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Now using the density (2.3) we get
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Making use of the inverse Mellin transform, we have the density

of Y as
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Noting that the integral on the R.H.S. of (2.7) is in the form of
the H—function, the non-central density of Y for test (1) can be
put in a single general formlfor different sets of values of a and
b as follows: |
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(2.8) £(Y) = C(p,n,p) o ) ) K Y Hi,i(Yl(bi,Bi)i=1,...,

k=0 k

where C(p;n,A) is as in (2.5) and the constants are given in the

following table.
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(2.14) f(Y) =C (P n,q,p )akEO Z (q/Z)Kk!

(ai,ai)i=1,...,t

r,s
(v| s _ )
u (bi,Bi)l-l,...,u

where the constants o, §, r, s, t, u, (ai,ai) and (bi’Bi) are

as in Table 1, in which n, is to be replaced by q throughout.

3. SPECIAL CASES

(1) Wilks' A criterion. Taking a. = 0 and b =1 in (2.8)
and using the relation between the H-function and the G-function,

P
we find that the non-central density of Wilks' A = 1 (l-Qi) is as
_ i=1

obtained by Pillai, Al-Ani, Jouris in the three cases [25]

(ii) Wilks-Lawley U-criterion. If a =1 and b = 0 in (2.8),

we obtain the non-central density of Wilks-Lawley U-statistic,

P
U= 1 Oi for test (1), in the form
i=1
= (@/2)C 00
(3.1) fu) = Cl.n,) ) ) —— 17— r,(n,/2)
k=0 x ) _
(a S0 )i=1l,...,p

-1 p,o
R 6 yset,. . p)

where C(p,n,Q) is as in (2.4), (ai,ai) = (n/2+ki—(i-1)/2,l}«and
(bi,Bi)é(n1/2+ki—(i—l)/2,1) i=1l,...,p. (3.1) can also be eXﬁressed
in terms of the G-function. The density of U for the Manova and

Canonical correlation cases can be written down using the substi-

tution (2.10) and (2.13) respectively.



(iii) Taking a = n1/2 and b = n2/2 in (2.8) we obtain the
non-central density of the modified likelihood ratio criterion

for testing él = Ez i.e. of the statistic

n1/2 n2/2

0.” (1-8;) = |s

1 '\,1‘ LY

n =g

n./2 -n/2 n,;/2 : _

| Vogl Tig,l B e R RR
i .

in the fofm

p(p-1)/4 § /2 C 8D 1 2p,0, @irti)iTh P

Lo M T, 2p(x‘(b 8,)i=1, p)’

£(A) = Clp,n, Q)T

where (ai,ai) = (n/2+ki—(i—1)/2,n/2) and (bi,Bi).=
{(n) /20K~ (i-1)/2,m,/2) , (/2= (1-1)/2,0,/2) 1 = 1,...,p}

The densities in the other two cases can be written down using
(2.10) and (2.13).
(iv) Taking a = 1 and b = -1 in (2.8) we obtain the noncentral

: P -1 -1
density of the statistic W= 1 Oi(l-Gi) = |§1§2 | for test (1)

ji=1
in the form
(p-1)/2 Y
(3.2) f(Y)=C(p,n,Q)ﬂp P kz ) kIT (Z/E,K) Y
=0 K P
(a;,1) i = 1,....p
EE ARV IE T T

where a;, = 1—n2/2+(i—1)/2 and bi=n1/2+kir(i—1)/2. The density in

(3.2) can be easily written down in terms of the G-function. The
non-central densities of W for the Manova and Canonical correlation

cases can be written down using (2.10) énd (2.13).



4. NON-CENTRAL DISTRIBUTION OF Y IN THE COMPLEX CASE

The non-central density of Y in the complex case can be
obtained in a similar manner and is noted below. (a') The
general form of the density of Y for test (1) can be written

down from (2;8) by making the following substitutions.
d . '
(4.1) (v, n;/2, n,/2, n/2, (i-1)/2, Fp(-), Fp( sK) CK(-),(~)K)

- (TTZd, nl’ n2, n, (1'1)3 ’f:p('), ?{P(.’K)’ EK(.), [.]K)

where %p({), ?p(.,n), EK(-) and [-]K are as defined in James [12].

(b') For the Manova case the general form of the density of Y
is obtained from (2.11) by making the substitutions as in (4.1).
(¢') In the case of Canonical correlation also, the general form

of the density of Y can be written down from (2.14) using (4.1).

5. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, a=n1/2 AND b=n2/2

First we give some preliminaries.

(a) Preliminaries. For this case, putting a = n1/2 and b = n2/2

in (2.6) we have,

n1(1+h)
I _(n/2) —n1/2 o (n/Z)KF {———,«}

(5.1) E(Y ) F (n /Z)F (n /2) l kX Z k'P {n(l+hj %

. rp{n2(1+h)/2} c . .

This can be easily written in the form
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Wi
(5.2) E(Y )_ = {rp(n/2)1‘p[n1(1+h)/2]r‘p[n2(1+h)/2]/I‘p[n(1+h)/2]

1/2

- .
Ty /20T (/20 AL T gFy (/2,m) (1+h)/25m (140) /2,00 -

We shall assume that
(5.3) n, = t.m, (i = 1,2) where Ty T, = 15v

The asymptotic expansion of the distribution of Y will be derived
in terms of n increasing and also in terms of m = pn increasing
where 0 < p < 1 and is defined later, with T and T, fixed. (See

h

Anderson [1], p. 254). The ht moment of

(1/2)pn (1/2)pn1 (l/Z)pn2

(5.4) W= [n /n1 n, 1-Y
is giveh by
. (1/2)pnh -(1/2)pnsh - (1/2)pnyh
(5.5) E(W) =n n, n, (r, (0/2)T [y (1+h)/2]/

rp[n(1+h)/2]rp(n1/2)}{rp[n2(1+h)/2]/rp(n2/2)}

—n1/2
IQ' 'zFl(n/Z,nl(1+h)/2;n(1+h)/2,%).
We shall obtéin the asymptotic expansion for (i) - 2 log W in terms
- of n increasing and assuming M to be of the forﬁ M= (27@) P where
R is a fixed matrix and (ii) - 2p log W in terms of m = pn increas-
ing instead of n and assuming M = (2/m) P where P is a fixed
matrix and the éorrection factor p is given by tsee Anderson [1],

p. 255)
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(5.6) m = pn = n - 2a where o = (111+151-1)(2p2+3p-1)/12(p+1).
We will need the following lemmas proved in [28].

Lemma 5.1. Let CK(%) be a zonal polynomial corresponding to the
partition K={k1,k2,...,kp} with k1+k2+...+kp=k énd ky 2 ky > ks

> k

> 0. Putting
p—

(5.7) a;(x) = iglki(ki-i),az(n) = iglki(4k§-eikif3;2)

Then the following equalities hold:

5.8) § I&c @a /K= (Cer 728 |
k=0 'K '
¢.9) I 1 K €, @2 () (D) = @2x2 tr g2ex® 1x g2 tr et 0%,

1k

(5.10) Zb z xk(al(K))ZCK(é)/k! = {x4(tr %2)2+4x3 ﬁr £3+x2 tr %2
k=0 « '

+x2(tr %)2} etr(x&),

(s.11) § xch(g)az(K)/k:={4x3tr 25:3:% tr ZPesxd(er 2)?

k=0

"o~

+X tr %}etr(x %){

5.12) § JC @)/ &-Di=(er e TE,
k=2

and

5.13) § IcC (@/&-2)! = (tr nle Tk,
k=2 «



Lemma 5.2. With the notations of the lemma 5.1, for large n

(5.1) (0/2) =@/2D¥[1en Y, G0+ (1/6n%) thoa, (k) +3 (a) (D) 210 (m73)],
and |

(5.15) (n/2+ajK=(n/Z)k[l+(1/2n){4ak+2a1(K)}+(1/24n2){4k
+48azk(k-1)+48a(k-1)a1(K)-Aaz(x)+12(é1(K))2}+0(n-3)]

(b) Derivation of Asymptotic Expansions. We consider below

asymptotic expansions of the distributions of (i) and (ii) above.

