547

Subset Selection Problems for Variances

with Applications to Regression Analysis

By J. N. Arvesen and G. P. McCabe, Jr.*

'Summary
This paper presents a subset selection procedure for correlated
variances. Emphasis is placed'on the asymptotic case. An application
to selecting the best set of independent variables in a regression problem
is given. |

Some key words: Subset selection; regression analysis; correlated variances.

1. Introduction
In Gupta and Sobel [4], the following problem is considered. Let

. . . 2
nl’HZ""’Hk denote k normal populations with unknown variances oi,oz,...,ok.

< denote the ordered variances (equalities are allowed

2 2 2
Let o <0 <...< 0

[11 = °[2] = "= (k]
for mathematical convenience only). The goal is to select a subset of the k
populations which contains the best populatioh, where the best population is

defined to be the one associated with G[i]' Any such selection is called a

correct selection (CS).
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For each population, an independent sample of size n 1is used to calculate
. 2 2 2 2
sample variance, s.. Let's <s <,..< S denote the ordered sample
B i (1] =°(2) = =70
variances. Gupta and Sobel have proposed rules of the following form:
Retain ﬂ. in the selected subset if and only 1f
2
1

S.

< 5[§]/C: : C(1.1)

where 0 < ¢ < 1. Given n,k and P*, a value of c can be determined so that

. . {
the probability of correct selection, P(CS), is at least P* for any possible

2

0 Tables of c are given in Gupta

configuration of the parameters oi,...
and Sobel [5].

In the present paper, a rule of the form given in (1.1) 1is proposed for
the case where the sample variances are correlated. Section 2 defines the
problem and necessary notation. Section 3 treats the special case k = 2, and
a table of some comparisons with the Gupta and Sobel results is given. In
Section 4, arbitrary values of k are considered and a method for obtaining the
¢ values of (1.1) is.proposed. Section 5 applies the results of the previous

sections to the regression analysis problem of selecting the best subset of

independent predictor variables for any given subset size.

2. The Selection Problem

Let W' = (W ...,W&) be a normally distributed random vector of

2,
length kn with mean zero and covariance matrix L. Each W.1 is a random vector

of length n with

¢ t
ELWiWi)

]
Q
™~

i
Q
—

and

T
E(wiwj)_ 0.0. L..,



with zij positive definite. Thus I = (cicj zij)’ and may be singular.
Denote the ordered variances by o[f] i"':P[i]‘ The goal then is to find
a rule R that satifieé (1.1). As in Gupta and Sobel [4], we consider

rules of the form retain ﬂi in the selected subset if and only if

SSi f_SS[l]/c, i=1,...,k, ' (2.1)
= f
where SSi Wi Wi, and SS[l] :-SS[Z] :,.,j_SS[k].
Let SS(i) denote the sum of squares associated with o[i]. Note that

SSi is associated with Wi or equivalently with population Hi’ whereas
SS[i] is the i-th smallest sum of squares and SS(i) is the sum of Squares
corresponding to the (unknown) i-th smallest expected sum of squares
o[il. As before, let P(CS) denote the probability that the population

corresponding to 0[2 is included in the selected subset. Thus,

1]

P(CS) = P(8S ;) < 851,;/¢)

= p(ss(l)2 < szm/c, j=2,‘.2..,k) 2
TP S/ ny) 2 Sy 37l
> P(c Ss(l)/o[l]-i SS(j)/o[j], i=2,...,k), (2.2)

where the inequality follows from the fact that c[f]/c[ﬁ] <1, for j=2,...,k.
Furthermore, it is clear that the bound in (2.2). approaches a minimum
value as the parameters o[§] approach o[f]. Since this limiting probability

does not depend on the value of c[f], we can and do assume ¢ =1 in

2
. [1]
what follows.

Thus,

P(CS) = P(cSS 1y < 855y, §=2,...,K), (2.3)



V'

where S§S., = V!V,, with V' = (V yeros
i 11 2

i, Vi) normally distributed with

mean vector zero and covariance matrix I = (Zij), and Zii = I. Note

that the random variables SSi are marginally chi-square Qifh n degrees

of freedom. Thus, the problem of calculating a lower bound P* for

P(CS) involves the joint distribution of a set of dependent chi-square
random variables. _One should note that we are considering the case Zij
known, and for the application in Section 5 this is the case. Finally,

one should note that the right hand side of (2.3) is not in general invariant
under all permutations of subscripts. This problem is treated in Section 4.

