 1.2
(10) P. (n,,n,) = 37— P.(n.~1,n ) - P_(n,,n,-1) + ,
1*1°72 1 4,9, 171 2 1 9,49, 27172 1 1,9,
P.d p q,p
P .(n,,n) = = —L1Zz P.(n,-1,n ) + 2 P.(n ,n -1) + __Z_l_.
27172 l-qlq2 171 2 1-q1q2 271772 1-q1q2

By using a scheme analogous to Pascal's triangle, the probabilities-Pl(nl,nz)
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and PZ(nl’nZ) may be computed recursively. Whenever the fir;t index is equal

to the given value ny, it suffices to examine for which n,, the numerical values
of Pl(nl,nz) and PZ(nl’nZ) lie in the stated intervgl about 0.5. For further
detrails, see [11]. This problem is pedagogically interesting, since it pre-
pares the students for ideas arising iﬁ renewal and inventory theory.

I conclude the discussion of the educational value of computational prob-
ability, by noting that in the preparation of a forthcoming text book in this
field, Professor Klimko and I found few problems, currently in bboks on prob-
ability, which are sufficienﬁly complex to demonstrate the great power of the

modern computer. In contrast, a formidable combinatorial problem such as the

joint distribution of the Goren point count in Bridge (for all four hands!) is quite

accessible to the intermediate student and will be included in the text.

The Computer and Probability Models

Probabilify models in queues, dams, inventories, reliability, epidemics
and learning offer a rich and largely untapted sourse of computational problems.
To treat any one of these in detail is beyond the limitations of this dis-
cussion. For some detailed examples, we refer to the papers (1, 5, 7, 8, 9, 10].
The algorithms which are developed there, use the special structural properties
of the queueing models to the fullest extent. They offer aﬁ alternative to

‘the intricacies of the nonlinear integral equations and to the curse of Laplace

transforms, which make much of the theory of these-modéigninaééégs#ble
to the practical worker.

In [9] an algorithm is developed for a single server queue. It can easily
givé numerical results on the transient behavior for such queues in discrete
time éver long time intervals. Queue lengths up to one hundred can be handled,

using computer times which are between 1/10 and 1/5 of those needed for simulation
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studies. The numerical accuracy is far greater than that of simulation‘methods.

By use of the special properties of the equations for the stationary phase,
the limit behavior of queues up to a maximum length of eight hundred was studied
numerically in [7III]. | |

While our early efforts dealt only with models from queueing theory, it
is clear that a sbmilar approach can be fruitfully applied to machine repair
models and to small scale epidemics.

On the other hand, the limitations of the algorithms are also clear.

‘Many server queues, for instance, present as many computational as analytic
difficulties. It must be remembered however that even for the single server
there are only a few explicit analytic results available. Several attempts
by other workers [8] have shown that the classical results on the transient
behavior even for the M‘M|1'queue (which is of limited utility), are not well-
suited for numerical evaluation.

Just as there may be several approaches to the analytic solution of the
classical models, there are usually also a number of alternaté ways of organizing
their numerical solution. These may differ substantially in the amounts of
computer time and memory storage involved. The computer study of large stoch-
astic modeis requires good probabilistic insight and also a degree of skill,
which can only be acquired through experience. For obvious economic reasons,
careful planning of the algorithm is indicated. Truly large scale stochastic
models involve much more ﬁhan routine computer prograﬁming. In many cases
they may require a team effort by probabilists and computer speclalists.

In many instances, well~planned algorithms also offer an intellectually
welcome alternatife to the panacea of simulation. This is particularly wel-
come in the study of unstable queues, which are difficult to simulate accurately

and for which the time dependent behavior is of paramount importance.
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Even for stable queues, which exhibit considerable fluctuations the
numerical study of the transient behavior is important. In the paper [7III],
an example is given of such a queue. The most noteworthy aspect of this
example is that all the simple formulas for the stationary phase, which are
commonly taught to'the practioners of applied‘queueing theory, yield results
which are highly misleading when used in decisions of design and control. A
similar remark applied to priority queues. Many economic decisions based on
the ‘rare explicit, asymptotic and average results may have adverse effects on
the behavior of the queue. These effects cannot be inferred from the com-
plicated analytic expressions arising in the theory of priority queues, and
require much further numerical study.