(i) Asymptotic expansion of the distribution of -2 log W. Let

¢(t) be the characteristic function of -2 log W. Then from (5.2)
we have - |

. . -n,/2
-2 W -2it 1
(5.16) o(t) = E(e 2T 18 %) = g%y = ¢ (), ()5 (0 A
where

-itpn itpn1 itpn2

(5.17) Cl(t)

(5.18) C,(t) %mnuﬂﬁyn%mﬁnn%mym%mymM%MH’

and

(5.19) g = (1-2it), C4(t) = ,F,(n/2, n,g/2; ng/2,M).

12

1

" We shall use the following asymptotic formula for the gamma function

as in Anderson ([1], p. 204)

| . m (-1)7B,,,®)
(5.20) logr (x+h)=logvZm +(x+h - 5)log X-X- )) -
. r=1 r(r+l)x

+o()x|™h,
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which holds for large |x| and fixed h. The Bernoulli polynomial

. © T
Br(h) of degree r is given by (t eht)/(et—l) = 2 (%TJBr(h). Some
r=0

of these which we shall need in the sequel, are liéted below.

h-1/2, B,(h) = h2-h+1/6,

B, (h)

(5.21)

B, (h) h3-.3n2/2+h/2 and B4(h)=h4-2h3+h2—1/30.

Applying the formula (5.20) to each gamma function in Cz(t), we
have
(5.22) log Cz(t) = it pn log(n/2)-it pnzlog(n2/2)-it pnllog(nl/Z)
-1 4 2 -2 -3
- f log(g)/2+(x/n)(g "-1)+(s/n")(1-g ")+0(n 7),

.where

(5.28) £ = p(p+1)/2, ¥ = p(2p7+3p-1) (x] +7,"-1)/24
and

p(p+1) (2-p2-p) (x] 47 7-1)/48.

[72)
1}

It therefore follows that

(5.24) €, (103G, () = g/ Zexpl(x/m) (g7 - 1)+ (s/07) (1-g 200 ™)]

a2 /my g 1o 2 s (1-g D 2/2) (271 -1

fom ] .

Let M = [I - ,Q'l].

(2/n) P where P is a fixed matrix. Then



-n,/2 t,n/2
1 2 1

R R A 1
Now using the expansion

2 _ 2 2 on3 3 -4
(5.26) log|I - =P| = -(2/m)tr P-(2/n")tr(R)"-(8/3n Jtr(P")+0(n" ")
we obtain

n/2

2 11 2
(5.27) |£ - E'R| = exp[(rln/2)10g|£ - H-Rl]

(x,0/2)[- @2/}t p-2/nD) e @D)- (8/30") e @) +0 (™)

= €

-Tltr P

e '\'[l-n"1

-2 -3
Al-n A2+0(n )1

where

~ 2 ~ 3, 2 2.2
(5.28) Aj=1; tr(R") and Ay=(4/3)7,tr @) -1 er BY/2 .

Applying asymptotic formula (5.14) to (n/2)k, (nlg/Z)K and

(ng/2)'< we have after some algebraic simplication,
(5.20) (n/2)x (n,8/2)e/ (ng/2)x
' k -1 2 : 2
= (nry/2) [1en o ()B(E)+ (1/6n7) L ((k-2, () +3 (3, (<))
A(0)-g 2 eea () -3y () )-D(E) (3 () 2340 7))

where o -

(5.30) ‘A(t)=1+(Tlg)-2, B(t)=1+(r] -1)/g and

p(t)=slg  + (1,82 - ()71

Using (5.29) and the lemma 5.1, we have on simplification,

14



= (/2) (0,8/2) C ER)

_ K K'n
(5.31) C.(t) = kZO Z e/, K

_ Tltr 2 _2' -3

= e [1+(K/n)B(t)+(1/6n"){LA(t)-Mg “-ND(t)}+0(n )]
where

K = ri tr Rz, L= 8Ti tr RS + STi(tf RZBZ,

(5.32) M = -3ri(tr E2)2—16Titr R3-6Ti{tr p2e(tr P23,
and

N = Ti(tr R2)2+4T§tr RS+T§{tr R2+(tr R)z};

From (5.16), (5.24), (5.27) and (5.31), we have

(5.33) o(t) = gff/z[1*“-1{“0*3-1“1}*“—2{“2+g_1°3+g'2a4}+0(n'3)],

where the coefficients ai's are given by
a,. = K-A, -1, o, = K(T-l—l) + T
0 1 M § 1 7

- KA, + s + r2/2 - Kr + A

a, = L/6 - A2 1 15
2 -1
(5.34) o, = r(K-A;) - r" + (1 -1) (N-TK-A,K),
3 1 1 1
_ -2 -1 2 -1
and @, = (L T -M)/6 - N Ty oS T /2 + rK(T1 -1)

By inverting the characteristic function in (5.33), using the
fact that (g)_f/2 is the characteristic function of x%, a chi
square variable with f degrees of freedom, we obtain the following

asymptotic expansion for the distribution of -2 log W.

15
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(s.ssj _P(=_2 log W¢t) = P(xg €8) #+ n'l.(aopcxg £'2)
’-.,é‘.lpfxg*a <)+ 0 e OF £ 8) + agPlxg,p < 1)
. “4§c*§+4*§ 0} + 0™, |
where ui‘;sla‘re éeﬁneé in (5.33).

(11) Asymptotic expansion of the distribition of -2p log W. Here

we shall 'dér’ive the asymptotic expansion for -2p idg' W where p is
given by : (5.6). Put m = pn and let m tend to infinity instead of
n. From (5.2), the characteristic function £(t) of -2p log W can

Be written as
(5.36) £(t) = B2 118 ¥y w g nxcg(e),
where C4(t) and Cs(t) are given by

n, (1-2pit)  n,(1-2itp)
144 o Mali-eite)

‘ -pnitp Iy (0/2)1 [T, [-=——]
(5.37) .C,(t) = “pm,itp -pn,itp |, [ELE:ZBEEIJF (n,/2)T. (n,/2)
‘ n, n, P 2 pr 1'% pT2
and
!
-—2(m+2a) mgT

_ f 1 .
(5.38) C(0) = Al F1G+ o 5—+ar; B a M),

g and o beihg as defined in (5.19) and (5.6) respectively. Now the
first'factor'C4(t) in (5.36) can be expanded asymptotically (See

Anderson [1], p. 255) as follows.
(5.39) €, = g %1+ amd) @1+ 0]

where
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(5.40) £ = p(p+1)/2, A = [p(p+1)/481[(p-1) (p+2) (x] +7; ~1)-67]

and y = (x]'+1; -1 (2p2+3p-1)2/36 (p+1)? = 44°.
Now as stated before, let

1- 47 = em g,

N

where g is a fixed matrix. We then have

T, (m+2a)
— mr,g
_ 2 5 2 m : . g 2
(5.41) Cg(t) = Iz - m,gl JF1 G+ o, 5+ at; 5+ e, B

Using the asymptotic expansion (5.15) to (g-+ u)K, (mrlg/Z + arl)K

and (mg/2 + a)K, we have
(5.42) (/2 + o) (nr,2/2 + at;)/ (mg/2 + o)«
= (mrl/Z)k[1+m'1{2ak+61a1(K)}+m—2{k62+k263+54a1(K)

v gkay (k) + 858, ()+8(ay (<)) + 0],

where
6, =1+ (Til—l)g;l,az - -2a2+[1+(112-1)g‘2]/6,
55 = 207,

(5.43) 6, = -20 + 208”2 (1171, &g = 20+ 2a(T114i)g‘1, )
5 = (@-1;2g2-13/6 and 6, = (1 + (;l-ng 2.

