Exact and Asymptotic Distributions of Some Statistics in Multivariate Analysis

bу

B. N. Nagarsenker

Purdue University

Department of Statistics Division of Mathematical Science Mimeograph Series #300

August 1972

(2.5)
$$C(p,n,k) = \Gamma_p(n/2) \left[\Gamma_p(n_1/2)\Gamma_p(n_2/2)\right]^{-1} |k|^{-n_1/2}$$

Now using the density (2.3) we get

(2.6)
$$E(Y^{h}) = C(p,n,\lambda)\pi^{p(p-1)/4} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa} C_{\kappa}(M)}{k!}$$

$$\frac{\prod_{i=1}^{p} \Gamma[n_{1}/2 + ah + k_{i} - (i-1)/2] \prod_{i=1}^{p} \Gamma[n_{2}/2 + bh - (i-1)/2]}{\prod_{i=1}^{p} \Gamma[n/2 + (a+b)h + k_{i} - (i-1)/2]} .$$

Making use of the inverse Mellin transform, we have the density of Y as

$$(2.7) f(Y) = C(p,n,\Lambda) \pi^{p(p-1)/4} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa} C_{\kappa}(M)}{k!} Y^{-1}$$

$$\cdot \frac{1}{2\pi i} \int_{C} Y^{-h} \frac{\prod_{i=1}^{p} \Gamma[n_{1}/2 + ah + k_{i} - (i-1)/2] \prod_{i=1}^{p} \Gamma[n_{2}/2 + bh - (i-1)/2]}{\prod_{i=1}^{p} \Gamma[n/2 + (a+b)h + k_{i} - (i-1)/2]} dh.$$

Noting that the integral on the R.H.S. of (2.7) is in the form of the H-function, the non-central density of Y for test (1) can be put in a single general form for different sets of values of a and b as follows:

(2.8)
$$f(Y) = C(p,n,\lambda) \alpha \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa} \delta C_{\kappa}(M)}{k!} Y^{-1} H_{t,u}^{r,s}(Y | (a_{i},\alpha_{i})_{i=1},...,t) (b_{i},\beta_{i})_{i=1},...,u)$$

where $C(p,n,\Lambda)$ is as in (2.5) and the constants are given in the following table.

(2.14)
$$f(Y)=C_2(p,n,q,p^2)\alpha \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa}(n/2)_{\kappa}\delta C_{\kappa}(p^2)}{(q/2)_{\kappa}k!}$$

$$H_{t,u}^{r,s}(Y|_{(b_{i},\beta_{i})}^{(a_{i},\alpha_{i})})_{i=1,...,u}^{i=1,...,t},$$

where the constants α , δ , r, s, t, u, (a_i, α_i) and (b_i, β_i) are as in Table 1, in which n_i is to be replaced by q throughout.

3. SPECIAL CASES

- (i) Wilks' Λ criterion. Taking a=0 and b=1 in (2.8) and using the relation between the H-function and the G-function, we find that the non-central density of Wilks' $\Lambda = \prod_{i=1}^{p} (1-\theta_i)$ is as obtained by Pillai, Al-Ani, Jouris in the three cases [25]
- (ii) Wilks-Lawley U-criterion. If a = 1 and b = 0 in (2.8), we obtain the non-central density of Wilks-Lawley U-statistic, $U = \prod_{i=1}^{p} \theta_i \text{ for test (1), in the form } i=1$

(3.1)
$$f(u) = C(p,n,\lambda) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa} C_{\kappa}(M)}{k!} r_{p}(n_{2}/2)$$

$$Y^{-1}$$
 $H_{p,p}^{p,o}(Y|_{(b_{i},\beta_{i})}^{(a_{i},\alpha_{i})}_{i=1,...,p}^{i=1,...,p}),$

where $C(p,n,\Lambda)$ is as in (2.4), $(a_i,\alpha_i) = (n/2+k_i-(i-1)/2,1)$ and $(b_i,\beta_i)=(n_1/2+k_i-(i-1)/2,1)$ i=1,...,p. (3.1) can also be expressed in terms of the G-function. The density of U for the Manova and Canonical correlation cases can be written down using the substitution (2.10) and (2.13) respectively.

(iii) Taking $a = n_1/2$ and $b = n_2/2$ in (2.8) we obtain the non-central density of the modified likelihood ratio criterion for testing $\Sigma_1 = \Sigma_2$ i.e. of the statistic

$$\lambda = \prod_{i=1}^{p} \theta_i^{n_1/2} (1-\theta_i)^{n_2/2} = |\xi_1|^{n_1/2} |\xi|^{-n/2} |\xi_2|^{n_2/2} \text{ where } \xi = \xi_1 + \xi_2.$$

in the form

$$f(\lambda) = C(p,n,\lambda)\pi^{p(p-1)/4}\sum_{k=0}^{\infty} \frac{(n/2)\kappa^{C}\kappa^{\binom{M}{2}}}{k!} \lambda^{-1}H_{p,2p}^{2p,o}(\lambda|\binom{(a_{i},\alpha_{i})_{i=1},\ldots,p}{(b_{i},\beta_{i})_{i=1},\ldots,p}),$$

where $(a_i, \alpha_i) = (n/2+k_i-(i-1)/2, n/2)$ and $(b_i, \beta_i) =$

$$\{(n_1/2+k_i-(i-1)/2,n_1/2),(n_2/2-(i-1)/2,n_2/2) | i = 1,...,p\}.$$

The densities in the other two cases can be written down using (2.10) and (2.13).

(iv) Taking a = 1 and b = -1 in (2.8) we obtain the noncentral density of the statistic W = $\prod_{i=1}^{p} \theta_i (1-\theta_i)^{-1} = |S_1S_2^{-1}|$ for test (1)

in the form

(3.2)
$$f(Y)=C(p,n,k)\pi^{p(p-1)/2}\sum_{k=0}^{\infty}\sum_{\kappa}\frac{(n/2)_{\kappa}C_{\kappa}(N)}{k!\Gamma_{p}(n/2,\kappa)}Y^{-1}$$

$$H_{p,p}^{p,p}(Y (b_i,1) i = 1,...,p)$$

where $a_i = 1-n_2/2+(i-1)/2$ and $b_i=n_1/2+k_i-(i-1)/2$. The density in (3.2) can be easily written down in terms of the G-function. The non-central densities of W for the Manova and Canonical correlation cases can be written down using (2.10) and (2.13).

4. NON-CENTRAL DISTRIBUTION OF Y IN THE COMPLEX CASE

The non-central density of Y in the complex case can be obtained in a similar manner and is noted below. (a') The general form of the density of Y for test (1) can be written down from (2.8) by making the following substitutions.

$$(4.1) \quad (\pi^{d}, n_{1}/2, n_{2}/2, n/2, (i-1)/2, \Gamma_{p}(\cdot), \Gamma_{p}(\cdot, \kappa), C_{\kappa}(\cdot), (\cdot)_{\kappa})$$

$$+ (\pi^{2d}, n_{1}, n_{2}, n, (i-1), \tilde{\Gamma}_{p}(\cdot), \tilde{\Gamma}_{p}(\cdot, \kappa), \tilde{C}_{\kappa}(\cdot), [\cdot]_{\kappa})$$

where $\tilde{\Gamma}_{p}(\cdot)$, $\tilde{\Gamma}_{p}(\cdot,\kappa)$, $\tilde{C}_{\kappa}(\cdot)$ and $[\cdot]_{\kappa}$ are as defined in James [12].

- (b') For the Manova case the general form of the density of Y is obtained from (2.11) by making the substitutions as in (4.1).
- (c') In the case of Canonical correlation also, the general form of the density of Y can be written down from (2.14) using (4.1).

5. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, $a=n_1/2$ AND $b=n_2/2$

First we give some preliminaries.

(a) Preliminaries. For this case, putting $a = n_1/2$ and $b = n_2/2$ in (2.6) we have,

(5.1)
$$E(Y^{h}) = \frac{\Gamma_{p}(n/2)}{\Gamma_{p}(n_{1}/2)\Gamma_{p}(n_{2}/2)} \left| \mathcal{N} \right|^{-n_{1}/2} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)\kappa \Gamma_{p}(\frac{n_{1}(1+h)}{2},\kappa)}{k! \Gamma_{p}(\frac{n_{1}(1+h)}{2},\kappa)}$$

.
$$\Gamma_{\mathbf{p}} \{ n_2(1+h)/2 \} C_{\kappa} (M)$$
 .

This can be easily written in the form

$$(5.2) \quad E(Y^{h}) = \{ \Gamma_{p}(n/2) \Gamma_{p}[n_{1}(1+h)/2] \Gamma_{p}[n_{2}(1+h)/2] / \Gamma_{p}[n(1+h)/2]$$

$$\Gamma_{p}(n_{1}/2) \Gamma_{p}(n_{2}/2) \} |A|^{-n_{1}/2} \cdot {}_{2}F_{1}(n/2, n_{1}(1+h)/2; n(1+h)/2, N).$$

We shall assume that

(5.3)
$$n_i = \tau_i n$$
, (i = 1,2) where $\tau_1 + \tau_2 = 1$.

The asymptotic expansion of the distribution of Y will be derived in terms of n increasing and also in terms of $m = \rho n$ increasing where $0 < \rho < 1$ and is defined later, with τ_1 and τ_2 fixed. (See Anderson [1], p. 254). The h^{th} moment of

(5.4)
$$W = \begin{bmatrix} (1/2)pn & (1/2)pn_1 & (1/2)pn_2 \\ n_1 & n_2 \end{bmatrix} \cdot Y$$

is given by

(5.5)
$$E(W^{h}) = n \frac{(1/2)pnh - (1/2)pn_{1}h - (1/2)pn_{2}h}{n_{1}} {\Gamma_{p}(n/2)\Gamma_{p}[n_{1}(1+h)/2]/\Gamma_{p}[n_{1}(1+h)/2]/\Gamma_{p}[n_{1}(1+h)/2]/\Gamma_{p}[n_{2}(1+h)/2]/\Gamma_{p}$$

$$\frac{-n_1/2}{|A|} \cdot 2^{F_1(n/2,n_1(1+h)/2;n(1+h)/2,M)}$$

We shall obtain the asymptotic expansion for (i) - 2 log W in terms of n increasing and assuming M to be of the form M = (2/n) P where P is a fixed matrix and (ii) - 2ρ log W in terms of m = ρ n increasing instead of n and assuming M = (2/m) P where P is a fixed matrix and the correction factor ρ is given by (see Anderson [1], p. 255)

(5.6)
$$m = \rho n = n - 2\alpha$$
 where $\alpha = (\tau_1^{-1} + \tau_2^{-1} - 1)(2p^2 + 3p - 1)/12(p + 1)$.

We will need the following lemmas proved in [28].

Lemma 5.1. Let $C_{\kappa}(\zeta)$ be a zonal polynomial corresponding to the partition $\kappa = \{k_1, k_2, \dots, k_p\}$ with $k_1 + k_2 + \dots + k_p = k$ and $k_1 \ge k_2 \ge k_3 \dots \ge k_p \ge 0$. Putting

(5.7)
$$a_1(\kappa) = \sum_{i=1}^{p} k_i(k_i-i), a_2(\kappa) = \sum_{i=1}^{p} k_i(4k_i^2-6ik_i+3i^2)$$

Then the following equalities hold:

(5.8)
$$\sum_{k=0}^{\infty} \sum_{\kappa} x^{k} C_{\kappa}(\zeta) a_{1}(\kappa)/k! = (x^{2} \operatorname{tr} \zeta^{2}) e^{\operatorname{tr}(x\zeta)},$$

(5.9)
$$\sum_{k=1}^{\infty} \sum_{\kappa} x^{k} C_{\kappa}(\zeta) a_{1}(\kappa)/(k-1)! = (2x^{2} \operatorname{tr} \zeta^{2} + x^{3} \operatorname{tr} \zeta^{2} \operatorname{tr} \zeta) e^{\operatorname{tr}(x\zeta)},$$

$$(5.10) \sum_{k=0}^{\infty} \sum_{\kappa} x^{k} (a_{1}(\kappa))^{2} C_{\kappa}(\zeta)/k! = \{x^{4} (\operatorname{tr} \zeta^{2})^{2} + 4x^{3} \operatorname{tr} \zeta^{3} + x^{2} \operatorname{tr} \zeta^{2} + x^{2} \operatorname{tr} \zeta^{2} + x^{2} \operatorname{tr} \zeta^{2}\}$$

(5.11)
$$\sum_{k=0}^{\infty} \sum_{\kappa} x^{k} C_{\kappa}(\zeta) a_{2}(\kappa) / k! = \{4x^{3} \operatorname{tr} \zeta^{3} + 3x^{2} \operatorname{tr} \zeta^{2} + 3x^{2} (\operatorname{tr} \zeta)^{2} + x \operatorname{tr} \zeta^{3} \} e^{\operatorname{tr}(x \zeta)},$$

$$(5.12) \sum_{k=2}^{\infty} \sum_{\kappa} C_{\kappa}(Z)/(k-1)! = (\operatorname{tr} Z) e^{\operatorname{tr} Z},$$

and

(5.13)
$$\sum_{k=2}^{\infty} \sum_{\kappa} C_{\kappa}(\zeta)/(k-2)! = (\text{tr } \zeta)^{2} e^{\text{tr } \zeta}.$$

Lemma 5.2. With the notations of the lemma 5.1, for large n

$$(5.14) (n/2)_{\kappa} = (n/2)^{k} [1+n^{-1}a_{1}(\kappa)+(1/6n^{2})\{k-a_{2}(\kappa)+3(a_{1}(\kappa))^{2}\}+0(n^{-3})],$$
and

$$(5.15) (n/2+a)_{\kappa} = (n/2)^{k} [1+(1/2n)\{4ak+2a_{1}(\kappa)\}+(1/24n^{2})\{4k +48a^{2}k(k-1)+48a(k-1)a_{1}(\kappa)-4a_{2}(\kappa)+12(a_{1}(\kappa))^{2}\}+0(n^{-3})].$$

- (b) <u>Derivation of Asymptotic Expansions</u>. We consider below asymptotic expansions of the distributions of (i) and (ii) above.
- (i) Asymptotic expansion of the distribution of -2 log W. Let $\phi(t)$ be the characteristic function of -2 log W. Then from (5.2) we have

$$(5.16) \phi(t) = E(e^{-2it \log W}) = E(W^{-2it}) = C_1(t)C_2(t)C_3(t)|\lambda|^{-n_1/2}$$

where

and

(5.17)
$$C_1(t) = n \quad n_1 \quad n_2$$

(5.18)
$$C_2(t) = \Gamma_p(n/2)\Gamma_p(n_1g/2)\Gamma_p(n_2g/2)[\Gamma_p(ng/2)\Gamma_p(n_1/2)\Gamma(n_2/2)]^{-1}$$

(5.19)
$$g = (1-2it), C_3(t) = {}_{2}F_1(n/2, n_1g/2; ng/2, M).$$

We shall use the following asymptotic formula for the gamma function as in Anderson ([1], p. 204)

(5.20)
$$\log \Gamma(x+h) = \log \sqrt{2\pi} + (x+h - \frac{1}{2}) \log x - x - \sum_{r=1}^{m} \frac{(-1)^r B_{r+1}(h)}{r(r+1)x^r} + O(|x|^{-m-1}),$$

which holds for large |x| and fixed h. The Bernoulli polynomial $B_r(h)$ of degree r is given by $(t e^{ht})/(e^t-1) = \sum_{r=0}^{\infty} (\frac{t^r}{r!}) B_r(h)$. Some of these which we shall need in the sequel, are listed below.

$$B_{1}(h) = h-1/2, B_{2}(h) = h^{2}-h+1/6,$$

$$(5.21)$$

$$B_{3}(h) = h^{3}-3h^{2}/2+h/2 \text{ and } B_{4}(h)=h^{4}-2h^{3}+h^{2}-1/30.$$

Applying the formula (5.20) to each gamma function in $C_2(t)$, we have

(5.22)
$$\log C_2(t) = it pn \log(n/2) - it pn_2 \log(n_2/2) - it pn_1 \log(n_1/2)$$

- $f \log(g)/2 + (r/n)(g^{-1}-1) + (s/n^2)(1-g^{-2}) + 0(n^{-3}),$

where

(5.23)
$$f = p(p+1)/2$$
, $r = p(2p^2+3p-1)(\tau_1^{-1}+\tau_2^{-2}-1)/24$

and

$$s = p(p+1)(2-p^2-p)(\tau_1^{-2}+\tau_2^{-2}-1)/48.$$

It therefore follows that

$$(5.24) C_{1}(t)C_{2}(t) = g^{-f/2} \exp[(r/n)(g^{-1}-1)+(s/n^{2})(1-g^{-2})+0(n^{-3})]$$

$$= g^{-f/2}[1+(r/n)(g^{-1}-1)+n^{-2}\{s(1-g^{-2})+(r^{2}/2)(g^{-1}-1)^{2}\}$$

$$+ 0(n^{-3})].$$

Let $M = [I - \Lambda^{-1}] = (2/n) P$ where P is a fixed matrix. Then

(5.25)
$$\left| \lambda \right|^{-n} 1^{/2} = \left| \frac{1}{\lambda} - \frac{2}{n} \frac{p}{\lambda} \right|^{\tau} 1^{n/2}$$

Now using the expansion

$$(5.26) \log \left| \frac{1}{n} - \frac{2}{n} \frac{P}{N} \right| = -(2/n) \operatorname{tr} \left| \frac{P}{N} - (2/n^2) \operatorname{tr} \left(\frac{P}{N} \right)^2 - (8/3n^3) \operatorname{tr} \left(\frac{P}{N} \right)^3 + 0 \left(n^{-4} \right)$$

we obtain

(5.27)
$$|I - \frac{2}{n} P|^{\tau_1 n/2} = \exp[(\tau_1 n/2) \log |I - \frac{2}{n} P|]$$

$$= e^{(\tau_1 n/2) [-(2/n) \operatorname{tr} P - (2/n^2) \operatorname{tr} (P^2) - (8/3n^3) \operatorname{tr} (P^3) + 0(n^{-4})] }$$

$$= e^{-\tau_1 \operatorname{tr} P} [1 - n^{-1} A_1 - n^{-2} A_2 + 0(n^{-3})]$$

where

(5.28)
$$A_1 = \tau_1 \operatorname{tr}(p^2)$$
 and $A_2 = (4/3)\tau_1 \operatorname{tr}(p^3) - \tau_1^2 (\operatorname{tr}(p^2)^2/2)$.

Applying asymptotic formula (5.14) to $(n/2)_K$, $(n_1g/2)_K$ and $(ng/2)_K$ we have after some algebraic simplication,

$$(5.29) \quad (n/2)_{\kappa} \quad (n_{1}g/2)_{\kappa}/(ng/2)_{\kappa}$$

$$= (n\tau_{1}/2)^{k} [1+n^{-1}a_{1}(\kappa)B(t)+(1/6n^{2})\{((k-a_{2}(\kappa)+3(a_{1}(\kappa))^{2}) - B(t)(a_{1}(\kappa))^{2}\}+0(n^{-3})\}$$

$$A(t)-g^{-2}(k-a_{2}(\kappa)-3(a_{1}(\kappa))^{2})-D(t)(a_{1}(\kappa))^{2}\}+0(n^{-3})]$$

where

(5.30)
$$A(t)=1+(\tau_1 g)^{-2}$$
, $B(t)=1+(\tau_1^{-1}-1)/g$ and

$$D(t)=6[g^{-1}+(\tau_1g^2)^{-1}-(\tau_1g)^{-1}].$$

Using (5.29) and the lemma 5.1, we have on simplification,

(5.31)
$$C_{3}(t) = \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa} (n_{1}g/2)_{\kappa} C_{\kappa} (\frac{2}{n} R)}{(ng/2)_{\kappa} k!}$$

$$= e^{\tau_{1} tr R} [1 + (K/n)B(t) + (1/6n^{2}) \{LA(t) - Mg^{-2} - ND(t)\} + 0(n^{-3})]$$

where

$$K = \tau_1^2 \operatorname{tr} R^2$$
, $L = 8\tau_1^3 \operatorname{tr} R^3 + 3\tau_1^4 (\operatorname{tr} R^2)^2$,

(5.32)
$$M = -3\tau_1^4 (\operatorname{tr} R^2)^2 - 16\tau_1^3 \operatorname{tr} R^3 - 6\tau_1^2 (\operatorname{tr} R^2 + (\operatorname{tr} R)^2),$$

and

$$N = \tau_1^4 (\text{tr } p^2)^2 + 4\tau_1^3 \text{tr } p^3 + \tau_1^2 \{\text{tr } p^2 + (\text{tr } p)^2\}.$$

From (5.16), (5.24), (5.27) and (5.31), we have

$$(5.33) \phi(t) = g^{-f/2} [1 + n^{-1} {\alpha_0 + g^{-1} \alpha_1} + n^{-2} {\alpha_2 + g^{-1} \alpha_3 + g^{-2} \alpha_4} + 0 (n^{-3})],$$

where the coefficients α_{i} 's are given by

$$\alpha_0 = K - A_1 - r$$
, $\alpha_1 = K(\tau_1^{-1} - 1) + r$, $\alpha_2 = L/6 - A_2 - KA_1 + s + r^2/2 - Kr + A_1 r$,

(5.34)
$$\alpha_3 = r(K-A_1) - r^2 + (\tau_1^{-1}-1)(N-rK-A_1K),$$

and $\alpha_4 = (L \tau_1^{-2}-M)/6 - N \tau_1^{-1}-s + r^2/2 + rK(\tau_1^{-1}-1).$

By inverting the characteristic function in (5.33), using the fact that (g) $^{-f/2}$ is the characteristic function of χ_f^2 , a chi square variable with f degrees of freedom, we obtain the following asymptotic expansion for the distribution of -2 log W.

(5.35)
$$P(=2 \log W \le E) = P(\chi_{f}^{2} \le E) + n^{-1}(\alpha_{0}P(\chi_{f}^{2} \le Z) + \alpha_{1}P(\chi_{f+2}^{2} \le E)) + n^{-2}(\alpha_{2}P(\chi_{f}^{2} \le Z) + \alpha_{3}P(\chi_{f+2}^{2} \le Z) + \alpha_{4}P(\chi_{f+4}^{2} \le E)) + O(n^{-5}),$$

where $a_{i,s}$ are defined in (5.35).

(ii) Asymptotic expansion of the distribution of $-2\rho \log W$. Here we shall derive the asymptotic expansion for $-2\rho \log W$ where ρ is given by (5.6). Put $m = \rho n$ and let m tend to infinity instead of n. From (5.2), the characteristic function f(t) of $-2\rho \log W$ can be written as

(5.36)
$$f(t) = E(e^{-2\rho it \log W}) = C_4(t)C_5(t)$$
,

where $C_A(t)$ and $C_5(t)$ are given by

(5.37)
$$C_4(t) = \frac{n^{-pnit\rho}}{{-pn_1^{it\rho}} - {pn_2^{it\rho}}} \frac{r_p(n/2)r_p[\frac{n_1(1-2\rho it)}{2}]r_p[\frac{n_2(1-2it\rho)}{2}]}{r_p[\frac{n(1-2\rho it)}{2}]r_p(n_1/2)r_p(n_2/2)}$$

and
$$(5.38) \quad C_5(t) = |A|^{-\frac{\tau_1}{2}(m+2\alpha)} 2^{F_1(\frac{m}{2} + \alpha, \frac{mg\tau_1}{2} + \alpha\tau_1; \frac{mg}{2} + \alpha, \frac{M}{2}),$$

g and α being as defined in (5.19) and (5.6) respectively. Now the first factor $C_4(t)$ in (5.36) can be expanded asymptotically (See Anderson [1], p. 255) as follows.

(5.39)
$$C_A(t) = g^{-f/2}[1 + (A/m^2) (g^{-2}-1) + 0(m^{-3})]$$

(5.40)
$$f = p(p+1)/2$$
, $A = [p(p+1)/48][(p-1)(p+2)(\tau_1^{-2} + \tau_2^{-2} - 1) - 6\gamma]$
and $\gamma = (\tau_1^{-1} + \tau_2^{-1} - 1)^2 (2p^2 + 3p - 1)^2/36(p+1)^2 = 4\alpha^2$.

Now as stated before, let

$$\frac{1}{\sqrt{2}} - \sqrt{2} = (2/m) \frac{p}{\sqrt{2}},$$

where P is a fixed matrix. We then have

(5.41)
$$C_5(t) = \left| \frac{1}{x} - \frac{2}{m} p \right|^{\frac{1}{2}} 2^{\frac{m+2\alpha}{2}} 2^{F_1(\frac{m}{2} + \alpha, \frac{m\tau_1 g}{2} + \alpha\tau_1; \frac{mg}{2} + \alpha, \frac{2}{m} p)}$$

Using the asymptotic expansion (5.15) to $(\frac{m}{2} + \alpha)_{\kappa}$, $(m\tau_1 g/2 + \alpha\tau_1)_{\kappa}$ and $(mg/2 + \alpha)_{\kappa}$, we have

$$(5.42) \qquad (m/2 + \alpha)_{\kappa} (m\tau_1 g/2 + \alpha\tau_1) \kappa / (mg/2 + \alpha) \kappa$$

$$= (m\tau_1/2)^k [1 + m^{-1} \{2\alpha k + \delta_1 a_1(\kappa)\} + m^{-2} \{k\delta_2 + k^2 \delta_3 + \delta_4 a_1(\kappa)\} + \delta_5 k a_1(\kappa) + \delta_6 a_2(\kappa) + \delta_7 (a_1(\kappa))^2\} + 0 (m^{-3})],$$

where

$$\delta_1 = 1 + (\tau_1^{-1} - 1)g^{-1}, \delta_2 = -2\alpha^2 + [1 + (\tau_1^{-2} - 1)g^{-2}]/6,$$

$$\delta_3 = 2\alpha^2,$$

(5.43)
$$\delta_4 = -2\alpha + 2\alpha g^{-2} (1 - \tau_1^{-1}), \ \delta_5 = 2\alpha + 2\alpha (\tau_1^{-1} - 1) g^{-1},$$

$$\delta_6 = \{ (1 - \tau_1^{-2}) g^{-2} - 1 \} / 6 \text{ and } \delta_7 = \{ 1 + (\tau_1^{-1} - 1) g^{-1} \}^2 / 2.$$

From (5.42) and the lemma 5.1, it then easily follows that,

(5.44)
$$_{2}F_{1}(\frac{m}{2} + \alpha, \frac{m\tau_{1}g}{2} + \alpha\tau_{1}; \frac{mg}{2} + \alpha, \frac{2}{m}P)$$

$$= e^{\tau_1 \operatorname{tr} P_{[1+m^{-1}(2a\alpha+b\delta_1)+m^{-2}(a\delta_2+a(a+1)\delta_3+b\delta_4+c\delta_5+d\delta_6+e\delta_7)+0(m^{-3})]},$$

where the constants a, b, c, d and e are given by

$$a = \tau_1 \operatorname{tr} p$$
; $b = \tau_1^2 \operatorname{tr} p^2$; $c = 2\tau_1^2 \operatorname{tr} p^2 + \tau_1^3 \operatorname{tr} p^2 \operatorname{tr} p$,

$$(5.45) \quad d = 4 \tau_1^3 \operatorname{tr} p^3 + 3 \tau_1^2 \operatorname{tr} p^2 + 3 \tau_1^2 (\operatorname{tr} p)^2 + \tau_1 \operatorname{tr} p^2$$

and
$$e = \tau_1^4 (\operatorname{tr} p^2)^2 + 4 \tau_1^3 \operatorname{tr} p^3 + \tau_1^2 [\operatorname{tr} p^2 + (\operatorname{tr} p)^2].$$

Also
$$|| \frac{\tau_1^m}{2} + \alpha \tau_1|| = || \frac{\tau_1^m}{2} + \frac{2}{m} \frac{\eta}{2} ||^{\alpha \tau_1} || \frac{2}{\pi} - \frac{2}{m} \frac{\eta}{2} ||^{\tau_1^{m/2}} || \frac{1}{\pi} - \frac{2}{m} \frac{\eta}{2} ||^{\alpha \tau_1} ||$$

and using (5.26) and (5.27) to the factor on the right hand side of (5.46), it can be easily checked that

(5.47)
$$\left| \frac{\tau_1^m}{\lambda} - \frac{2}{m} \frac{P}{N} \right|^{\frac{\tau_1^m}{2} + \alpha \tau_1} = e^{-\tau_1} tr \frac{P}{N} [1-m^{-1} \delta_8 + m^{-2} \delta_9 + 0 (m^{-3})],$$

where

$$\delta_8 = \tau_1 \{ \operatorname{tr} \, \mathbb{R}^2 + 2\alpha \, \operatorname{tr} \, \mathbb{R}^2 \}$$

and

$$\delta_9 = \delta_8^2/2 - \tau_1 \{4 \text{ tr } p^3/3 + 2\alpha \text{ tr } p^2\}.$$

