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Abstract

By embedding partial sumlprocesses into Brdwnian mdfibn}it is
well known that the &eMoivreeLaplace central.limit theqréﬁ»is a con-
sequence of the s%r@ng 1aQ of large numbers, It is the purpese here
to show that the émﬁeddihg technique can'bé used.to estqhiish both the
degeneratevconvergéh¢é’criterion and the normél convergence criterion
for triangular arrays‘of uniformly asymptotically'negligibie random

variables.



Let'Xnk, k = l,,}:, k(n),.n = 1, 2,,.. be a triangular array of

independent random variables.-
Theorem: () Xnk)_ ;'{(Q) , degenerate law at o, and for every ¢ > 0,
-k : '

max P[|Xnk|_> €] ~ 0 as n >~ » if and only if for every T_>f0-and e >0

‘(?) E P[IXnk! > e] >0 asn—> o
. . 2 .

(ii) E.cnk‘(f).+ 0

(iii) E ank(f) + o

vT : ' T 20 . 2.1
where X = Xk I[lxnkl < ¢ @nd ag (1) = B ) and o, (1) = o"(X ).
Proof: Assume ixf X'k) + #£(a) and for every ¢ > 0> max P[lx: | > e] > 0 as

k P ' ' x . Dk _

o . . ) ‘5'.
n >, Let Xnk be random variables such that £(Xék) = £{xnk) and the Xﬁ

k
dt - i = ' - ! i ‘l - "

and the Xnk are 1ﬁ§epgndent. Let Ynk Xnk Xnk then 1t.;5 clear that

{(z Y k) -+ £(0) aha,;fqr every ¢ > 0,max P[IY ] > €] +‘Q as'n + o, From.

the symmetrizatioﬁ'ihequalities [see 1, p. 245] and the faéf that
u(Xnk) » 0 to establish (1) it is sufficient to show that.
) P[IYnk[ >el+0ann >0 for every € > 0. By Levy'é1inequality [see 1,
£ S B dne
p. 247],

. P[mileﬁkl > 2¢] f'P[miXIkzl-Ynkl > €] i_ZP[IEYnk| > el >0
as n > , Thus ) P[]Ynkl > 2e] + 0 and (i) is established. To establish

K S

(1i) first note that o (Y) > 20° (X )P(IX 4 | < ) so it is sufficient to show

that for every T'>?0,7202(Y;k) +0 as n > », By (i) we can assume without loss of
-k



generality that p[lynkl < 7 1=1 for all n and k, and T ¢>0 as n > *®,
- We proceed by embedding into Brownian motion.

_Let Q= {w: [0,@) > (—w,+®)|w_is contjinuous and m(Oi = 0}, and
define Qt(w) = w(t)iand let ﬁt = the o-field defined on @ byj{lsz s <t}

and let P be a probability measure such that (Q, Qt, ﬁt’ P) is standard

Brownian motion. Define stopping times T(n,k,:-) so that
£(2T(n K, )) = L(Y k) {see 2 for definition and properties of T(n, k)].
Then E(T ) = g (Y k) and there is a constant C such that E(T k) < C E(Y k)

If w e @ define wt's Q by w, (s) = w(t+s) - w(t),and if §; T

are two stopping tlmes define (S + T) (w) = T(w) + S(mT)."Setting

S(n) = z T(n, k);ﬁ(l ) +—iﬂ0). If X o (Y ) # 0 as n-» o then by passing
£ S (n) g7 nk -
to a subsequenge 1ffnecessary we can assume Z 02(Ynk) > X-where

k

0 <n<ige for some n > 0. We can then choose integerg r(n) < k(n)

rin . .
such that i a?(Ykn) > n as n > =, Then we have

n) r(n) 4 '
§ o(T(nk))< §'E(T (n,k) <C ) E(Y )+ 0
k=1 k=1 k=1 "

, : ‘ n) :
as n » «, Hence by:Chebyshev's inequality § T(n,k) E_n as n > « and,

r(n) : .
by continuity of the Brownian paths,Z( f nk) + N(0,n). ~ Since
k=1 B

k(n) _ 1 4 fn) 2 k {n) 2 :
Pl Y . >0] =5, % Y ,) #%(0). Hence oc“(Y_,) > 0 and.
k=r(n)+1 nk s 2 k=1 nk k=1  _fnk
(ii) is establishéd,f (iii) now follows easily , becauSé by (i) and

by (ii) and Chebyshev's inequality P[|Z(X;k - ank(T))|'> E] + 0, hence

) ank(T) » o. Necessity is proved and the proof of sufficiency is merely an

application of truncation and Chebyshev's inequality and'will be omitted.