From (5.42) and the lemma 5.1, it then easily follows that,



m'rlg 2

m- . g L
(5.44) 2Fl(2 *a, -t 0Ty 5 +o, o R)
1trpo,, -1 -2 -3
= e [1+m (2aa+b61)+m (a62+a(a+1)63+b64+c65+d§6+e67)+0(m )1,

where the constants a, b, ¢, d and e are given by

. . _ 2 2, 42 2 3. 2 .
tr}\’),b-'r tr,li",c—Z'r trR +T1trrl\), tr’l';",

1 1

3 2 2 2 2 '
tr R .+ 3 T trlg + 3 rl(tr R) + 1, tr P

(5.45) d T trp

[[]
N
~

3

Y]
=]
[« %
(¢
n

4 2.2 3 2 2 : 2
Tl(tr P )° + 4 T tr PT o+ tl[tr P” + (tr P) 1.

Tlm/Z aty

2 2 2
(5.46) |1 - =p| = |1 - =P |1 - %P
m , m-

and using (5.26) and (5.27) to the faétor on the right hand side of

(5.46), it can be easily checked that

T, v

| 2 ; toatry Ty tr Py 5 -3
(5.47) |I - ﬁ-gl = e [1-m "§g+m “§5+0(m )],
where

5. = t.{tr P>+2a tr P}

g~ "1 Ao &

d s = §%/2-7.14 tr P3/3+2a tr P2}

an - %9 = o/ A o tr Bt

We therefore have
_ -1 -2 -
(5.48) Cs(t) = [1+m (2aa+b61-68)+m (a62+a(a+1)63+b64fc65

+d§, +es,+6,-2aa8 -b5168)+0(m'3)]

6 7 9 8

and finally from (5.36), (5.39) and (5.48) we have

18



(5.49) £(t)=g 2 [1en Magra g yem 28 08 8 00 g 0],

where

o = 2a0+b-8,, oy = b(r ] -1)

0 8’ 1 41 >

B. = -A+2a2a2+(a-d)/6-2a(b-c+56‘)+e/2+6 -bs

0 8 9 8’
(5.50) 1

B, = (Tl -1) (2ca+e-b58)

| =2 -1 -1 2

and By = A+(x]°-1) (a-d)/6+2ba(1-7; )+e(r; -1) /2.

Inverting the characteristic function in (5.49), we have the

asymptotic. expansion of the distribution of -2p log W in the form,

2 -1 2
(5.51) P(-Zprlog W<z)s= Pr(xf 5_;) + m {aoP(xf < z)

2 -2 2 2
+ 0 P(Xg,, < 21 {BGPOxe < 2)*B;P(Xg,p £ 2)

[ A

L B,P0E,, < DY+ 0w ™).

iA

6. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, a=1 AND b=0
For this case putting a =1 and b =0 in (2.6) we can easily
see that

T (n/Z)FP(n /2+h) —n1/2
F (n/2+h)r (n,/2) l

6.1) E(Yh)
We assume (5.3) and obtain the asymptotic expansion of Ll where

(6.2) L, = /a log (¥/})

Fl(n/2,n1/2+h;n/2+h,%)-

19
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in terms of n increasing with Ty and T, fixed assuming that
M= [% - Qfl] = (2/n) R where P is a fixed matrix. Let x(t)

be the characteristic function of Ll. Then ’ .

it L
(6.3) x(t) = E(e ) = Cg(t)C, (1),
where
(6.4) Cq(t) = (1/Tl)it“ﬁbrp(n/2)rp(n1/2+it¢53[rp(n/z+itvﬁjrp(n1/z)]'1
and
| -n,/2 : L
(6.5) c7(t) =‘|Q| 2F1(n/2,n1/2+1t/5; n/2+itvn, M).

'Using the formula (5.18) to each gamma function on the right hand

side of (6.4), we have

2
-pT,t _
(6.6) Cq(t) = e 1" [1-n l/z{le(it)+2pT2(it)3/3}
+ n‘l{(fTé+f2Tf/2) (i_t)2
v pefr T, (0*/32p’Ts (0%90wm )],

where
6.7 T. = (¢« 1-1), T, = 13%-1, T, = 1]°-1 and £ = p(p+1)/2

: 1° ' I B A S | = PP .

Now using lemma 5.2 to (n/2)k, (n/2 + it vh)k and (n,/2 +7it V)

we have
(6.8) (n/2) (n;/2+it vﬁbK/(n/z + it /)

- (pl/z)k[1+n'1/22 it k T1+n—1{111a1(K)+2(it)2(k2T§—k 1)}

-3/2

+ 0(n 1.
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As before let M = (2/n)R where P is a fixed matrix. Then from

(6.8) and the lemma 5.1, we have after a little simpiification,

(6.9) ,F (n/2,n/2 + it /a; n/2 + it /a, 2/n F)

Tltr'R

= e [l—n‘l/z(it),Alm-l{(it)2 A2+q}+0(n-3'/2

)1,

where

| _ 2
-2T, tr(t;.R), q = 1y tr P

(6.10) A

. 2 2
and A 2{T1[(trb'r1 R) +tr(1:1 R)]-TZ(TI tr E)}f

2

Also from_(5.27) we have

Tln/2 -7 tr P 3/2

-n,/2
6.11) [pl ¥ =1 - 2/mp) - e “[1-n"tgr0 @ 4)]

and thus

(6.12) C,(t) = [1-n"Y/2(it) A1+n'1(it)2A2+0(n‘3/2)],

From (6.3), (6.6) and (6.12), we obtain the following asymptotic
expansion for'x(t).

_t%/2 172 -1 -3/2

(6.13) x(t//ZpTl) = e [1- Dl+n D2+0(n )1,

where the coefficients D, and D, are given by

1 )
(2pT,) 2[(at) (A+ET)) + (3T1)"1 Tz(it)s] and

o
H

' 23 2c .82 2.2 2
(6.14) D2 (2pT1) ap”[ (it) (fT2+f T1/2+fT1A1 ¥ Az)T1

4 6 20
(it) Tl(T3+fT1T2+A1T2)/3+(1t) T2/18].

+
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‘ -n1/2 n ‘
(7.5) Cg(t) = Al JF /2,n,/2; 5+ it vn, M).

Ny

Using the formula (5.17) to each gamma function on the right-hand

side of (7.4) we get

-pR t2 L

(7.6) Cg(t)=e ' [l-n 2{le(it)+sz2(it)3/3}

+ n-l{ (fR2+f2Ri/2) (it)z
+ 2p(R5+fR1R2)(it)4/3+2p2R§(it)6/9}+0(n-3/2)]’

where coefficients Rl’ R2, RS and R4 are given by

(7.7) Ry =T 1, R, = 21, Ry = 1531 and £ = p(p+1)/2.

Using lemma 5.1 and 5.2, we have proceeding as in section 6

' . n . 2
(7.8) zFl(n/Z, n1/2, 5 + it /n, E’R)
T,tr P —l
el “i1-n? (it)Bl+n‘1{Bz+(it)253}+0(n'3/2)],
- . p2 _
where B1 = 2(tr T R), 82 =17 tr R and B3 = B1(4 + Bl)/2.

Using (7.8) and (6.11), we can write Cy(t) as

1
2(1t)51+n'1(it)2 B3f0(n_3/2)] ~ -

(7.9) Cg(t) = [1-n

and thus we have the following asymptotic expansion for H(t).