We therefore have

$$(5.48) \quad C_5(t) = [1+m^{-1}(2a\alpha+b\delta_1-\delta_8)+m^{-2}(a\delta_2+a(a+1)\delta_3+b\delta_4+c\delta_5 + d\delta_6+e\delta_7+\delta_9-2a\alpha\delta_8-b\delta_1\delta_8)+0(m^{-3})]$$

and finally from (5.36), (5.39) and (5.48) we have

(5.49)
$$f(t)=g^{-f/2}[1+m^{-1}\{\alpha_0+\alpha_1g^{-1}\}+m^{-2}\{\beta_0+\beta_1g^{-1}+\beta_2g^{-2}\}+0(m^{-3})],$$

where

$$\alpha_0 = 2a\alpha + b - \delta_8, \quad \alpha_1 = b(\tau_1^{-1} - 1),$$

$$\beta_0 = -A + 2\alpha^2 a^2 + (a - d)/6 - 2\alpha(b - c + a\delta_8) + e/2 + \delta_9 - b\delta_8,$$

$$(5.50)$$

$$\beta_1 = (\tau_1^{-1} - 1) \quad (2c\alpha + e - b\delta_8)$$
and
$$\beta_2 = A + (\tau_1^{-2} - 1) \quad (a - d)/6 + 2b\alpha(1 - \tau_1^{-1}) + e(\tau_1^{-1} - 1)^2/2.$$

Inverting the characteristic function in (5.49), we have the asymptotic expansion of the distribution of -20 log W in the form,

(5.51)
$$P(-2\rho \log W \le z) = P_{\mathbf{r}}(\chi_{\mathbf{f}}^{2} \le z) + m^{-1}\{\alpha_{0}P(\chi_{\mathbf{f}}^{2} \le z) + \alpha_{1}P(\chi_{\mathbf{f}+2}^{2} \le z)\} + m^{-2}\{\beta_{0}P(\chi_{\mathbf{f}}^{2} \le z) + \beta_{1}P(\chi_{\mathbf{f}+2}^{2} \le z) + \beta_{2}P(\chi_{\mathbf{f}+4}^{2} \le z)\} + O(m^{-3}).$$

6. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, a=1 AND b=0

For this case putting a = 1 and b = 0 in (2.6) we can easily see that

$$(6.1) \quad \mathsf{E}(\mathsf{Y}^{\mathsf{h}}) = \frac{\Gamma_{\mathsf{p}}(\mathsf{n}/2)\Gamma_{\mathsf{p}}(\mathsf{n}_{1}/2+\mathsf{h})}{\Gamma_{\mathsf{p}}(\mathsf{n}/2+\mathsf{h})\Gamma_{\mathsf{p}}(\mathsf{n}_{1}/2)} \left| \mathcal{N} \right|^{-\mathsf{n}_{1}/2} \ _{2}^{\mathsf{F}_{1}(\mathsf{n}/2,\mathsf{n}_{1}/2+\mathsf{h};\mathsf{n}/2+\mathsf{h};\mathsf{n}/2+\mathsf{h}, \overset{\mathsf{M}}{\sim})}.$$

We assume (5.3) and obtain the asymptotic expansion of L_1 where

(6.2)
$$L_1 = \sqrt{n} \log (Y/\tau_1^p)$$

in terms of n increasing with τ_1 and τ_2 fixed assuming that $M = [I - \Lambda^{-1}] = (2/n) P \text{ where } P \text{ is a fixed matrix. Let } \chi(t)$ be the characteristic function of L_1 . Then

(6.3)
$$\chi(t) = E(e^{it L_1}) = C_6(t)C_7(t),$$

where

(6.4)
$$C_6(t) = (1/\tau_1)^{it\sqrt{np}} \Gamma_p(n/2) \Gamma_p(n_1/2 + it\sqrt{n}) [\Gamma_p(n/2 + it\sqrt{n}) \Gamma_p(n_1/2)]^{-1}$$

and

(6.5)
$$C_7(t) = \left| \frac{-n_1}{2} \right|^{-n_1/2} 2^{F_1(n/2, n_1/2 + it\sqrt{n}; n/2 + it\sqrt{n}, \frac{M}{2})}$$

Using the formula (5.18) to each gamma function on the right hand side of (6.4), we have

(6.6)
$$C_6(t) = e^{-pT_1 t^2} [1-n^{-1/2} \{fT_1(it)+2pT_2(it)^3/3\} + n^{-1} \{(fT_2+f^2T_1^2/2) (it)^2 + 2p(T_3+fT_1T_2) (it)^4/3+2p^2T_2^2 (it)^6/9\}+0(n^{-3/2})],$$

where

(6.7)
$$T_1 = (\tau_1^{-1} - 1), T_2 = \tau_1^{-2} - 1, T_3 = \tau_1^{-3} - 1 \text{ and } f = p(p+1)/2.$$

Now using lemma 5.2 to $(n/2)\kappa$, $(n/2 + it \sqrt{n})\kappa$ and $(n_1/2 + it \sqrt{n})\kappa$ we have

(6.8)
$$(n/2)_{\kappa} (n_1/2 + it \sqrt{n})_{\kappa} / (n/2 + it \sqrt{n})_{\kappa}$$

$$= (n_1/2)^k [1 + n^{-1/2} 2 it k T_1 + n^{-1} {\tau_1^{-1} a_1(\kappa) + 2(it)^2 (k^2 T_1^2 - k T_2)} + 0(n^{-3/2})].$$

As before let M = (2/n)P where P is a fixed matrix. Then from (6.8) and the lemma 5.1, we have after a little simplification,

(6.9)
$$_{2}^{F_{1}(n/2,n_{1}/2 + it \sqrt{n}; n/2 + it \sqrt{n}, 2/n \frac{p}{k})}$$

= $_{e}^{\tau_{1}^{tr} \frac{p}{k}} [1-n^{-1/2}(it) A_{1}+n^{-1}\{(it)^{2} A_{2}+q\}+0(n^{-3/2})],$

where

(6.10)
$$A_1 = -2T_1 \operatorname{tr}(\tau_1, P), q = \tau_1 \operatorname{tr} P^2$$

and $A_2 = 2\{T_1^2[(\operatorname{tr} \tau_1, P)^2 + \operatorname{tr}(\tau_1, P)] - T_2(\tau_1, \operatorname{tr} P)\}.$

Also from (5.27) we have

(6.11)
$$\left| \bigwedge_{n} \right|^{-n} 1^{/2} = \left| \prod_{n} - 2/n \sum_{n} \right|^{\tau} 1^{n/2} = e^{-\tau_1} \operatorname{tr} \left[\prod_{n} P_{n} \right]^{-1} q + 0 \left(n^{-3/2} \right)$$

and thus

(6.12)
$$C_7(t) = [1-n^{-1/2}(it) A_1+n^{-1}(it)^2 A_2+0(n^{-3/2})].$$

From (6.3), (6.6) and (6.12), we obtain the following asymptotic expansion for $\chi(t)$.

(6.13)
$$\chi(t/\sqrt{2pT_1}) = e^{-t^2/2} [1-n^{-1/2} D_1+n^{-1} D_2+0(n^{-3/2})],$$

where the coefficients \mathbf{D}_1 and \mathbf{D}_2 are given by

$$D_{1} = (2pT_{1})^{-\frac{1}{2}} [(it)(A_{1}+fT_{1}) + (3T_{1})^{-1} T_{2}(it)^{3}] \text{ and}$$

$$(6.14) D_{2} = (2pT_{1})^{-3} 4p^{2} [(it)^{2}(fT_{2}+f^{2}T_{1}^{2}/2+fT_{1}A_{1} + A_{2})T_{1}^{2} + (it)^{4} T_{1}(T_{3}+fT_{1}T_{2}+A_{1}T_{2})/3+(it)^{6} T_{2}^{2}/18].$$

(7.5)
$$C_9(t) = \left| \lambda \right|^{-n_1/2} {}_{2}F_1(n/2,n_1/2; \frac{n}{2} + it \sqrt{n}, \frac{M}{2}).$$

Using the formula (5.17) to each gamma function on the right-hand side of (7.4) we get

$$(7.6) \quad C_8(t) = e^{-pR_1 t^2} [1 - n^{-\frac{1}{2}} \{fR_1(it) + 2pR_2(it)^3/3\}$$

$$+ n^{-1} \{(fR_2 + f^2R_1^2/2)(it)^2$$

$$+ 2p(R_3 + fR_1R_2)(it)^4/3 + 2p^2R_2^2(it)^6/9\} + 0(n^{-3/2}) \},$$

where coefficients R_1 , R_2 , R_3 and R_4 are given by

(7.7)
$$R_1 = \tau_2^{-1} - 1$$
, $R_2 = \tau_2^{-2} - 1$, $R_3 = \tau_2^{-3} - 1$ and $f = p(p+1)/2$.

Using lemma 5.1 and 5.2, we have proceeding as in section 6

(7.8)
$$_{2}^{F_{1}(n/2, n_{1}/2; \frac{n}{2} + it \sqrt{n}, \frac{2}{n} \frac{p}{n})}$$

= $_{e}^{\tau_{1}^{tr} \frac{p}{n}} [1-n^{-\frac{1}{2}} (it)B_{1}^{+n^{-1}} \{B_{2}^{+} (it)^{2}B_{3}^{2}\} + 0(n^{-3/2})],$

where $B_1 = 2(\text{tr } \tau_1 \stackrel{p}{\sim})$, $B_2 = \tau_1 \text{ tr } p^2$ and $B_3 = B_1(4 + B_1)/2$.

Using (7.8) and (6.11), we can write $C_9(t)$ as

(7.9)
$$C_9(t) = [1-n^{-\frac{1}{2}}(it)B_1+n^{-1}(it)^2 B_3+0(n^{-3/2})]$$

and thus we have the following asymptotic expansion for H(t).

(7.10)
$$H(t/\sqrt{2R_1p}) = e^{-t^2/2} [1-n^{-\frac{1}{2}} \beta_1 + n^{-1} \beta_2 + 0(n^{-3/2})],$$

CHAPTER II

ON THE DISTRIBUTION OF THE SPHERICITY TEST CRITERION

IN CLASSICAL AND COMPLEX NORMAL POPULATIONS HAVING

UNKNOWN COVARIANCE MATRICES

1. INTRODUCTION AND SUMMARY

Let χ : px1 be distributed $N(\chi, \xi)$ where χ and ξ are both unknown. Let \S be the sum of product matrix of a sample of size N. To test the hypothesis of sphericity, namely, $H_0: \xi = \sigma^2 I_p$, where $\sigma^2 > 0$ is unknown, against $H_1: \xi \neq \sigma^2 I_p$, Mauchly [20] obtained the likelihood ratio test criterion for H_0 in the form $W = |\xi|/[(tr \xi)/p]^p$. Thus the criterion W is a power of the ratio of the geometric mean and the arithmetic mean of the roots $\theta_1, \theta_2, \ldots, \theta_p$ of $|\xi-\theta|_{\xi} = 0$ (see Anderson [1]). For p = 2, Mauchly [20] showed that the density of W is

(1.1)
$$f(w) = \frac{1}{2} (n-1)w^{\frac{1}{2}} (n-3), \quad 0 \le w \le 1,$$

where n = N-1. The exact distribution in the null case was obtained by Consul [5], [6], in the form

(1.2)
$$f(w) = k(p,n)w^{\frac{1}{2}(n-p-1)} G_{p,p}^{p,0} (w|\frac{\frac{1}{2}(p-1)+(p-1)/p,...,\frac{1}{2}(p-1)}{0,\frac{1}{2},1,...,\frac{1}{2}(p-1)})$$
,

$$k(p,n) = (2\pi)^{\frac{1}{2}(p-1)} p^{\frac{1}{2} - \frac{1}{2}pn} \Gamma(\frac{1}{2}pn) / \prod_{j=1}^{p} \Gamma[\frac{1}{2}(n-j-1)],$$

and $G_{p,q}^{m,n}(x = a_1, \dots, a_p)$ is the G-function defined in the next section.

In this chapter we have obtained the general moments of W both in real and complex cases for arbitrary covariance matrices and also the corresponding distributions of W in terms of G-function.

2. SOME DEFINITIONS AND RESULTS

In this section we give a few definitions and some lemmas which are needed in the sequel. First we define Meijer's G-function by [21]

(2.1)
$$G_{p,q}^{m,n}(x|_{b_{1},...,b_{q}}^{a_{1},...,a_{p}}) = (2\pi i)^{-1} \int_{C} \frac{\prod_{j=1}^{m} \Gamma(b_{j}-s) \prod_{j=1}^{n} \Gamma(1-a_{j}+s)}{\prod_{j=m+1}^{q} \Gamma(1-b_{j}+s) \prod_{j=n+1}^{n} \Gamma(a_{j}-s)} x^{s} ds,$$

where an empty product is interpreted as unity and C is a curve separating the singularities of $\prod_{j=1}^{m} \Gamma(b_{j}-s)$ from those of $\prod_{j=1}^{n} \Gamma(1-a_{j}+s)$, $q \ge 1$, $0 \le n \le p \le q$, $0 \le m \le q$; $x \ne 0$ and j=1 |x| < 1 if q = p; $x \ne 0$ if q > p.

The G-function of (2.1) can be expressed as a finite number of generalized hypergeometric functions (see Pillai, Al-Ani and Jouris [25] and Luke [18]) and in particular we have

$$(2.3) \quad G_{2,2}^{2,0}(x|_{b_{1},b_{2}}^{a_{1},a_{2}}) = \frac{\sum_{k=0}^{b_{1}} (1-x)^{a_{1}+a_{2}-b_{1}-b_{2}-1}}{\sum_{k=0}^{c} (a_{1}+a_{2}-b_{1}-b_{2})} 2^{F_{1}}(a_{2}-b_{2},a_{1}-b_{2},a_{1}+a_{2}-b_{1}-b_{2},1-x)$$

where $_{2}F_{1}$ here is the Gauss hypergeometric function.

Now we state the Gauss and Legendre's multiplication formula for gamma functions as

0 < x < 1

(2.4)
$$\prod_{r=1}^{n} \Gamma[z+(r-1)/n] = (2\pi)^{\frac{1}{2}(n-1)} \prod_{r=1}^{\frac{1}{2}} - nz \\ \Gamma(nz).$$

Further, the hypergeometric function of matrix variates is defined by

$$p^{F_{q}(a_{1},...,a_{p};b_{1},...,b_{q};\S,T)} = \sum_{k=0}^{\sum} \sum_{\kappa} \frac{(a_{1})_{\kappa}...(a_{p})_{\kappa}^{C_{\kappa}(\S)C_{\kappa}(T)}}{(b_{1})_{\kappa}...(b_{q})_{\kappa}^{C_{\kappa}(T_{m})k!}}$$

where the zonal polynomials, $C_{\kappa}(\cdot)$, and $(\cdot)_{\kappa}$ are defined in [12].

Lemma 2.1. Let Z: mxm be a complex symmetric matrix whose real part is p.d. and let T: mxm be an arbitrary complex symmetric matrix. Let S: mxm be a real p.d. matrix. Then

(2.5)
$$\int_{\mathbb{S}^{>0}} \exp(-\operatorname{tr} Z S) |S|^{t-\frac{1}{2}(m+1)} C_{\kappa}(T S) dS = \Gamma_{m}(t,\kappa) |Z|^{-t} C_{\kappa}(T Z^{-1})$$

where $\Gamma_{\rm m}(t,\kappa)$ is defined in (15) of Constantine [4] and R(t) > $\frac{1}{2}$ (m-1). (See Constantine [4]).

Lemma 2.2. Let T be as in lemma 2.1. Then

(2.6)
$$\int_{\mathbb{S}>0} \exp(-\frac{1}{2} \operatorname{tr} \S) |\S|^{t-\frac{1}{2}(m+1)} (\operatorname{tr} \S)^{q} C_{\kappa}(\mathbb{T} \S) d \S$$
$$= \Gamma_{m}(t,\kappa) 2^{tm+k+q} \Gamma(mt+k+q) C_{\kappa}(\mathbb{T}) / \Gamma(mt+k).$$

<u>Proof.</u> We shall consider the cases when (1) $q \ge 0$ and (2) q < 0.

(1) $q \ge 0$. From (2.5), for u > 0 we have

(2.7)
$$\int_{\mathbb{S}>0} \exp(-\frac{1}{2} u \operatorname{tr} \S) |\S|^{t-\frac{1}{2}(m+1)} C_{\kappa}(T,\S) d \S$$
$$= 2^{tm+k} u^{-tm-k} \Gamma_{m}(t,\kappa) C_{\kappa}(T).$$

To prove this case we differentiate (2.7) q times w.r.t. u under the integral sign and let u = 1 to obtain

(2.8)
$$\int_{\mathbb{R}^{>0}} \exp\left(-\frac{1}{2} \operatorname{tr} \S\right) \left| \S \right|^{t-\frac{1}{2}(m+1)} (\operatorname{tr} \S)^{q} C_{\kappa}(\mathbb{T} \S) d \S$$
$$= 2^{tm+k+q} \Gamma_{m}(t,\kappa) \Gamma(tm+k+q) C_{\kappa}(\mathbb{T}) / \Gamma(mt+k).$$

which is also (19) of Khatri [15].

(2) q < 0. To prove this case, we integrate (2.7) successively r times w.r.t. u, change the order of integration and let u = 1, yielding

(2.9)
$$\int_{\mathbb{S}>0} \exp\left(-\frac{1}{2}\operatorname{tr}\,\mathbb{S}\right) \left|\mathbb{S}\right|^{t-\frac{1}{2}(m+1)} (\operatorname{tr}\,\mathbb{S})^{-r} C_{\kappa}(\mathbb{T}\,\mathbb{S}) d\,\mathbb{S}$$
$$= 2^{tm+k-r} \Gamma(tm+k-r) \Gamma_{m}(t,\kappa) C_{\kappa}(\mathbb{T}) / \Gamma(tm+k).$$

Since $\Gamma(tm+k-r)/\Gamma(tm+k) = \prod_{j=1}^{n} (tm+k-j)^{-1}$, (2.9) holds if tm+k-r > 0. This proves the lemma.

Lemma 2.3. Let Z: mxm be a complex symmetric matrix whose real part is p.d. and let Z: mxm be an arbitrary complex symmetric matrix and Z: mxm be a Hermitian matrix. Then

(2.10)
$$\int_{\bar{\xi}'=\xi>0} \exp(-\operatorname{tr} \, \bar{\zeta} \, \bar{\xi}) |\xi|^{a-m} \, \hat{C}_{\kappa}(\bar{\chi} \, \bar{\xi}) d \, \bar{\xi}$$

$$= \hat{\Gamma}_{m}(a,\kappa) |\bar{\chi}|^{-a} \, \hat{C}_{\kappa}(\bar{\chi}),$$

where $\hat{\Gamma}_{m}(a,\kappa)$ is defined in [12].

Lemma 2.4. Let T_{ij} and S_{ij} be as in lemma 2.3. Then

(2.11)
$$\int_{\tilde{\mathbb{Q}}'=\tilde{\mathbb{Q}}>0} \exp(-\operatorname{tr} \tilde{\mathbb{Q}}) |\tilde{\mathbb{Q}}|^{a-m} (\operatorname{tr} \tilde{\mathbb{Q}})^{j} \tilde{\mathcal{C}}_{\kappa}(\tilde{\mathbb{Q}},\tilde{\mathbb{Q}}) d \tilde{\mathbb{Q}}$$

$$= \tilde{\Gamma}_{m}(a,\kappa) \Gamma(am+k+j) \tilde{\mathcal{C}}_{\kappa}(\tilde{\mathbb{Q}}) / \Gamma(am+k).$$

<u>Proof.</u> The proof is exactly similar to the proof of 1emma 2.2 and hence omitted.

Lemma 2.5. If s is any complex variate and f(x) is a function of a real variable x, such that

$$F(s) = \int_{0}^{\infty} x^{s-1} f(x) dx$$

exists, then under certain regularity conditions

$$f(x) = (2\pi i)^{-1} \int_{C-i\infty}^{C+i\infty} x^{-s} F(s) ds.$$

F(s) is called the Mellin transform of f(x), and f(x) is the inverse Mellin transform of F(s). (See Titchmarsh [29])

DISTRIBUTION OF W IN THE REAL CASE

Let \S : pxp be distributed as Wishart (n, p, \S). Then the distribution of the latent roots \mathbf{g}_1 , \mathbf{g}_2 ,..., \mathbf{g}_p of \S has been shown by James [12] to depend only on the latent roots of \S and is given by

(3.1)
$$k(p,n,\xi) |\xi|^{-\frac{1}{2}n} {}_{0}F_{0}(-\frac{1}{2}\xi^{-1},\xi) |\xi|^{\frac{1}{2}(n-p-1)} \prod_{i < j} (g_{i}-g_{j}) \prod_{i=1}^{p} dg_{i},$$

where

$$k(p,n,\xi) = |\xi|^{-\frac{1}{2}n} \frac{1}{\pi^2} p^2 / \{2^{\frac{1}{2}pn} \Gamma_p(\frac{1}{2}n)\Gamma(\frac{1}{2}p)\},$$

$$G = diag(g_1, g_2, \dots, g_p), \infty > g_1 \ge g_2 \ge \dots \ge g_p > 0$$
.

The distribution (3.1) is not convenient for further development and the convergence of the series is slow. But the convergence may be improved by writing (3.1) in the form suggested by Pillai, Al-Ani and Jouris [25]),

(3.2)
$$k(p,n,\xi) |\xi|^{\frac{1}{2}(n-p-1)} \exp(-\frac{1}{2} \operatorname{tr} \xi) \prod_{i < j} (g_i - g_j)_0 F_0(M, \xi)$$

$$M_{V} = \frac{1}{2} \left(I - \Sigma^{-1} \right) .$$

Theorem 3.1. Let G be distributed as in (3.2) and let $W = |G|/\{(\operatorname{tr} G)/p\}^p$ be the sphericity criterion. Then the h-th moment of W is given by

(3.3)
$$E(W^{h}) = \frac{p^{ph} |\xi|^{-\frac{1}{2} n}}{2^{\frac{1}{2} pn} \Gamma_{p}(\frac{1}{2} n)} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{C_{\kappa}(M)}{k!} 2^{k} \frac{\Gamma_{p}(\frac{1}{2} n+h,k) \Gamma(\frac{1}{2} pn+k)}{\Gamma(\frac{1}{2} pn+ph+k)}$$

<u>Proof.</u> To find $E(W^h)$ we multiply (3.2) by $|\mathcal{G}|/[(\operatorname{tr} \mathcal{G})/p]^p$, transform $\mathcal{G} \to \mathcal{H} \ \mathcal{V} \ \mathcal{H}'$ where \mathcal{H} is an orthogonal and \mathcal{V} a symmetric matrix, integrate out \mathcal{H} and \mathcal{V} using (44) and (22) of Constantine [4]. We get

(3.4)
$$E(W^{h}) = p^{ph} k(p,n,\xi) \Gamma_{p} (\frac{1}{2} p) \pi^{-\frac{1}{2} p^{2}}$$

$$\cdot \sum_{k=0}^{\infty} \sum_{\kappa} [C_{\kappa}(M)/C_{\kappa}(\xi_{p})^{k!}]$$

$$\int_{\chi>0} \exp(-\frac{1}{2} \operatorname{tr} \chi) |\chi|^{(\frac{1}{2} n+h)-\frac{1}{2}(p+1)} (\operatorname{tr} \chi)^{-ph} C_{\kappa}(\chi) d\chi.$$

Applying lemma (2.2) to the integral on the R.H.S. of (3.4) we get (3.3).

Theorem 3.2. For any finite p, the p.d.f. of W is

(3.5)
$$f(w) = C(p,n,\xi) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{2^{k} C_{\kappa}(M)}{k!} p^{\frac{1}{2} - \frac{1}{2} pn - k} \Gamma(\frac{1}{2} pn + k)$$

$$\cdot w^{\frac{1}{2}(n-p-1)} G_{p,p}^{p,0}(w|_{b_{1},\dots,b_{p}}^{a_{1},\dots,a_{p}}),$$

$$C(p,n,\xi) = \pi^{\frac{1}{4}} p(p-1) \left| \xi \right|^{-\frac{1}{2}} n (2\pi)^{\frac{1}{2}} (p-1) / \Gamma_p(\frac{1}{2} n),$$

$$a_j = (k+j-1)/p + \frac{1}{2}(p-1); b_j = k_j + \frac{1}{2}(p-j).$$

For p = 2, (3.5) reduces to

(3.6)
$$f(w) = \frac{\left|\frac{\kappa}{2}\right|^{-\frac{1}{2}n}}{2\Gamma(n-1)} w^{\frac{1}{2}(n-3)} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{\Gamma(n+k)}{k!} C_{\kappa}(M) w^{k} 1^{+\frac{1}{2}}$$

$$\cdot _{2}^{F_{1}(a_{2}-b_{2},a_{1}-b_{2}; a_{1}+a_{2}-b_{1}-b_{2},1-w)}.$$

<u>Proof.</u> Applying (2.4) on $\Gamma[p(\frac{1}{2}n+h+k/p)]$ we have from (3.3)

$$E(W^h) = C(p,n,\xi) \sum_{k=0}^{\infty} \sum_{\kappa} [\{2^k C_{\kappa}(M)p^{\frac{1}{2}} - \frac{1}{2}pn-k \Gamma(\frac{1}{2}pn+k)\}/k!]$$

$$\prod_{j=1}^{p} \left[\Gamma \frac{1}{2} n + h + k_{j} - \frac{1}{2} (i - j) \right] / \Gamma \left\{ \frac{1}{2} n + ((k + j - 1)/p) + h \right\} \right].$$

Using Lemma 2.5, the density of W has the form

(3.7)
$$f(w) = C(p,n,\xi) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{2^k C_{\kappa}(M)}{k!} p^{\frac{1}{2} - \frac{1}{2} pn - k} \Gamma(\frac{1}{2} pn + k) w^{\frac{1}{2}(n-p-1)}$$

$$(2\pi i)^{-1} \int_{C-i\infty}^{C+i\infty} w^{-r} \frac{\prod_{i=1}^{p} \Gamma(r+b_i)}{\prod_{i=1}^{p} \Gamma(r+a_i)} dr,$$

$$r = \frac{1}{2} n + h - \frac{1}{2}(p-1), b_j = k_j + \frac{1}{2}(p-j), a_j = (k+j-1)/p + \frac{1}{2}(p-1).$$

Noting that the integral in (3.7) is in the form of Meijer's G-function, we can write the density of W as in (3.5).

(3.6) can be obtained easily from (3.5) by putting p=2 in (3.5) and using (2.3).

Remark. Putting $\Sigma = \sigma^2 I$ in (3.5) and (3.6), we can easily deduce the result of Consul in (1.2) [5], [6], amd Mauchly in (1.1), [20].

4. DISTRIBUTION OF W IN THE COMPLEX CASE

Let \S : pxp be distributed as a Complex Wishart (n,p,\S) (see Goodman [11]). Then the distribution of the latent roots g_1,g_2,\ldots,g_p of \S is (James [12])

$$(4.1) \quad k(p,n,\xi)_0 \tilde{f}_0(-\xi^{-1},\xi) \left| \mathsf{G} \right|^{n-p} \prod_{\mathbf{i} < \mathbf{j}} (\mathsf{g_i} - \mathsf{g_j})^2 \prod_{\mathbf{i} = 1}^p \mathsf{dg_i}$$

where

$$k(p,n,\overset{\circ}{\Sigma}) = \frac{\left|\overset{\circ}{\Sigma}\right|^{-n} \pi^{p(p-1)}}{\overset{\circ}{\Gamma_{p}(n)}\overset{\circ}{\Gamma_{p}(p)}}; \overset{\circ}{\Gamma_{p}(n)} \text{ and }$$

 $p^{k_q}(a_1,\ldots,a_p;b_1,\ldots,b_q;\ \xi,\ \xi)$ are defined in (83) and (88) of James [12].

As in the real case, the convergence of (4.1) may be improved by writing it in the form

$$(4.2) \quad k(p,n,\xi)_0 \widetilde{f}_0(\widetilde{M}_1,\xi) \exp(-\mathrm{tr}\xi) \left| \xi \right|^{n-p} \prod_{i < j} (g_i - g_j)^2 \prod_{i=1}^p \mathrm{d}g_i,$$
 where $\widetilde{M}_1 = \xi_p - \xi^{-1}$.

Theorem 5.1. Let \mathcal{G} be distributed as in (4.2) and let $W = |\mathcal{G}|/[(\operatorname{tr} \mathcal{G})/p]^p$. Then h-th moment of W is

(4.3)
$$\frac{p^{ph}}{\Gamma_{p}(n)} |\Sigma|^{-n} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{\tilde{C}_{\kappa}(\tilde{\mathbb{Q}}_{1})}{k!} \Gamma(np+k) \tilde{\Gamma}_{p}(n+h,\kappa) / \Gamma(np+k+ph).$$

<u>Proof:</u> Multiplying (4.2) by $|\mathcal{G}|/[(\text{tr }\mathcal{G})/p)]^p$, using the transformation $\mathcal{G} \to \mathcal{U} \times \bar{\mathcal{U}}$ where \mathcal{U} is unitary and \mathcal{U} is hermitian p.d. we have on integrating out \mathcal{U} and using the results (see Khatri [14]) that the Jacobian of transformation is

$$J(Q, \chi \chi) = \prod_{i < j} (g_i - g_j)^2 h_2(\chi)$$

and that $\int_{\mathbb{Q}} h_2(\mathbb{Q}) = \frac{\pi^{p(p-1)}}{r_p(p)}, \text{ we have }$

$$E(W^{h}) = \frac{p^{ph} |\mathring{\chi}|^{-n}}{\mathring{\Gamma}_{p}(n)} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{\mathring{C}_{\kappa}(\mathring{M}_{1})}{\mathring{C}_{\kappa}(I_{p})k!} \int_{V>0} \exp(-\operatorname{tr} \chi) |\chi|^{n+h-p} (\operatorname{tr} \chi)^{-ph}$$

$$\mathring{C}_{\kappa}(\chi) d\chi$$

Using lemma (2.4) to the integral on the right, we get (4.3).

