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1. SUMMARY. The problem of seleéting a subset of k Poisson populations,
which includes the best, i.e., the one having the largest value of the
parameter, is considered. Gupta and Nagel (1971) propose a randomized
selection rule RO for Poisson distribution, and also compare the per-
formance of an.identica} randomized rule RO with a rule R, used for a
location parameter problem, for Binomial distribution. However, no
similar comparision is possible in case of Poisson distribution because
it is shown here that the rule R does not exist for some values of the
probability level P*.of correct selection. The procedures suggested by
Gupta (1965) for location and scale parameters are investigated and it
is shown that these procedures do not exist for Poisson populations for
some values of probability P* of correct selection. If unrestricted
sampling is allowed, one can use the subset selection procedure for
smallest of the scale parameter of Gamma populationsvwith some shape
parameter, see Gupta and Sobel (1962). A criterion is suggested to choose
the shape parameter for this procedure which puts a bound in probability

on sampling costs.
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'2. Introduction. The motivation for this multiple decision problem

is given in a series of papers by Gupta and others on subset selection
procedures. - Therefore, we start with the formulatibn of the problem
for brevity sake.
Let us assume that wl’ "2,..., T are k Poisson populations,i.e.,
L follows a Poisson distribution with parameter Xi, i=1, 2,..., k. The
‘observation could possibly be number of occurrences éf a Poisson process,
with rate of occurrence Ai’ during a unit time interval. Suppose that
we have equal sample size from each population. Without loss of generality,
one can assume the sample size to be one. Let X[l] 5_x[2] < e f-x[k]
and let us assume that the order relationship of Ayseees Ak is not known.
Given any P*, 0 < P* < 1, we want to select a subset of these Kk
populations such that the subset contains population corresponding to
the parameter A[k] with probability at least p*, no matter what the con-
figuragion of Al, Az,..., Ak is. The usual notation for this is CS.

Therefore we are interested in a selection rule R such that
inf P(CS|R) > P*
0 Z

where, Q is the set of all k-tuples (kl,xz,...,Kk), Xl > 0.
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respectively. The selection rules for location and scale parameters

denote the sample from Tys Toseses and T

suggested by Gupta (1965) are described below.

Rule R. Select the population Ty in the subset if

(2.1) Xi > max X. - d,
j=1,...,k 7

where 0 < d < = is to be chosen such that



(2.2) inf P(CS|R) > P* .
Q

If the population associated with A[k] is T then (2.2) can be written
as
(2.3) inf P{Xk > max Xj - d} > P* .,
Q j=1,2,...,(k-1)
Without loss of generality d can be assumed to be an integer. This
rule is also obtained by the likelihood principle, Guptd and Nagel (1971),
under the slippage configuration (A,_A,...,'A, oA), o > 1.

Rule R*. Select the population ni-in the subset if

(2.4 X. >c max X.,

1= y=1,...,k d

where 0 < ¢ < 1 is to be chosen such that
(2.5) inf P{CS|R*} > P*.
Q
If the population associated with‘A[k]'is s then (2.5) can be written
as |

inf P{Xk.i ¢  max X.} > P*,
Q j=1,...,(k-1) 7

3. Non-existehce of the rules R and R*.

(a) _Rule R.:
We havé _
P(CS|R) = P{X, >  max X, - d}.
j=1,...,(k-1) ?
Therefore,
X i
© =) A k-1 x+d -\ Ar,
k k -3
(3.1) PCS|R) = ] e L] —£Tl{ n J e (i -%%l}.

=0 o §=1i=0



Now (3.1) can be written as

x .
_ @ Ay Mkl k-1 :
k 1 d -
(3.2) P(CSIR) = Z € [ ] ‘_;{_r' {n f W Zx+ e de}

. x=0 j=1_A[j]
It follows from equation (3.2) that for a fixed k[k]=k; the expression
inside the braces is a decreasing function of A[j] for eachrj. Therefore
P(CS|R) is minimized, if we set,x[1]=...=x[k_ll;x* and let A* go to A
in the limit. Hence,

x!