1

, 1 |
(7.10) BE/VERD) = ¢ 8 /21 2 gm0 A,
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CHAPTER II
ON THE DISTRIBUTION OF THE SPHERICITY TEST CRITERION
IN CLASSICAL AND COMPLEX NORMAL POPULATIONS HAVING

UNKNOWN COVARIANCE MATRICES

1. INTRODUCTION AND SUMMARY

" Let X px1 be distributed N(k’é) where ¥ and L are both
unknown. Let § be the sum of product matrix of a sample of
size N. To test the hypothesis of sphericity, namely,
Ho: é = dz £p’ where 02 > 0 is unknown, against le & # 02 £p’
Mauchly [20] obtained the likelihood ratio test criterion for HO

in the form W = |S|/[(tr §)/p]P. Thus the criterion W is a power

of the ratio of the geometric mean and the arithmetic mean of the

- Toots 91, 92,...,9p of |§—9 £| = 0 (see Anderson [1]). | For p = 2,

Mauchly [20] showed that the density of W is
__ . > 0-3)
(1.1) fw) = E—(n—l)w s 0 <wc<l1,

where n = N-1. The exact distribution in the null case was obtained

by Cbnsul [5], [6], in the form

e po Je-D+-L/p. 50D
(1.2) fw) = k(p,n)w G wi™ g 1 )
p,p v O,'z') 1:---’ '2‘(P"1)

where
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1

1 1
(-1 5 - 5P

. > P
k (P ’n) = (2'")

I rlz(n-3-1)1,

n o
P(§'Pn)/. .

J

seeesd A
and Gm’n(x 17" ‘p) is the G-function defined in the next

P»q by,e.nuby

section.
In this chapter we have obtained the general moments of W
both in real and complex cases for arbitrary covariance matrices

and also the corresponding distributions of W in terms of G-function.

2. SOME DEFINITIONS AND RESULTS

In this section we give a few definitions and some lemmas

which are needed in the sequel. First we definevMeijer's G-function

by [21]
m n
I r(b.,-s) 1 r(l-a.+s)
ad.,...,a _ . j . j
@1 @&l P = @t [ =1 xSds,
P.q 1:---, q . C q P
n r(l-b.+s) 1 T(a.-s)
j=m+l _ j=n+1

where an empty product is interpreted as unity and C is a curve
m :
separating the singularities of I F(bj—s) from those of

n J=1

) P(l-aj+s), q>1,0<n<p<q,0<m<q; x#0and _
j=1

|x| <1if q = p; x # 0 if q > p.
The G-function of (2.1) can be expressed as a finite number of
generalized hypergeometric functions (see Pillai, Al-Ani and Jouris

- [25] and Luke [18}) and in particular we have
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a.,a

1°72
|b ) =

(2.3) Gg’g(x .
’ 1°P2

b,  a,+a_-b,-b,-
x l(l-x) 17271 72

: F, (a
r(a1+a2-b1-b2) 27172

1
-b

2,al-bz,al+a2—b1-b2,l-x)

0<x<1

where 2F1 here is the Gauss hypergeometric function.

Now we state the Gauss and Legendre's multiplication formula
for gamma functions as

1 1
n E{n—l) 5 - Nz
(2.4) I I'[z+(r-1)/n] = (27) n T'(nz).
r=1

Further, the hypergeometric function of matrix variates is defined
by
(2)) -+ (2), C (BIC (D)

F (a ,..-,a ;b ,-'O,b ;S’n= 2 2 pKK
pFq (1 2%piby QPR L LT B ), C K

where the zonal polynomials, CK(-), and (-)'< are. defined in [12].

Lemma 2.1. Let Z: mxm be a complex symmetric matrix whose real
part is p.d. and let T: mxm be an arbitrary complex symmetric matrix.
Let §: mxm be a real p.d. matrix. Then

t-%—(m+1) -

C L 4§ = Tat |z 70, @ 7

(2.5) [ exp(-tr z 9)Isl )
where rm(t,k) is defined in (15) of Constantine [4] and R(t) > %{m—l).

(See Constantine [4]).



Lemma 2.2. Let x be as in lemma 2.1. Then

1 t-l{m+1) q |
(2.6) §fo exp(-5 tr )| 2 (tr §)° € (T $)d 3
5>

tm+k+q

= rm (t,x)2 I'(mt+k+q)CK(T)/I'(mt+k) .

Proof. We shall consider the cases when (1) q 3_0 and (2) q < 0.

(1) q > 0. From (2.5), for u > 0 we have

1
. 1 t -_2—(m+ 1 ) )
2.7 exp(-5 u tr S)|sl C.(I 8§
v |
tm+k _-tm-k
= 2 u I, (k) (D).

To prove this case we differentiate (2.7) q times w.r.t. u

under the integral sign and let u = 1 to obtain

| . t—%{m+1) . |
(2.8) Sfo-exp(-i-tr §)|§| (tr 7 C (T 8)d §
’ >
n .

= 2K (e, (tmekeq)C,_(F)/T (mtek).

which is also (19) of Khatri [15].

(2) q < 0. To prove this case, we integrate (2.7) successively
r times w.r.t. u, change the order of integration and let u =1,

yielding . -

1
t-=(m+1)
S| 27 T er "¢

WOLE:

1 ,
(2.9) [ exp(-5tr §) .
0

- ptmek-r I (tmek-1)T_ (t,K)C, (£)/T (tmek) .

28
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Since I(tm+k-r)/T(tm+k) = T (em+k-j)71, (2.9) holds if
j=1

tm+k-r > 0. This proves the lemma.

Lemma 2.3. Let Z: mxm be a complex symmetric matrix whose real
part is p.d. and let T: mxm be an arbitrary complex symmetric

matrix and $: mxm be a Hermitian matrix. Then

(2.10) xp(-tr Z 8)|s|2™ ¢ (T 8)d
| é,%}O»ep ERRITT @ DR

=¥ @zl ¢,

where ?m(a,k) is defined in [12].
Lemma 2.4. Let x and Q be as in lemma 2.3. Then

(2.11) [ exp(-tr s> er §)7 ¢ @ 9ds

o

= ¥ (2,07 (amekej )E_(D)/T (amek) -

Proof. The proof is exactly similar to the proof of lemma 2.2

and hence omitted.

Lemma 2.5. If s is any complex variate and f(x) is a function of a

real variable x, such that

Fis) = [ 1 £x)dx

O~ 8

exists, then under certain regularity conditions

-1 Ctie -s
f(x) = (2ri) | x77 F(s)ds.

C-iw
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F(s) is called the Mellin transform of f(x), and f(x) is the

inverse Mellin transform of F(s). (See Titchmarsh [29])

3. DISTRIBUTION OF W IN THE REAL CASE

Let §£ pxp be distributed as Wishart (m, Ps %). Then the

distribution of the latent roots g gz,...,gp.of S has.been shown

by James [12] to depend only on the latent roots of Z and is given

by _
1 1
"2__ n 1 _1 E(n-P—l) . p
G.1) k@Rl © Fol5 598l T (g5-g5) I dg;,
. i<j i=1
where
1,12 1o
2P 3P

ke = Il 2 1 /2? g wrd

v P

G = diag(gl,gz,...,gp), > 828 228 } 0.

The distfibution (3.1) is not convenient for further develop-
ment and the convergence of the series is slow. But the convefgence
. may be improved by writing (3.1) in the form suggested by Pillai,
Al-Ani and Jouris [25]), f

L

Z(H'P'l)
(3.2) k(p,n,2) g

1

whete‘



Theorem 3.1. Let g be distributed as in (3.2) and let
W= |g|/{(trvg)/p}P be the sphericity criterion. Then the

h-th moment of W is given by

1
(3.3) EG) = Sl ) €80 x Tpg I k)
| I | x0c © T pephek)
2 rp(f'n) _ .

Proof. To find E(Wh) we multiply (3.2) by |Q|/[(tr g)/p]p, trans-

form ¢ > H Y H' where | is an orthogonal and Y a symmetric matrix,

integrate out H and Y using (44) and (22) of Constantine [4]. We

get
1 2

(.4) EOM = PP(eun, PTG pIT

Z’

L Z [, 0n/C, (F,)k!]