Theorem 5.2. The density of W is

$$f(w) = \frac{\frac{1}{\pi^2} p(p-1) \left| \sum_{k=0}^{\infty} |^{-n} (2\pi)^{\frac{1}{2}(p-1)} \right|}{\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \sum_{k} \frac{\hat{C}_{k}(M_1)}{k!} \Gamma(pn+k)}$$

$$\cdot p^{\frac{1}{2}-pn-k} w^{n-p} G_{p,p}^{p,0}(w|_{b_{1},...,b_{p}}^{a_{1}a_{2},...,a_{p}})$$

where
$$a_{j} = (k/p) + (j-1)/p + (p-1)$$
, and $b_{j} = k_{j} - j + p$.

<u>Proof.</u> The proof is exactly similar to that of theorem 3.2 and hence is omitted.

CHAPTER III

THE DISTRIBUTION OF THE SPHERICITY TEST CRITERION UNDER THE NULL HYPOTHESIS

1. INTRODUCTION

Let χ : $p \times 1$ be distributed $N(\chi, \chi)$ where χ and χ are both unknown. Let χ be the sum of product matrix of a sample of size χ . To test the hypothesis of sphericity, namely, $\chi = \sigma^2 \chi_p$, where $\chi > 0$ is unknown, against $\chi \neq \sigma^2 \chi_p$, Mauchly [20] obtained the likelihood ratio test criterion for $\chi = |\chi|/[(\mathrm{tr} \chi)/p]^p$. For $\chi = 2$, Mauchly [20], showed that the density of χ is

(1.1)
$$f(w) = \frac{1}{2}(n-1)w^{\frac{1}{2}}(n-3), \quad 0 \le w \le 1,$$

where n = N-1. The exact distribution in the null case was given by Consul in [5] for some special values of p and in the closed form in [6] in terms of Meijer's G-function, while its non-null distribution is obtained in Chapter II. However the forms of the distribution of W obtained by Consul and later by Mathai and Rathie [17] are not quite suited for computational purposes. No systematic attempt seems to have been made so far to compute the exact percentage points of W. The approximate percentage points for

p=3 have been obtained by Mauchly [20] by fitting a Pearson curve of the form

$$(1.2) y = k x^{p-1} (1-x)^{q-1}$$

and more recently by Davis [8] for p=3, 6, 10 and n=4(1)8, 10, 12, 15, 20 using a Cornish-Fisher inversion of Box's Series.

The object of the present paper is to develop methods similar to the ones used by Box [2] and U. S. Nair [23], [24], in order to obtain the exact distribution of W in series form and to compute exact percentage points of W. In particular, methods have been given which yield facility in computation for the cases when the sample size is small as well as when sample size is large.

Tabulations of percentage points for p = 2(1)10 for various significance levels are given and comparisons made with approximate values using (1) Box's series, [Anderson [1], page 263], (2)

Mauchly [20], (3) Tukey and Wilks [30], and (4) Davis [8].

2. EXACT DISTRIBUTION OF THE SPHERICITY CRITERION W.

For ease in computation, it is desirable to give methods which are particularly suited for extremely small values of N, the sample size, and those which are suited for larger values of N. Thus exact percentage points of W can then be computed for all values of N. In parts (a) and (b) of this section, we shall consider two methods which will achieve the former objective

while in part (c) we shall give a method which will achieve the latter objective. The first method which we shall now consider makes use of Mellin transform and Contour integration.

(a) Exact distribution of W through Contour Integration

It has been shown by Mauchly [20], that the h-th moment of the sphericity criterion W = $|\xi|/[(\text{tr }\xi)/p]^p$ is given by

(2.1)
$$E(W^h) = p^{ph} \prod_{i=1}^{p} \left[\frac{\Gamma\{\frac{1}{2}(N-i)+h\}}{\Gamma\{\frac{1}{2}(N-i)\}} \frac{\Gamma\{\frac{1}{2}p(N-1)\}}{\Gamma\{\frac{1}{2}p(N-1)+ph\}} \right].$$

Using Mellin's transform, the density of W is given by

(2.2)
$$f(w) = K(p,n) \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{w^{-h-1}p^{ph} \prod_{i=1}^{p} \Gamma\{\frac{1}{2}(N-i)+h\}}{\Gamma\{\frac{1}{2}pn+ph\}} dh,$$

where n = N-1 and K(p,n) =
$$\Gamma(\frac{1}{2} pn) / \prod_{i=1}^{p} \Gamma(N-i)/2$$
. Putting $\frac{1}{2}(N-p)+h=s$

in (2.2), we have

where

(2.4)
$$p(w) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (w/p^p)^{-s} \left[\prod_{i=1}^{p} \Gamma(s + \frac{p-i}{2}) / \Gamma p(s + \frac{p-1}{2}) \right] ds,$$
 and $c = \frac{1}{2} (N-p)$.

Special Cases. (i) p = 2. For p = 2, we have

(2.5)
$$p(w) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} [(w/4)^{-s} \Gamma(s) \Gamma(s + \frac{1}{2}) / \Gamma(2s+1)] ds.$$

Using the following duplicating formula for the gamma function

(2.6)
$$\Gamma(s)\Gamma(s + \frac{1}{2}) = (\pi)^{\frac{1}{2}} \Gamma(2s)/2^{2s-1},$$

in (2.5) we have

(2.7)
$$p(w) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (\pi)^{\frac{1}{2}} [w^{-s}/s] ds.$$

The pole of the integrand is at s=0 and the corresponding residue is then $(\pi)^{1/2}$. Hence from (2.3) we have for p=2, the density of W as in (1.1) obtained by Mauchly.

(ii) p = 3. In this case, we have from (2.4)

(2.8)
$$p(w) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (w/27)^{-s} \left[\Gamma(s+1) \Gamma(s+\frac{1}{2}) \Gamma(s) / \Gamma(3s+3) \right] ds.$$

Using the duplication formula (2.6), we have

(2.9)
$$p(w) = 2(\pi)^{1/2} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (4w/27)^{-s} [\Gamma(2s)\Gamma(s+1)/\Gamma(3s+3)] ds.$$

We shall again evaluate the integral in (2.9) by Contour integration.

The poles of the integrand are at the points

$$(2.10) s = -m/2, m = 0, -1, -2, ...,$$

and the residue at these points can be found by putting $s = t - \frac{1}{2}m$ in the integrand and taking the residue of the integrand at t = 0.

Thus substituting $s = t - \frac{m}{2}$, the integrand in (2.9) becomes

$$(2.11) \qquad (4w/27) \qquad ^{-t+\frac{m}{2}} \Gamma(2t-m)\Gamma(t+1-\frac{m}{2})/\Gamma\{3t-\frac{3}{2}m+3\} .$$

To evaluate the integral we need to consider separately the cases when (i) m is even and (ii) m is odd.

First let m be even and say m = 2r. Then the integrand reduces to

(2.12)
$$(4w/27)^{-t+r}\Gamma(2t-2r)\Gamma(t-r+1)/\Gamma(3t-3r+3)$$
,

which by expanding the gamma functions becomes

(2.13)
$$\frac{3}{2}(4w/27)^{-t+r} = \frac{\Gamma(2t+1)\Gamma(t+1)[\Pi(3t-i)]}{2r \Gamma(3t+1)[\Pi(2t-i)\Pi(t-i)]},$$

$$i=1 i=1$$

valid for r > 1 and the cases when r = 0 and r = 1 have to be considered separately. The expression in (2.13) has a simple pole of first order at t = 0 and its residue at this point is clearly given by

(2.14)
$$\frac{3}{2}(4w/27)^{r} (3r-3)!/(2r)!(r-1)!.$$

For r = 0, the integrand reduces to

$$(4w/27)^{-t}\Gamma(2t)\Gamma(t+1)/\Gamma(3t+3)$$
,

which can be written as

(2.15)
$$(4w/27)^{-t}\Gamma(2t+1)\Gamma(t+1)/(2t)\Gamma(3t+3)$$

and has a simple pole at t = 0, the residue at this point being $\frac{1}{4}$.

For r = 1, the integrand after a little simplification becomes,

(2.16)
$$\frac{3}{2}(4w/27)^{-t+1}\Gamma(2t+1)\Gamma(t+1)/(t)(2t-1)(t-1)\Gamma(3t+1)$$

and this has a simple pole at t = 0, the corresponding residue being equal to $\frac{3}{2}(4w/27)$.

Now if m is odd say equal to 2q+1, where q is an integer or zero, then as before, the integrand (2.11) can be easily written down as in (2.13) in the form

$$(2.17) \quad (4w/27)^{-t+q+\frac{1}{2}} \frac{\Gamma(2t+1)\Gamma(t+\frac{1}{2}) \prod_{i=1}^{3q-1} (3t+\frac{1}{2}-i)}{2q+1 \qquad q \qquad (2t)[\prod_{i=1}^{q} (2t-i) \prod_{i=1}^{q} (t+\frac{1}{2}-i)]\Gamma(3t+\frac{1}{2})},$$

which clearly holds for q > 0; the case q = 0 has to be treated separately.

For q > 0, (2.17) has a pole of first order at t = 0 and its residue at this point is

$$(4w/27)^{q+\frac{1}{2}} \overset{3q-1}{\underset{i=1}{\text{if}}} (\frac{1}{2} - i)/[2 \overset{2q+1}{\underset{i=1}{\text{if}}} (-i) \overset{q}{\underset{i=1}{\text{if}}} (\frac{1}{2} - i)],$$

which can be written in an alternate form as

(2.18)
$$(4w/27)^{q+\frac{1}{2}} \Gamma(3q-\frac{1}{2})/2\Gamma(2q+2)\Gamma(q+\frac{1}{2}) .$$

For q = 0, the integrand reduces after a little simplification to

(2.19)
$$(4w/27)^{-t+\frac{1}{2}} \Gamma(2t+1)\Gamma(t+\frac{1}{2})/(2t)(2t-1)\Gamma(3t+\frac{3}{2}),$$

and this has a pole of first order at t=0, the corresponding residue being equal to $-(4w/27)^{1/2}$. Hence finally using Cauchy's Residue Theorem, the integral in (2.8) is seen to be equal to

(2.20)
$$p(w) = 2(\pi)^{1/2} \left[\frac{1}{4} - (4w/27)^{1/2} + \sum_{r=1}^{\infty} \frac{\frac{3}{2}(4w/27)^{r} \Gamma(3r-2)}{\Gamma(2r+1)\Gamma(r)}\right]$$

$$+\sum_{q=1}^{\infty} \frac{(4w/27)^{\frac{1}{2}(2q+1)}}{2\Gamma(2q+2)\Gamma(q+\frac{1}{2})}.$$

From (2.3), the density of W for p = 3 is therefore

(2.21)
$$f(w) = [\Gamma\{3(N-1)/2\}/\prod_{i=1}^{3} \Gamma(\frac{N-i}{2})]w^{\frac{1}{2}(N-3)-1} p(w)/3^{\frac{3}{2}(N-3)}$$

where p(w) is as in (2.20). John [13] has recently given an explicit form for the density of W for p=3 but not in a very convenient form for use.

(iii) $p \ge 4$. The cases for values of $p \ge 4$ can be treated in almost a similar way but the method involves psi functions and their derivatives and makes use of the following lemma due to Nair [23].

Lemma 2.1. Let (a_i) be a sequence of numbers, finite or infinite and let

(2.22)
$$F(x;t;a_2,a_3,...) \equiv e^{xt+a_2 \frac{t^2}{2!} + a_3 \frac{t^3}{3!} + ... \infty}$$

Then the nth derivative of $F(x;t;a_2,a_3,...)$ at t = 0 is

$$(2.23) \ D_{n}(x,a) = \begin{vmatrix} x & -1 & 0 & 0 & 0 & \dots & 0 \\ a_{2} & x & -1 & 0 & \dots & \dots & 0 \\ a_{3} & 2a_{2} & x & -1 & \dots & \dots & 0 \\ a_{4} & 3a_{3} & 3a_{2} & x & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n} & \binom{n-1}{1}a_{n-1} & \binom{n-1}{2}a_{n-2} & \dots & \dots & x \end{vmatrix}$$

Case (1). p odd. First let p = 2k+1, (k > 1) be odd and let us denote the integrand in (2.4) by G(s). Then it is easy to see that

(2.24)
$$G(s) = A(W_1)^{-s}\Gamma(s+k)\Gamma(2s) \prod_{i=1}^{k-1} \Gamma(2s+2i)/\Gamma\{p(s+k)\},$$

where

(2.25)
$$A = (\sqrt{\pi})^k 2^{-k(k-2)} \text{ and } W_1 = 2^{2k} w/p^p.$$

The poles of G(s) are at the points given in (2.10) and the residue at these points is equal to the residue of $G(t-\frac{m}{2})$ at t=0. Now

(2.26)
$$G(t-\frac{m}{2}) = A(W_1)^{-t+\frac{m}{2}} \Gamma(t-\frac{m}{2}+k) \Gamma(2t-m) \prod_{i=1}^{k-1} \Gamma(2t-m+2i)$$

$$[\Gamma\{p(t-\frac{m}{2}) + kp\}]^{-1}$$
.

We have to consider the cases when (1) m is even and (2) m is odd. First let m = 2r be even. Then we have

(2.27)
$$G(t-r) = ApW_1^r \cdot C(t)/(2t)^k$$

where

(2.28)
$$C(t) = \frac{(W_1)^{-t} \Gamma(t+1) [\Gamma(2t+1)]^k \prod_{\substack{i=1 \ j=1 \ 1}}^{p(r-k)} (j-pt) / \prod_{\substack{j=1 \ i=1 \ j=1}}^{2r} (j-2t)}{\prod_{\substack{i=1 \ i=1 \ j=1}}^{r-k} (j-t) \Gamma(pt+1) \prod_{\substack{i=1 \ j=1}}^{r-k} (j-2t)}$$

Thus for r > k, the pole of G(t-r) is of order k and the residue R_r at t = 0 is

(2.29)
$$R_{r} = [Ap W_{1}^{r} 2^{-k}/\Gamma(k)] \left(\frac{d}{dr}\right)^{k-1} t=0 e^{\log C(t)}.$$

Using the formula (Erdélyi; [10])

(2.30)
$$\log \Gamma(x+a) = \log \Gamma(a) + x \psi(a) + \frac{x^2}{2!} \psi_1(a) + \frac{x^3}{3!} \psi_2(a) + \dots$$

where

(2.31)
$$\psi(a) = \frac{d}{dx} \log \Gamma(x) \Big|_{x=a}$$
 and $\psi_j(q) = \left(\frac{d}{dx}\right)^j \psi(x) \Big|_{x=a}$,

log C(t) can be written as

(2.32)
$$\log C(t) = b_0 + b_1 t + b_2 \frac{t^2}{2!} + \dots$$

where

(2.33)
$$b_0 = \log [p(r-k)!/\{(r-k)! \prod_{i=0}^{k-1} (2r-2i)!\}],$$

$$b_1 = (1+2k-p)\psi(1) + p \sum_{j=1}^{p(r-k)} (1/j) - \sum_{j=1}^{r-k} (1/j)$$

$$-2 \sum_{i=0}^{k-1} \sum_{j=1}^{2r-2i} (1/j) - \log W_1$$

and

$$b_{q} = (1+k2^{q}-p^{q})\psi_{q-1}(1)+\Gamma(q)\left[\sum_{j=1}^{p(r-k)}(p/j)^{q}-\sum_{i=0}^{k-1}\sum_{j=1}^{2r-2i}(2/j)^{q}\right]$$
$$-\sum_{j=1}^{r-k}(1/j)^{q}, q = 2,3,...$$

Using (2.32) in (2.29) and then applying lemma 2.1, we have

(2.34)
$$R_{r} = \frac{Ap(W_{1}^{r})[p(r-k)!]}{2^{k}\Gamma(k)(r-k)!} D_{k-1}(W_{1},b), \quad (r > k)$$

$$= \frac{Ap(W_{1}^{r})[p(r-k)!]}{2^{k}\Gamma(k)(r-k)!} D_{k-1}(W_{1},b), \quad (r > k)$$

where

$$(2.35) \quad D_{k-1}(W_1,b) = \begin{cases} b_1 & -1 & 0 & 0 & 0 & 0 \\ b_2 & b_1 & -1 & 0 & \dots & 0 \\ b_3 & 2b_2 & b_1 & -1 & \dots & 0 \\ b_4 & 3b_3 & 3b_2 & b_1 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{k-1} & \binom{k-2}{1}b_{k-2} & \binom{k-2}{2}b_{k-3} & \dots & \dots & b_1 \end{cases}$$

and b_q 's are as in (2.33).

If r = 0, then it can be shown that G(t) has a simple pole at t = 0 and the residue R at this point is

(2.36)
$$R = A\Gamma(k) \prod_{i=1}^{k-1} \Gamma(2i)/\{2\Gamma(kp)\}.$$

For $r = \ell$ where $\ell = 1, 2, ..., k-1$, we have from (2.27)

$$(2.37) \quad G(t-\ell) = \frac{AW_1^{-t+\ell} \Gamma\{t+(k-\ell)\} [\Gamma(2t+1)]^{(\ell+1)} \prod_{\substack{i=\ell+1 \\ \ell-1 \ 2\ell \ \\ (2t)}} \frac{1}{\ell} \frac{2\ell}{(2t-j) \Gamma\{pt+p(k-\ell)\} \prod_{\substack{i=1 \ i=1}}} \prod_{\substack{j=1}} (2t-j) \prod_{\substack{i=1 \ j=1}} \frac{1}{\ell} \frac{1}{\ell}$$

where Π (·) is interpreted as unity if n > m.

Thus for $r = \ell$, $\ell = 1, 2, ..., k-1$, $G(t-\ell)$ has a pole of order $(\ell+1)$ at t = 0 and its residue B_{ℓ} , on using the lemma and proceeding as above is easily seen to be

(2.38)
$$B_{\ell} = \frac{A(W_{1})^{\ell} \Gamma(k-\ell) \prod_{i=\ell+1}^{k-1} \Gamma(2i-2\ell)}{2^{\ell+1} \Gamma(\ell+1) \Gamma\{p(k-\ell)\} [\prod_{i=0}^{\ell} (2\ell-2i)!]} D_{\ell}(W_{1},c), \ell = 1,2,...,k-1,$$

where $D_{\ell}(W_1,c)$ is equal to the determinant on the right hand side of (2.23) with x replaced by c_1 , n by ℓ and a_q 's by c_q 's, $q = 2,3,...,\ell$. The coefficients c_q 's are given by

(2.39)
$$c_1 = \psi(k-\ell)+2[(\ell+1)\psi(1)+\sum_{i=\ell+1}^{k-1}\psi(2i-2\ell)-\sum_{i=0}^{\ell-1}\sum_{j=1}^{2\ell-2i}(1/j)]$$

$$-p\psi(pk-pl)-log W_1$$

and

$$c_{q} = \psi_{q-1}(k-\ell) + 2^{q} [(\ell+1)\psi_{q-1}(1) + \sum_{i=\ell+1}^{k-1} \psi_{q-1}(2i-2\ell) - \sum_{i=0}^{\ell-1} \sum_{j=1}^{2\ell-2i} (\Gamma(q)/j^{q})] - p^{q} \psi_{q-1}(pk-p\ell), q = 2,3,...,$$

where $\sum_{i=n}^{m} (\cdot)$ is interpreted as zero if n > m.

Similarly for r = k, G(t-k) has a pole of order k at t = 0 and the residue R_k is

(2.40)
$$R_{k} = \frac{Ap(W_{1}/2)^{k}}{r(k) \prod_{i=0}^{K-1} (2k-2i)!} D_{k-1}(W_{1},d)$$

where D_{k-1} (W₁,d) can be obtained from (2.35) by replacing b_q 's by d_q 's where d_q 's are given by

$$d_1 = (1+2k-p)\psi(1) - \log W_1 - \sum_{i=0}^{k-1} \sum_{j=1}^{2k+2i} (2/j)$$
 and

(2.41)

$$d_{q} = (1+2^{q}k-p^{q})\psi_{q-1}(1) - \sum_{i=0}^{k-1} \sum_{j=1}^{2k+2i} (2^{q}\Gamma(q)/j^{q}), q=2,3,\dots$$

Now let m=2q+1 be odd. Then it can be easily checked that for q>0, $G(t-q-\frac{1}{2})$ has a pole of order k at t=0 and its residue G_q is given by

(2.42)
$$G_{q} = \frac{(-1)^{k}AW_{1}^{q+\frac{1}{2}\Gamma(k-\frac{1}{2})}\prod_{j=1}^{pq}(j+\frac{p}{2}-pk)}{2^{k}\Gamma(k)\Gamma(kp-\frac{p}{2})\prod_{j=1}^{q}(j-k+\frac{1}{2})}D_{k-1}(W_{1},f), \quad q > 0,$$

where $D_{k-1}(W_1,f)$ is the determinant equal to the right hand side of (2.35) with b_n 's replaced by f_n 's where f_n 's are given by

$$f_{1} = -\log W_{1} + \psi(k - \frac{1}{2}) + 2k\psi(1) + \sum_{j=1}^{pq} \{p/(j + \frac{p}{2} - pk)\}$$

$$-p\psi(kp - \frac{p}{2}) - \sum_{\ell=0}^{k-1} \sum_{j=1}^{2q-2i+1} (2/j), \text{ and}$$

(2.43)

$$f_{n} = \psi_{n-1}(k-\frac{1}{2}) + 2k\psi_{n-1}(1) - p^{n}\psi_{n-1}(pk-\frac{k}{2}) + \sum_{j=1}^{pq} [p^{n}\Gamma(n)/(j+\frac{p}{2} - pk)^{n}]$$

$$-\sum_{i=0}^{k-1} \sum_{j=1}^{2q-2i+1} (\frac{2^{n}\Gamma(n)}{j^{n}}), \quad n = 2,3,\dots.$$

Similarly if q = 0, then $G(t-\frac{1}{2})$ has a simple pole at t = 0 and its residue B is

(2.44)
$$B = -A(W_1)^{1/2} \Gamma(k-\frac{1}{2}) \prod_{i=1}^{k-1} (2i-1)! / \{2\Gamma p(k-\frac{1}{2})\}.$$

Thus if p is odd, we have from (2.3) and Cauchy's Residue theorem that the density of W is

(2.45)
$$f(w) = k(p,n)p^{-\frac{1}{2}} p(N-p) \frac{1}{2} (N-p) - 1 \sum_{r=k+1}^{\infty} R_r + R$$
$$+ \sum_{k=1}^{k-1} B_k + R_k + \sum_{q=1}^{\infty} G_q + B].$$

Case (2). p is even. Let p = 2k(k > 1) be even. Then the integrand H(s) in (2.4) can be written as

(2.46)
$$H(s) = A(W_1)^{-s} \Gamma(2s) \prod_{i=1}^{k-1} \Gamma(2s+2i) / \Gamma(ps+pk-k)$$
,

where A and W₁ are as in (2.25). The poles of H(s) are at the points given in (2.10) and the residue of H(s) at these points is equal to the residue of H(t- $\frac{m}{2}$) at t = 0. Now

(2.47)
$$H(t-\frac{m}{2}) = A(W_1)^{-t+\frac{m}{2}} \frac{k-1}{\Gamma(2t-m)} \prod_{i=1}^{m} \Gamma(2t-m+2i)/\Gamma\{pt-\frac{pm}{2}+k(p-1)\}.$$

We have to consider separately the cases when m is even and m is odd. When m = 2r, then proceeding as before it is seen that for $r \ge k$, H(t-r) has a pole of order k-1 and the residue D_r at t = 0 is given by

(2.48)
$$D_{\mathbf{r}} = \frac{(-1)^{k(p-1)} A_{\mathbf{p}}(W_{1})^{\mathbf{r}} \Gamma\{p\mathbf{r}-k(p-1)+1\}}{k-1} V_{k-2}(W_{1},g), \ \mathbf{r} \geq k,$$

$$\mathbf{r} = \frac{(-1)^{k(p-1)} A_{\mathbf{p}}(W_{1})^{\mathbf{r}} \Gamma\{p\mathbf{r}-k(p-1)+1\}}{2^{k} \Gamma(k-1) \prod_{i=0}^{m} (2\mathbf{r}-2i)!} V_{k-2}(W_{1},g), \ \mathbf{r} \geq k,$$

when the determinant $V_{k-2}(W_1,g)$ is similar to the determinant on the right hand side of (2.35) having (k-2) rows and the elements b_q 's being replaced by g_q 's where g_q 's are given by

$$g_1 = (2k-p)\psi(1)-p$$

$$\sum_{j=1}^{pr-k(p-1)} (1/j)-\sum_{r=0}^{k-1} \sum_{j=1}^{2r-2i} (2/j)-\log W_1$$

(2.49)
$$g_{q} = (k2^{q} - p^{q}) \psi_{q-1}(1) + \Gamma(q) \left[\sum_{j=1}^{pr-k} (p-j)^{q} - \sum_{i=0}^{k-1} \sum_{j=1}^{2r-2i} (2/j)^{q} \right],$$

$$q = 2, 3, \dots, .$$

For r = 0, H(t) has a simple pole at t = 0 and the residue D at this point is

(2.50)
$$D = A \prod_{i=1}^{k-1} \Gamma(2i)/2\Gamma k(p-1) .$$

For $r = \ell$ where $\ell = 1, 2, ..., k-1$, $H(t-\ell)$ has a pole of order $\ell+1$ at t = 0 and the residue E_{ℓ} is given by

(2.51)
$$E_{\ell} = \frac{A(W_1)^{\ell} \prod_{\substack{i=\ell+1 \\ 2^{\ell+1} \Gamma(\ell+1) \Gamma\{p(k-\ell)-k\}}} V_{\ell}(W_1,h)}{2^{\ell+1} \Gamma(\ell+1) \Gamma\{p(k-\ell)-k\}} V_{\ell}(W_1,h)$$

where $V_{\ell}(W_1,h)$ is the determinant of ℓ th order similar to that in (2.35) with b_q 's being replaced by h_q 's where h_q 's are given by

(2.52)
$$h_{1} = -\log W_{1} + 2[(\ell+1)\psi(1) + \sum_{i=\ell+1}^{k-1} \psi(2i-2\ell) - \sum_{i=0}^{\ell-1} \sum_{j=1}^{2\ell-2i} (1/j)]$$

$$-p\psi(pk-p\ell-k)$$

and

$$h_{q} = 2^{q} [(\ell+1)\psi_{q-1}(1) \sum_{i=\ell+1}^{k-1} \psi_{q}(2i-2\ell) - \sum_{i=0}^{\ell-1} \sum_{j=1}^{2\ell-2i} (\Gamma(q)/j^{q})]$$

$$- p^{q} \psi_{q-1}(pk-p\ell-k), q = 2,3,...$$

Now let m = 2q + 1 be odd. Then for $q \ge k-1$, $H(t-q-\frac{1}{2})$ has a pole of order (k-1) at t = 0 and the residue F_q is

(2.53)
$$F_{q} = \frac{Ap(W_{1})^{q+\frac{1}{2}}[p(q-k+1)!]}{2^{k}\Gamma(k-1)\sum_{i=0}^{k-1} (2q+1-2i)!} V_{k-2}(W_{1},K), q \ge k-1,$$

where $V_{k-2}(W_1,K)$ is the determinant of order k-2 similar to that in (2.35) with the elements given by

(2.54)
$$k_1 = -\log W_1 + (2k-p)\psi(1) + \sum_{j=1}^{p(q-k+1)} (p.j) - \sum_{j=0}^{k-1} \sum_{j=1}^{2q+1-2i} (2/j),$$

and

$$k_{n} = (k2^{n} - p^{n}) \psi_{n-1}(1) + \Gamma(n) \left[\sum_{j=1}^{p(q-k+1)} (p/j)^{n} - \sum_{i=0}^{k-1} \sum_{j=1}^{2q+1-2i} (2/j)^{n} \right],$$

$$n = 2, 3, ...$$

where

 $\sum_{j=n}^{m} (\cdot) \text{ is interpreted as zero if } m < n.$

For q = l, l = 1, 2, ..., k-2, $H(t-l-\frac{1}{2})$ has a pole of order (l+1) at t = 0 and the corresponding residue G_{l} is

(2.55)
$$G_{\ell} = \frac{A(W_{1}) \prod_{i=\ell+1}^{\ell+1} \Gamma(2i-1+2\ell)}{2^{\ell+1}\Gamma(\ell+1) \prod_{i=0}^{\ell} (2\ell+1-2i)! \Gamma_{p}(k-1-\ell)} V_{\ell}(W_{1}, m),$$

where as before $V_{\ell}(W,m)$ is the determinant of order ℓ similar to the one in (2.35), with elements given by

(2.56)
$$m_{1} = -\log W_{1} + 2(\ell+1)\psi(1) + 2 \sum_{i=\ell+1}^{k-1} \psi(2i-1-2\ell)$$

$$- \sum_{i=0}^{\ell} \sum_{j=1}^{2\ell+1-2i} (2/j) - p\psi(pk-p-p\ell)$$

and

$$\begin{split} m_n &= 2^n [(\ell+1)\psi_{n-1}(1) + \sum_{i=\ell+1}^{k-1} \psi_{n-1}(2i-1-2\ell) - \sum_{i=0}^{\ell} \sum_{j=1}^{2\ell+1-2i} (\Gamma(n)/j^n 0)] \\ &- p^n \psi_{n-1}(pk-p-p\ell) \quad n = 2, 3, \dots \end{split}$$

Finally for q = 0, $H(t-\frac{1}{2})$ has a simple pole at t = 0 and the residue C is

(2.57)
$$C = -A(W_1)^{\frac{1}{2}} \prod_{i=1}^{k-1} \Gamma(2i-1)/2\Gamma p(k-1).$$

Thus when p is even, the density of W is given by

(2.58)
$$f(w) = k(p,n)p^{-\frac{1}{2}} p(N-p) \frac{1}{2} (N-p) - 1$$

$$+ \sum_{r=k}^{\infty} D_r + \sum_{\ell=1}^{k-1} E_{\ell} + \sum_{q=k-1}^{\infty} F_q + \sum_{\ell=1}^{k-2} G_{\ell}$$
.