It is straightforward (see Krishnamoorthy and Parthasarathy {8]) to

show that the joint characteristic function of the {SSj/Z} is given by

ot

Elexp(i Lol

(P(tl:-‘--:tk) tj SSJ/Z)]

T - iz 1 |"1/? (2.4)

where T = (diag(tl,...,tk))CDIn. In prinéiple, the function above can be
used to find the joint density function. Integration over the appropriate
set would then yield the bound for P*. In practice, however, such a
computation presents considerable analytic difficulty. Special cases, on
the other hand, can be treated. In the next 2 sections some possible

approaches are discussed.

3. The Case of Two Sums of Squares
This section serves a two-fold purpose. First, the problem for k = 2
has interest in itself (see, e.g. Hotelling [6]). Secondly, the mathematical
difficulties encountered in this simple case are indicative of the greater
~difficulties present in the higher dimensional cases and thus represent a
justification for using asymptotic methods and for suggesting Monte Carlo

techniques in later sections.



When k = 2, ‘the problem can be reduced to a relatively simple form by
transforming to canonical variates. Thus, we can assume that le = 227 =1
and 212 = 221 = diag(pl,...,pn). With this transformation, Jensen [7] has

obtained the joint density of u, = 851/2 and u, =_SSz/2 as

£(up,u,) = ¥(u))¥(u,) I g b 120 ) V3 ) (3.1)
where
h =G (p),..-,0,) {m! F(n/2)/T(n/2+m) 1},
and

2.

Mo IR, ¢ DG DT,

G (pys-evspy) = I +_..+jn=mni=1pi

1
where the outer sum is over all integer partitions of m, and
v = u™2 Ve rmy2).

The functions L(u) are Laguerre polynomials,

m

(g-1) -
Lm (u) = 21=

D T meg) /T (m-1s DT (gr DT (A D

Since the density is symmetric in Uy and Uy, a solution can be obtained by

setting

p*

P(cSS; < SS,)

Loohm f;fzulLén/z_l)(Ul)Lén/z-l)(uz)W(ul)W(uz)dulduz. (3.2)

Since this expression is a strictly decreasing function of ¢, the solution
can be obtained by iterative methods on a computer. Note that the terms to
be integrated are polynomials which do not depend on the {pi}. However, if

some of the {pi} are large, the convergence in (3.2) will be slow.



In the special case P =eee= P T P some further simplification is
possible. Gunst and Webster [3] present arguments which suggest that this
configuration may provide a useful approximation for uneQual Py Using the

results of Siotani [13], it can be shown that

P(cSS, < 55,) = E,~P(L=1)P{F(n+22,n+22) < 1/c] | (3.3)

where F(n+2%,n+2%) denotes an F random variable with n+2%, and n+2% degrees
of freedom and L in a compound Poisson variable with parameters 1—p2 and n/2.

Letting

F(n+2%,n+22,c) = P{F(n+22,n+28) < 1/c},

one obtains the useful approximation inedualities
1,0 P(L=2)F(n+22,n+28,¢) + (1-2,0 0P (L=2))F (n+2m,n+2m, )
< 1,0 P(L=)F (n+22,1422,¢)
< 2T P(L=2)F(n+28,n422,¢) + (1-z,0 P(L=2)). | (3.4)

Alternatively, if n is large, an Edgeworth approximation can be derived.

Table 1 gives values calculated for 1/c with P* = .90. Formula (3.3) was
used for n = 4 and 10 while an Edgeworth approximation was used for n = 30
and 50. The p2 = 0 column corresponds to the Gupta and Sobel [5] case. From
this table the increased sensitivity gained by increasing the squared correla-
tion is evident. Whiie a table for various values of n and p 1is possible to
construét, perhaps a computer program is preferable. In fact, tables would
be essentially impossible in the general case when the {pi} are unequal. The

situation becomes even more complicated for arbitrary k.