Theorem 2. If X , are independent summands then for every e > 0
- £() th) + N(a,0“) and max P[lxnkl >e]l+0
kK ok
as n > =, if and 6n1y if for every & » 0 and every v > 0, :f~

(1) P[.lxnkl':_ 6]:—>Oasn—->oo B

(ii)
(1ii) E E(X;k) } o as n -+ o

Proof: First we prove suff1c1ency By (i) we assume withddt loss of

generality P[IX kI < g ] 1 where € ¢+ 0 for all n and k. As in' Theorem 1 let T(n,k)
" be Stopplng t1mes defmed on Brownian motion such that 55 T( k)) _=£(X E(Xnk-))

and E(T (n,k)) < C E((X ~E(X k)) ) Clearly

~(E((Xnk - E(X k)) ))/(c (X)) > 0 so that

z o (T(n k)) < Z E(T? (n k) <¢) E((Xnk E(X ; ))f ) ~ 0.

So by'Cheby_shev's . iqequalltyaﬁ(ZT (n,k)) &£ (g ). By continulty of Brownian paths,

£(Z(Xnk - E(X k)) ~=£(2 ) > N(O o ] where S(n) = } T(Q,k} Hence by

S(n)

(111);{(2 X3~ N(a o ) Sufficiency is'established{;mTp,prove

necessity let X k’ k=1,...,k(n), n=1,2,... be a trigngplgr array such
that £(] X ) + N(0,1) and max PI|X .| > €] ~ 0 for every ¢ > 0. First we

Kk " . k nk L

shgw (i). .Let Ynk_— 2 (Xnk - Xﬁk) where xnk and Xnk_are.}ndependent and

£X ) = =£(X'k)-,'- .Clearly =£(z Y ) > N(0,1) and as in thé pi',evious theorem

it is sufficient to show that for any a > 0 z P[]y kl > a] ~ 0. Define M

to be the number of Y nk? k = ,...,k(n)-such that-IY | > a Let



‘ ' ' a/2 2 o
c = (Y | < a} PIC_] > - e /ax = 2(0(a/2)- B > 0.
n g nk Vn '-a;2 2

If M = r then of the 2" possible ways of assigning positive signs to the
|y kl > a at most ( ), g = [r/2] (this is the maximum number of incomparable
subsets of a set of 512e r) allow |} Ynk < a/2 Hence

. K : '

' © . Ty,-T S
PlC T < P[Mn=0] +r§1 pr P[M =r] where b = ()27 . If N

lim sup E p[lYnklig'él
n B

n > 0, then we can, by passing to a subsequence,
assume lim ) P[|Yn£['5-a] = n. First n}+e, because in that_éase
P[Mn=f] +~ 0 far r = 0,1,2,... which implies P[Cn] +‘0 which is a contra-

diction. Next we Show that n = 0. Suppose not. Let I(n) {k IY | < a},

and J(n) be the .complement of I(n).  Then

P[)Y , > Na] 3_p{M'=N 1P[ Y.  >O0JP[ ) Y . > Né]".
12““ on keg(n) nk keg(n) mkoo

> P[M =N]% PYy > 0 for all k e J(m)]

e 1 &N

~—7N37_.2 = p(n,N); N232' 1-
' ' -~
‘ s - 2 1 e
also lim P[E Y. o> Na] < — f X2 4 < ~=.q(N)
SN nk . 27 Na V2 Na
Hence 1im Blﬁiﬁl-_='@}which implies n = 0.

Nooo q(N)
Thus (1) is»established To show (ii) we may assume wlthout 1st of generality

that P[|X ] <t ]=1 for all n and k where T, v 0, As 1n-tbq previous theorem, let
Q, L t,P) be standard Brownian motion and let T(n,k) be a stopping time

such thataﬁ(z =£(Xnk - E(Xnk)) and E(T(n,k)) = a;(X“k), and

T,k
E(Tz(n,k)) <C E((Xnkf— E(Xnk))4). By passing to a subsééuﬁnce, if necessary,
we can assume thaf‘iim y cz(x ) > x, 0 <X <+ o, Supﬁose.iv> 1, We can

k r(n) , o

now choose integers r(n) such that ) ¢ (X ) > 1 + e for some ¢ > 0.
, k=1



Then we have ‘
r(n) . r(n) T(n) : X
) Tk s ) EMmK) < ¢ ) ECOX B, N > 0,

because (i) implies that (c;z’(xnk))*'l E((Xnk-E(xnk))4) +0asn+ % Soby

- r(n) ' . Lo ‘
Chebyshev's inequality Z( i T(n,k)) » #(1+¢) hence by the continuity of
) » r§n) R _
Brownian paths '(kii (Xnk—E(Xnk)))-+ N(0,1+e). Thus o
=1 2
: Loa L A
< a+x] < (2w (1+e)) é f e 2(L+E)
. -a '

k(n)
lim max P[a-x < X dx

nre X k=1 nk

and hence ¥IZ Xnk).f'N(O,l). By a similar arguﬁent we sh&wvx < 1 implies
{(}E Kg - BEK ) > N(0,A), which is impossible. Thus (u) is established.
From (ii) we have that #£(J T(n,k)) + #1) and thus =Z(2(x;lk—ﬁ'-(xnk))) + N(0,1)

and hence } E(Xnk)”*‘o; The theorem is provyed.
k S '
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