(b) Distribution of W as a gamma series

We shall now obtain the distribution of W in gamma series form. For this let

$$(2.59) L = W^{\frac{n}{2}}.$$

Then from (2.1) we have,

(2.60)
$$E(L^{h}) = K(p,n)p^{\frac{nph}{2}} \prod_{\alpha=1}^{p} \Gamma\{\frac{n}{2}(1+h) + \frac{1-\alpha}{2}\}/\Gamma\{\frac{1}{2} pn(1+h)\}.$$

Now let λ = -2q log L where q is an adjustable constant which can be chosen so as to govern the rate of convergence of the resulting gamma series and 0 < q < ∞ . If ϕ (t) is the characteristic function λ then

$$\phi(t) = K(p,n) \cdot C(t)$$

where

(2.62)
$$C(t) = p^{-np \text{ it } q} \prod_{\alpha=1}^{p} \Gamma\{\frac{n}{2}(1-2q \text{ it}) + \frac{1-\alpha}{2}\} / \Gamma\frac{pn}{2}(1-2q \text{ it})$$

and therefore

(2.63)
$$\log \phi(t) = \log\{K(p,n)\}-np \text{ it } q \log p - \log r \frac{pn}{2}(1-2q \text{ it})$$

 $+ \sum_{\alpha=1}^{p} \log r\{\frac{n}{2}(1-2q \text{ it}) + \frac{1-\alpha}{2}\}$.

The expansion of log $\phi(t)$ will be based on the following expansion for the gamma function:

(2.64)
$$\log \Gamma(x+h) = \frac{1}{2} \log(2\pi) + (x+h-\frac{1}{2}) \log x-x-\sum_{r=1}^{m} \frac{(-1)^r B_{r+1}(h)}{r(r+1)x^r}$$

$$+ R_{m+1}(x)$$
,

where $R_m(x)$ is the remainder such that $|R_m(x)| \leq \theta/|x^m|$, θ a constant independent of x, and $B_r(h)$ the Bernoulli polynomial of degree r and order one defined by

$$\frac{\tau e^{h\tau}}{e^{\tau}-1} = \sum_{r=0}^{\infty} \frac{\tau^r}{r!} B_r(h) .$$

Explicitly the polynomials are

$$B_0(h) = 1$$
, $B_1(h) = h - \frac{1}{2}$, $B_2(h) = h^2 - h + \frac{1}{6}$

and in general

$$B_{r}(h) = h^{r} - \frac{1}{2} r h^{r-1} + {}_{r}C_{2} B_{1} h^{r-2} - {}_{r}C_{4} B_{2}h^{r-4} + \dots$$

(last term is x or a constant)

$$= h^{r} - \frac{1}{2} r h^{r-1} + \sum_{m=1}^{\infty} (-1)^{m-1} c_{2m} B_{m} h^{r-2m}.$$

where $C_{n m} = n!/(n-m)!m!$, B_{m} are the Bernoulli numbers and have been tabulated extensively. Using (2.64) we obtain

(2.65)
$$\log \phi(t) = \log \{K(p,n)\} + (\frac{p-1}{2}) \log (2\pi)$$

 $- (\frac{p^2 + p - 2}{4}) \log \{n(1 - 2q \text{ it})/2\}$
 $- (\frac{pn - 1}{2}) \log p + \sum_{r=1}^{m} (Q_r/n^r) (\frac{1 - 2q \text{ it}}{2})^{-r}$
 $+ R_{m+1}^{\dagger}(n,t)$,

where the coefficients $Q_{\mathbf{r}}^{}$'s are given by

$$Q_{r} = (-1)^{r-1} \left[\left(\sum_{\alpha=1}^{p} B_{r+1} \left(\frac{1-\alpha}{2} \right) \right) - B_{r+1} (0)/p^{r} \right]/r(r+1)$$
.

The characteristic function of L can then be obtained from (2.65) as

(2.66)
$$\phi(t) = K_1(p,n) \left[n(1-2q it)/2 \right]^{-v} \left(\sum_{j=0}^{\infty} (B_j/n^j) \left(\frac{1-2q it}{2} \right)^{-j} \right) + R_{m+1}^{"}(n,t),$$

where

$$K_1(p,n) = K(p,n)(2\pi)^{(\frac{p-1}{2})} p^{-(pn-1)/2}$$
,
 $v = (p^2 + p-2)/4$,

and the coefficients B_{j} 's which we need in our computations are listed below:

$$B_{0} = 1, \quad B_{1} = Q_{1}, \quad B_{2} = Q_{1}^{2}/2 + Q_{2}, \\ B_{3} = Q_{1}Q_{2}+Q_{3}+Q_{1}^{3}/6, , \\ B_{4} = Q_{2}Q_{1}^{2}/2+Q_{1}^{4}/24+Q_{4}+Q_{3}Q_{1}+Q_{2}^{2}/2, \\ B_{5} = Q_{1}^{3}Q_{2}/6+Q_{2}^{2}Q_{1}/2+Q_{1}^{5}/120+Q_{3}Q_{1}^{2}/2+Q_{5}+Q_{3}Q_{2}+Q_{4}Q_{1}, \\ B_{6} = Q_{1}Q_{2}Q_{3}+Q_{1}^{6}/720+Q_{4}Q_{1}^{2}/2+Q_{1}^{4}Q_{2}/24+Q_{3}^{2}/2+Q_{1}^{2}Q_{2}^{2}/4+Q_{4}Q_{2}, \\ (2.67) \qquad \qquad +Q_{1}^{3}Q_{3}/6+Q_{5}Q_{1}+Q_{2}^{3}/6+Q_{6}, \\ B_{7} = Q_{1}^{4}Q_{3}/24+Q_{3}^{2}Q_{1}/2+Q_{4}Q_{2}Q_{1}+Q_{1}Q_{2}^{3}/6+Q_{1}^{2}Q_{2}Q_{3}/2+Q_{5}Q_{1}^{2}/2 \\ \qquad \qquad +Q_{1}^{3}Q_{4}/6+Q_{1}^{7}/5040+Q_{5}Q_{2}+Q_{2}^{2}Q_{3}/2+Q_{1}^{3}Q_{2}^{2}/12+Q_{7}, \\ \qquad \qquad \qquad +Q_{6}Q_{1}+Q_{1}^{5}Q_{2}/120+Q_{4}Q_{3}, , \\ B_{8} = Q_{8}+3Q_{3}B_{5}/8+Q_{6}Q_{2}/4+Q_{1}B_{7}/8+Q_{5}Q_{1}Q_{2}/4+Q_{4}B_{4}/2+Q_{4}Q_{2}^{2}/4 \\ \qquad \qquad +5Q_{5}B_{3}/8+Q_{2}Q_{3}^{2}/8+3Q_{6}B_{2}/4+Q_{4}Q_{2}Q_{1}^{2}/8+Q_{1}Q_{2}^{2}Q_{3}/4+Q_{4}^{4}/24 \\ \qquad \qquad +Q_{1}^{3}Q_{3}Q_{2}/24+Q_{1}^{2}Q_{3}^{2}/16+Q_{1}^{4}Q_{2}^{2}/96+7Q_{7}Q_{1}/8+Q_{1}^{6}/720, \\ B_{9} = Q_{9}+7Q_{7}B_{2}/9+Q_{1}Q_{2}Q_{3}^{2}/3+Q_{1}^{6}Q_{3}/2160+24Q_{1}^{2}Q_{3}/6+8Q_{8}Q_{1}/9 \\ \qquad \qquad +2Q_{6}B_{3}/3+Q_{1}^{4}Q_{2}Q_{3}/72+Q_{3}^{3}/6+5Q_{5}B_{4}/9+Q_{1}^{2}Q_{2}^{2}Q_{3}/12 \\ \qquad \qquad +Q_{4}Q_{2}Q_{3}/3+Q_{1}^{3}Q_{2}^{2}/18+4Q_{4}B_{5}/9+Q_{5}Q_{1}Q_{3}/3+Q_{1}B_{8}/9 \\ \qquad \qquad +Q_{2}^{3}Q_{3}/18+2Q_{2}B_{7}/9+Q_{6}Q_{3}/3, \\ \text{and} \\ \text{and} \\ \\ \text{and} \\ \\$$

and

$$\begin{split} \textbf{B}_{10} &= \textbf{Q}_{10} + 7\textbf{Q}_7\textbf{Q}_1\textbf{Q}_2/10 + 3\textbf{Q}_6\textbf{B}_4/5 + 7\textbf{Q}_7\textbf{Q}_3/10 + 4\textbf{Q}_8\textbf{B}_2/5 + 9\textbf{Q}_9\textbf{Q}_1/10 \\ &+ 7\textbf{Q}_7\textbf{Q}_1^3/60 + 3\textbf{Q}_3\textbf{B}_7/10 + \textbf{Q}_5\textbf{Q}_1^3\textbf{Q}_2/12 + \textbf{Q}_2^2\textbf{Q}_5\textbf{Q}_1/4 + \textbf{Q}_1^5\textbf{Q}_5/240 \\ &+ \textbf{Q}_2\textbf{B}_8/5 + \textbf{Q}_3\textbf{Q}_1^2\textbf{Q}_5/4 + \textbf{Q}_1\textbf{B}_9/10 + \textbf{Q}_5^2/2 + \textbf{Q}_1\textbf{Q}_4\textbf{Q}_5/2 + \textbf{Q}_2\textbf{Q}_3\textbf{Q}_5/2 \enspace . \end{split}$$

The rest of the coefficients are given in appendix A.

(c) Distribution of W as a Beta Series

In the sequel we shall need the following theorem, restated from Nair [24].

Theorem 2.1. Let

$$\phi(t) = \int x^t p(x) dx$$

be the moment function of a random variable x with distribution law p(x). If

$$\phi(t) = 0(t^{-k})$$

with real part of t tending to ∞ , then $\phi(t)$ can be expanded as a factorial series of the form

$$\phi(t) = \sum_{n=0}^{\infty} a_n \Gamma(t+a)/\Gamma(t+k+n+a)$$

a being an arbitrary non-negative constant.

We shall now obtain the distribution of W. Putting $\frac{1}{2}(N-\lambda)+h=s$ in (2.2), where λ is an adjustable constant which can be chosen to govern the rate of convergence, we have

(2.72)
$$f(w) = k(p,N,w,\lambda) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (w/p^p)^{-s} \frac{\prod_{i=1}^{p} \Gamma(s+\frac{\lambda-i}{2})}{\Gamma p(s+\frac{\lambda-1}{2})} ds,$$

where

(2.73)
$$k(p,N,w,\lambda) = \frac{\Gamma\{\frac{1}{2} p(n-1)\}}{\prod\limits_{i=1}^{p} \Gamma(\frac{N-i}{2})} p^{-\frac{1}{2} p(N-\lambda)} \sqrt{\frac{1}{2}(N-\lambda)-1}$$

Using the expansion (2.64) to each gamma functions involved in the integrand of the right hand side of (2.72), we have after some simplification

(2.74)
$$\log \left[\prod_{i=1}^{p} \Gamma(s + \frac{\lambda - i}{2}) / \Gamma p(s + \frac{\lambda - 1}{2}) \right]$$

$$= \log \left[(2\pi)^{(p-1)/2} s^{-v} / p^{ps + (p\lambda - p - 1)/2} \right] + \sum_{r=1}^{\infty} (q_r / s^r)$$

where the coefficients q_i 's are given by

(2.75)
$$q_r = (-1)^{r-1} \left[\sum_{i=1}^{p} B_{r+1} \left(\frac{\lambda - i}{2} \right) - p^{-r} B_{r+1} \left(p(\lambda - 1)/2 \right) \right] / r(r+1)$$
and

$$v = (p^2 + p-2)/4$$

From (2.74), we deduce that

(2.76)
$$\prod_{i=1}^{p} \Gamma(s + \frac{\lambda - i}{2}) / \Gamma p(s + \frac{\lambda - 1}{2})$$

$$= (2\pi)^{(p-1)/2} s^{-v} \left[1 + \sum_{r=1}^{\infty} (B_r / s^r)\right] / p^{ps + (p\lambda - p - 1)/2},$$

where the coefficients B_r 's are as given in (2.67) with Q_r 's on the right hand side of (2.67) being replaced by q_r 's. Now from (2.72) and (2.76) we have the density of W as

(2.77)
$$f(w) = K_1(p,n)w^{\frac{1}{2}(N-\lambda)-1} \int_{c-i\infty}^{c+i\infty} w^{-s} s^{-v} [1 + \sum_{r=1}^{\infty} B_r/s^r] ds$$

where $K_1(p,n)$ is as given in (2.66).

The integral on the right hand side of (2.77) can be easily computed if v is an integer and its value is by Cauchy's theorem of Residues, the residue of $w^{-S}s^{-V}[1+\sum_{r=1}^{\infty}B_r/s^r]$ at s=0. This is easily seen to be equal to

(2.78)
$$\sum_{r=0}^{\infty} [(-\log w)^{v+r-1} B_r/\Gamma(v+r)], B_0 = 1$$

and thus from (2.77), the density of W is

(2.79)
$$f(w) = K_1(p,n) \sum_{r=0}^{\infty} (B_r) w^{\frac{1}{2}(N-\lambda)-1} (-\log w)^{v+r-1} / \Gamma(v+r) .$$

The probability that W is less than any value, say x_0 , is

(2.80)
$$P(W \le x_0) = K_1(p,n) \sum_{r=0}^{\infty} B_r \int_0^{x_0} w^{\frac{1}{2}(N-\lambda)-1} (-\log w)^{v+r-1} dw/\Gamma(v+r).$$

For computational purposes, we let

(2.81)
$$I_{v+r-1,u} = \int_{0}^{x_{0}} w^{u} (-\log w)^{v+r-1} dw/\Gamma(v+r),$$

where $u=\frac{1}{2}(N-\lambda)-1$. Then integrating by parts the R.H.S. of (2.81) it can be easily checked that the following extremely useful recurrence relation holds:

(2.82)
$$I_{v+r-1,u}(x_0) = \left[x_0^{(u+1)}(-\log x_0)^{v+r-1}/\Gamma(v+r) + I_{v+r-2,u}\right]/(u+1)$$

and
$$I_{0,u}(x_0) = x_0^{(u+1)}/(u+1)$$
.

With this notation, (2.80) can be rewritten as

(2.83)
$$P(W \le x_0) = K_1(p,n) \sum_{r=0}^{\infty} B_r I_{v+r-1,u}(x_0)$$

where $I_{v+r-1,u}(x_0)$ satisfies the recurrence relation (2.82). It is to be noted that (2.83) holds only if v is an integer. However if v is not an integer, we can appeal to Theorem 2.1, since in this case

(2.84)
$$\phi(s) = s^{-V} [1 + \sum_{r=1}^{\infty} B_r / s^r] = 0 (s^{-V}).$$

Thus according to Theorem 2.1, we can expend $\phi(s)$ in the factorial series as

(2.85)
$$s^{-v}[1+\sum_{r=1}^{\infty} B_r/s^r] = \sum_{i=0}^{\infty} R_i \Gamma(s)/\Gamma(s+v+i)$$

where the coefficients R_i 's can be determined explicitly as is done below.

Using the formula (2.64) to each gamma function on the right hand side of (2.85) we have

(2.86)
$$\log \{\Gamma(s)/\Gamma(s+v+i)\} = [-(v+i)\log s] + \sum_{j=1}^{\infty} (C_{ij}/s^{j})$$

where the first few coefficients C_{ij} 's which we need for our computations are given below. Let $t_i = v + i$.

$$C_{i1} = -\frac{1}{2}(v+i)(v+i-1) = -t_{i}(t_{i}-1)/2$$

$$C_{i2} = (t_{i}^{3} - 3t_{i}^{2}/2 + t_{i}/2)/6$$

$$C_{i3} = -(t_{i}^{4} - 2t_{i}^{3} + t_{i}^{2})/12$$

$$C_{i4} = (t_{i}^{5} - 5t_{i}^{4}/2 + 5t_{i}^{3}/3 - t_{i}/6)/20$$

$$(2.87) \quad C_{i5} = -(t_{i}^{6} - 3t_{i}^{5} + 5t_{i}^{4}/2 - t_{i}^{2}/2)/30$$

$$C_{i6} = (t_{i}^{7} - 7t_{i}^{6}/2 + 7t_{i}^{5}/2 - 7t_{i}^{3}/6 + t_{i}/6)/42$$

$$C_{i7} = -(t_{i}^{8} - 4t_{i}^{7} + 14t_{i}^{6}/3 - 7t_{i}^{4}/3 + 2t_{i}^{2}/3)/56$$

$$C_{i8} = (t_{i}^{9} - 9t_{i}^{8}/2 + 6t_{i}^{7} - 21t_{i}^{5}/5 + 2t_{i}^{3} - 3t_{i}/10)/72$$

$$C_{i9} = -(t_{i}^{10} - 5t_{i}^{9} + 15t_{i}^{8}/2 - 7t_{i}^{6} + 5t_{i}^{4} - 3t_{i}^{2}/2)/90$$

and

L

$$C_{i10} = (t_i^{11} - 11t_i^{10}/2 + 55t_i^{9}/6 - 11t_i^{7} + 11t_i^{5} - 11t_i^{3}/2 + 5t_i/6)/110.$$

The remaining coefficients are given in appendix A.

Thus from (2.86) we have

(2.88)
$$\Gamma(s)/\Gamma(s+v+i) = s^{-(v+i)} (1 + \sum_{j=1}^{\infty} (d_{ij}/s^{j})),$$

where the coefficients d_{ij} 's can be obtained in terms of C_{ij} from (2.67) where we replace B_j by d_{ij} and Q_j by C_{ij} . Using (2.88) on the right hand side of (2.85) we have finally

(2.89)
$$s^{-v} \left[1 + \sum_{r=1}^{\infty} (B_r/s^r)\right] = \sum_{i=0}^{\infty} R_i s^{-(v+i)} \left[1 + \sum_{j=1}^{\infty} d_{ij}/s^j\right] .$$

Equating the coefficients of s on both sides of (2.89), it is easy to check that we have the following explicit relations to determine the coefficients R_i 's.

$$\begin{array}{c} R_0 = 1 \,, \quad R_1 + R_0 d_{01} = B_1 \,\,, \\ R_2 \,+ \, R_1 d_{11} + R_0 d_{02} = B_2 \,\,, \\ R_3 \,+ \, R_2 d_{21} + R_1 d_{12} + R_0 d_{03} = B_3 \,\,, \\ R_4 \,+ \, R_3 d_{31} + R_2 d_{22} + R_1 d_{13} + R_0 d_{04} = B_4 \,\,, \\ R_5 \,+ \, R_4 d_4 1 + R_3 d_{32} + R_2 d_{23} + R_1 d_{14} + R_0 d_{05} = R_5 \,\,, \\ R_6 \,+ \, R_5 d_{51} + R_4 d_{42} + R_3 d_{33} + R_2 d_{24} + R_1 d_{15} + R_0 d_{06} = B_6 \,\,, \\ \end{array} \tag{2.90} \\ \begin{array}{c} R_7 \,+ \, R_6 d_{61} + R_5 d_{52} + R_4 d_{43} + R_3 d_{34} + R_2 d_{25} + R_1 d_{16} + R_0 d_{07} = B_7 \,\,, \\ R_8 \,+ \, R_7 d_{71} + R_6 d_{62} + R_5 d_{53} + R_4 d_{44} + R_3 d_{35} + R_2 d_{26} + R_1 d_{17} \\ & + R_0 d_{08} = B_8 \,\,, \\ R_9 \,+ \, R_8 d_{81} + R_7 d_{72} + R_6 d_{63} + R_5 d_{54} + R_4 d_{45} + R_3 d_{36} + R_2 d_{27} \\ & + R_1 d_{18} + R_0 d_{09} = B_9 \,\,, \\ \end{array}$$
 and
$$\begin{array}{c} R_{10} \,= \, R_9 d_{91} + R_8 d_{82} + R_7 d_{73} + R_6 d_{64} + R_5 d_{55} + R_4 d_{46} + R_3 d_{37} \\ & + R_2 d_{28} + R_1 d_{19} + R_0 d_{010} = B_{10} \,\,. \end{array}$$

Now using (2.85) in (2.77) and noting that term by term integration is valid since a factorial series is uniformly convergent in a half-plane (see Doetch [9]) we have the density of W in the case that v is not an integer in the form

(2.91)
$$f(w) = K_1(p,n) \sum_{i=0}^{\infty} R_i \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} w^{-s} [\Gamma(s)/\Gamma(s+v+i)] ds$$

and on using the well known integral (Titchmarsh [29])

(2.92)
$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} \{ \Gamma(s) / \Gamma(s+v) \} ds = (1-x)^{V-1} / \Gamma(v) \quad 0 \le x \le 1$$

$$c > 0$$

the exact distribution of f(w) is in the form of a beta series given by

(2.93)
$$f(w) = K_1(p,n) \sum_{i=0}^{\infty} R_i w^{\frac{1}{2}(N-\lambda)-1} (1-w)^{V+i-1} / \Gamma(V+i) ,$$

where the coefficients R_{i} 's are as given in (2.90).

The distribution of W is then given by

(2.94)
$$P(W \le x_0) = K_1(p,n) \sum_{i=0}^{\infty} R_i I_{x_0}(\frac{1}{2}(N-\lambda), v + i)/\Gamma(v+i),$$

where $I_{x_0}(p,q)$ is the incomplete beta function $\int_0^{x_0} x^{p-1} (1-x)^{q-1} dx$.

3. APPROXIMATIONS TO THE DISTRIBUTIONS OF W

This section is devoted to approximations.

Approximation using the method of Wilks and Tukey.

Let $(a)_h = a(a+1)(a+2)...(a+h-1)$. Then we have

$$\Gamma(a+h) = (a)_h \Gamma(a),$$

and
$$\Gamma(a+rh) = (a)_{rh}\Gamma(a) = \Gamma(a)_{rh}\frac{r}{\pi}\frac{(a+i-1)_{rh}}{r}h$$
,

where r is a positive integer. With these notations, (2.1) can be written as

(3.1)
$$E(W^{h}) = \prod_{i=1}^{p} (\frac{n}{2} + \frac{i-p}{2})_{h} / (\frac{n}{2} + \frac{i-1}{p})_{h}$$

and this can be put in the form (see eq. (6) of Wilks and Tukey [30])

(3.2)
$$E(W^{h}) = \prod_{i=1}^{p} (\frac{1}{x} - A_{i} + 1)_{h} / (\frac{1}{x} - B_{i} + 1)_{h}$$

where $x = \frac{2}{n}$, $A_i = 1 - \frac{i-p}{2}$ and $B_i = 1 - (i-1)/p$. We can therefore apply the method of Wilks and Tukey [30], to find a fractional power of the test criterion which is approximately distributed according to an incomplete beta distribution function (Pearson Type I)

(3.3)
$$dF(u) = \Gamma(\alpha+\beta) [\Gamma(\alpha)\Gamma(\beta)]^{-1} u^{\alpha-1} (1-u)^{\beta-1} du .$$

According to this method, the appropriate values of α , β and the exponent r of the criterion are given by the solutions of the following equations:

(3.4)
$$(\alpha+\beta)/r = \frac{1}{x} = \frac{n}{2}$$
, $C_1 = \beta$ and $r = \beta(\beta+1)/(C_2-\beta)$, where $C_m = \sum_{i=1}^{p} (A_i^m - B_i^m)$.

Using the values of A_{i} and B_{i} from (3.2), we have

$$C_1 = (p^2+p-2)/4$$
 and $C_2 = (2p^3+9p^2+5p-12)/24-1/6p$.

We have the following table of values of α , β and r for various values of p (α being calculated from rounded values of r):

various or w, p and , for various varies or p	Table 2. Values	of	α,	β	and	Υ	for	various	values	of n	
---	-----------------	----	----	---	-----	---	-----	---------	--------	------	--

p	r	r (rounded)	α	β
2	2	2	n-1	1
3	2.74	3	(3n-5)/2	2.5
4	3.47	3	(3n-9)/2	4.5
· 5	4.21	4	2n-7	7
6	4.95	5	5(n-4)/2	10
7	5.69	6	(6 (n-27)/2	13.5
. 8	6.43	6	(6n-35)/2	17.5
9	7.17	7	(7n-44)/2	22
10	7.92	8	4n-27	27

Approximation using Box's Series

Following the procedure of Box [2], we have (see Anderson [1], page 263) the following asymptotic expansion for W:

$$(3.5) \qquad \Pr\{-n\rho \ \log W \le z\} = \Pr(x_f^2 \le z) + w_2(\Pr\{x_{f+4}^2 < z\} - \Pr\{x_f^2 \le z\}) + 0(n^{-3})$$
 where
$$\rho = 1 - (2p^2 + p + 2)/(6pn)$$
 and
$$w_2 = (p+2)(p-1)(p-2)(2p^3 + 6p^2 + 3p + 2)/(288p^2 n^2 \rho^2)$$
.

Mauchly's Approximation

Mauchly [20] has computed approximate percentage points of W, only for p=3 by fitting a Pearson curve of the type

$$y = K x^{p-1} (1-x)^{q-1}$$

by adjusting p and q so as to obtain agreement with the first two moments of the actual distribution.

Davis Approximation

Davis [8] has obtained percentile approximations for $-n\rho$ log W, then ρ is the same as in (3.5), by means of a Cornish-Fisher Inversion of Box's series, expressing the percentage points of the distribution in terms of chi-squared percentiles.

Comparisons of the accuracy of these four approximations are carried out in the next section.

4. COMPUTATIONS USING SERIES FORMS AND THE APPROXIMATIONS

Some of the cases studied are summarized in Tables 3 - 5. Table 3 gives 5% and 1% points for the exact distribution of W, together with the percentage points as approximated by Mauchly's, Box's series and Wilks-Tukey's approximations for various values of p and N. Table 4 gives the .005, .01, .025, .05, .1 and .25 significance points of the exact distribution of W for p = 3(1)10 and various N. Table 5 gives comparison with Davis' approximations.

Table 3 reveals that even for moderate sample size N, the approximations given by Mauchly for p=3 is extremely poor. Box's series approximation is reasonably good for small values of p and even moderate values of N. Davis' results are generally correct to the decimal he has given but his table is incomplete in regard to small values of N for the values of p he has considered, i.e. p=3, 6 and 10.