(3.3) inf P(CS|R) = inf [ Le" =
f A x=0 i=0

Let us denote

DY
(3°4) f(x:)‘) =€ ;(T ’
and
' X_)\ i
(3.5)  F(x,0) = )& Ip,x=0,1,72
i=0 )

Therefore, we can write
‘ [}
. . k-1
(3.6) inf P(CS|R) = inf [ ) £(x,M)F  (x+d,M)].
Q . A x=0
First we will consider a special case k=2, and then prove that for any

k > 2, the rule R does not provide a desired probability level.
Lemma 1. Let

(3.7 P00 = Y £(x,d)F(x+d,)),
x=0

where f and F are defined by (3.4) and (3.5). Then, for any non-negative

finite integer d,Pd(A) is a monotone decreasing function of A, and hence



(3.8) inf’Pd(A) = 0.5
A

Proof: Since Pd(x) is a differentiable function of X, we get

® 2x+d+1 | 2x+d
d -2\ A -2 A
3.9 — P (M) = e { - _ e } .
(3.9) oA d( ) x=0 x!(x+d+1)! =0 X1 (x+d) !
It follows from (3.9) that
(3.10) 3§-Pd(k) = P{Y-Z = d+1} - P{Y-Z = d} ,

where Y and Z are i.i.d. random variables each having a Poisson distri-
bution with parameter \. Since the random variable (Y-Z) has a unique
mode at zero and since Poisson distribution is totally positive under

translation, it follows that
(3.11) P{Y-Z = d+1} < P{Y-Z = d} for each non-negative integer d.

An alternative proof of (3.11) can be given as follows.

For each non-negative integer d, let

_ P{Y-Z = d+1} _
(3.12) 841 M = pryz=ar = Mg M
where o 2%

A
! sToaas DT
x=ox!(x+d+1).

hge ) = =5 N
xZO x! (x+d)!

An application of Lemma 2.1, Alam and Thompson (1971), implies that 5;

hd+1(k) < 0. However,

9
33 Ngap )= =2xhg (D hy () - Ry 5 (D)



Therefore,

(3.13) hd+1(A) 3_hd+2(k) for all x > 0.

Now, a successive application of (3.13) implies that
(3.14) Egay (M) <8, ) ford =0, 1, 2,...

Since (Y-Z) has a unique mode at zero, we have gl(x) <1. Hence,

_ P{Y-Z

: d+1}
8441 M) = pryZ

d}

<1,

and this proves (3.11).
Now (3.10) and (3.11) together imply that, for e#er& noﬁ-negative finite
integer d, Pa(l) is 'a monotone decreasing function of A. |
Now,
inf Py(1) = lim P{Y > z-d},
A Ao

where Y and Z are as above. Using the fact that

1
A 20y Zang,1) as A >

we have

inf Pd(A) = P(Y* > Z*), where Y* and Z* are i.i.d. random
A .

variables héving standard normal distribution. Therefore (3.8) holds.
Lemma 2. For any K > 2 and any non-negative finite integer d,

(3.15) inf 7 £0x,0F 1(xed,2) < 0.5.
A x=0 '



Proof: Since F(x+d,\) <1, k > 2 implies that

(3.16) 7 £GP xed, ) < T FGGNE(xd ) = PO,
x=0 x=0 :
Therefore,
e T R4 :
(3.17) inf ) £(x,A)F  (x+d,A) < inf P (}).
A x=0 A

However, from Lemma 1, the r.h.s. of (3.17) is equal to 0.5. This
completes the proof of this lemma.

From equation (3:6) and Lemma 2, we get the following result.
Theorem 1. For any k > 2, and any non-negative finite integer d,
(3.18) inf P(CSIR) < 7 | -

& | g
Therefore, if_%—< P* < 1, then the rule R does not'éxist, since there
doesn't exist a d < =, satisfying (2.2): Our eonjécture is that igf
P(CS|R) = é , but we are not able to prove it.

(b) Rule R*.
We have
P(CS|R*) = P{X, >c max X.}.
J_ls 2, ,k'l

Therefore,

o : © k=1 x‘

: *) = £(x,2 O F([E] A,
(3.19)  P(ESIRY) xzo CRYNY o (oA

where £ and F are defined by (3.4) and (3.5) and [%ﬂ denotes the integer
part of %-3 By arguments analogous to the ones after equation (3.2),

we have

(3.20) inf P(CS|R*) = infl I £0,MFTH(EL0Y.
Q A x=0



Again, we first consider a special case k=2, and then prove that

for any k > 2, the rule R* does not provide a desired probability level.
Lemma 3. Let
(3.21) P.O) = I £GGVF(ELN,

x=0
where f and F are defined by (3.4) and (3.5). Then for any c, 0 <c <1,
(3.22) inf Pé(x) < .75

A

Proof. We can write (3.21) as

PC(A)

| ] )
2 Fo,0 + 1 & A FUZLN
x=1 :

<&r . 8+ (1-F(0,0))

- &2 4 1-82

1 -3 a-8M .

Therefore,

inf P, (3) < inf {1-8" (1-8")} = 0.75.
A A

This proves the lemma.
Lemma 4. For any k > 2, and any ¢, 0 <c <1,
. I k-1,.x
(3.23) inf § £(x,0F - ([3),2) < 0.75.
A x=0
The proof is identical to the proof of Lemma 1.
From equation (3.20) and Lemma 4, we get the following result.
Theorem 2. For any k > 2, and any c, 0 <c<1l,

(3.24) inf P(CS|R*) < 0.75.
, 1



Therefore, if 0.75 < * < 1, then the rule R* does'not exist, since
there does hot:exist a ¢ ¥ 0, such that (2.5) holds.