(3 n+h)-3(p+1)

Vioexp(—%-tr X)|X| (tT-X)-phCK(X)dx.
v .

Applying lemma (2.2) to the integral on the R.H.S. of (3.4) we
get (3.3).-.
Theorem 3;2. For any finite p, the p.d.f. of W is

k 1 1
2C, 40 7 -z Pk

(3.5) £0) = Co,E) [ L —fr— P I pr+k)
k=0 « ) '

1
i—(n-p-l) al,...,a
T W G

where
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1 1 1 ‘
o TP 2n 1p-1)
Clp.n,g) = &l em® TG,

. 1 1 .
= (k+j-1)/p+5(p-1); by = kj+§{P-J).
For p = 2, (3.5) reduces to

1
—— 1
E_z“ =(n-3) = k +
2T (n-1) W Z T(n*k) ¢ (M)w i

(3.6) f(w) =
(a bz,a1 bz, a +a,- bl b2, w).

Proof. Applying (2.4) on P[p(%-n+h+k/p)] we have from (3.3)

1 1
: 5 - 5 pn-k .
EGW™) = Cp, n,g)kzo I 12c qop® 27 TG vk l/ki]
K
P 1
il [ f'n+h+k ——{1 J)}/r{ n+((k+j-1)/p)+h}].
j=1

Using Lemma 2.5, the density of W has the form

ke 11 1
o (M) -3 pn-k =(n-p-1)
(5.7 £0) = CEmD. 2 2 ~p? 2 rG prekw? '
p
Ctioo I P(r+b )
(emi)”t [ wT il dr,
C-iw P -
I P(r+ai)

i=1

where

1 1 1, . . 1
T = 7 nth-3(p-1), by = ky+7(p-j),a; = (k+j-1)/p+3(p-1).
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Noting that the integral in (3.7) is in the form of Meijer's
G-function, we can write the density of W as in (3.5).
(3.6) can be obtained easily from (3.5) by putting p = 2 in

(3.5) and using (2.3).

Remark. Putting %= 02 £ in (3.5) and (3.6), we can easily deduce

the result of Consul in (1.2) [5], [6], amd Mauchly in (1.1), [20].

4. DISTRIBUTION OF W IN THE COMPLEX CASE

Let %: pxp be distributed as a Complex Wishart (n,p,%)
(see Goodman [11]). Then the distribution of the latent roots

8)+8p5+++»8, Of § is (James [12])

- - ‘ P
(4.1 k@D RO 16 1 (g;-g)7 T dg,
' i<j i=1
where
, | ¥~ PP (P-1)
k(P,n,%) = z ; ¥ (n) and
LN LN P

pa’q(al,...,ap; bl,...,bq; S I) are defined in (83) and (88) of

James [12].
As in the real case, the convergence of (4.1) may be improved

by writing it in the form

P
ndg.,

(4.2) .k(p’n’z)oﬁ’o(%Pg)exp(_trg) |g|n'P IEJ (gi-gj)z-i e

where %1 = £p - z .
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Theorem 5.1. Let G be distributed as in (4.2) and let

W= |Q|/[(tr Q)/p]p. Then h-th moment of W is

ph o ¢ M) ' ,
4.3 E—|g|™ kXO y < P(np+k)?§(n+h,x)/?(np+k+ph).
=0 k

Fp(n) k!

Proof: Multiplying (4.2) by |ﬁ|/[(tr Q)/p)]p, using the transfor-
mation G - Q,XVQ' where | is unitary and Y is hermitian p.d. we
have on integrating out Y and using the results (see Khatri [14])

that the Jacobian of transformation is

I Y = T (e;-g) h, )
i<j

L @-1)
and that f hz(g) = _§____*, we have
¥ gr=I pP)
E(Wh). Pphl%l-n 2 Z aK(gl) { ( SI In+h~p h
BV — exp(-tr p
Tp(n) k=0 « eK(Ip)k! V>0 _ X (tr \)

¢ ap ay
Using lemma (2.4) to the integral on the right, we gét (4.3).

Theorem 5.2. The density of W is

1 1
5 p(p-1) , _ 5(p-1)
? 3™ en’ RCH
¥ () kXO L~ T
n =U K
. |




‘;— -'pnjk .

Q.8,,0.0,8
. n-p Gp,O 1722 ’
P w P,p(wl

P
byseeesby )

where aj = (k/p) + (G-1)/p'+ (p-1), and bj - kj -.j + p.

Proof. The proof is exactly similar to that of theorem 3.2 and

hence is omitted.

35
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CHAPTER III

THE DISTRIBUTION OF THE SPHERICITY TEST CRITERION
UNDER THE NULL HYPOTHESIS

1. INTRODUCTION

1 Let X: px 1 be'distributed N(H’§) where H‘and E are both
unknown. Let $ be the sum of product ﬁatrix of a sample of size
N. To test thg hypothesis of sphericity, namely, HO: L= 02 ip’
where 62 > 0 is unknown; against P 02 £P’ Mauchly [20] obtained
the likelihood ratio test criterion for H0 in the form
W= |8|/[(tr 8)/p]P. For p = 2, Mauchly [20], showed that the
density of W is

1 %{n-S)
(1.1) fw) = E{n-l)w ,» 0 <w<l,
where n =.N-1. The exact distribution in the null case was given
by Consul in [S] for some special values of p and in the closed
form in [6] in terms of Meijer's G-function, while its non-null
distributioniis obtained in Chapter II. However the form;Jof the
distribution of W obtained by Consul and later by Mathai and Rathie
[17] are not quite suited for computational purpbsés. No syste-

matic attempt seems to have been made so far to compute the exact

percentage points of W. The approximate percentage7points for
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p = 3 have been obtained by Mauchly [20] by fitting a Pearson

curve of the form
a2 y =k P 10!t

and more récently by Davis [8] for p = 3, 6, 10 and
n = 4(1)8, 10, 12,>15, 20 using a Cornish-Fisher inversion of
Box's Series. | |

The object of the present paper is to develop methods similar
to the ones used by Box [2] and U. S. Nair [23], [24], in order to
obtain the exact distribution of W in series form and to compute
exact percentage points of W. In particular, methods have been
given which Yield facility in computation for the éases when the
sample size is small as well as when sample size is iarge.
Tabulations bf percentage points for p = 2(1)10 fbr various
significance levels are given and comparisons made with approximate
values using (1) Box's series, [Anderson [1], page 263], (2)

Mauchly [20], (3) Tukey and Wilks [30], and (4) Davis [8].

2. _EXACT DISTRIBUTION OF THE SPHERICITY CRITERION W.

For ease in cémputation, it is desirable tovgive methods
which are particularly suited for extremely small values 6f N,
the sample size, and those which are suited for larger valﬁes
of N. Thus exact percentage points of W can then be computed
for all values of N.. In parts (a) and (b) of this section, we

" shall consider two methods which will achieve the former objective



while in part (c) we shall give a method which will achieve the
latter objective. The first method which we shall now consider

makes use of Mellin transform and Contour integration.

(a) Exacf distribution of W through Contour Integration

It has been shown by Mauchly [20], that the h-th moment of
the sphericity criterion W = |§|/[(tr %)/p]p is given by

1. . 1
p P{E{N'1)+h} F{§-P(N-1)}

(2.1) EMW) = pP" 1 [ —3
' i=1 I'{-é-

].
(N-1)} r{—:lz— p(N-1)+ph}

Using Mellin's transform, the density of W is given by

-h- P .
L S S TCRSRY
1 i=1
(2.2) £M) = K(p,n)yoy [ — —— dh,
-iw P{E-pn+ph}
‘ p s
" where n =.N-1 and K(p,n) = P(%-pn)/ Héé{Nii)/Z;) Putting %{N-p)+h=s

i=13ﬁ{;“N
in (2.2), we have

2 pup) F0-p)-1

(2°3) f(w) = K(p:n)p w 'P(w):.
where
' p o s P E p-1.
2.4)  pw) =5x [ @ADL RICR E4y/rp(s + B59)1ds,
C-1% 1= ”

and ¢ = %{N-p).