Table 3. Percentage Points for W from the Exact Distribution and Approximations: Mauchly, Wilks & Tukey and Box Series

p = 3									
	N =	8	N =	10	N = 12				
	5%	1%	5%	1%	5% 1%				
Mauchly	.172	.083	.278	.165	.366 .243				
Wilks & Tukey	.14780	.07355	.24194	.14434	.32344 .21458				
Box Series	.14050	.06843	.23576	.13912	.31842 .20989				
Exact	.14026	.06815	.23564	.13898	.31836 .20981				
		p = 4							
	N =		N =	: 10	N = 15				
Wilks & Tukey	$.0^{2}_{2}274$	$.0^{3}_{2}46$ $.0^{2}_{3}102$.09040	.04563	.24680 .166 36				
Box Series	$.0\frac{2}{3}471$	$.0\frac{2}{102}$.09789	.05061	.25365 .17229				
Exact	.0 ² 38662	.0 ³ 69040	.097393	.050095	.25352 .17211				
		p = 5							
N = 7 N = 10 N = 14									
Wilks & Tukey	$.0^{2}_{2}159$	$.0\frac{3}{3}33$.03103	.01373	.11354 .06852				
Box Series	$.0^{2}_{2}186$	$0.0_{2}^{3}44$.03192	.01428	.11497 .06957				
Exact	.0 ² 12621	$.0^{3}21839$.031104		.11460 .069151				
p = 6									
N = 8 N = 12 N = 14									
Wilks & Tukey	$.0\frac{3}{3}86$ $.0\frac{3}{3}77$	$.0_{3}^{3}20$ $.0_{3}^{3}19$.02610	.01264	.05238 .02922				
Box Series	$.0^{3}_{77}$	$.0^{3}_{-19}$.02502	.01206	.05106 .02835				
Exact	.0 ³ 42669	$.0^{3}71870$.024325						
p = 7									
	N =	9		11	N = 15				
Wilks & Tukey	.0345	$.0_{49}^{3}11$ $.0_{49}^{9}$ $.0_{24239}^{2}$	$.0^{2}_{2}415$	$.0^{2}_{2}159$.02972 .01620				
Box Series	$.0^{3}_{7}33$.049	$.0^{2}_{345}$	$.0^{2}_{0}132$.02765 .01491				
Exact	$.0^{3}_{3}$ 33 $.0^{3}$ 14730	.0424239	.0229501	.0210165	5.027115 .014444				
		p = 8							
	N =			12	$\frac{N = 14}{2}$				
Wilks & Tukey	$.0_{3}^{4}_{9}$ $.0_{4}^{15}$ $.0_{51489}$.042 .054 .0583064	$.0^{2}_{2}129$.0,345	$.0_{2}^{2}551 .0_{2}^{2}246$				
Box Series	$.0^{3}_{4}15$	$.0^{4}_{5}4$	$.0^{2}_{0}155$	$.0^{3}_{7}59$	$.0\frac{2}{5}606 .0\frac{2}{5}279$				
Exact	.0 ⁴ 51489	.0 ⁵ 83064	$.0^{2}12329$	$0.0^{3}4120^{4}$	$.0^{2}_{2}606 .0^{2}_{2}279$ $4.0^{2}56126.0^{2}24756$				
		p = 9)						
· · · · · · · · · · · · · · · · · · ·	N =	12	<u>N</u> =	: 14	N = 16				
Wilks & Tukey	$.0_{3}^{3}22$ $.0_{3}^{3}25$ $.0_{13971}^{3}$.047 .048 .0435438	$.0^{2}_{0151}$	$.0^{3}_{7}61$	$.0^{2}_{2}493 .0^{2}_{2}236$ $.0^{2}_{2}496 .0^{2}_{2}241$ $8.0^{2}_{4}6163.0^{2}_{2}1595$				
Box Series	.0-25	.048	$.0^{2}_{0155}$	$.0^{3}_{5}65$	$.0^{2}_{2}496 .0^{2}_{2}241$				
Exact	$.0^{3}13971$	$.0^{4}35438$	$.0^{2}12945$.0 ³ 49428	$8.0^{2}46163.0^{2}21595$				
		p = 1	10						
	N =	12	N =	: 14	N = 16				
Wilks & Tukey	.0428 .0429 .0564552	.0 ⁵ 7 .0 ⁵ 9 .0 ⁵ 10036	$.0^{3}_{34}$	$.0^{3}_{2}$ 12	$.0^{2}_{2}151 .0^{3}_{3}67$ $.0^{2}_{2}141 .0^{3}_{3}63$ $4.0^{2}_{1}2140 .0^{3}_{5}50647$				
Box Series	.0-29	$.0^{5}_{-9}$	$.0^{3}_{231}$	$.0^{3}_{12}$	$.0^{2}_{0}141 .0^{3}_{0}63$				
Exact	.0 ⁵ 64552	.0 ⁵ 10036	.0321066	.0 ⁴ 66814	4.0 ² 12140.0 ³ 50647				

Table 4. Percentage Points of Sphericity Criterion $\ensuremath{\mathtt{W}}$

Na	.005	.01	.025	.05	.1	.25
3	$.0_{2}^{4}25000$.0 ³ 10000	.0 ³ 62500	.0 ² 25000	.010000	.062500
4	.0250000	.010000	.025000	.050000	.10000	.25000
5	.029240	.046416	.08550	.13572	.21544	.39685
6	.070711	.10000	.15811	.22361	.31623	.50000
7	.12011	.15849	.22865	.30171	.39811	.57435
8	.17100	.21544	.29240	.36840	.46416	.62996
9	.22007	.26827	.34855	.42489	.51795	.67295
10	.26591	.31623	.39764	.47287	.56234	.70711
11	.30808	.35938	.44054	.51390	.59948	.73487
12	. 34657	.39811	.47818	.54928	.63096	.75786
13	.38162	.43288	.51135	.58003	.65793	.77720
14	.41352	.46416	.54074	.60696	.68129	.79370
15	.44258	.49239	.56693	.63073	.70170	.80793
16	.46912	.51795	.59038	.65184	.71969	.82034
17	.49340	.54117	.61149	.67070	.73564	.83124
18	.51567	.56234	.63058	.68766	.74989	.84090
19	.53616	.58171	.64792	.70297	.76270	.84951
20	.55505	.59945	.66373	.71687	.77526	.85724
22	.58870	.63096	.69150	.74113	.79433	.87055
24	.61775	.65793	.71509	.76160	.81113	.88159
26	.64305	.68129	.73535	.77908	.82540	.89090
28	.66527	.70170	.75295	.79418	.83768	.89885
30	.68492	.71969	.76836	.80736	.84834	.90572
34	.71810	.74989	.79409	.82925	.86596	.91700
38	.74501	.77426	.81470	.84668	.87992	.92587
42	.76727	.79433	.83157	.86089	.8 9125	.93303
46	.78597	.81113	.84563	.87269	.90063	.93893
50	.80191	.82540	.85753	.88265	.90852	.94387
60	.83302	.85317	.88056	.90186	.92367	.95332
70	.85570	.87333	.89718	.91566	.93452	. 96005
80	.87297	.88862	.90975	.92606	.94267	.96508
90	.88655	.90063	.91958	.93418	.94901	.96898
100	.89751	.91030	.92748	.94069	.95410	.97210
120	.91411	.92491	.93939	.95049	.96172	.97678
140	.92609	.93544	.94794	.95751	.96718	.98011
160	.93513	.94337	.95438	.96279	.97127	.98261
180	.94221	.94957	.95940	.96690	.97446	.98454
200	.94789	.95455	.96342	.97019	.97701	.98609
250	.95817	.96354	.97069	.97613	.98160	.98888
300	.96507	.96957	.97555	.98010	.98467	.99074

Table 4 (Continued)

			-		•	
Na	.005	.01	.025	.05	.1	.25
4	.0539305	.0415228	.0 ⁴ 99478 .0 ² 61070	.0 ³ 40104	.0 ² 16700	.011603
5	$.0^{2}_{2}11700$.0 ² 23667	$.0^{2}61070$.012679	.026853	.076732
6	.0 ² 88748	.014398	.027585	.045683	.076928	.16044
7	.025882	.037466	.061687	.090921	.13590	.24004
8	.050467	.068151	.10225	.14026	.19471	.31002
9	.079827	.10285	.14486	.18921	.24970	.37019
10	.11161	.13898	.18696	.23564	.29971	.42176
-11	.14418	.17494	.22726	.27876	.34471	.46613
12	.17647	.20981	.26516	.31836	.38503	.50453
13	.20786	.24391	.30048	.35457	.42118	.53800
14	.23799	.27457	.33321	.38762	.45365	.56738
15	.26666	.30417	.36350	.41779	.48290	.59335
16	.29383	.33192	.39149	.44538	.50934	.61645
17	.31948	.35789	.41737	.47065	.53332	.63712
18	.34366	.38219	.44133	.49386	.55516	.65571
19	. 36644	.40492	.46355	.51522	.57511	.67251
20	.38789	.42619	.48417	.53493	.59340	.68778
22	.42713	.46482	.52124	.57006	.62573	.71444
24	.46203	.49889	.55354	.60040	.65338	.73694
26	.49319	.52908	.58190	.62684	.67729	.75618
28	.52111	.55598	.60696	.65006	.69816	.77281
30	.54624	.58007	.62926	.67060	.71651	.78732
34	.58958	.62136	.66715	.70529	.74730	.81144
38	.62556	.65540	.69811	.73343	.77210	.83066
42	.65584	.68391	.72386	.75670	.79248	.84634
46	.68166	.70811	.74559	.77626	.80953	.85736
50	.70393	.72891	.76417	.79293	.82400	.87035
60	.74809	.76997	.80064	.82546	.85211	.89155
70	.78086	.80028	.82737	.84918	.87249	.90679
80	.80612	.82356	.84779	.86723	.88794	.91828
90	.82617	.84199	.86390	.88143	.90006	.92725
100	.84247	.85694	.87693	.89289	.90981	.93444
120	.46737	.87972	.89672	.91024	.92454	.94527
140	.88548	.89624	.91103	.92276	.93513	.95303
160	.89925	.90878	.92186	.93221	.94312	.95886
180	.91006	.91861	.93034	.93961	.94936	.96340
200	.91877	.92654	.93716	.94555	.95436	.96704
250	.93462	.94092	.94952	.95629	.96340	.97361
300	.94529	.95059	.95781	.96350	.96945	.97799

Table 4 (Continued)

<u> </u>		· · · · · · · · · · · · · · · · · · ·		 	 	
N	.005	.01	.025	.05	.1	. 25
5 .	.0 ⁶ 91162	.0 ⁵ 36645	.0423265	.0495283	.0340030	.0 ² 29305
6	.0333678	.0 ³ 69040	.0 ² 18194	.0 ² 38662	.0 ² 847 3 0	.026147
7	.0 ² 30556	.0 ² 50312	.0 ² 99040	.016868	.029512	.066529
8	.010209	.015033	.025485	.038664	.060019	.11410
9	.022162	.030463	.047058	.066398	.095554	.16287
10	.038208	.050095	.072584	.097393	.1396	. 20994
11	.057311	.072583	.10033	.12972	.17030	. 25404
12	.078477	.096785	.12902	.16211	.20651	.29477
13	.10089	.12183	.15780	.19381	. 24102	.33213
14	.12391	.14708	.18610	. 22435	. 27358	. 36631
15	.14708	.17211	. 21356	. 25352	. 30412	. 39756
16	.17006	.19663	. 23999	. 28119	. 33269	.42615
17	.19263	. 22044	.26528	. 30736	. 35936	.45236
18	,21462	. 24343	.28938	.33205	. 38425	.47643
19	.23595	.26553	.31230	. 35332	.40749	.49860
20	. 25655	.28673	. 33406	.37723	.42920	.51905
22	. 29546	. 32641	. 37429	.41734	.46850	.55550
24	.33132	.36261	.41046	.45301	.50304	.58698
26	. 36428	. 39559	.44305	.48484	,53356	.61440
28	. 39455	.42567	.47247	.51337	.56068	.63847
30	.42235	.45313	.49912	.53903	.58492	.65977
34	.47149	.50132	.54542	.58326	.62635	.69571
38	.51337	.54207	.58415	.61995	.66039	.72486
42	.54938	.57689	.61695	.65082	.68883	.74894
46	.58059	.60692	.64506	.67712	,71293	.76918
50	.60788	.63307	.66939	.69978	.73359	.78641
60	.66298	.68558	.71790	.74471	.77429	.82004
70	.70468	.72509	. 75409	.77801	.80425	.84454
80	.73729	.75584	.78211	.80366	.82721	.86318
90	. 76346	.78045	.80441	.82401	.84536	.87784
.00	.78491	.80057	,82259	.84055	.86007	.88966
20	.81798	.83149	.85042	.86580	.88244	.90756
40	.84225	.85413	.87072	.88415	.89865	.92046
60	.86083	.87141	.88617	.89809	.91094	.93021
.80	.87550	.88504	.89832	.90904	.92057	.93782
200	.88737	.89606	.90814	.91787	.92832	.94394
250	.90906	.91615	.92599	93390	.94238	.95501
300	.92375	.92974	.93804	.94470	.95183	.96243

Table 4 (Continued)

N	.005	.01	.025	.05	.1	.25
6	.0 ⁶ 24579	.0698368	.0 ⁵ 72524	.0425776	.0 ³ 10959	.0 ³ 83762
7	.0 ³ 10563	.0 ³ 21839	.0 ³ 58374	.0212621	.0 ² 28373	.0 ² 92522
8	.0 ² 10968	.0 ² 18281	.0 ² 36768	.0 ² 64001	.011530	.027554
9	.0 ² 40994	.0 ² 61227	.010628	.016501	.026388	.053105
10	.0 ² 97579	.013613	.021543	.031104	.046080	.082916
11	.018156	.024161	.035852	.049192	.069047	.11473
12	.0290262	.037303	.052770	.069704	.093963	.14705
		.052479	.071536	.091741	.11983	.17893
13	.041953	.069151	.091503	.11460	.14594	.20983
14	.056485	.086848	.11215	.13775	.17180	.23944
15	.072206	.10518	.13309	.16082	.19710	.26760
16	.088751	.12385	.15402	.18354	.22163	.29428
17	.10582	.14261	.17473	.20575	.24527	.31947
18	.12317		.19507	.22731	.26797	. 34324
19	.14061	.16129	.21492	.24817	.28969	.36563
20	.15799	.17974	.25292	.28761	.33025	.40663
22	.19215	.21560	.28847	.32400	, 36713	.44311
24	.22503	.24971	.32151	.35746	.40063	.47566
26	. 25634	.28186	.35214	.38818	.43110	,50482
28	. 28593	.31200	.38049	.41641	.45885	.53106
30	. 31 379	.34018		,46628	,50740	.57625
34	. 36449	.39103	.43108	.50878	.54831	.61370
38	.40909	.43536	.47461	.54529	,58315	.64520
42	.44838	.47413	.51231	.57692	.61314	.67203
46	.48312	.50821	.54519	.60456	.63919	.69513
50	.51397	.53834	.57407	.66033	.69137	.74089
60	.57761	.60010	.63275	.70250	.73049	.77478
70	.62690	.64760	.67745	.73544	.76088	.80086
80	.66607	.68517	.71257	.76186	.78514	.82155
90	.69790	.71558	. 74086		.80495	.83836
100	. 72425	.74069	.76411	.78351	.83535	.86399
120	. 76529	.77966	.80005	.81686	.85757	.88262
140	. 79575	.80850	.82652	.84133	.87451	89676
160	.81924	.83068	.84682	.86004	.88786	.90787
180	.83790	.84827	.86287	.87481		.91682
200	.85307	.86255	.87588	.88677	.89864	.93307
250	.88095	.8875	. 89969	.90860	.91828	.93307
300	. 89995	.90656	.91584	.92337	.93155	,94401

Table 4 (Continued)

	· · · · · · · · · · · · · · · · · · ·		····		·	
N a	.005	.01	.025	.05	.1	. 25
7	.0 ⁷ 70557	.0 ⁶ 29697	.0 ⁵ 18030	.0 ⁵ 74790	.0431547	.0324844
8	.0 ⁴ 34541	.0 ⁴ 71870	.0 ³ 19456	.0 ³ 42669	.0 ³ 97879	.0 ² 33335
9	.0 ³ 40126	.0 ³ 67578	.0 ² 13837	.0 ² 25527	.0 ² 45255	.011336
10	.0 ² 16522	.0 ² 24979	.0 ² 44243	.0 ² 70038	.011482	.024216
11	.0 ² 42686	.0 ² 60326	.0 ² 97479	.014353	.021791	.041033
12 13 14	.0 ² 85127 .014444	.011478	.017390	.024325	.034966 .050383 .067439	.060679 .082172 .10473
14 15	.021960 .030903	.027821 .038302	.038682 .051661	.050510 .065830	.085610	.10473
16 17	.041061 .052219	.049980 .062606	.065743 .080634	.082100	.104468 .12368	.15085 .17368
18 19	.064174	.075950 .089816	.096078	.11626	.14298	.19605
20 22 24	.089763 .11662 .14388	.10403 .13299 .16196	.12783 .15975 .19107	.15107 .18538 .21850	.18112 .21788 .25277	.23890 .27885 .31577
26 28	.17096	.19041	.22132	.25008	.28556	.34973
30 34	.22313	.24449	.27778 .32844	.30812	.34485	.40960 .46025
38 42	.31571 .35576	.33866 .37885	.37355 .41364	.40450 .44424	.44105 .48005	.50339 .54044
46 50	.39199 .42477	.41497 .44748	.44935 .48125	.47936 .51055	.51425 .54441	.57254 .60056
60 70	.49406 .54917	.51571 .56955	.54754 .59930	.57485 .62460	.60606 .65331	.65708 .69978
80 90	.59381 .63060	.61292 .64852	.64067 .67442	.66413 .69622	.69059 .72071	.73311 .75983
100 120	.66139 .70994	.67822 .72488	.70246 .74628	.72278 .76412	.74553 .78400	.78171 .81540 .
140 160 180	.74642 .77480 .79750	.75981 .78691 .80854	.77891 .80415 .82423	.79479 .81843	.81241 .83423 -	.84011 .85899
200 250	. 79 / 50 . 81605 . 85037	.80854 .82620 .85879	.84058 .87069	.83720 .85246 .88048	.85152 .86555 .89124	.87389 .88595 .90796
300	.87391	.88110	.89124	.89957	.90870	.92285

Table 4 (Continued)

				<u> </u>		
α N	.005	.01	.025	.05	.1	. 25
8	.0721289	.0 ⁷ 86044	.0 ⁶ 55120	.0 ⁵ 22835	.0 ⁵ 95942	.0 ⁴ 72580
	.04115809	.0424239	.0466388	.0 ³ 14730	. 0 ³ 34311	.0 ² 12149
9	_		.0 ³ 52402	.0 ³ 94336	.0 ² 17761	.0 ² 46290
10	.0 ³ 14825	.0 ³ 25197				-
11	.0 ³ 66517	.0 ² 10165	.0 ² 18324	.0 ² 29501	.0 ² 49404	.010845
12	.0 ² 18510	.0 ² 26462	•0 ² 43552	.0 ² 65237	.010119	.019815
13	.0 ² 39356	.0 ² 53692	.0 ² 82864	.011790	.017307	.031195
	.0 ² 70567	.0 ² 92955	.013667	.018704	.026327	.044531
14 15	.011263	.014435	.020431	.027115	.036919	.059370
16	.016537	.020729	.028448	.036821	.048798	.075298
17	.022812	,028074	.037553	.047610	.061690	.091967
18	.029994	,036345	.047578	.059270	.075347	.10909
19	.037977	.045412	.058355	.071609	.089554	.12644
20	.03/5//	.055143	.069730	.084457	.10413	.14384
. 22	.065631	.076124	.093740	.11111	.13380	.17825
24	.086164	.098448	.11870	.13831	.16346	.21158
26	.10761	.12146	.14396	.16541	.19254	. 24343
28	. 12949	.14467	.16905	.19200	.22067	.27360
30	.15142	.16774	.19367	.21781	.24767	. 30205
34	.19449	.21253	.24073	.26653	.29794	, 35389
38	.23555	.25472	.28433	. 31106 .	. 34320	. 39952
42	.27402	. 29390	.32429	. 35146	, 38380	.43972
46	30974	. 33002	.36076	.38801	.42019	.47524
50	.34277	.36321	. 39 399	.42108	.45287	.50678
60	.41458	.43479	.46486	.49099	.52126	.57177
70	.47344	.49296	.52177	.54656	.57505	.62203
80	.52215	.54082	.56817	.59156	,61826	.66192
90	.56296	.58071	.60661	.62863	.65366	.69431
100	.59755	.61441	.63890	.65965	.68314	.72109
120	.65283	.66805	.69003	.70854	.72937	.76277
140	.69496	.70876	.72861	.74526	. 76391	. 79 366
160	,72806	.74066	.75872	.77381	.79067	.81747
180	.75474	.76630	.78284	. 79664	.81201	.83636
200	.77668	.78735	.80260	.81529	.82941	.85172
250	.81754	.82649	.83923	.84979	. 86149	87991
300	.84580	.85349	.86441	.87344	.88343	.89910

Table 4 (Continued)

N a	.005	.01	.025	.05	.1	. 25
9	.0871788	.0727598	.0 ⁶ 17155	.0 ⁶ 72189	.0 ⁵ 31412	.0420202
10	.0 ⁵ 39473	.0 ⁵ 83064	.0422961	.0 ⁴ 51489	.0 ³ 12180	.0 ³ 44134
11	.0 ⁴ 55082	.0 ⁴ 94377	.0 ³ 19900	.0 ³ 36314	.0 ³ 69598	.0 ² 18771
12	.0 ³ 26703	.0 ³ 41204	.0 ³ 75447	.0 ² 12329	.0 ² 21036	.0 ² 47822
13	.0 ³ 79550	.0 ² 11491	.0 ² 19226	.0 ² 29243	.0 ² 46224	.0 ² 93706
14	.0 ² 17954	.0 ² 24756	.0 ² 38847	.0 ² 56126	.0 ² 83944	.015649
15	.0 ² 33920	.0 ² 45162	.0 ² 67510	.0 ² 93791	.013445	.023497
16	.0 ² 56696	.0 ² 73433	.010564	.014227	.019719	.032724
17	.0 ² 86711	.010982	.015313	.020106	.027108	.043115
18	.012404	.015421	.020950	.026931	.035479	.054455
19	.016850	.020620	.027401	.034597	.044691	.066544
20	.021969	.026523	.034584	.042993	.054605	.079202
22	.034018	.040171	.050778	.061544	.076025	.10563
24	.048080	.055801	.068835	.081781	.098838	.13274
26	.063675	.072873	.088141	.10304	.12235	.15986
28	.080369	.090921	.10820	.12482	.14605	.18654
30	.097792	.10956	.12861	.14671	.16957	.21248
34	.13368	.14749	.16941	.18984	.21517	.26153
38	.16963	.18497	.20900	.23105	.25801	. 30642
42	.20463	.22109	.24659	.26972	.29769	.34717
46	.23812	,25537	.28186	.30567	.33419	. 38404
50	. 26985	.28764	.31474	.33892	. 36766	.41741
60	.34107	.35942	. 38699	.41123	43966	.48794
70	.40149	.41973	.44689	.47052	.49797	.54398
80	.45272	.47053	. 49686	.51959	.54581	.58935
90	.49642	.51364	.53895	.56068	.58561	.62671
100	.53399	.55054	.57479	.59551	.61917	.65795
120	.59497	.61020	.63235	.65116	.67250	.70718
140	.64217	.65616	.67642	.69354	.71289	.74412
160	.67967	.79256	.71117	.72684	.74448 -	.77285
180	.71015	.72207	.73925	.75367	.76986	.79580
200	.73538	.74646	.76238	.77572	.79067	.81456
250	78277	.79216	.80559	.81680	.82932	.84922
300	.81582	.82394	.83554	.84520	.85595	.87299

Table 4 (Continued)

•				·		
N a	.005	.01	.025	.05	.1	.25
10	.0825350	.0892163	.0 ⁷ 56095	.0 ⁶ 23259	.0 ⁵ 10164	.0 ⁵ 61014
11	.0 ⁵ 13612	.0 ⁵ 287 8 9	.0 ⁵ 80284	.0 ⁴ 18169	.0 ⁴ 42570	.0 ³ 16718
12	.0420532	.0 ⁴ 35438	.0 ⁴ 75647	,0 ³ 1.3971	.0 ³ 27192	.0 ³ 75487
13	.0 ³ 10683	.0 ³ 16629	.0 ³ 30880	.0 ³ 51137	.0 ³ 88727	.0 ² 20826
14	.0 ³ 33897	.0 ³ 49428	.0 ³ 83940	.0 ² 12945	.0 ² 20813	.0 ² 43517
15	,0 ³ 80903	.0 ² 11264	.0 ² 17946	.0 ² 26291	. 0 ² 3999 30	.0 ² 76857
16	.0 ² 16061	.0 ² 21595	.0 ² 32774	.0 ² 46163	.0 ² 67287	.012112
17	.0 ² 28055	,0 ² 36693	.0 ² 53582	.0 ² 73143	.010304	.017596
18	.0 ² 44630	.0 ² 57070	.0 ² 80753	.010744	.014715	.024063
19	.0 ² 66139	.0 ² 8300	.011439	.014894	.019925	.031413
20	.0 ² 92748	.011455	.015437	.019734	.025874	.039535
22	.016116	.019398	.025210	.031285	.039702	.057658
24	.024859	.029330	.037060	.044940	.055599	.077608
26	.035265	.040948	.050587	.060218	.072995	.098694
28	.047052	.053924	.065397	.076672	.091395	.12038
30	.059939	.067945	.081137	.093923	.11040	.14225
34	.088001	.098046	.11426	.12963	.14902	.18545
38	.11775	.12949	.14914	.16553	.18713	.22683
42	,14799	.16109	.18165	.20057	.22377	.26572
46	.17794	.19211	.21411	.23416	.25850	. 30189
50	.20710	.22208	.24517	.26601	.29111	. 33536
60	.27498	.29117	.31575	.33759	. 36349	.40820
70	. 33480	.35143	.37641	.39836	.42410	.46791
80	. 38693	.40335	.42832	.44991	.47503	.51732
. 90	.43229	.44866	.47289	.49388	.51815	.55869
100	.47190	.48787	.51140	.53167	.55501	.59374
120	.53733	.55232	.57426	.59302	.61448	.64973
140	.58885	.60282	.62318	.64050	.66020	.69235
160	.63029	.64331	.66220	.67821	.69636	.72583
180	.66429	.67643	.69401	.70886	.72564	.75279
200	.69264	.70400	.72040	.73422	.74981	.77495
250	.74638	.75611	.77011	.78186	. 79505	.81621
300	.78422	.79271	.80488	.81507	.82648	.84472

Table 4 (Continued)

Na	.005	.010	.025	.05	.1	. 25
11	.0811246	.0835733	.0719324	.0 ⁷ 77218	.0 ⁶ 33526	.0 ⁵ 21386
		.0 ⁵ 10036	.0 ⁵ 28256	.0 ⁵ 64552	.0415891	.0 ⁴ 60952
12	.0 ⁶ 47154					.0 ³ 30376
13	.0 ⁵ 76669	.0 ⁴ 13324	.0 ⁴ 28760	.0 ⁴ 53699	.0 ³ 10610	
14	.0442583	.0 ⁴ 66814	.0 ³ 12568	.0 ³ 21066	.0 ³ 37102	. 0 ³ 89 399
15	.0 ³ 14331	.0 ³ 21078	.0 ³ 36286	.0 ³ 56666	.0 ³ 92523	0 ² 19892
16	.0 ³ 36052	.0 ³ 50647	.0 ³ 81824	.0 ² 12140	.0 ² 18755	.0 ² 37055
17	.0 ³ 75024	.0 ² 10179	.0 ² 15665	.0 ² 22346	.0 ² 33072	.0 ² 61162
18	.0 ² 13670	.0 ² 18040	.0 ² 26712	.0 ² 36920	.0 ² 52683	.0 ² 92661
19	.0 ² 22587	.0 ² 29142	.0 ² 41802	.0 ² 56300	.0 ² 78244	.013126
20	.0 ² 34640	.0 ² 43855	.0 ² 61253	.0 ² 80714	.010952	.017701
	.0 ² 69174	.0 ² 84980	.011376	.014478	.018907	.028781
22 24	.011834	.014208	.018414	.022817	.028932	.042056
24 26	.018193	.021449	.027092	.032865	.040709	.057042
28	.025886	.030071	.037194	.044348	.053894	.073283
30	.034761	.039886	.048484	.056983	.068156	.090387
34	.055364	.062312	.073700	.084683	.098783	.12595
38	.078662	.087261	.10111	.11422	.13076	.16184
42	.10353	.11356	.12949	.14436	.16285	.19695
46	.12913	.14036	.15800	.17428	.19429	.23066
50	.15483	.16705	.18607	.20346	.22464	. 26265
60	.21714	.23106	.25238	.27151	. 29443	. 33462
70	.27444	.28925	.31169	.33157	.35512	. 39574
80	. 32589	.34109	. 36390	.38395	.40748	.44759
90	.37168	. 38694	.40970	.42955	.45270	.49182
100	.41235	.42747	.44991	.46937	.49195	.52983
120	.48083	.49536	.51674	.53515	.55634	.59151
140	.53578	.54954	.56969	. 58695	.60669	.63923
160	.58059	.59356	.61249	.62861	.64700	.6.7713
180	.61773	.62994	.64770	.66279	.67994	. 70791
200	.64895	.66046	.67715	.69129	.70732	.73339
250	.70872	.71871	.73313	.74529	. 75903	.78122
300	.75125	.76003	.77268	.78332	.79529	.81455

Table 5. Correction factors for Mauchly's sphericity test $-2~\rho$ log W.

		Ω,	ы			b = 6	.;. 9			p = 10	10	
z	5%		8 1		% %		क्ष		ν. %		%	
:	Exact	Davis	Exact	Davis	Exact	Davis	Exact	Davis	Exact	Davis	Exact	Davis
5	1.07404	1.074	1.07404 1.074 1.09101	1.091								
9	1.03761		1.0376 1.04629	1.0463								
7	1.02279	.02279 1.0228	1.02804	1.0280	0.80918	1	0.86151					
00	1.01529 1.0153	1,0153	1.01881	1.0188	0.74526	ı	0.76618	ı		٠		
თ	1.01097	1.0110	1.01349	1.0135	1.10560	1.105	1.12270	1.12				
11	1.00644	1.0064	1.00790	1.0079	1.05084	1.0508	1.05810 1.058	1.058	1.46774	ı	1.55147	ı
13	1.00423	1.0042	1,00519	1.0052	1.03026	1.03026 1.0303	1.03434	1.0343	1.15373	1.15	1.17243	i
16	1.00257		1.0026 1.00315	1.0031	1.01693	1.0169	1.01693 1.0169 1.01910	1.0191	1.06697		1.067 1.07328	1.073
21	1.00137	1.001	1.00137 1.0014 1.00167	1,0017	1.00844		1.0084 1.00949	1.0095	1.02875	1.0287	1.0287 1.03112 1.0311	1.031
			-									

CHAPTER IV

DISTRIBUTION OF THE LIKELIHOOD RATIO CRITERION FOR TESTING $\xi = \xi_0$

1. INTRODUCTION

Let p x 1 vectors χ_1 , χ_2 ,..., χ_N be a random sample from a p-variate normal distribution with unknown mean vector μ and positive definite covariance matrix ξ . The likelihood ratio criterion for testing the hypothesis H_0 : $\xi = \xi_0$ against the alternatives H_1 : $\xi \neq \zeta_0$, for some given positive definite matrix ξ_0 , is given by (Anderson [1]),

(1.1)
$$\lambda = (e/N)^{\frac{Np}{2}} |_{N} \sum_{0}^{-1}|^{N/2} e^{-\frac{1}{2} \operatorname{tr} \sum_{0}^{-1} N}$$

where
$$S = \sum_{i=1}^{N} (x_i - \bar{x}) (x_i - \bar{x})^i$$
 and $\bar{x} = \sum_{i=1}^{N} x_i/N$.