4. In this sgction, it is assumed that instead of bbserving the number
of Poisson events duriﬁg an intervai of fixed length, one can observe
all the k Poisson processes at discrete time points t%O, 1, 2,...
Therefore we fix a positive integer N and observe the random variables

T. N (i=1, 2,..., k) where Ti is the first time point such that.

i, ,N
‘number of events,‘for the ith population, occuring during (0, T.

1,N)
is at least N. For selecting a subset containing the 'best' population,
one can use.the subset selection procedure for smallest of the scale
parameter for the Gamma populations with the same shape parameter N, see
Gupta and Sobel (1962). If it is assumed that the sampling costs are
proportional té the time, for which the processes are observed in order
to select a-éubéet, then a criterion is suggested to choose the shape
- parameter N which puts a probabilistic bound on the sampling costs.

Let Ti;N be as defined above and let xi,t = number of events up
to time t in the ith population. Define

(4.1 Vi 'Ti’N-1+ U (mi,ni),

where n, = X, - X
N

mth order statistic in a random sample of size n from a uniform distri-

i,TN-l » My = N - xi,TN-l’ and U(m,n) is the

bution on the interval (0,1). If the random samples from U(0,1) are

selected independently for each population, then Vi is a sample from a

: . . 1
Gamma population with shape parameter N and. scale parameter Oi =3
-1

i=1,2,...,k; see Alam and Thompson (1971); For selecting a subset

containing_l[k], one can use Vl’ Vz,...,Vk as observations from k Gamma




10

populations and select a subset containing the population with smallest
scale parameter. The selection rule described in Gupta and Sobel (1962)
is as follows:

: i < < < ;
Rule Rl' Select T, if Vi __V[1]/CN, 0 CN 1, wherg CN is chosen
such that

(4.2) inf P(CS[R)) > P*
9]

The tables of CN-values for N=1(1)25, K=2(1)11 and P*=.,75, .90, .95,

and .99 are given in Gupta and Sobel (1962a). These CN—values are given

‘as percentage points of a smallest of several correlated F-statistics.

Since Vi > Ti N—l,‘for all i, it is clear from the selection rule

R, that we do not have to observe Ti,N for those popuiations for which
Ti,N > V[l]/CN + 1. Therefore, by putting a bound 6n v[l]/CN’ we will
in effect put a bound on the sampling costs. We propose the following
criterion._. |
Choose largest N such that
s

(4.3) Max P{-C-E'-l-l > 5 t}<pr
Q N [1]

for given values of t and B*.
It is eaSily shown that the maximum in (4.3) occurs if we set
= =,..= =X and let A > in the limit. Thus, (4.3 reduces
k-1 2] A (4.3

to

(4.4) P(N,2C,t) > 1- (8 /k,

where PN(x) is the distribution function of a Xz- distribution with 2N

degrees of freedom, i.e.,
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P(N,x) = L Ix zN-le-z/Zdz.

2T(N) 70

For given values of p*, B* and t we can easily obtain N with the

help of tables of CN-values and tables of the incomplete Gamma function

ratio. The extensive tables for P(N,x) by Khamis (1965) could be used

for this purpose.

A sample of N values for P*=0.75, K=2(1)5, g=.01, .05, .10, .25,

and t=3(1)10, 15, 20, 25 are given in Table I.
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Table I. OPTIMAL VALUE of SHAPE PARAMETER

a. Number of populations = 2

t

B 3 4 5 6 7 8 9 10 15 20 25
.01 1 1 2 3 6 10 14
.05 1 2 2 3 4 4 8 12 16
.10 1 2 2 3 4 5 5 9 13 18
.25 1 2 3 3 4 5 6 7 11 16 20
b. Number of populations = 3

.01 2 6 10 14
.05 1 2 2 3 4 8 12 16
.10 : 1 2 3 3 4 5 9 13 17
.25 1 1 2 3 4 5 5 6 10 15 19
c. Number of‘populations =4

.01 2 6 10 14
.05 1 2 3 4 8 12 16
.10 2 2 3 4 5 9 13 17
.25 1 2 3 4 4 5 6 10 15 19
d. Number of populations =5

.01 2 6 10 14
.05 2 3 4 8 12 16
.10 ' 1 2 3 4 5 9 13 17
.25 1. 2 3 4 4 5 6 10 15 19

Note: Blank space indicates that the equation (4.4) does not hold for the
corresponding values of P*=.75, K, t, and B. .
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