Special Cases. (i) p = 2. For p = 2, we have

- 1 Ctie -s 1
(2.5) pw) =53 [ [W/ATTEIT(s + 3)/T(2s+1)]ds.
' c-iw -

38



39

Using the following duplicating formula for the gamma function

[

(2.6) T(s)I(s + ) = 72 r(2s)/2%57,

in (2.5) we have

Ctim =
2w %/s1ds
C-1%

L

(2.7) P = 3y

The pole of the integrand is at s = 0 and the corresponding residue
is then (“)1/2‘ Hence from (2.3) we have for p = 2, the density of
W as in (1.1) obtained by Mauchly.

(ii) p = 3. In this case, we have from 2.4)

C+iw

(2.8)  pO) = 5 | 0/27)7S[T (5+10 (s+3)T ()/1 (35+3))ds.
C-1%

Using the duplication formula (2.6), we have

C+iw

2.9)  pw) =2 2 2 [ @w/2n) [ (@s)r (s+1)/r (35+3) 1ds.
. C-1c

We shall again evaluate the integral in (2.9) by Contour integration.

The poles of the integrand are at the points
(2.10) s = -m/2, m=20, -1, -2,...,

and the residue at these points can be found by putting s =Jt-%-m in
the integrand and taking the residue of the integrand at t = 0.

Thus substituting s = t-g3 the integrand in (2.9) becomes
_t+m

(2.11) (4w/27) zr(zt-m)r(t+1-ga/r{3t-§-m+3} .



To evaluate the integral we need to consider separately the cases
when (i) m is even and (ii) m is odd.
First let m be even and say m = 2r. Then the integrand

reduces to |
2.12)  (4w/27) T r(2t-2r) 1 (t-r+1) /T (3t-31+3),

which by expanding the gamma functions becomes

3r-3 '
Fes)T(e+1)[ T (3t-i)]
(2.13)  S(aw/2n)"'T e,
tr(3t+1)[ I (2t-i) I (t-1)]
i=1 i=1

valid for r > 1 and the cases when r = 0 and r = 1 have to be
considered separately. The expression in (2.13) has a simple pole
of first order at t = 0 and its residue at this point is clearly

given by
(2.14) %{4w/27)r (3r-3)1/(21)! (r-1)!
For r = 0, the integrand reduces to
(4w/27) T (28)T (t+1) /T (3t+3),
which can be written as -

(2.15) C (aw/27) T (2t+1)T (2+1)/ (28)T (3t43)

and has a Simple pole at t = 0, the residue at this point being %—.
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For r = 1, the integrand after a little simplification becomes,
(2.16) %(4w/27)_t+1r‘(2t+1)r(t+1)/(t)(2t-l)(t-1)f(3t+l)

and this has a simple pole at t = 0, the corresponding residue being
equal to %{4w/27).

Now if m is odd say equal to 2q+l, where q is an integer or
zero, then as before, the integrand (2.11) can be easily written
down as in (2.13) in the form

3q-1

_t+q+%_r(2t+1)r(t+%9 121 (3t+%.; i)
(2.17)  (4w/27) ot _ | |
e)f n1 (2t-i) @ (tqé_ - i)]I‘(St+%—)
i=1 i:l

which dlearly holds for q > 0; the case q = 0 has to be treated

separately.
For q > 0, (2.17) has a pole of first order at t = 0 and its
residue at this point is
| 1
qty 3q-1 , o 2qfl 4
(4w/27) 1 (x-1i)/[2 1 ()1 G- D),
. 2 . . 2
1:1 1=1 1=1

which can be written in an alternate form as

1
7 1 1
(2.18) (4w/27) P(Sq-EJ/ZP(2q+2)F(q+§9 .

For q = 0, the integrand reduces after a little simplification to

St

(2.19) (4w/27)  ° I'(2t+1)I‘(t+-%—)/(2t) (2t-1)r(3t+-§i),



and this has a pole of first order at t = 0, the corresponding

residue being.equal to -(4w/27)1/2. Hence finally using Cauchy's

Residue Theorem, the integral in (2.8) is seen to be equal to

%(4w/27)rr (3r-2)

(2.200 p) = 2P - (aw/2n) /2 | NGENCI)
r=1
Fee)
w  (4w/27) F(3q-§J

q=1 2P(2q+2)r(q+%),

From (2.3), the density of W for p = 3 is therefore

3 s lov-s)- 2(n-3)
(2.21) f£fw) = [P{S(N-l)/Z}/iEIF(—i—J]w pw)/3
where p(wj is as in (2.20). John [13] has recently given an
explicit form for the density of W for p = 3 but not in a very
convenieﬁt.form for use.
(iii) p > 4. The cases for values of p > 4 can be treated in

almost a similar way but the method involves psi functions and their

derivatives and makes use of the following lemma due to Nair [23].

~Lemma 2.1. Let (ai) be a sequence of numbers, finite or infinite

and let

2 3

XtHa, G Ay = b
e 2 2! 33 "

(2.22) F(x;t;az,aS,...)

Then the nth derivative of F(x;t;éz,as,...) at t = 0 is

42



X -1 0 0 0 0
a2 X -1 0 0
(2.23) Dn(x,a)=
_ a4 3a3 332 X -1 0
n-1 n-1 :
a (12, (O, B &

Case (1). p odd. First let p = 2k+1, (k > 1) be odd and let us

denote the integrand in (2.4) by G(s). Then it is easy to see that

: k-1
(2.24)  G(s) = A(W,) °T(s+k)T(2s) T T(2s+2i)/T{p(s+k)},
i=1 _
where
(2.25) A= ke kKD g Wy = 2%%/pP.

The poles of G(s) are at the points given in (2.10) and the residue
at these points is equal to the residue of G(tfga at t = 0. Now

4 k-1

(2.26)  G(t-3) = A(W,) zr(t-% +HOT (2t-m) T

r(2t-m+2i)
i=1

e D+ k7t

We have to consider the cases when (1) m is even and (2) m.is odd.

First let m = 2r be even. Then we have
, T k
(2.27) G(t-r) = ApW] - C(t)/(2t)

where



_t K p(x-k) 2r
(Wl) T (t+1) [T (2t+1)] 'Hl (j‘Pt)/_Hl(j'Zt)
(2.28) C(v) = - k-1 2523

I G-)f(t+1) T 0T  (j-2t)
i=1 i=1l j=1

Thus for r > k, the pole of G(t-r) is of order k and the residue
R_at t = 0 is

T
k-1

- N r -k d log C(t)
(2.29)  R_= [Ap W] 27/T()](gD e .

Using the formula (Erdélyi; [10])

x2 '¥5
(2.30) _logF(x+a) = log T'(a) + x y(a) +§T-w1(a) +§T-¢2(a)+...
where

(2.31) W@ = g log T, and v @ = G v,

log C(t) can be written as

_ 2
(2.32) log C(t) = by + b t + b, %T-+...
where
: k-1
(2.33) b, = log [p(r-k)1/{(x-k)! T (2r-2i)!}],
i=0
- p(r-k) r-k - ,
by o= (e2k-plv() +p o L (/3 - Y (1/3)
_ j=1 j=1
k-1 2r-2i |
-2 )y Y} (/i) - logW
i=0  j=1

and



o p(r-k) k-1 2r-2i _
by = (+k2%phyy @0 I @/t § ] @/
j=1 i=0  j=1

r-k
- Y Wi, q = 2,3,...
j=1 -

Using (2.32) in (2;29) and then applying lemma 2.1, we have

 Ap(WD [p(r-k)!]