This likelihood ratio is not unbiased. However, if the criterion is modified by reducing the sample size N to the degrees of freedom n = N-1, then Sugiura and Nagao [27] have shown that the test is unbiased. The monotonicity of the power function with respect to each of the p characteristic roots of $\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} 1$ is established by Nagao [22] and Das Gupta [7].

Let

(1.2)
$$\lambda_{1} = (e/n)^{\frac{np}{2}} |\xi \xi_{0}^{-1}|^{\frac{n}{2}} e^{-\frac{1}{2} \operatorname{tr} \xi_{0}^{-1} \xi}$$

be the modified likelihood ratio statistic. Korin [17] expressed the null distribution of -2 $\log \lambda_1$ in the form of an asymptotic series of central chi-square distributions and computed its percentage points but his tables are incomplete in regard to small values of n for the values of p = 3(1)10. Recently Davis [8] expressed the percentage points of -2 $\log \lambda_1$ in terms of chisquared percentiles using a Cornish-Fisher inversion of Box's series but his tables are also incomplete in regard to small values of n for the values of p he has considered i.e. p = 6 and 10.

The object of the present chapter is to develop a method similar to the one used in Chapter III, in order to obtain the exact distribution of $L = \lambda_1^{2/n}$ in a series form and to compute percentage points of L to any degree of accuracy even for small sample sizes. Tables of percentage points for p = 2(1)10 for various significance levels are given and comparisons made with the results of Korin [17] and Davis [8].

2. DERIVATION OF THE DISTRIBUTION OF
$$L = \lambda_1^{2/n}$$

The h-th moment of λ_1 under the null hypothesis is given by

(2.1)
$$E(\lambda_1^h) = (2e/n)^{\frac{nhp}{2}} [\Gamma_p \{n(1+h)/2\}/\Gamma_p (n/2)] \cdot (1+h)^{-np(1+h)/2},$$

where
$$\Gamma_{p}(x) = \pi^{p(p-1)/4} \prod_{i=1}^{p} \Gamma\{x - (i-1)/2\}$$
.

Let

$$L = \lambda_1^{2/n} .$$

Then

(2.2)
$$E(L^{h}) = E(\frac{2h/n}{1})$$

$$= \frac{(2e/n)^{ph}}{\prod_{\alpha=1}^{p} \Gamma(\frac{n+1-\alpha}{2})} \frac{\prod_{\alpha=1}^{p} \Gamma\{\frac{n}{2} + h + \frac{1-\alpha}{2}\}}{(1+2h/n)^{np}(1+2h/n)/2} .$$

Using inverse Mellins' transform, the density of L is given by

$$(2.3) \quad f(L) = \left[\prod_{\alpha=1}^{p} \Gamma(\frac{n+1-\alpha}{2}) \right]^{-1} \cdot \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{L^{-h-1}(2e/n)^{ph} \prod_{\alpha=1}^{p} \Gamma(\frac{n}{2} + h + \frac{1-\alpha}{2})}{(1+2h/n)^{np}(1+2h/n)/2} dh .$$

Putting $\frac{n}{2}$ +h=t in (2.3), we have

(2.4)
$$f(L) = K(p,n) \cdot L^{\frac{n}{2}} - 1 \cdot \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L^{-t}C(t)dt$$

where $c = \frac{n}{2}$,

(2.5)
$$C(t) = (e/t)^{pt} \prod_{\alpha=1}^{p} \Gamma\{t + \frac{1-\alpha}{2}\}$$
,

and

(2.6)
$$K(p,n) = (2e/n)^{-pn/2} \left[\prod_{\alpha=1}^{p} \Gamma(\frac{n+1-\alpha}{2}) \right]^{-1}$$
.

Using the expansion (2.64) of Chapter III to each gamma function in (2.5), we have

(2.7)
$$\log C(t) = \frac{p}{2} \log (2\pi) - \frac{p(p+1)}{4} \log t + [A_1/t + A_2/t^2 + ... + A_\gamma/t^\gamma + ...]$$

where the coefficients A_{γ} 's are given by

(2.8)
$$A_{\gamma} = (-1)^{\gamma-1} \left[\sum_{\alpha=1}^{p} B_{\gamma+1} \left(\frac{1-\alpha}{2} \right) \right] / \gamma (\gamma+1)$$

where $\textbf{B}_{\gamma}(\textbf{x})$ is the Bernoulli polynomial of degree γ and order unity. Thus

(2.9)
$$C(t) = (2\pi)^{p/2} t^{-p(p+1)/4} [1+B_1/t+B_2/t^2+...]$$

where the coefficients B_{i} 's can be obtained from (2.67) of Chapter III.

Using (2.9) in (2.4), we have the density of L as

(2.10)
$$f(L) = K(p,n) \cdot L^{\frac{n}{2} - 1} \cdot (2\pi)^{p/2} \cdot \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L^{-t} t^{-v} [1 + \sum_{\gamma=1}^{\infty} B_{\gamma}/t^{\gamma}] dt$$

where K(p,n) is as given in (2.6) and v = p(p+1)/4.

The integral on the right hand side of (2.10) can be easily computed if v is an integer and its value is by Cauchy's theorem of residues, the residue of L^{-t} t^{-v} $\left[1+\sum\limits_{\gamma=1}^{\infty}B_{\gamma}/t^{\gamma}\right]$ at t=0. This is easily seen to be equal to

(2.11)
$$\sum_{\gamma=0}^{\infty} [(-\log L)^{\nu+\gamma-1} B_{\gamma}/\Gamma(\nu+\gamma)], B_{0} = 1$$

and thus from (2.10), the density of L is

(2.12)
$$f(L) = K(p,n) (2\pi)^{p/2} L^{\frac{n}{2} - 1} \sum_{\gamma=0}^{\infty} (B_{\gamma}) (-\log L)^{V+\gamma-1} / \Gamma(V+\gamma).$$

The probability that L is less than any value, say x_0 , is

(2.13)
$$P(L \le x_0) = K(p,n) (2\pi)^{p/2} \sum_{\gamma=0}^{\infty} (B_{\gamma}) \int_{0}^{x_0} L^{\frac{n}{2}-1} (-\log L)^{v+\gamma-1} dL/\Gamma(v+\gamma).$$

For computational purposes, we let

(2.14)
$$I_{v+\gamma-1,u} = \int_{0}^{x_0} L^u (- \log L)^{v+\gamma-1} dL/\Gamma(v+\gamma)$$

where $u = \frac{n}{2} - 1$. Then integrating by parts the right hand side of (2.14), we have the following recurrence relation:

(2.15)
$$I_{v+\gamma-1}$$
, $u(x_0) = [x_0^{u+1}(-\log x_0)^{v+\gamma-1}/\Gamma(v+\gamma) + I_{v+\gamma-2}]/(u+1)$ and

(2.16)
$$I_{0,u}(x_0) = x_0^{(u+1)}/(u+1)$$
.

With this notation (2.14) can be written as

(2.17)
$$P(L \le x_0) = K(p,n) (2\pi)^{p/2} \sum_{\gamma=0}^{\infty} (B_{\gamma}) I_{\nu+\gamma-1,u}(x_0)$$

where $I_{v+\gamma-1,u}(x_0)$ satisfies the recurrence relations (2.15) and (2.16). It is to be noted that (2.17) holds only if v = p(p+1)/4 is an integer. Otherwise we can appeal to Theorem 2.1 of Chapter III, since in this case

(2.18)
$$\phi(t) = t^{-V} \left[1 + \sum_{\gamma=1}^{\infty} B_{\gamma} / t^{\gamma} \right] = 0 (t^{-V}).$$

Thus according to the theorem, we can expand $\phi(t)$ in the factorial series as

(2.19)
$$\phi(t) = t^{-V} \left[1 + \sum_{\gamma=1}^{\infty} B_{\gamma}/t^{\gamma}\right]$$
$$= \sum_{i=0}^{\infty} R_{i} \Gamma(t+\lambda) / \Gamma(t+v+i+\lambda)$$

where λ is an arbitrary positive constant and can be chosen to govern the rate of convergence of the resulting series. The coefficients R_i 's can be determined explicitly as is done below.

Using the formula (2.6) of Chapter III to each gamma function on the right hand side of (2.19), we have

(2.20)
$$\log \left\{ \Gamma(t+\lambda)/\Gamma(t+\nu+i+\lambda) \right\} = \left[-(\nu+i)\log t + \sum_{j=1}^{\infty} A_{ij}/t_{j} \right]$$

where the first few coefficients A_{ij} 's which are needed in our computations are listed below.

$$A_{i1} = -[t_{i}^{2} - \lambda^{2} - v]/2$$

$$A_{i2} = [t_{i}^{3} - \lambda^{3} - 3(t_{i}^{2} - \lambda^{2})/2 + (t_{i} - \lambda)/2]/6$$

$$A_{i3} = -[t_{i}^{4} - \lambda^{4} - 2(t_{i}^{3} - \lambda^{3}) + (t_{i}^{2} - \lambda^{2})]/12$$

$$A_{i4} = [t_{i}^{5} - \lambda^{5} - 5(t_{i}^{4} - \lambda^{4})/2 + 5(t_{i}^{3} - \lambda^{3})/3 - (t_{i} - \lambda)/6]/20$$

$$(2.21) \quad A_{i5} = -[t_{i}^{6} - \lambda^{6} - 3(t_{i}^{5} - \lambda^{5})/2 + 5(t_{i}^{4} - \lambda^{4})/2 - (t_{i}^{2} - \lambda^{2})/2]/30$$

$$A_{i6} = [t_{i}^{7} - \lambda^{7} - 7(t_{i}^{6} - \lambda^{6})/2 + 7(t_{i}^{5} - \lambda^{5})/2$$

$$-7(t_{i}^{3} - \lambda^{3})/6 + (t_{i} - \lambda)/6]/42$$

$$A_{i7} = -[t_{i}^{8} - \lambda^{8} - 4(t_{i}^{7} - \lambda^{7}) + 14(t_{i}^{6} - \lambda^{6})/3$$

$$-7(t_{i}^{4} - \lambda^{4})/3 + 2(t_{i}^{2} - \lambda^{2})/3]/56$$

$$A_{i8} = [t_i^9 - \lambda^9 - 9(t_i^8 - \lambda^8)/2 + 6(t_i^7 - \lambda^7) - 21(t_i^5 - \lambda^5)/5$$

$$+2(t_i^3 - \lambda^3) - 3(t_i - \lambda)/10]/72$$

$$A_{i9} = -[t_i^{10} - \lambda^{10} - 5(t_i^9 - \lambda^9) + 15(t_i^8 - \lambda^8)/2$$

$$-7(t_i^6 - \lambda^6) + 5(t_i^4 - \lambda^4) - 3(t_i^2 - \lambda^2)/2]/90$$

$$A_{i10} = [t_i^{11} - \lambda^{11} - 11(t_i^{10} - \lambda^{10})/2 + 55(t_i^9 - \lambda^9)/6$$

$$-11(t_i^7 - \lambda^7) + 11(t_i^5 - \lambda^5) - 11(t_i^3 - \lambda^3)/2]/110$$

where $t_i = \lambda + v + i$. The remaining coefficients are listed in Appendix B. Thus from (2.20) we have

(2.22)
$$\Gamma(t+\lambda)/\Gamma(t+\lambda+v+i) = t^{-(v+i)} [1 + \sum_{j=1}^{\infty} (Q_{ij}/t^{j})],$$

where the coefficients Q_{ij} 's can be obtained in terms of A_{ij} as in Chapter III. Using (2.22) on the right hand side of (2.19) we have

(2.23)
$$t^{-V} \left[1 + \sum_{\gamma=1}^{\infty} (B_{\gamma}/t^{\gamma})\right] = \sum_{i=0}^{\infty} R_{i} t^{-(v+i)} \left[1 + \sum_{j=1}^{\infty} (Q_{ij}/t^{j})\right].$$

Equating the coefficients of t on both sides of (2.23), it can be seen that R_i's can be determined using (2.90) of Chapter III. Now using (2.19) in (2.10) and noting that the term by term integration is valid since a factorial series is uniformly convergent in a half-plane (see Doetch [9]) we have the density of L in the case that v is not an integer in the form

(2.24)
$$f(L) = K(p,n) L^{\frac{n}{2} - 1} (2\pi)^{p/2} \sum_{i=0}^{\infty} R_i \frac{1}{2\pi i} \cdot \int_{c-i\infty}^{c+i\infty} L^{-t} [\Gamma(t+\lambda)/\Gamma(t+\lambda+v+i)] dt$$

$$= K(p,n) (2\pi)^{p/2} \sum_{i=0}^{\infty} R_i L^{\frac{n}{2} + \lambda - 1} (1-L)^{v+i-1}/\Gamma(v+i) .$$

The distribution of L is then given by

$$(2.25) \quad P(L \leq x_0) = K(p,n) (2\pi)^{p/2} \sum_{i=0}^{\infty} R_i I_{x_0} (\frac{n}{2} + \lambda, v + i) / \Gamma(v + i)$$
 where $I_{x_0}(p,q)$ is the incomplete beta function
$$\int_0^{x_0} x^{p-1} (1-x)^{q-1} dx.$$

3. COMPUTATIONS OF PERCENTAGE POINTS

.005, .01, .025, .05, .1 and .25 significance points of $L = \lambda_1^{2/n}$ were computed for p = 2(1)10 and various n using (2.17) and (2.25) and these are presented in table 6. The computation was carried out on CDC 6500 using double precision arithmetic. Table 7 compares the exact values with those obtained by Korin [17] and Davis [8].

Table 6. Percentage Points of L = λ_1^2/n for Testing $\Sigma = \Sigma_0$

α	205	0.1	025	0.5	7	.25
n\	.005	.01	.025	.05	1	
2	$.0_{2}^{4}11569$	$.0^{4}_{2}46327$.0 ³ 29074	.0 ² 11716	.0 ² 047596	.031333
3	.0 ² 27788	.0 ² 55954	.014187	.028861	.059260	.15763
4	.018257	.029250	.054811	.0 8 8639	.14444	.28133
5	.047798	.068263	.10982	.15809	.22903	.38018
6	.085961	.11453	.16797	.22533	. 30386	.45748
7	.12773	.16242	.22387	.28636	.36795	.51863
8	.16994	.20897	.27544	.34047	.42251	.56786
9	.21086	. 25281	.32217	.38807	.46909	.60820
10	.24963	.29344	.36422	.42995	.50913	.64180
11	.28591	.33080	.40199	. 46689	.54380	.67017
12	.31962	.36503	.43594	.49961	.57407	.69443
13	.35085	. 39636	.46653	.52874	.60067	.71541
14	.37974	.42505	.49417	.55479	.62422	.73371
15	.40645	.45136	.51923	.57821	.64521	.74982
16	.43118	.47554	.54203	.59935	.66401	.76410
17	.45410	.49779	.56285	.61852	.68094	.77685
18	.47536	.51834	.58191	.63599	.69627	.78829
19	.49513	.53734	.59943	.65195	.71022	.79863
20	.51355	.55496	.61557	.66659	.72295	.80800
22	.54678	.58658	.64433	.69252	.74535	.82437
24	.57592	.61411	.66914	.71474	.76442	.83817
26	.60165	.63828	.69077	.73400	.78085	.84996
28	.62450	.65966	.70978	.75084	.79515	.86016
30	.64492	.67869	.72660	.76569	.80770	. 86906
32	.66328	.69573	.74160	.77888	.81881	.87690
34	.67985	.71107	.75505	.79067	.82871	.88385
36	.69490	.72495	.76718	.80127	.83759	.89006
38	.70861	.73758	.77817	.81086	.84559	.89564
40	.72115	.74910	.78817	.81956	.85285	.90068
45	.74828	.77395	.80965	.83819	.86832	.91138
50	.77062	.79434	.82719	. 85334	.88085	.92001·
55	.78935	.81137	.84177	.86590	.89121	.92710
60	.80526	.82580	.85409	.87648	.89991	.93304
65	.81894	.83819	.86464	.88552	.90732	.93808
70	.83083	.84894	.87376	.89332	.913712	.94242
75	.84127	.84835	.88174	.90013	.91928	.94619
80	.85049	.86666	.88876	.90613	.92417	.94950
85	.85870	.87405	.89500	.91144	.92851	.95242
90	.86606	.88067	.90058	.91619	.93237	.95502
95	.87269	.88662	.90560	.92045	.93584	.95736
100	.87869	.89201	.91013	.92430	.93897	.95946
100	.07003	.05201		=		

Table 6 (continued)

p = 3

nα	.005	.01	.025	.05	1	25
3		0410160	.0464805	$.0^{3}_{2}$ 26498	$\frac{.1}{.0^211027}$.25
4	$.0_{3}^{5}2506$ $.0_{2}^{8}81873$.0 ⁴ 10160 .0 ³ 16678				.0 ² 78035
5	.0265792	.0 100/8	.0243296	.0290548	.019385	.056755
6	.019979	.010719	.020707	.034585	.058931	.12591
7		.029067	.048280	.071783	.10854	.19607
8	.040201	.054573	.082592	.11426	.16034	.26062
9	.065194	.084426	.11991	.15788	.21047	.31801
10	.093006 .12215	.11638	.15782	.20042	.25732	.36846
11		.14891	.19492	.24079	.30037	.41275
12	.15160	.18105	.23046	.27854	.33964	.45172
13	.18067	.21220	.26407	.31356	.37534	.48614
	.20894	.24205	.29564	.34594	.40781	.51671
14	.23617	.27044	.32517	.37583	.43736	.54398
15	.26223	.29732	.35272	.40341	.46431	.56844
16	.28705	.32270	.37842	.42888	.48896	.59048
17	.31063	.34663	.40239	.45243	.51155	.61044
18	.33300	.36916	.42475	.47426	.53231	.62858
19	.35419	. 39039	.44564	.49450	.55145	.64513
20	.37427	.41038	.46517	.51333	.56914	.66030
22	.41130	.44701	.50062	.54724	.60075	.68710
24	.44458	.47965	.53187	.57688	.62813	.71002
26	.47455	.50887	.55958	.60298	.65207	.72984
28	.50164	.53512	.58430	.62612	.67315	.74714
30 72	.52661	.55882	.60647	.64676	.69186	.76238
32	.54857	.58029	.62644	.66528	.70857	.77589
34	.56899	.59983	.64452	.68198	.72357	.78796
36 70	.58769	.61768	.66096	.69711	.73712	.79880
38	.60488	.63403	.67597	.71089	.74941	.80859
40	.62073	.64907	.68973	.72348	.76061	.81747
45	.65540	.68184	.71954	.75065	.78470	.83645
50	.68434	.70907	.74418	.77300	.80440	.85187
55	.70886	.73206	.76486	.79169	.82081	.86464
60	.72987	.75170	.78247	.80754	.83468	.87538.
65 70	.74808	.76868	.79763	.82117	.84657	.88454
70 75	.76401	.78 3 50	.81083	.83299	.85685	.89245
75 80	.77805	.79654	.82242	.84335	.86587	.89935
80	.79052	.80811	.83267	.85251	.87381	.90541
85	.80168	.81843	.84181	.86065	.88086	.91079
90	.81171	.82771	.85000	.86795	.88717	.91559
95	.82077	.83609	.85739	.87452	.89284	.91990
100	.82901	. 84369	.86408	.88047	.89797	.92379

Table 6 (Continued)

				•		
n^{α}	.005	.01	.025	.05	1	25
		5			3.1	.25
4	$.0_{3}^{6}68258$ $.0_{2}^{2}26081$ $.0_{2}^{2}24414$	$.0_{3}^{5}27562$ $.0_{2}^{5}53590$	$.0_{2}^{4}17377$ $.0_{2}^{2}14157$	$.0\frac{4}{2}71482$	$.0^{3}_{2}$ 30192	.0 ² 22422
5	$.0^{\circ}_{2}26081$.0253590	$.0_{2}^{2}14157$.0230195	.0 ² 66607	.020829
6	$.0^{2}_{2}$ 24414	.0240310	.0279751	.013653	.024052	.054981
7	.0 ² 83707	.012366	.021080	.032154	.050263	.096845
8	.018557	.025595	.039760	.056400	.081716	.14106
9	.032548	.042820	.062385	.084139	.11560	.18472
10	.049524	.062930	.087449	.11362	.15008	.22637
11	.068633	.084918	.11378	.14363	.18402	.26541
12	.089139	.10798	.14054	.17338	.21678	.30166
13	.11045	.13149	.16715	.20236	.24803	.33516
14	.13210	.15503	.19322	.23030	.27762	.36606
15	.15377	.17829	.21852	.25702	.30550	.39454
16	.17521	.20104	.24291	.28248	.33172	.42082
17	.19625	.22315	.26631	. 30664	. 35634	.44510
18	.21677	.24455	.28869	. 32955	. 37945	.46756
19	.23670	.26517	.31004	.35123	.40114	.48838
20	.25599	.28500	.33040	.37175	.42151	.50772
22	. 29256	.32229	.36823	.40954	.45867	.542 49
24	. 32645	.35652	.40252	.44344	.49164	.57283
26	.35777	.38791	.43362	.47392	.52101	.59951
28	. 38669	.41670	.46188	.50143	.54731	.62312
30	.41339	.44314	.48764	.52634	.57097	.64416
32	.43808	.46746	.51117	.54898	.59235	.66301
34	.46092	.48987	.53273	.56962	.61175	.67998
36	.48210	.51057	.55255	.58851	.62943	.69536
38	.50178	.52973	.57081	.60586	.64560	.70933
40	.52009	.54751	.58768	.62184	.66044	.72210
45	.56068	.58677	.62470	.65673	.69269	.74962
50	.59514	.61992	.65574	.68582	.71940	.77222
55	.62471	.64824	.68211	.71042	.74188	.79109
60	.65034	.67270	.70478	.73147	.76105	.80708
65	.67274	.69403	.72446	.74970	.77758	. 82081 .
70	.69249	.71277	.74170	.76562	.79198	.83272
75	.71001	.72937	.75692	.77965	.80464	.84315
80	.72566	.74418	.77046	.79211	.81585	.85236
85	.73972	.75746	.78258	.80323	.82585	.860 5 5
90	.75243	.76943	.79349	.81324	.83482	.86788
95	.76396	.78029	.80336	.82227	.84292	.87447
100	.77446	.79017	.81234	.83048	.85026	.88045

Table 6 (Continued)

p = 5

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>α</u>		 				
5 .0 ⁶ 209 .0 ⁶ 813 .0 ⁵ 571 .0 ⁴ 211 .0 ⁴ 883 .0 ³ 678 6 .0 ³ 8631 .0 ⁵ 1787 .0 ² 4787 .0 ² 1038 .0 ² 2341 .0 ⁷ 7077 7 .0 ² 91558 .0 ⁵ 15289 .0 ² 30854 .0 ⁵ 53894 .0 ⁹ 97536 .023522 8 .0 ² 234846 .0 ² 52164 .0 ⁹ 90895 .014165 .022760 .046217 9 .0 ⁸ 84223 .011779 .018714 .027119 .040364 .073262 10 .015873 .021176 .031545 .043440 .061249 .10262 11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16301 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 <th></th> <th>.005</th> <th>.01</th> <th>.025</th> <th>.05</th> <th>.1</th> <th>.25</th>		.005	.01	.025	.05	.1	.25
7 .0291558 .0215289 .0230854 .0°53894 .0°97536 .023522 8 .0284466 .0°52164 .0°90895 .014165 .022760 .046217 9 .0°894223 .011779 .018714 .027119 .040364 .073262 10 .015873 .021176 .031545 .043440 .061249 .10262 11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16501 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907<		06209		05571	04211	04883	03678
7 .0291558 .0215289 .0230854 .0°53894 .0°97536 .023522 8 .0284466 .0°52164 .0°90895 .014165 .022760 .046217 9 .0°894223 .011779 .018714 .027119 .040364 .073262 10 .015873 .021176 .031545 .043440 .061249 .10262 11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16501 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907<		04209	031787	034787	021038	022341	027707
8 .0^384423 .011779 .018714 .027119 .040364 .073262 10 .015873 .021176 .031545 .043440 .061249 .10262 11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16301 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15774 .22102 15 .080870 .096049 .12193 .14777 .18176 .24883 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465		0301558	021707	0230854		0297536	
9 .0*894223 .011779 .018714 .027119 .040364 .073262 10 .015873 .021176 .031545 .043440 .061249 .10262 11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16301 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465		0231846	0252164	020005			
10 .015873 .021176 .031545 .043440 .061249 .10262 11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16301 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562		02804223					
11 .025655 .033050 .046932 .062212 .084226 .13284 12 .037426 .04693 .064206 .082619 .10836 .16301 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422							
12 .037426 .04693 .064206 .082619 .10836 .16301 13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .22877 .32329 .36513 .43880 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
13 .050797 .062331 .082772 .10400 .13296 .19252 14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28							
14 .065391 .078826 .10214 .12584 .15754 .22102 15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
15 .080870 .096049 .12193 .14777 .18176 .24833 16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .5231 32							
16 .096950 .11370 .14185 .16952 .20539 .27435 17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 34 .36052 .38637 .42539 .45971 .49983 .56717 36						· ·	
17 .11340 .13155 .16167 .19088 .22830 .29907 18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 33 .3687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36							
18 .13001 .14942 .18124 .21175 .25040 .32249 19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .3687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 40							
19 .14666 .16715 .20043 .23201 .27165 .34465 20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
20 .16321 .18465 .21916 .25163 .29203 .36562 22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
22 .19568 .21865 .25508 .28883 .33022 .40422 24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
24 .22696 .25104 .28877 .32329 .36513 .43880 26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55							
26 .25679 .28165 .32020 .35511 .39702 .46987 28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60							
28 .28506 .31043 .34945 .38447 .42617 .49787 30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
30 .31174 .33742 .37663 .41156 .45285 .52321 32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70							
32 .33687 .36270 .40190 .43654 .47733 .54621 34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
34 .36052 .38637 .42539 .45971 .49983 .56717 36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>The second secon</td><td></td></t<>						The second secon	
36 .38276 .40854 .44726 .48115 .52057 .58634 38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
38 .40369 .42932 .46764 .50104 .53974 .60392 40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
40 .42337 .44880 .48667 .51954 .55748 .62011 45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
45 .46775 .49249 .52906 .56052 .59655 .65542 50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							
50 .50618 .53010 .56523 .59525 .62943 .68481 55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							
55 .53967 .56272 .59640 .62503 .65745 .70964 60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222		and the second s					.68481
60 .56907 .59125 .62350 .65080 .68158 .73087 65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							.70964
65 .59505 .61636 .64727 .67331 .70258 .74924 70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							.73087
70 .61815 .63864 .66825 .69313 .72101 .76527 75 .63881 .65851 .68691 .71071 .73731 .77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							.74924
75 .63881 .65851 .68691 .71071 .73731 77939 80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							.76527
80 .65738 .67635 .70361 .72641 .75182 .79191 85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							77939
85 .67417 .69244 .71864 .74050 .76482 .80309 90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							.79191
90 .68942 .70702 .73223 .75322 .77654 .81314 95 .70331 .72030 .74458 .76476 .78715 .82222							
95 .70331 .72030 .74458 .76476 .78715 .82222							.81314
0.000							
UU / 1000 . / 0470 . / 0500 / 040 / 040	100	.71603	.73243	.75585	.77528	.79680	.83045

Table 6 (Continued)