Table 1. Values of 1/c for selected combinations

of n and pz(P* = .90)

2

p
0 .25 50 .75 90 1.00
4,11 3.47 2.83 2.14 1.63 1.00
10 2.32 .08 .84 1.54 .32 .00
30 1.61 .51 .40 1.27 .16 .00
50 1.44 .37 .30 1.20 .12 .00




4. Asymptotic Case for Arbitrary k

" In Chambers [1], an Edgew type approximation is obtained for

problems such as the one at haﬁd. It is necessary to obtain the joint
cumulant generating function of 551/2,...,SSk/2. Note that the cumulant

generating function based on (2.4) is (following Searle [12]),

1
log|I-iZT| 2. -;- L :1irtr(ZT)r/r
1w T
=5 Zr:ll Cr(tl,...,tk)/r. (4.1)
Thus, the joint cumulant K_- of total order r = T,*T +,..+T7,, can
T Ty Ty 172 K
be obtained from the rth term of (4.1) by multiplying the coefficient of
T. T T
.r, 172 k 1 =
i t1 t2 .oe tk by rl....rk! Note that for r = 132,3,
_ k
c.1 = n(Z 5=1 1t )/2
C, = n{z.k t% + 20, stst, tr(L..Z..)}/2,
2 j=173 i<j i) ij7ii
and
k .3 2
C. = (2n/3)1Z .+ 3L, t t tr
3 (/){'—‘J ifj i (1331)
+ 6Zh<1< htlt tr(Zhl 13 Jh) (4.2)

Carrying terms this far enables one to make an Edgeworth approximation to

order n-1/2.

Let us return to the original problem of (2.3), that is, given L, find

that configuration of SS(l),...,SS(k) such that

P(cSS SS..., } = 2,...,k\ p* 4.3
(e85 (q) = 55¢5) ) 2 | (4.3)

——

when n is large. To this end, note that upon standardizing SSi, (4.3) becomes



1/2

P(cZ(l) < z( y* (n/2)*/ “(1-¢), 3=2,...,K), (4.4)

where

72 = (sS...-m)/(2mY?, i=1,...,K

0~ W

The covariance matrix of the {Z( )} is given by TI'= (p ) where

i n tr(ZlJZJl), i#]

©
i

and

ii
Let T(i) denote the conditional variance of Z(i) given Z(l)"'"Z(i-l)’z(i+1)""’
7 ... Note that the {T(i)} are functions of the known matrix T. When n is

(k)

large, (n/2)1/2(1-c) js large and we apply the normal approximation. Thus,

conditioning on 2(2),... (x)* one sees that (4.4) is minimized when
T(l) is the largest of the k conditional variances. Thus the criterion
P(CS) > P* (4.5)

is achleved for n sufficiently large by the following rule:
(1) Calculate all the k conditional variances {T( ) , i=1,...,k,
assuming by relabeling if necessary that T(l) is the largest.

(ii) Then solve for c, 1
2 u
P(CZ(I) :_Z(j) + (n/2) (1-c), 3=2,q..,k) = p*

1/2

using the Edgeworth approximation, where Z(;)={SS ..-n)/(2n) i=1,...,k.

(i)~

(iii) Then retain ni in the selected subset if and only if

55, :_SS[I]/c. ' (4.6)
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In practice for k greater than four or five, this may be a formid-
able problem. - For k large, one may have to resort to Monte Carlo
techniques, rather than rely on the Edgeworth approximation. One
slight simplification is possible by considering the k-1 random

variables T(i)=cZ( 1)” (1), '=2,...,k.

5. Selecting the Best Regression Equation

of Size t < p.

Assume the following standard linear model,
= xs' + €, | ' : (5.1)
where X is an Nxp known matrix of rank p < N, B is a pxl parameter vector,
and € ~ N(O,OZIN).

In what follows, equation (5.1) which includes p independent variables,
will be viewed as the 'true" model. For various reasons, however, one may
be interested in including only a subset (say of size t < P) of the independent
yariables. Various authors have considered this problem and a variety of
techniques are presently being used to construct such subsets. (see e.q. [6],
[14] and references in [10])

La Motte and Hocking [9] have developed an algorlthm for obtaining
optimal subsets in the sense of maximum sample muitiple correlations. This
algorlthm does not require calculation of all the (p) possibilities.

Furnival [2] on the other hand, has developed a method for eff1c1ent1y
calculating all pdssible multiple correlations. These procedures appear to
be practical for values of p up to about 25.

Determination of the subset of size t which mawimizes the multiple

correlation or equivalently minimizes the residual sum of squares is not

equivalent to finding the subset which is optimal in terms of expected values
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of these quantities. 1In this section, a procedure for taking into account
the statistical variation of the residual sum of squares is proposed.
Consider the modesl
Y = X;B, + €55 - (5.2)

where Xi is an Nxt matrix (of rank t), Bi is a txl parameter vector, and
ei~N(0,oiIN), where i=1,...,k=(€) over all possible partitions. The goal

is to select that design Xi (or set of independent variables) associated

. 2 2 2 :
with o where 0 .5.<...<0.s. . We will consider rules of the Gupta and
[1] [1}= "= K] P

Sobel form as given in (2.1), and use the rule given in (4.6).