(2.34) R, = - =] D1 (¥ysb), (x> k)
2°T(k) (r-k)! T (2r-2i)!
i=0
where
b, -1 0 0 0
b, b, -1 0
b, 2b, b, -1 .

(2.35) D, _; (W ,b)=

and bq's are as in (2.33).

If r = 0, then it can be shown that G(t) has a simple pole at
t = 0 and the residue R at this point is
S k-1
(2.36) - . R=Ar(k) 0 r(2i)/{2rkp)} .

i=1

For r = 2. where 2 = 1,2,...,k-1, we have from (2.27)

k-1
AN et (- HT e ] D T ri2ee2i-20))
(237 6(e=n) = 28 ;T%+;z-21

o't 1 @eprptepk-0¥ T 1 (2t-3)

j=1 i=1  j=1
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m .
where N1 (-) is interpreted as unity if n > m.
i=n
Thus for r = 2, 2 = 1,2,...,k-1, G(t-%) has a pole of order

(2+1) at t = 0 and its residue Bm’ on using the lemma and proceeding

as above is easily seen to be

L, k-1
| AW T -0 T r(2i-20)
(2.38) B, = =241 =) D, (W ,c),2 =1,2,... k-1,
P2 p e r{p(k-)}[ T (20-2i)1]
: i=0

where Dz(Wi,c) is equal to the determinant on the.right hand side
of (2.23) with x replaced by Cys M by ¢ and aq's by cq's,

q = 2,3,...,% The coefficients cq's are given by

k-1 2-1 28-2i
(2.39) ¢, = v(k-)+2[ (@ 1¥D)+ [ v(i-20)- 1 1 (1/9)]
i=g+1 i=0 j=1
-py (pk-pL)-log W,
and
| q k-1
Cq = wq_l(k-z)+2 [(z+1)wq_1(1)+i=2§1 wq_l(zl-zz)
g-1 28-2i q
-1 1 c@/D1pty kP, 4 = 25,0,
i=0 j=1 |
.
where ) (-) is interpreted as zero if n > m.
i=n

Similarly for r = k, G(t-k) has a pole of order k at t = 0

and the residue Rk is

Ap (4, /)
(2.40) R, = —% D, _, (W ,d)
r) m (2k-2i)!
i=0




where Dk-l (Wl,d) can be obtained from (2.35) by replacing bq's
by dq's where dq's are given by
k-1 2k+2i
d =(1+2k-p)¥(1)-log W;- ) Y (2/3) and
i=0 j=1

(2.41)
k-1 2k+2i -
d = 2%-pYy__ -1 I @Tr@/ih.e=2,3,...
4 4 i=0 j=1 .

Now let m = 2q+1 be odd. Then it can be easily checked that for
q >0, G(t—q—%a has a pole of order k at t = 0 and its residue Gq
is given by
1 5 Pq
| (-l)kAW?+2P(k-%J I
2.42) G_=
( ) q

1(j+§-- pk)
j=

. q Dk-l(wl’f)’ q>0,
k B: . 1 _
2 P(k)P(kp—z).Hl(l-k+§J .
J:

where Dk_l(wl,f) is the determinant equal to thé'rgght hand side

of (2.35) with bn's replaced by fn's where fn's are given by

. 1 Eq
£, = -log Worb(k-5) + 2ky (1) + {p/(j+§-— pk)}
, j=1

k-1 2q-2i+l

pylp-D- 1 1 (2/3), and
- 2=0 j=1 , -

(2.43)
£ = k-Lyezky L (1)-pv._, (pk-)+ Eq[ )/ GoE - pk)™]
e e A D - By - P
k-1 2q-2i+l

ZnP(n) _
_izo jzl =), n-= 2,3,...
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Similarly if q = 0, then G(t-%a has a simple pole at t = 0 and
its residue B is
k-1

(2.44) B = -A(Wl)l/zl‘(k—%-).nl (2i-1)1/{2rp(k-3)}
i= ‘ ’

Thus if p is odd, we have from (2.3) and Cauchy's Résidue theorem
that the density of W is

1 1
-5 p(N-p) (N-p)-1 = -
W R, +R

(2.45) £(w) = k(p,n)p T
, ) r=k+1 -

k-1 0
+ ¥ B,+R + ) G +B] .
2=1 % Rk q=1 a

Case (2). p is even. Let p = 2k(k > 1) be even. Then the integrand

H(s) in (2.4) can be written as

k-1
(2.46) H(s) = A(W)™°T(2s) I T(2s+21)/T (ps+pk-k) ,
i=1

where A and W, are as in (2.25). The poles of H(s) are at the points

1
given in (2.10) and the residue of H(s) at these points is equal to

the residue of H(ta%) at t = 0. Now

-t+% k-1 : o
r(2t-m) I r(2t-m+2i)/r{pt~P-7 + k(p-1)}.

, _ m
(2.47) H(t-§9 = A(Wl) I
i=1

We have to consider separately the cases when m is even and m is
odd. When m = 2r, then proceeding as before it is seen that for
r >k, H(t¥r) has a pole of order k-1 and the residue Dr at t =0

is given by
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-1* D ap W) ripr-k (p-1)+1)
.48 b = ——3 v ,00,.8), T2k,
2 rk-1) m (2r-2i)!
i=0

when the determinant vk-2(w1’g) is similar to the determinant on
the right hand side of (2.35) having (k-2) rows and the elements

bq's being replaced by gq's where gq's are given by

pr-kip—l) k-1 2r-2i
g, = (Zk-p)y(1)-p (1/5)- ¥ 1 (2/j)-log W,
j=1 r=0 j=1
(2.49)
pr-k%p-l) k-1 2r-2i
gq = (2h-pHy T @I @int 1 1 @,
. j=1 i=0 j=1
q=2, 3,...,

For r = 0, H(t) has a simple pole at t = 0 and the residue D at this
point 1is
k-1

A T T(2i)/2Tk(p-1)
i=1

(2.50) D

1,2,...,k-1, H(t-2) has a pole of order 2+1 at

For r = & where %

t = 0 and the residue E2 is given by

k-1 g-1

A(wl)£ I T(2i-20)/ T (28-2i)!
(2.51) E, = 21;“+1 _ 1=0 VW ,h) 4=1,2,... K,
2 (a+1)T{p (k-2)-k}

where Vl(Wi,h) is the determinant of %th order similar to that in (2.35)

with bq‘s being replaced by hq's where hq's are given by
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k-1 2-1 24-2i
(2.52) h; = -log W+2[(a+1)¥(1)+ | ¥(2i-20)- ] ] (1/3)]
i=g+1 ©i=0 j=1
-p¥ (pk-p2-k)
and ‘
k-1 2-1 20-2i
ho= 29y _ () ] v 2i-20-] ] @C@/iY]
d L i=ge1 4 i=0  j=1

- pqwq_l(pk-pz-k), q=2,3,...

Now let m = 2q + 1 be odd. Then for q > k-1, H(t—q-%ﬂ has a pole

of order (k-1) at t = 0 and the residue Fq is

~ Ap(i) “Ip(a-k+1)!]
(2.53) F, = Vi ,,K), a > k-1,

X k-1
2°T(k-1) } (2q+1-2i)!
i=0
where Vk_z(wl,K) is the determinant of order k-2 similar to that

in (2.35) with the elements given by

p(q-k+1) k-1 2q+1-2i
(2.54) k; = -log W+(2k-py()+ 1 @.9)-1 1 (23,
' ' j=1 i=0  j=1
and
p(g-k+1) k-1 2q+1-2i
ko= a2™pMy, et ) @/ 1 1 @,
. j=1 Ci=0  j=1
n-=2, 3,;..

where
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m
Y () is interpreted as zero if m < n.
jan
For q = ¢, 2 = 1,2,...,k-2, H(t-l—%ﬂ has a-pole of order
(2+1) at t = 0 and the corresponding residue Gy is
1
7 k-1
AW,) T r(2i-1+22) ‘
(2.55) G = i=f+1 vV, (W, ,m),
2 o+l A [ |
277°r(+1) T (28+#1-2i)1Tp(k-1-2)

i=0

where as before Vz(w,m) is the determinant of order % similar to

the one in (2.35), with elements given by

k-1 .
(2.56) my = -log W +2(8+1)(1)+2 Y w(2i-1-28)
: i=g+1
L 22+1-2i
-1 Y (2/3) - py(pk-p-pL)
i=0  j=1
and
L k-1 4 28+1-2i o
mo=2"[(+)y D+ ] oy Qi-120)- ] ] (Tm)/570]

i=g+1 i=0  j=1
- p™v_ . (pk-p-p2) n = 2, 3
p ¥ _, (Pk-p-p =2, 3,...