	Annual Control of the					
na	.005	.01	.025	.05	.1	.25
6	$.0_{4}^{7}679$ $.0_{3}^{2}922$ $.0_{34475}^{3}$.0 ⁶ 256 .0 ³ 6086	.05156	$.0^{5}_{3}637$.04272	$.0^{3}_{2}212$
7	.0-2922	.0-6086	$.0_{2}^{3}1650$	$.0_{2}^{3}3626$.038340	$.0^{2212}_{-0.2857}$
8	0.0334475	$.0^{3}_{258147}$	$.0^{2}11936$	$.0^{2}_{2}^{2}1210$.0 ² 39263	.0 ² 98987
9	.0,14392	$.0^{2}_{2}21796$	$.0^{2}_{2}11936$ $.0^{2}_{2}38712$	$.0^{2}61448$.010108	.021457
10	$.0^{2}_{2}37618$.0 ² 53261	.0 ² 86316	.012744	.019416	.036790
11	$.0^{2}75778$.010237	.015555	.021817	.031466	.054938
12	.012966	.016912	.024487	.033043	.045723	.075008
13	.019867	.025215	.035157	.04026	.061643	.096263
14	.028141	.034941	.047256	.060366	.078740	.11814
15	.037607	.045856	.060477	.07570	.096606	.14020
16	.048072	.057730	.074544	.091731	.11491	.16215
17	.059348	.070352	.089215	.10819	.13341	.18377
18	.071262	.083532	.10429	.12488	.15189	.20491
19	.083659	.097107	.11959	.14163	.17021	.22546
20	.096406	.11094	.13499	.15831	.18826	.24538
22	.12250	.13894	.16566	.19111	.22232	.28315
24	.14884	.16682	.19567	.22274	.25644	.31816
26	.17492	. 19416	.22465	.25292	.28772	.35048
28	. 20043	. 22065	.25239	.28153	.31705	.38029
30	.22515	.24614	.27881	.30854	.34448	.40778
32	. 24896	.27053	.30387	. 33397	.37011	.43316
34	.27181	.29381	.32759	. 35 79 0	.39405	.45661
36	.29366	.31597	.35062	.38039	.41643	.47833
38	.31453	.33703	.37121	.40154	. 43736	.49848
40	. 33443	.35704	.39124	.42144	.45695	.51721
45	.38017	.40277	.43664	.46626	.50078	.55866
50	.42070	.44301	.47621	.50503	.53838	.59375
55	45668	.47854	.51089	.53880	.57090	.62381
60	.48873	.51006	.54146	.56842	.59927	.64980
.65	.51741	.53816	.56857	.59457	.62421	.67249
70	.54318	.56332	.59275	.61781	.64628	.69245
75	.56643	.58597	.61443	.63859	.66595	.71015
80	.58751	.60645	.63396	.65726	.68358	.72594
85	.60668	.62504	.65165	.67413	.69946	74011
90	.62420	.64199	.66774	.68943	.71384	75290
95	.64025	.65750	.68242	.70338	.72692	.76450
100	.65501	.67175	.69588	.71615	.73886	.77507

Table 6 (Continued)

p = 7

n a	.005	.01	.025	.05	.1	.25
		26.25	06555	$.0_{3}^{5}214$ $.0_{3}^{1}28$ $.0_{2}^{8}832$.05891	.04696
7	$.0^{7}_{4330}$.04105	.0 ⁶ 555 .0 ⁴ 556	.03214	$.0_{3}^{0}_{2}^{0}$.02106
8	.07101	$.0_{2}^{-210}$.035/6	.0.128	.02299	$.0_{2}^{100}$
9	.021301	$.0_{2}2213$.024011	.02832	$.0^{2}_{2}1570$	$.0^{24110}$
10	$.0_{2}^{3}5897$	$.0^{3}_{2}9025$	$.0^{2}_{2}1630$	$.0^{2}_{2}2630$	$.0^{2}_{2}4416$	
11	$.0\frac{2}{2}16566$	$.0^{2}_{2}23716$	$.0^{2}_{2}$ 39120	.0~58722	$.0^{2}91321$.017970
12	$.0\frac{2}{2}35507$	$.0^{2}_{2}48512$.0275041	.010700	.015747	
13	.0 ² 64117	.0284584	.012465	.017094	.02412	.040984
14	.010298	.013217	.018749	.024932	.034030	.054961
15	.015203	.019083	.026246	.034038	.045216	.07006
16	.021073	.025970	.034812	.04422	.057427	.08595
17	.027829	.033766	.044293	.055279	.070428	.10236
18	.035373	.042352	.054532	.067037	.084013	.11906
19	.043603	.051608	.065385	.079330	.098006	.13586
20	.05242	.061417	.076720	.092015	.11226	.15264
22	.071424	.082284	.10038	.11809	.14107	.18569
24	.091711	.10423	.12476	.14450	.16972	.21763
26	.11273	.12670	.14929	.17072	.19773	.24813
28	.13406	.14927	.17359	.19640	.22482	.27707
30	.15540	.17165	.19740	.22131	.25082	.30440
32	.17650	.19363	.22055	.24533	. 27566	.33013
34	.19721	.21506	.24292	.26837	.29931	. 35433
36	.21742	.23587	.26447	.29043	.32178	.37708
38	.23705	.25598	.28516	.31148	.34310	.39847
40	.25607	.27537	.30498	.33156	.36333	.41859
45	.30077	.32067	. 3 50 89	.37771	.40944	.46388
50	.34145	.36158	.39190	.41858	.44990	.50303
55	.37834	. 39845	.42855	.45486	.48552	.53711
60	.41177	.43170	.46137	.48716	.51705	.56698
65	.44211	.46176	.49087	.51605	.54510	.59333
70	.46970	.48900	.51747	.54199	.57019	.61674
75	.48155	.51375	.54154	.56540	.59273	.63766
80	.49912	.53632	.56342	.58660	.61309	.65645
85	.51231	.55698	.58337	.60588	.63155	.67342
90	.52010	.57593	.60162	.62349	.64836	68882
95	.54119	.59337	.61838	.63963	.66373	.70284
100	.55222	.60948	.63382	.65446	.67783	.71567

Table 6 (Continued)

p = 8

n a	.005	.01	.025	.05	.1	. 25
9	05204	.05674	.04196	1	.03107	$.0^{3}_{2}$ 393 $.0^{2}_{2}$ 169
10	04294	04841	$.0_{7}^{3177}$	$.0\frac{4}{3}448$ $.0\frac{3}{3}25$	$.0\frac{3}{107}$ $.0\frac{3}{2}624$	0.02169
11	$0_{3}^{4}490$ $.0_{3}^{2}2400$	$.0\frac{7}{3}841$ $.0\frac{3}{3}707$	$.0_{2}^{3}6799$	$.0^{21113}$	$.0^{2}_{2}1903$	$.0^{2}_{2}4342$
12	0372041	$.0^{2}_{0}10418$	$.0^{2}_{017462}$.0226605	$.0^{2}_{.042133}$.0285765
13	0216368	$.0^{2}_{0}22596$	$.0^{2}_{035523}$	$.0^{2}_{0}51410$.0 ² 77049	.014418
14	$.0^{3}_{2}72041$ $.0^{2}_{1}6368$ $.0^{2}_{2}31108$	$.0^{2}_{2}41466$	$.0^{2}_{0}62100$	$.0^{2}86418$.012414	.021771
15	$.0^{2}_{3}52269$	$.0^{2}67778$	$.0^{2}97682$.013177	.018299	.030474
16	.0 ² 80314	.010184	.014225	.018707	.025270	.040327
17	.011537	.014359	.019541	.025159	.033206	.051132
18	.015731	.019272	.025653	.032438	.041978	.062700
19	.020580	.024873	.032485	.040443	.051455	.074859
20	.026039	.031101	.039952	.049070	.061512	.087458
22	.038571	.045177	.056459	.067802	.082923	.11347
24	.052873	.060971	.074544	.087927	.10544	.13993
26	.068506	.077999	.093668	.10887	.12846	.16627
28	.085081	.095847	.11339	.13019	.15157	.19210
30	.10227	.11418	.13338	.15156	.17444	.21719
32	.11980	.13273	.15338	.17273	.19686	.24140
34	.13748	.15129	.17319	.19353	.21870	. 26464
36	.15512	.16971	.19267	.21385	.23986	.28689
38	.17261	.18787	.21173	.23360	.26029	.30813
40	.18985	.20568	.23030	.25273	.27996	.32840
45	.23144	.24835	.27434	.29774	.32580	.37496
50	.27046	.28804	.31482	.33870	. 36708	.41618
55	.30670	. 32466	.35182	.37585	.40420	.45276
60	.34020	. 35832	.38557	.40952	.43760	.48532
65	.37109	.38923	.416350	.44006	.46773	.51442
70	. 39956	.41760	.44446	.46784	.49500	.54055
75	.42583	.44369	.47018	.49315	.51974	.56412
80	.45008	.46771	.49377	.51629	.54228	.58546
85	.47251	.48987	.51546	.53751	.56287	.60486
90	.49329	.51035	.53545	.55701	.58175	.62257.
95	.51259	.52934	.55392	.57499	.59911	.63879
100	.53053	.54696	.57103	.59161	.6 1513	.65370

Table 6 (Continued)

p = 9

Z						
n a	.005	.01	.025	.05	.1	.25
10	$.0_{4124}^{5}$ $.0_{4185}^{6}$	$.0_{4}^{5}260$ $.0_{3}^{4}320$ $.0_{3}^{1}51$	$.0_{4}^{5}722$ $.0_{3}^{6}84$	$.0^{4}_{3}163$	$.0_{3}^{4}392$	$.0\frac{3}{3}147$ $.0\frac{3}{2}687$
11	.04185	0.04200	.0-684	$.0^{3}_{7}126$	$.0_{7}^{3332}$	03687
12	0^{4100}_{3} 970	.0-151	$.0^{3}_{7}281$.03466	.03810	$.0^{2}_{2}191$
13	0.033099	$.0^{3}_{2}4523$	$.0\frac{3}{2}7692$	$.0^{2}_{2}1188$	$.0^{2}_{2}1913$	$.0^{2}_{.04012}$
14	$.0^{3}_{2}74384$	$.0^{2}_{2}10366$	$.0^{2}_{2}16541$	$.0^{2}_{2}$ 24265	$.0^{2}_{3}36974$.0 ² 71266
15	$.0^{2}_{2}14841$	$.0^{2}_{019973}$	$.0^{2}_{03}$ 30359	$.0^{2}_{042820}$	$.0^{2}_{0}62518$.011287
16	$.0^{2}_{2}6040$	$.0^{2}_{034091}$	$.0^{2}_{2}49857$.0 ² 68150	.0 ² 61569	.016469
17	$.0^{2}_{2}41592$ $.0^{2}_{2}61860$	$.0^{2}_{2}53236$	$.0^{2}75439$.010050	.013787	.022608
18	$.0^{2}_{0}61860$.0 ² 77705	.010724	.013982	.018734	.029614
19	.0 ² 87034	.010759	.014529	.018585	.024404	.037386
20	.011714	.014283	.018905	.023817	.030732	.045819
22	.019172	.022853	.029299	.035959	.045084	.064268
24	.028386	.033239	.041555	.049957	.061224	.084226
26	.039112	.045140	.055293	.065365	.078637	.10509
28	.051078	.058248	.070152	.081782	.096887	.12641
30	.064022	.072275	.085811	.098868	.11562	.14781
32	.077706	.086969	.10200	.11635	.13456	.16905
34	.091921	.10211	.11851	.13400	.15348	.18995
36	.10649	.11753	.13514	.15165	.17224	.21037
38	.12127	.13307	.15177	.16916	.19072	.23024
40	.13613	.14861	.16827	.18644	.20882	.24950
45	.17307	.18694	.20852	.22819	.25210	.29481
50	.20894	.22382	.24672	.26739	.29226	. 33606
55	.24316	.25875	.28254	.30383	.32923	.37348
60	.27550	. 29155	.31589	.33751	.36314	.407381
65	.30587	.32219	.34683	.36858	.39422	.43814
70	.33428	.35076	.37549	.39722	.42271	. 46609
75	. 36084	.37735	.40204	.42364	.44887	.49157
80	. 38563	.40210	.42664	.44803	.47293	.51486
85	.40878	.42515	.44947	.47059	.49510	.53619
90	.43042	.44664	.47068	.49149	.51557	.55581
95	.45066	.46671	.49041	.51089	.53 453	.57389
100	.46962	.48545	.50881	.52893	.55211	.59059

Table 6 (Continued)

		 				
ζα	005	. 01	025	05	1	25
n	.005	.01	.025	.05	.1	.25
11	.0 ⁶ 463 .0 ⁵ 6996	$.0_{5}^{6}962$	$.0_{4}^{5}262$ $.0_{3}^{2}2625$.0 ⁵ 592 .0 ₄ 4906	.0 ⁴ 143 .0 ⁴ 9696	$.0\frac{4}{3}547$
12	.036996	$.0^{5}_{4}1215$.0,2625	$.0\frac{4}{3}4906$.0.9696	$.0\frac{3}{2}2773$
13	$.0\frac{4}{3}902$	$.0\frac{4}{5}6127$.071154	$.0_{3}^{3}1936$	$.0\frac{3}{3}3415$ $.0\frac{3}{2}85630$	$.0_{3}^{3}2773$ $.0_{2}^{3}8253$
14	.0.13203	$.0^{3}_{2}19434$	$.0\frac{3}{3}33497$	$.0\frac{3}{2}$ 52370	.0385630	$.0^{2}_{2}18458$
15	$0\frac{3}{3}33375$	$.0^{3}_{2}46925$	$.0^{3}_{2}75906$ $.0^{2}_{2}14596$.0711275	.0717443	$.0\frac{2}{3}34545$
16	.0209/30	$.0\frac{2}{5}94719$	$.0_{2}^{2}14596$	$.0\frac{2}{2}20844$	$.0^{2}_{2}30892$	$.0^{2}_{2}57271$
17	$.0^{2}_{2}12760$	$.0^{2}_{2}16854$	$.0\frac{2}{2}24986$	$.0\frac{2}{3}34574$	$.0\frac{2}{2}49504$.0~87007
18	$.0^{2}_{2}21158$	$.0^{2}_{2}27320$	$.0\frac{2}{3}9237$	$.0^{2}_{2}52903$.0 ² 73624	.012380
19	$.0\frac{2}{3}32552$	$.0\frac{2}{2}41244$.0257677	.0 ² 76085	.010338	.016745
20	$.0^{2}_{2}47226$.0258879	.0 ² 80485	.010421	.013870	.021758
22	.0287070	.010575	.013931	.017497	.022523	.033526
24	.014116	.016798	.021501	.026372	.033067	.047238
26	.020893	.024459	.030588	.036806	.045184	.062439
28	.028915	.033395	.040974	.048531	.058548	.078717
30	.038025	.043423	.052430	.061282	.072856	.095719
32	.048057	.054353	.064736	.07482	.087841	.11316
34	.058846	.066004	.077692	.088920	.10328	.13080
36	.070239	.078215	.091124	.10341	.11898	.14847
38	.082098	.090840	.10488	.11813	.13480	.16603
40	.094302	.10376	.11883	.13297	.15061	.18336
45	.12567	.13666	.15394	.16990	.18955	.22529
50	.15732	.16952	.18850	.20583	.22691	.26469
55	.18845	.20159	.22185	.24016	.26224	.30133
60	.21860	.23243	.25361	.27261	.29536	.33521
65 .	.24748	.26183	.28365	.30311	. 32625	. 36646
70	.27497	.28967	.31193	.33165	.35500	.39526
75	.30102	.31596	.33847	.35833	.38173	.42183
80	.32565	.34073	.36336	.38325	.40658	.44636
85	.34891	.36405	.38669	.40652	.42970	.46904
90	.37084	.38598	.40856	.42826	.45124	.49005
95	.39153	.40662	.42907	.44860	.47132	.50955
100	.41105	.42606	.44833	.46765	.49007	.52769 ·

Table 7. Upper Percentage Points of -2 log λ_1 for testing ξ = ξ_0

	D.	= 4			စ ။ ထ				 	01
u	Korin	Series (2.17)	E .	Korin	Davis	Series (2.25)	=	Korin	Davis Se (Series (2.25)
4		51.2067	9	ι	ja.	91.068	11	1	1	152.510
្ឋ	ı	37.65785	7	. '		67.9490	12		ı	135.813
9	ı	33.08249	∞	1		59.5996	13	1	i,	126.1024
7	30.8	30.74936	6	i		55.1577	14	1	1	119.6427
∞ ∞	29.33	29.32298	10	ı	52.3	52.35128	15	١	114.9	114.9656
6	28.36	28.35673	12	1	48.96	48.95695	16	ı	1	111.39217
10	27.66	27.65726	15	1	46.234	46.23382	18	•	ı	106.24872
11	27.13	27.12675	20	43.99	43.9754	43.97543	20	1	102.70	102.69722
12	26.71	26.71020	25	42.80	42.7890	42.78900	25	1	97.234	97.23448
14	26.10	26.09754	30	42.07	42.0559	42.05590	30	•	94.1027	94.10278

	5	n = 4			9 # 0				$\sigma = 10$	0
ជ	Korin	Series (2.17)	r	Korin	Davis	Series (2.25)	п	Korin	Ö	Series (2.25)
4	,	38.18424	9		1	71.781	11	1		132.403
Ŋ	1	29.01339	7	. •	ì	55,4554	12	. 1,	1	119.069
9	25.8	25.76297	∞	1	i	49.24692	13		í	111.1458
7	24.06	24.06050	6	i	1	45.8294	14	t	, t	105.7642
∞	23.00	23.00227	10	ı	43.6	43.6268	15	ı	101.8	101.8159
6	22.28	22.27753	12	1	40.919	40.91920	16	ı	i	98.77239
10	21.75	21.74883	15	ī	38.7138	38.71385	18	ı	ı	94.35388
11	21.35	21.34555	20	36.87	36.8638	36.86380	20	ı.	91.28	91.27911
12	1	21.02752	22	35.89	35.8847	35.88471	52	•	86.516	86.51565
13	20.77	20.77014	30	35.28	35.2774	35.27737	40	80.7	80.7067	80.70671

CHAPTER V

DISTRIBUTION OF THE LIKELIHOOD RATIO CRITERION FOR TESTING $\Sigma = \Sigma_0$, $\chi = \chi_0$

1. INTRODUCTION

Let a p-variate random sample of size N from the normal distribution with mean μ and covariance matrix ξ be denoted by $\chi_1, \chi_2, \ldots, \chi_N$. The likelihood ratio criterion for testing the hypothesis $H_0: \xi = \xi_0$ and $\mu = \mu_0$ against alternatives $H_1: \xi \neq \xi_0$ or $\mu \neq \mu_0$, where ξ_0 is a given positive definite matrix and μ_0 a given vector, is expressed as (Anderson [1])

(1.1)
$$L = (e/N)^{\frac{Np}{2}} |\xi \xi_0^{-1}|^{\frac{N}{2}} e^{-\frac{1}{2} \operatorname{tr} \xi_0^{-1} \{\xi + N(\bar{\chi} - \mu_0)(\bar{\chi} - \mu_0)'\}}$$

where $S_{\alpha} = \sum_{\alpha=1}^{N} (\chi_{\alpha} - \bar{\chi}) (\chi_{\alpha} - \bar{\chi})$ and $\bar{\chi} = \sum_{\alpha=1}^{N} \chi_{\alpha}/N$. Although the exact distribution of L is unknown, it has been shown that the asymptotic distribution of -2 log L is a chisquare with $\frac{1}{2}$ p(p+1)+p degrees of freedom. No further information on the distribution of L appears to be available.

In this chapter, the null distribution of L is obtained first using the derivations for the chisquare distribution and then using

the derivations for the beta distribution by methods similar to those used in Chapter III. From these percentage points of L can be computed to any degree of accuracy even for small sample sizes. Tabulations of percentage points for p = 2(1)6 for various significance levels are given.

2. DISTRIBUTION OF L AS A CHISQUARE SERIES

The h-th moment of L under the null hypothesis is known to be (Anderson [1])

(2.1)
$$E(L^{h}) = (2e/N)^{Nhp/2} [\Gamma_{p} \{(n+Nh)/2\}/\Gamma_{p}(n/2)] - \frac{Np}{2} (1+h)$$

$$\cdot (1+h)^{-\frac{Np}{2}} (1+h)$$

where n = N-1. Let

$$\lambda = -2 \log L.$$

If $\phi(t)$ is the characteristic function of λ , then

(2.3)
$$\phi(t) = \frac{(2e/N)^{-Npit}}{(1-2it)^{-Np(1-2it)/2}} \frac{\prod_{\alpha=1}^{p} \Gamma\{\frac{N}{2} (1-2it) - \frac{\alpha}{2}\}}{\prod_{\alpha=1}^{p} \Gamma(\frac{N-\alpha}{2})},$$

and therefore

(2.4)
$$\log \phi(t) = -\text{Npit } \log(2e/N) + \sum_{\alpha=1}^{p} \log \Gamma\{\frac{N}{2} (1-2it) - \frac{\alpha}{2}\}$$

$$-\sum_{\alpha=1}^{p} \log \Gamma(\frac{N-\alpha}{2}) - \frac{Np}{2} (1-2it) \log(1-2it).$$

Using the expansion (2.64) of Chapter III to each gamma function in (2.4) we have

(2.5)
$$\log \phi(t) = \frac{p}{2} \log(2\pi) + \sum_{\alpha=1}^{p} \log \Gamma(\frac{N-\alpha}{2}) + \frac{pN}{2} \log(N/2e)$$

$$-(\frac{p^3 + 3p}{4}) \log \Gamma\{\frac{N}{2}(1-2it)\} + \sum_{\gamma=1}^{m} (Q_{\gamma}/N^{\gamma})(\frac{1-2it}{2})^{-\gamma}$$

$$+ R_{m+1}^{\prime}(N,t),$$

where the coefficients Q_r 's are given by

(2.6)
$$Q_{r} = (-1)^{r-1} \sum_{\alpha=1}^{p} B_{r+1}(-\alpha/2)/r(r+1).$$

The characteristic function of L can then be obtained from (2.5) as

(2.7)
$$\phi(t) = K(p,N)[N(1-2it)/2]^{-v} \left(\sum_{j=0}^{\infty} (B_j/N^j) \left(\frac{1-2it}{2} \right)^{-j} \right) + R''_{m+1}(N,t),$$

where

(2.8)
$$K(p,N) = (2\pi)^{p/2} (N/2e)^{\frac{pN}{2}} \left[\prod_{\alpha=1}^{p} \Gamma(\frac{N-\alpha}{2}) \right]^{-1},$$

and

(2.9)
$$v = (p^2 + 3p)/4$$
.

The coefficients B_j 's can be expressed in terms of Q_j 's using (2.67) of Chapter III.

Since $(1-2it)^{\frac{n}{2}}$ is the characteristic function of a chisquare density with n degrees of freedom, say $g_n(\chi^2)$, the density of λ can be derived from (2.7) in the form

(2.10)
$$f(\lambda) = K(p,N) \sum_{j=0}^{\infty} (B_j) (2/N)^{j+v} g_{2(j+v)}(\chi^2) + R^{***}(N).$$

The probability that λ is larger than any value, say λ_0 , is

(2.11)
$$P(\lambda \ge \lambda_0) = K(p,N) \sum_{j=0}^{\infty} (B_j) (2/N)^{j+v} G_{2(j+v)}(\chi^2) + R_{m+1}(N),$$

where
$$G_{2(j+v)}(x^2) = \int_{0}^{\infty} g_{2(j+v)}(x^2) dx^2$$

and
$$R_{m+1}(N) = \frac{1}{2\pi} k(p,N) \int_{\lambda_0}^{\infty} \int_{-\infty}^{\infty} e^{-it \lambda} \int_{j=0}^{\infty} (B_j) (2/N)^{j+v} (1-2it)^{-(j+v)}$$

$$\cdot [\exp{R_{m+1}(N,t)} - 1] dt d\lambda .$$

Thus from (2.11) we have that the distribution of λ may be obtained from a series of chisquare distributions.

DISTRIBUTION OF L AS A BETA SERIES

Let

$$\lambda = L^{2/N}$$

Then from (2.1), we have

(3.2)
$$E(\lambda^{h}) = \frac{(2e/N)^{ph}}{\prod_{\alpha=1}^{p} \Gamma(\frac{N-\alpha}{2})} \frac{\prod_{\alpha=1}^{p} \Gamma(\frac{N}{2} + h - \frac{\alpha}{2})}{(1+2h/N)^{Np}(1+2h/N)/2} .$$

Using inverse Mellin's transform, the density of λ is given by

(3.3)
$$f(\lambda) = \frac{1}{\prod_{\alpha=1}^{p} \Gamma(\frac{N-\alpha}{2})} \cdot \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{\lambda^{-h-1} (2e/N)^{ph} \prod_{\alpha=1}^{p} \Gamma(\frac{N}{2} + h - \frac{\alpha}{2})}{(1+2h/N)^{Np} (1+2h/N)/2} dh.$$

Putting $\frac{N}{2}$ + h = t in (3.3), we have

(3.4)
$$f(\lambda) = K_1(p,N) \lambda^{\frac{N}{2}-1} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \lambda^{-t} C(t) dt$$

where c = N/2,

(3.5)
$$C(t) = (e/t)^{\text{pt}} \prod_{\alpha=1}^{p} \Gamma(t - \frac{\alpha}{2})$$

and

(3.6)
$$K_1(p,N) = (2e/N)^{-pN/2} \left[\prod_{\alpha=1}^{p} \Gamma(\frac{N-\alpha}{2}) \right]^{-1}$$

Using the expansion (2.64) of Chapter III to each gamma function in (3.6), we have

(3.7)
$$\log C(t) = \frac{p}{2} \log(2\pi) - \frac{(p^2 + 3p)}{4} \log t + [A_1/t + A_2/t^2 + ... + A_r/t^r + ...]$$

where the coefficients Ar's are given by

(3.8)
$$A_{\mathbf{r}} = (-1)^{\mathbf{r}-1} \left[\sum_{\alpha=1}^{\mathbf{p}} B_{\mathbf{r}+1} (-\alpha/2) \right] / \mathbf{r} (\mathbf{r}+1).$$

Thus from (3.7), we have

(3.9)
$$C(t) = (2\pi)^{p/2} t^{-(p^2+3p)/4} [1+B_1/t+B_2/t^2+...+B_r/t^r+...]$$

where the coefficients $\mathbf{B_r}$'s can be computed using (2.10) of Chapter IV.

Proceeding as in Chapter IV, it can be seen that when $v=(p^2+3p)/4 \text{ is } \text{ an integer, the probability that } \lambda \text{ is less}$ than any given value, say λ_0 , is

(3.10)
$$P(\lambda \leq \lambda_0) = K_1(p,N)(2\pi)^{p/2} \sum_{r=0}^{\infty} (B_r) I_{v+r-1,u}(\lambda_0)$$

where $u = \frac{N}{2} - 1$ and $I_{v+r-1,u}(\lambda_0)$ satisfies the recurrence relation (2.15) of Chapter IV. If $v = (p^2 + 3p)/4$ is not an integer. The distribution of λ is given by

(3.11)
$$P(\lambda \le \lambda_0) = K_1(p,N) (2\pi)^{p/2} \sum_{i=0}^{\infty} R_i I_{\lambda_0} (\frac{N}{2} + \lambda, v+i) / \Gamma(v+i)$$

where I_{λ_0} (p,q) is the incomplete beta function $\int_0^{\lambda_0} x^{p-1} (1-x)^{q-1} dx$.

4. COMPUTATIONS OF PERCENTAGE POINTS

.005, .01, .025, .05, .1 and .25 significance points of $\lambda = L^{2/N}$ were computed for p = 2(1)8 and various n using (2.11), (3.10) and (3.11) and these are presented in table 7. The computation was carried out on CDC 6500 using double precision arithmetic.