The numerical analysis often requires éssumptions which yield computational
tractability, such as the use of a discrete time parameter. The merits of such
assumptions are discussed in [9]. Their introduction is comparable to the
Markovian and other assumptions which are routinely stated in analytical
investigations. There is still considerable reticence in accepting assumptions
dictated by computational needs. These require a reexamination of the nature
of applied mathematics, such as suggested by R. Bellman in [2].

Unexpected and exciting results‘abound in thié work and one example in
point is the following. In examining the higher moments of the busy period |
distribution for queues of the classical M|G|1 type Professor E. Klimko and I,
[711] were 1led to the computation of higher order derivatives of composite
functions of the form fl[f2[f3[£4(x)]]]. Beyondrthe second or third derivative,
evéﬁ the most hardy calculatdféﬁecomes bogged down in the messy expressions
which arise. We recalled the classical'fofmula of Faa di Bruno, published in

1857, to wit:
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&

dxn

a Y = E———— “"j;, [3(1)(91 I [5533192-]?“.

n,r ap dqlee 1! nl
jl+"f+jn r, 1

N ¢}
fh&npoﬁzf FION) A
r= ?

j1+2j2+...+nj=n,

iy 20,...,3 2 0.

The number of elementary terms in the right hand side of (11) grows slowly
for n small, but for n=40, reaches 37,338 and is equal for n=50, to 204,226.
By use of a tightly written computer program, it was possible to compute all
the sets of indices jv apbearing on the right hand side of (12) and to dif-
ferentiate three and fourfold functional iterates up to order forty with
central processing times of “140 seconds approximately. Thr@ugh comparisons
with the few cases where the moments can be calculated explicitly, we were

also able to demonstrate the astounding numerical accuracy of our algorithm.

Some Theoretical Questions arising from Computational Probability -
From the abundant collection of such questions, I select some for purposes
of illustration. Many are of interest to numerical analysis generally. We
do not have e.g. good algorithms for the evaluation of convolution produéts,
at this time. Some algorithms for special functions and some based on
transform inversion are available, but their practical utility is limited.
Other problems arise from the need to approximate expressions, whose
direct evaluation is prohibitively expensive. For instance, let F(:) be a
probability distribution and An(-) a sequence of nondecreasing mass functions

-]

such that I An(-) is a probability distribution. Expressions of the general
n=0 '
form (13), as well as their matrix analogues, arise frequently in probability

problems:
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©  x
13) 5 j 7™ (xu) aA_(0).
n=0 0 :

F(n)(-) is the nffold convélution of the distribution F(-) with itself.
Such expressions are difficult to compute for large x and bounds or good
approximations for large x would be very desirable, but do not appear to be
available. '

Finally, many difficult problems are related to what Bellman calls "the
curse of dimensionality". Stochastic models, say m-server Queues, lead
immediately to multidimensional stoch;stic processes. These exceed, even
for small values of m, the storage capacity of modern computers and lead
also to prohibitive computer times. The numerical solution of such models,
if it ever comes about, will result from a thorough use of aﬁproximation
results, coﬁbined with many of the more eéoterié software techniques

available to the modern computer expert.

Concluding Remarks

The numerical investigation of probability models is an essential, but
“underdeveloped part of their solutionm. Fbr complex problems, the difficulties
of the numerical analysis are comparable to thﬁse of an analytic discussion.
A thorough understanding of the structural properties is essential to a well-

planned algorithm.

For many of the classical models, the use of the computer will have a
‘1iberating effect. The analytic cpmplexity'of the current models is likely
to confine and stunt the future growth of our field of endeavor, but compu-
tational work promises to give a viable alternative and to stimulate further

research.



20

To do work in computational mathematics is not an abdication in the face
of analytic complexity, but a commitment to a more demanding definition of
what consititutes the solution to a mathematical problem. When done properly,

it conforms to the hi.ghést standards of scientific research.
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