Note that if
- -1 -
SSi = Y'{I-Xi(XiXi) Xi}Y’— Y'QiY, (5.3)
then following Searle (1972, p. 57),
2 2 2
§S./0” ~ X {n,(XB)'Qi(XB)/(ZG )1,

where n = N;t. Note that the non-centrality parameter is not zero in general
and that c§=02 + (XB)'Qi(XB)/n. Again, since rules of the form (2.1) or (4.6)
are invariant with respect to 02 > 0, we assume without loss of generality
that 02=1.

To obtain the joint distribution of SSl,...,SSk, we can write
' = Uru
Y'Q,Y = U} Uy

1,

where

and
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B.B! =1,
i'i
' -
BiBi Qi’ (5.4)
where Bi is an nxN matrix.
The joint distribution of U' = (Ui,...,Ui) is multivariate normal in
kn dimensions, with mean vector n' = (ni,...,ni) with ng = BiXS, and

covariance matrix I = (Zij) where Eij=BiB§ is nxn. Note that the knxkn
covariance matrix I is possibly singular. Let L=FF' where F is of full
column rank r(r=rank (I)), and let U=n + FA, where A - N(O,Ir). Thus the

joint characteristic function of SSl/Z,...,SSk/Z is (since SSi = UiUi)’

. K \
Efexp (iZ,_, t.U.Uj/Z)}

@ty -oty) ;Y3

lI-iF'TF]'*exp %[n'{iT—TF(I-iF'TF)-lF'T}n]

|1-iz Tl’%exp 3{n'T(I-iZ T)"ln}, (5.5)

where T=diag (tl,...,tk)CDIn.

‘ = -n-nt é
Let Z(j) %(ss(j) n n(j)n(j))/(n/ZJ . Then
-1 .
P(SS(}y/2 < ¢ ss(j)/z, §=2,...,k) | (5.6)

= -1 ’ % -1 ' ' “5 s
—.P{Z(I) <c Z(j) + (3/2) (¢ "-1) + (n(j}n(j)/c—n(1)n(1))/(2n) ,j=2,. ..k},

From the multivariate central limit theorem, it follows that for n large,
the joint distribution of Z(l)""’z(k) does not depend upén ”(1)”"’n(k).
Moreover, since ntl)n(l) :_n'(j)n(j), j=2,...,k by definition, the right

hand side of (5.6) is greater than
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<ol 3 -1 . -1 3 .
P{Z(l) <c Z(j) + (n/2)% (c "-1) + “(1)“(1)(C -1)/(2m2, j=2,...,k}

> Pz Tz k @/2)? 1. (5.7)

That is, the worst configuration (asymptotically) is when 8=0. Bur now,
the problem is the séme as the one discussed in section 4, and thus the
rule of (4.6) is appropriate for the present situation. Note that here
L= (Zij) where zij = B185 is nxn as given in (5.4). Thus (4.2) bécomes

in this case

k
C=n(z;]; t5)/2,

k 2 . ,
t. + 22i<jtitjtr(BiBijBi)}/2,

C2=n{2j=1 3

and

2

_ sk 3 ‘B B
CS-(2n/3){zj=1 tj + 3zi#j titjtr(BiB.B.B.)

jJ1

1
+6 t.tjtr(BhBiBiB.B. )}. (5.8)

Tnei<i®hti 3858

Expression (5.8) would determine an Edgeworth approximation of order n_%.
The remarks at the end of section 4 are again relevant. From a practical
point of view, a user of the procedure outlined in (4.6) would want the
selected subset to be small. Ideally, it would contaih only the subset
corresponding to the smallest sample residual sum of squares.

In McCabe and‘Arvesen [10], an algorithm for determining the parameter
c for given P* and X using Monte Carlo methods is presented. An example
" with p=6 and t=3 is discussed in detail. A write-up for a FORTRAN program
implémenting this algorithm is available (McCabe, Arvesen and Pohl [11]).

At the present time, an upper limit of 20 is set on the value of k. An
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increase in this limit would require additional storage and can be

accomodated by changing certain dimension statements. For large k, the

use of buffers may be necessary.
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