Table 8. Percentage Points of $\lambda = L^{2/N}$ for testing $\Sigma = \Sigma_0$, $\mu = \mu_0$

			p = 2		<u> </u>	
α						
N	.005	.01	.025	.05	.1	.25
4	$.0^{2}_{2}11950$.0 ² 24255	.0 ² 62516	.012967	.027422	.078104
5	.0 ² 90438	.014658	.028055	.046404	.078032	.16230
6	.026253	.037975	.062461	.091968	.13730	.24199
7	.051029	.068870	.10323	.14149	.19621	.31188
. 8 .	.080540	.10371	.14595	.19050	. 25119	.37189
9	.11243	.13993	.18810	.23694	.30114	.42330
10	.14505	.17593	.22840	.28001	.34605	.46750
11	.17738	.21080	.26628	.31956	.38628	.50575
12	.20877	.24408	.30155	.35570	.42233	.53910
13	.23889	.27553	.33424	.38867	.45471	.56837
14	.26754	.30509	. 36447	.41878	.48387	.59425
15	.29468	.33281	.39240	.44630	.51024	.61726
16	.32031	.35874	.41824	.47151	.53415	.63785
17	. 34446	. 38299	.44215	. 49466	.55593	.65638
18	.36720	.40568	.46431	.51597	.57582	.67313
19	.38862	.42692	.48489	.53563	.59406	.68834
20	.40879	.44682	.50404	.55381	.61083	.70221
22	.44572	.48300	.53853	.58634	.64061	.72659
24	.47862	.51499	.56871	.61457	.66622	.74730
26	.50804	.54341	.5 9529	.63926	.68848	.76512
28	.53448	.56881	.61886	.66104	.70798	.78060
30	.55832	.59161	.63989	.68037	.72521	.79417
32	.57992	.61218	.65876	.69764	.74054	.80617
34	.59956	.63082	.67579	.71316	.75425	.81685
36	.6 1749	.64778	.69121	.72718	.76660	.82642
38	.63392	.66328	.70525	.73990	.77777	.83504
40	.64902	.67750	.71808	.75150	.78793	.84285
45	.68191	.70834	.74579	.77645	.80970	.85948
50	.70923	.73385	.76858	.79687	.82742	.87294
55	.732 2 7	.75528	.78763	.81388	.84213	.88404
60	.75195	.77355	.80380	.82827	.85454	.89336
65	.76896	.78928	.81769	.84060	.86514	.90130
70	.78379	.80299	.82975	.85129	.87430	.90814
75	.79684	.81502	.84031	.86063	.88230	91409
80	.80842	.82567	.84965	.86887	.88934	.91932
85	.81875	.83517	.85795	.87619	.89559	.92395
90	.82803	.84369	.86539	.88274	.90117	.92807
95	.83640	.85137	.87209	.88863	.90619	.93177
100	.84400	. 85834	.87815	.89396	.91072	.93511

Table 8 (Continued)

N	.005	.01	.025	.05	.1	.25
5	$.0^{3}_{2}34244$	$.0\frac{3}{2}70203$.0 ² 18466	.0 ² 39217	.0 ² 85876	.026462
6	$.0^{2}30928$.0 ² 50905	.010015	.017047	.029804	.067094
7	.010307	.015172	.025706	.038979	.060467	.11482
8	.02233	.030688	.047382	.066822	.096110	.16366
9	.038451	.050397	.072989	.097894	.13358	.21074
10	.057614	.072947	.10079	.13027	.17095	.25483
11	.078828	.097194	.12952	.16269	.20716	.29553
12	.10127	.12227	.15832	.19439	.24166	.33285
13	.12432	.14754	.18662	.22493	.27421	. 36699
14	.14750	.17258	.21408	.25408	.30473	.39819
15	.17049	.19710	.24051	.28174	.33327	.42675
16	.19306	.22090	.26578	.30789	.35991	.45292
17	.21506	.24389	.28987	.33256	. 38478	.47 6 95
18	.23638	.26598	.31278	.35580	.40798	.49908
19	.25697	.28717	.33452	.37770	.42967	.51950
20	.27680	. 30745	.35515	.39833	.44994	.53839
22	.31415	.34533	.39326	.43609	.48671	.57217
24	.34852	.37986	.42755	.46974	.51912	.60148
26	.38008	.41132	.45847	. 49982	.54783	.62711
28	.40906	.44003	.48644	.52684	.5 7343	.64970
30	.43570	.46627	.51180	.55119	.59636	.66975
32	.46022	.49031	.53489	.57325	.61701	.68766
34	.48284	.51240	.55598	.59330	.63569	.70375
36	.50374	.53273	.57530	.61160	.65267	.71828
38	.52310	.55150	.59306	.62836	.66816	.73146
40	.54107	.56888	.60943	.64375	.68234	.74347
45	.58077	.60710	.64523	.67727	.71307	.76930
50	.61432	.63923	.67511	.70510	.73842	.79043
55	.64300	.66659	.70041	.72855	.75969	.80802
60	.66778	.69014	.72209	.74857	.77777	.82290
65	.68939	.71062	.74087	.76586	.79334	.83565
70	. 70 839	.72859	.75729	.78094	.80688	.84668
75	.7 2 523	.74448	.77177	.79420	.81876	.85634
80	.74024	.75862	.78463	.80596	.82926	86485
85	.75371	.77129	.79612	.81645	.83862	,87241
90	.76585	.78270	.80645	.82487	.84701	.87917
95	.77687	.79303	.81579	.83437	.85457	.88525
100	.78690	.80243	.82427	.84208	.86142	.89074

Table 8 (Continued)

να	.005	.01	.025	.05	.1	.25
6	$.0_{2}^{3}10678$	$.0^{3}_{2}220703$	$.0^{3}_{2}58981$	$.0^{2}_{2}12748$.0 ² 28695	.0 ² 93374
7	$.0_{2}^{110678}$	$.0^{2}_{2}18433$	$.0^{2}37061$.0 ² 64488	.011612	.027730
8	$.0^{2}_{2}41278$	$.0^{2}61637$.010696	.016600	.026537	.053367
9	.0 ² 98136	.013688	.021655	.031256	.046289	.083241
10	.018242	.024272	.036006	.049390	.069303	.11510
11	.029144	.037447	.052960	.069939	.094254	.14743
12	.042098	.052653	.071755	.092003	.12014	.17933
13	.056655	.069348	.091745	.11488	.14626	.21023
14	.072395	.087064	.11241	.13804	.17213	.23983
15	.088956	.10541	.13336	.16112	.19743	. 26798
16	.10604	.12409	.15430	.18385	.22196	.29465
17	.12340	.14286	.17501	.20605	.24560	.31983
18	.14084	.16154	.19534	.22761	. 26829	. 34358
19	.15823	.17999	.21519	.24846	.29004	.36596
20	.17544	.19812	.23449	.26856	.31075	.38705
22	.20901	.23314	.27127	. 30645	.34941	.42568
24	.24112	.26627	.30555	.34134	.38454	.46010
26	.27157	.29741	.33736	.37339	.41647	.49087
28	.30029	.32655	. 36682	.40282	.44552	.51849
30	.32728	.35376	.39409	.42987	.47201	.54339
32	.35261	.37916	.41934	.45476	.49624	.56594
34	.37637	.40287	.44275	.47772	.51845	.58642
36	.39864	.42501	.46449	.49893	.53887	.60511
38	.41955	.44570	.48470	.51858	.55769	.62222
40	.43917	.46506	.50353	.53680	.57508	.63794
45	.48326	.50835	.54532	.57705	.61326	.67213
50	.52127	.54544	.58085	.61103	.64528	.70050
55	.55429	.57752	.61137	.64007	.67248	.72440
60	.58320	.60549	.63784	.66515	.69585	.74479
65	.60868	.63007	.66100	.68701	.71615	.76240
70	.63129	.65182	.68141	.70622	.73393	.77774
75	.65148	.67119	.69953	.72323	.74963	.79123 .80319
80	.66961	.68855	.71573	.73839	.76360	.80319
85	.68597	.70419	.73028	.75200	.77609	.82342
90	.70080	.71835	.74343	.76426	.78734	,
95	.71432	.73123	.75537	.77538	.79752	.83206
100	.72668	.74300	.76625	.78550	.80677	.83990

Table 8 (Continued)

p = 5

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						 	
7 .0 d 3483 .0 d 7246 .0 d 1959 .0 d 34301 .0 d 9868 .0 d 3360 8 .0 d 40379 .0 d 67996 .0 d 13921 .0 d 24668 .0 d 45511 .011394 9 .0 d 16608 .0 d 25107 .0 d 44458 .0 d 70365 .011532 .024312 10 .0 d 24873 .0 d 60883 .0 d 97873 .014408 .021870 .041164 11 .0 d 85445 .011519 .017449 .024403 .035072 .060841 12 .014486 .018858 .027220 .036629 .050512 .082357 13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224	•	.005	.01	.025	.05		.25
8 .0_40379 .0_61996 .0_219921 .0_244688 .0 43512 .0 43512 10 .0_216608 .0_225107 .0_244458 .0_70365 .011532 .024312 10 .0_242873 .0_60583 .0_97873 .014408 .021870 .041164 11 .0_85445 .011519 .017449 .024403 .035072 .060841 12 .014486 .018858 .027220 .036629 .050512 .082357 13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .088948 .11202 .13384 .1623			A	031050	034301	039868	023360
10 .0242873 .0260583 .0297873 .014408 .021870 .041164 11 .0285445 .011519 .017449 .024403 .035072 .060841 12 .014486 .018858 .027220 .036629 .050512 .082357 13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947<		03483	03/240	021333	0224668	0245511	
10 .0242873 .0260583 .0297873 .014408 .021870 .041164 11 .0285445 .011519 .017449 .024403 .035072 .060841 12 .014486 .018858 .027220 .036629 .050512 .082357 13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947<		0216608	0207990	0213921	,		
11 .0°85445 .011519 .017449 .024403 .055072 .060841 12 .014486 .018858 .027220 .036629 .050512 .082357 13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789		0210000	0260583	0207873			
12 .014486 .018858 .027220 .036629 .050512 .082357 13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329		0295445					
13 .022021 .027896 .038779 .050629 .067587 .10493 14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
14 .030978 .038392 .051773 .065965 .085773 .12798 15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .333329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573							
15 .041149 .050083 .065870 .082248 .10464 .15107 16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .399573 30 .23575 .25745 .29114 .32171 .35856 .42321							
16 .052319 .062720 .080771 .099155 .12386 .17390 17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39973 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849							
17 .064284 .076075 .096224 .11642 .14316 .19627 18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335							
18 .076861 .089948 .11202 .13384 .16236 .21804 19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329							
19 .089887 .10417 .12798 .15125 .18131 .23912 20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 <							
20 .10322 .11861 .14398 .16852 .19991 .25947 22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
22 .13098 .14766 .17568 .20229 .23577 .29789 24 .15761 .17642 .20651 .23467 .26961 .33329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
24 .15761 .17642 .20651 .23467 .26961 .333329 26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 <							
26 .18444 .20446 .23613 .26541 .30133 .36584 28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
28 .21055 .23152 .26436 .29442 .33096 .39573 30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 <t< td=""><td></td><td></td><td>and the second second</td><td></td><td></td><td></td><td></td></t<>			and the second second				
30 .23575 .25745 .29114 .32171 .35856 .42321 32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
32 .25996 .28218 .31646 .34732 .38428 .44849 34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></t<>		•					
34 .28310 .30571 .34035 .37135 .40824 .47181 36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
36 .30519 .32805 .36289 .39389 .43057 .49335 38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
38 .32622 .34924 .38414 .41503 .45142 .51329 40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.49335
40 .34624 .36932 .40417 .43488 .47090 .53179 45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							
45 .39209 .41507 .44945 .47946 .51435 .57263 50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							
50 .43257 .45519 .48878 .51789 .55148 .60710 55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984		and the second s					.57263
55 .46839 .49049 .52315 .55126 .58353 .63653 60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.60710
60 .50021 .52173 .55336 .58046 .61141 .66194 65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.63653
65 .52863 .54952 .58010 .60619 .63587 .68408 70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.66194
70 .55411 .57436 .60390 .62901 .65749 .70352 75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.68408
75 .57707 .59669 .62522 .64939 .67672 .72074 80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.70352
80 .59785 .61684 .64439 .66768 .69393 .73608 85 .61674 .63512 .66174 .68418 .70943 .74984							.72074
85 .61674 .63512 .66174 .68418 .70943 .74984 ·							
7024							
						.72344	76224

Table 8 (Continued)

					*	
Nα	.005	.01	.025	.05	.1	.25
	1	$.0^{4}_{3}$ 2449 $.0^{2}_{3}$ 25325	.0,46667	0.031493 0.0294699 0.029611	37.467	.021228
8	$.0\frac{7}{3}1175$.032449	.03666/	.031493	$.0^{3}_{2}3467$ $.0^{2}_{2}17839$	
9	$.0\frac{3}{3}14899$	· · · · · ·	$.0^{3}_{2}52651$.0294699	.0217839	.0246618
10	$0.0^{3}_{2}66790$.0210206	$.0^{2}_{2}18395$.0229611	.049579	.010881
11	$.0^{2}_{2}18575$	$.0^{2}_{2}26552$	$.0^{2}_{2}43693$.0265440	.010148	.019869
12	$.0^{2}_{2}39475$.0253849	.0283094	.011822	.017350	.031265
13	$.0^{2}70751$	$.0^{2}93190$.013700	.018747	.026384	.044617
14	.011289	.014467	.020474	.027168	.036988	.059468
15	.016571	.020 76 9	.028500	.036886	.048878	.075407
16	.022853	.028122	.037615	.047684	.061779	.092085
17	.030043	.036401	.047647	.059352	.075444	.10922
18	.038032	.045474	.058431	.071697	.089657	.12657
19	.046710	.055212	.069812	.084550	.10424	.14397
20	.055967	.065492	.081652	.097763	.11903	.16128
22	.075822	.087246	.10624	.12479	.14879	.19522
24	.096888	.10999	.13143	.15201	.17821	.22783
26	.11861	.13315	.15665	.17889	. 20685	.25885
28	.14055	.15633	.18154	.205119	. 23443	.28816
30	.16241	.17923	.20583	.23047	.26082	.31575
32	.18397	.20164	.22937	.25484	.28595	.34165
34	.20507	.22344	.25206	.27816	.30982	. 36596
36	.22560	.24454	.27386	.30042	. 33244	.38875
38	.24550	.26489	.29475	.32163	.35387	.41014
40	.26474	.28448	.31473	.34182	.37415	.43022
45	.30982	.33010	. 36084	.38809	.42027	.47532
50	. 35069	.37114	.40190	.42892	.46059	.51418
55	.38764	.40803	.43848	.46506	.49600	.54791
60	.42105	.44121	.47117	.49717	.52727	.57742
65	.45131	.47114	.50049	.52583	.55504	.60341
70	.47877	.49822	.52688	.55153	.57983	.62647
75	.50377	.52279	.55073	.57468	.60209	.64704
80	.52660	.54517	.57238	.59563	.62215	.66550

CHAPTER VI

SUMMARY AND CONCLUSION

The study of the exact and asymptotic distributions of some statistics including some well-known likelihood ratio test criteria in multivariate analysis has been carried out in this dissertation. The main objective has been to present in convenient forms the distributions of these statistics in order to facilitate further work including numerical computations. This research was carried out for the reason that earlier authors who attempted to study these distributions either gave expressions which were practically not suitable for further use or merely restricted themselves to asymptotic derivations.

In the first chapter, the non-central distributions of statistics of the form $Y = \prod_{i=1}^p \theta_i^a (1-\theta_i)^b$, where a and b are real numbers have been obtained in the form of H-functions as a result of employing inverse Mellin transform and then asymptotic expansions of the distribution of Y have been obtained for suitable values of (a, b). It may be possible to express the H-functions in a simple computational form by using the methods of contour integration as done in Chapter III at least in some cases and thus the power study of Y for some sets of values (a, b) may be made.

In Chapter II the moments of the sphericity criteria W were obtained in the null case and then use was made of the Mellin transform and Meijer's G-functions to find its non-central distribution in a closed form. Here the methods of contour integration may be employed to obtain the non-central distribution of W in a more suitable form for further work including numerical computations and thus power study of W can be facilitated.

In Chapter III the exact distribution of the sphericity criterion W was obtained in a form from which the percentage points of W were computed for p = 2(1)10 and various degrees of freedom n. The methods employed are quite general and could be used to obtain the exact distribution of other likelihood ratio criteria. In particular the methods can be applied to obtain the exact distribution of the likelihood ratio test criterion for testing the hypothesis that all off diagonal elements of Σ are zero, while the diagonal elements are equal in sets. Obviously the sphericity test considered in Chapter III is a special case of this hypothesis.

In Chapter IV, the density of the likelihood ratio criterion $L=\lambda_1^{2/n}$ for testing $\xi=\xi_0$ was obtained in a form which could be used to compute percentage points to any degree of accuracy even for small sized samples. The methods employed in this chapter along with the methods in Chapter I may yield an expression for the asymptotic non-central distribution of λ_1 in terms of central or non-central chisquare distributions.

In Chapter V, the methods of Chapter III and IV were further used to obtain the distribution of $\lambda = L^{2/N}$ for testing $\xi = \xi_0$, $\mu = \mu_0$ as a chisquare as well as a Beta series from which percentage points for p = 2(1)6 were computed. It may be possible that the methods used in this chapter together with the methods of Chapter I may yield a suitable form for the asymptotic distribution of λ .

In conclusion, the dissertation embodies the theoretical work solving once for all the distribution problems at least in the null case of some well-known likelihood ratio test criteria and makes available much needed tabulations which are fairly complete. The methods obtained to solve these distribution problems (See Chapter III) are of wide application.

LIST OF REFERENCES

REFERENCES

- [1] Anderson, T. W. (1958). <u>Introduction to Multivariate Analysis</u>, John Wiley, New York.
- [2] Box, G.E.P. (1949). A general distribution theory for a class of likelihood criteria. Biometrika, 36, 317-346.
- [3] Braaksma, B.L.J. (1964). Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Composite Math. 15, 239-341.
- [4] Constantine, A. G. (1963). Some Non-Central Distribution problems in Multivariate Analysis. Ann. Math. Statist. 34, 1270-1285.
- [5] Consul, P. C. (1967). On the exact distribution of the criterion W for Testing Sphericity in a p-variate Normal Distribution. Ann. Math. Statist. 38, 1170-1174.
- [6] Consul, P. C. (1969). The Exact Distributions of Likelihood Criteria for Different Hypotheses. Multivariate Analysis, Vol. 2, Academic Press, New York.
- [7] Das Gupta, S. (1969). Properties of power functions of some tests concerning dispersion matrices of multivariate normal distributions. Ann. Math. Statist. 40, 697-701.
- [8] Davis, A. W. (1971). Percentile approximations for a class of likelihood ratio criteria, <u>Biometrika</u>, 58, 349-356.
- [9] Doetsch, G. (1971). Guide to the applications of the Laplace and Z-transformations. Van Nostrand-Reinhold, New York.
- [10] Erdélyi, A. et al (1953). <u>Higher Transcendental Functions</u>, Vol. I. McGraw-Hill, New York.
- [11] Goodman, N. R. (1963). Statistical Analysis Based on a certain Multivariate Complex Gaussian Distribution. Ann. Math. Statist. 34, 152-176.

- [12] James, A. T. (1964). Distribution of Matrix Variates and Latent Roots Derived from Normal Samples. Ann. Math. Statist. 35, 475-501.
- [13] John, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. Biometrika, 59, 169-173.
- [14] Khatri, C. G. (1965). Classical Statistical Analysis Based on Certain Multivariate Complex Gaussian Distributions. <u>Ann.</u> <u>Math. Statist.</u> 36, 98-114.
- [15] Khatri, C. G. (1966). On Certain Distribution Problems Based on Positive Definite Quadratic Functions in Normal Vectors.

 Ann. Math. Statist. 37, 468-479.
- [16] Khatri, C. G. (1967). Some distribution problems connected with the characteristic roots of $\S_1 \S_2^{-1}$. Ann. Math. Statist. 39, 944-948.
- [17] Korin, B. P. (1968). On the distribution of a statistic used for testing a covariance matrix. Biometrika 55, 171-178.
- [18] Luke, Y. L. (1969). The Special Functions and Their Approximations. Academic Press, New York.
- [19] Mathai, A. M. and Rathie, P. N. (1970). The exact distributions for the sphericity test. Jour. Statist. Res. 4, 140-159.
- Mauchly, J. W. (1940). Significance Test for Sphericity of n-variate Normal Population. Ann. Math. Statist. 11, 204-209.
 - [21] Meijer, G. (1946). Nederl Akad. Wetensch. Proc. 49, 344-456.
 - [22] Nagao, H. (1967). Monotonicity of the modified likelihood ratio test for a covariance matrix. J. Sci. Hiroshima Univ. Ser. A-I 31, 147-150.
 - [23] Nair, U. S. (1938). The Application of the Moment Function in the Study of Distribution Laws in Statistics. Biometrika, 30, 274-294.
 - [24] Nair, U. S. (1940). Application of Factorial Series in the Study of Distribution Laws in Statistics. Sankhya 5, 175.
 - [25] Pillai, K.C.S., Al-Ani, S. and Jouris, G. M. (1969). On the distributions of the ratios of the roots of a covariance matrix and Wilks' criterion for tests of three hypotheses. Ann. Math. Statist. 40, 2033-2040.

- [26] Sugiura, N. (1969). Asymptotic expansions of the non-null distributions of the likelihood ratio criteria for multivariate linear hypothesis and independence. Ann. Math. Statist. 40, 942-952.
- [27] Sugiura, N. and Nagao, H. (1968). Unbiasedness of some test criteria for the equality of one or two covariance matrices

 Ann. Math. Statist. 39, 1686-1692.
- [28] Sugiura, N. and Fujikoshi, Y. (1969). Asymptotic expansions of the non-null distributions of the likelihood ratio criteria for multivariate linear hypothesis and independence. Ann. Math. Statist. 40, 942-952.
- [29] Titchmarsh, E. C. (1948). <u>Introduction to the Theory of Fourier Integrals</u>. Oxford <u>University Press</u>, <u>London</u>.
- [30] Tukey, J. W. and Wilks, S. S. (1946). Approximation of the Distribution of the Product of Beta Variables by a Single Beta Variable. Ann. Math. Statist.17, 318-324.

APPENDICES

Appendix A

Coefficients B_i 's (i = 11,...,14) are:

$$\begin{split} \mathbf{B}_{11} &= \mathbf{Q}_{11} + 8\mathbf{Q}_1\mathbf{Q}_2\mathbf{Q}_8/11 + 2\mathbf{Q}_2\mathbf{B}_9/11 + 8\mathbf{Q}_3\mathbf{Q}_8/11 \\ &+ 9\mathbf{Q}_9\mathbf{B}_2/11 + 4\mathbf{Q}_8\mathbf{Q}_1^3/33 + \mathbf{Q}_1\mathbf{B}_{10}/11 + 7\mathbf{Q}_2\mathbf{Q}_1^2\mathbf{Q}_7/22 \\ &+ 10\mathbf{Q}_{10}\mathbf{Q}_1/11 + 7\mathbf{Q}_1^4\mathbf{Q}_7/264 + 3\mathbf{Q}_3\mathbf{B}_8/11 + 7\mathbf{Q}_4\mathbf{Q}_7/11 \\ &+ 6\mathbf{Q}_6\mathbf{B}_5/11 + 7\mathbf{Q}_3\mathbf{Q}_1\mathbf{Q}_7/11 + 5\mathbf{Q}_5\mathbf{B}_611 + 7\mathbf{Q}_2^2\mathbf{Q}_7/22 \end{split}$$

$$\begin{split} \textbf{B}_{12} &= \textbf{Q}_{12} + \textbf{Q}_{1} \textbf{B}_{11} / 12 + \textbf{Q}_{2} \textbf{B}_{10} / 6 + \textbf{Q}_{3} \textbf{B}_{9} / 4 + \textbf{Q}_{4} \textbf{B}_{8} / 3 + 5 \textbf{Q}_{5} \textbf{B}_{7} / 12 + \textbf{Q}_{6} \textbf{B}_{6} / 2 \\ &+ 7 \textbf{Q}_{7} \textbf{B}_{5} / 12 + 2 \textbf{Q}_{8} \textbf{B}_{4} / 3 + 3 \textbf{Q}_{9} \textbf{B}_{3} / 4 + 5 \textbf{Q}_{10} \textbf{Q}_{1}^{2} / 12 + 5 \textbf{Q}_{10} \textbf{Q}_{2} / 6 + 11 \textbf{Q}_{11} \textbf{B}_{1} / 12 \end{split}$$

$$\begin{split} \textbf{B}_{13} &= \textbf{Q}_{13} + \textbf{Q}_{1} \textbf{B}_{12} / 13 + 2 \textbf{Q}_{2} \textbf{B}_{11} / 13 + 3 \textbf{Q}_{3} \textbf{B}_{10} / 13 + 4 \textbf{Q}_{4} \textbf{B}_{9} / 13 + 5 \textbf{Q}_{5} \textbf{B}_{8} / 13 + 6 \textbf{Q}_{6} \textbf{B}_{7} / 13 \\ &+ 7 \textbf{Q}_{7} \textbf{B}_{6} / 13 + 8 \textbf{Q}_{8} \textbf{B}_{5} / 13 + 9 \textbf{Q}_{9} \textbf{B}_{4} / 13 + 10 \textbf{Q}_{10} \textbf{B}_{3} / 13 + 11 \textbf{Q}_{11} \textbf{Q}_{1}^{2} / 26 \\ &+ 11 \textbf{Q}_{11} \textbf{Q}_{2} / 13 + 12 \textbf{Q}_{12} \textbf{B}_{1} / 13 \end{split}$$

$$\begin{split} \mathtt{B}_{14} &= \mathtt{Q}_{14} + \mathtt{Q}_{1} \mathtt{B}_{13} / 14 + 3 \mathtt{Q}_{3} \mathtt{B}_{11} / 14 + \mathtt{Q}_{2} \mathtt{B}_{12} / 7 + 2 \mathtt{Q}_{4} \mathtt{B}_{10} / 7 + 5 \mathtt{Q}_{5} \mathtt{B}_{9} / 14 + 3 \mathtt{Q}_{6} \mathtt{B}_{8} / 7 \\ &+ 3 \mathtt{Q}_{6} \mathtt{B}_{8} / 7 + \mathtt{Q}_{7} \mathtt{B}_{7} / 2 + 4 \mathtt{Q}_{8} \mathtt{B}_{6} / 7 + 9 \mathtt{Q}_{9} \mathtt{B}_{5} / 14 + 5 \mathtt{Q}_{10} \mathtt{B}_{4} / 7 + 11 \mathtt{Q}_{11} \mathtt{B}_{3} / 14 \\ &+ 3 \mathtt{Q}_{12} \mathtt{Q}_{1}^{2} / 7 + 6 \mathtt{Q}_{12} \mathtt{Q}_{2} / 7 + 13 \mathtt{Q}_{13} \mathtt{B}_{1} / 14 \end{split}$$

Coefficients C_{ij} 's (j = 11,...,14) are:

$$\begin{split} \mathbf{C_{i11}} &= -(\mathbf{t_{i}^{12}} - 6\mathbf{t_{i}^{11}} + 11\mathbf{t_{i}^{10}} - 33\mathbf{t_{i}^{8}}/2 + 22\mathbf{t_{i}^{6}} - 33\mathbf{t_{i}^{4}}/2 + 5\mathbf{t_{i}^{2}}) \\ \mathbf{C_{i12}} &= \mathbf{t_{i}^{13}} - 13\mathbf{t_{i}^{12}}/2 + 13\mathbf{t_{i}^{11}} - 143\mathbf{t_{i}^{9}}/6 + 288\mathbf{t_{i}^{7}}/7 - 429\mathbf{t_{i}^{5}}/10 + 65\mathbf{t_{i}^{3}}/3 - 691\mathbf{t_{i}^{12}}/210 \\ \mathbf{C_{i13}} &= -(\mathbf{t_{i}^{14}} - 7\mathbf{t_{i}^{13}} + 91\mathbf{t_{i}^{12}}/6 - 1001\mathbf{t_{i}^{10}}/30 + 143\mathbf{t_{i}^{8}}/2 - 1001\mathbf{t_{i}^{6}}/10 + 455\mathbf{t_{i}^{4}}/6 \\ &\qquad \qquad -691\mathbf{t_{i}^{2}}/30) \end{split}$$

Coefficients R_{is} (i = 11,...,14) are:

 $R_{11}^{+R} + R_{10}^{d} + R_$

 $R_{12}^{+R} + R_{11}^{d} + R_{10}^{d} + R_$

 ${}^{R_{13}+R_{12}d_{12,1}+R_{11}d_{11,2}+R_{10}d_{10,3}+R_{9}d_{94}+R_{8}d_{85}+R_{7}d_{76}+R_{6}d_{67}} \\ +{}^{R_{5}d_{58}+R_{4}d_{49}+R_{3}d_{3,10}+R_{2}d_{2,11}+R_{1}d_{1,12}+R_{0}d_{0,13}} = {}^{B_{13}}$

 $R_{14}^{+R} + R_{13}^{d} + R_{12}^{d} + R_{12}^{d} + R_{11}^{d} + R_$

Appendix B

Coefficients
$$A_{ij}$$
's $(j = 11,...,15)$ are:

$$A_{i11} = -[(t_i^{12} - \lambda^{12}) - 6(t_i^{11} - \lambda^{11}) + 11(t_i^{10} - \lambda_i^{10}) - 33(t_i^8 - \lambda^8)/2 + 22(t_i^6 - \lambda^6) - 33(t_i^4 - \lambda^4)/2 + 5(t_i^2 - \lambda^2)]/132$$

$$A_{i12} = [(t_i^{13} - \lambda^{13}) - 13(t_i^{12} - \lambda^{12})/2 + 13(t_i^{11} - \lambda^{11}) - 143(t_i^9 - \lambda^9)/6$$

$$+286(t_i^7 - \lambda^7)/7 - 429(t_i^5 - \lambda^5)/10 + 65(t_i^3 - \lambda^3)/3$$

$$-691(t_i^7 - \lambda)/210]/156$$

$$A_{i13} = -[(t_i^{14} - \lambda^{14}) - 7(t_i^{13} - \lambda^{13}) + 91(t_i^{12} - \lambda^{12})/6 - 1001(t_i^{10} - \lambda^{10})/30$$

$$+143(t_i^8 - \lambda^8)/2 - 1001(t_i^6 - \lambda^6)/10 + 455(t_i^4 - \lambda^4)/6$$

$$-691(t_i^2 - \lambda^2)/30]/182$$

$$A_{i14} = [(t_i^{15} - \lambda^{15}) - 15(t_i^{14} - \lambda^{14})/2 + 35(t_i^{13} - \lambda^{13})/2$$

$$-91(t_i^{11} - \lambda^{11})/2 + 715(t_i^9 - \lambda^9)/6 - 429(t_i^7 - \lambda^7)/2$$

$$+455(t_i^5 - \lambda^5)/2 - 691(t_i^3 - \lambda^3)/6 + 35(t_i^5 - \lambda)/2]/210$$

$$A_{i15} = -[(t_i^{16} - \lambda^{16}) - 8(t_i^{15} - \lambda^{15}) + 20(t_i^{14} - \lambda^{14}) - 182(t_i^{12} - \lambda^{12})/3$$

$$+4004(t_i^{10} - \lambda^{10})/21 - 1287(t_i^{8} - \lambda^{8})/3 +$$

$$+20020(t_i^{6} - \lambda^{6})/33 - 1382(t_i^{4} - \lambda^{4})/3 + 140(t_i^{2} - \lambda^{2})]/240$$