Finally for q = 0, H(t-%a has a simple pole at t = 0 and the

residue C is

%—k-l
1 T(2i-1)/2Tp(k-1).
=1 ’

(2.57) - C= —A(Wl)
: i

Thus when p is even, the density of W is given by
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1 1
-3 p(N-p) 5(N-p)-1
w

(2.58) £@M) = k(p,n)p [D+C
+ D + E + F + G ] .
rek T 51 Y g=k-1 9 g1 *

(b) Distribution of W as a gamma series

We shall now obtain the distribution of W in gamma series

form. For-this let

n
(2.59) L = W
Then from (2.1) we have,
S hy 2 P n l-a, .1
(2.60) E(L’) = K(p,n)p I P{5{1+h)+—§—}/r{5-pn(1+h)} .
a=1

Now let A = -2q log L where q is an adjustable constant which can
be chosen so as to govern the rate of convergence of the resulting

gamma series and 0 < q < ». If ¢(t) is the characteristic function

A then
(2.61) o(t) = K(p,n) - C(t)
where
' . P . -
2.62)  c(e) = p™® 1 O rla-2q it)+35%/1BR(1-2q it)

a=1

and therefore

(2.63)  log ¢(t) = log{K(p,nm)}-np it q log p-log rB2(1-2q it)

* § logr{%{l-Zq it)+l%ﬁ}
a=1
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The expansion of log ¢(t) will be based on the fdllowing expansion

for the gamma function:

4 .
| 1 . m (-1)"B,; ()
(2.64) logr(x+h) = 3log(2w) + (x+h-3)log x-x- ) —
2 2 L T
r=1 r(r+l)x

+ RO,

where R_(x) is the remainder such that |Rm(x)| i_e/lxml, 8 a
constant independent of x, and Br(h) the Bernoulli polynomial
of degree r‘and order one defined by

ht © T

. )
e%-1 r=0 T T

Explicitly the polynomials are

_ _1 2.1
By(h) = 1, B(h) = h-3, By(h) = h™-hsg

and in general

rl r-1 2
h -E-r h +rC

r- r-4
B_(h) , By WA g BT el

(last term is x or a constént)

rl r-1 5_r/2
+

rh r-2ml

m-1 : _
(-7 " Cop By B

I
=
]
|

m=1

where npm = n!/(n-m)!m!, Bm are the Bernoulli numbers and have

been tabulated extensively. Using (2.64) we obtain
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(2.65)  logs(t) = log{K(p,n)}+(B5H)log(2m)

2
(P—*-";L’l) log {n(1-2q it)/2}

( n-l) 1o o T 1-2 .if -r
E25) logp + 21(QT/H ) (=)
r=

+

R!'  (1,t)
where the coefficients Qr's are given by

-1 1- .
Q = n* [(angr+1(_§ga) B Br+1(0)/pr]/r(r+1) )

The characteristic function of L can then be obtained from (2.65)
as
. _ © ..»1-2 .t _3
(2.66) 40 = K@ mn0-20 i0/27V( ] @y/n) EEHEH
. j=

+ RN (0,1),

where
®5h ~(pn-1)/2
Kl(p,n) = K(p,n) (2m) p pn s
v = (p° +p-2)/4,

and the coefficients Bj's which we need in our computations are

listed below:



| 2
By = L, B = Q> B,=Qj/2+Q, ,

By = Q,Q,*Q;+Q}/6
B, = Q,Q%/2+Q%/24+Q,+Q,q,+Q%/2
4 271 1 4 3% 20

B, = Q0Q,/6+Q2Q,/2+Q3/120+Q,Q%/2+0;+Q5Q,+Q,Q; »

w .
I

6 = QQ,Q5+Q5/7204Q,Q5/2+Q]Q,/ 24+Q%/ 2405/ 4+Q,Q,
(2.67) +QjQ,/6+Q5Q; +Q5/6+Q »
B, = Q0. /204q20,/2+0,0,Q,+Q; 0/6+0%0,Q,/ 240, /2
7 1.3 3*1 421 12 17%2%3 51

+Q30,/6+Q]/5040+Q.Q,+Q3Q5/2+Q3Q5/12+Q

+QQ;+Q}Q,/120+Q,0;

o
i

g = Qg*3Q5Bg/8+Q4Q,/41Q B, /84050, Qy/ 4408,/ 240, Q; /4
+5QuB/8+Q)Q%/8+3Q B,/ 4+Q,Q,Q"/8+Q, Q20 4+Q}/ 24

+Q}Q,Q,/24+Q7Q5/16+Q}Q5/96+7Q,, /8+03/720

Lo
1]

o = Qg*7Q;B,/9+Q;Q,Q5/3+Q5Q;/2160+24Q5Q5/6+8Q4Q; /9
+2Q, B,/ 3+Q}Q,Q5/ 72+Q5/6+5Q; B, /9+Q2 Q50 / 12
+Q,Q,Q5/3+QQ%/18+4Q,B;/9+Q.Q, Q5/ 3+Q; Bg/9

+Q3Q5/18+2Q,B,/9+QQ5/3
and . :
Bio = Q0*7Q;Q;Q,/10+3Q,B,/5+7Q,Q5/10+4QgB,/5+9Q4Q, /10

+7Q,Q3/60+3Q,B/10+Q030,/ 1240500, /4+Q}Q5 /240

£Q,B/5+Q5Q205/4+Q, By /10+Q3/2+Q,Q,Q5/2+Q,Q505/2 -

The rest of the coefficients are given in appendix A.
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(é) Distribution of W as a Beta Series

In the sequel we shall need the following theorem, restated

from Nair [24].
Theorem 2.1. Let

o(t) = [ x* p(x) dx

be the moment function of a random variable x with distribution

law p(i). If
(t) = 0™

with real_paft of t tending to =, then ¢(t) can be expanded as a
factoriai series of the form
o(t) = E a T (t+a)/T(t+k+n+a)
n=0
a being an-arbitrary non-negative constant.
We shall.now obtain the distribution of W. Putting
%{N-A)+h=s in (2.2), whefe A is an adjustable constant which can

be chosen td_gOVern the rate of convergence, we have
P A-i
cti I T(s+—7)

. 1 - '=
(2.72) £w) = k(p,Nw,\)5r [ w/pPyS I o ds s
c-iw FP(S"' 2 )«

where
| M p(n-1)) -3 p(N-1) F(N-2)-1
(2'73) - k(P,N,W:A) = - w

i=1
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Using the expansion (2.64) to each gamma functions involved in the
integrand of the right hand side of (2.72), we have after some

simplification

. _ P :
(2.74) log [.n I‘(s+2‘—£—1—)/1‘p (s+>‘§—1)]

i=1

= log [(Zn)(p_l)/2 S-v/pps+(pl-p-1)/2]; EI(Qr/Sr)
. r=1

where the coefficients qi's are given by

(2.75)  q, = c-nr‘l[f1 B, 5D -pB, 0 (-1)/2)1/r (x+1)
| . L

and
2
v=(p" +p-2)/4.
From (2.74), we deduce that

P i :
1 TG/ p(ss5)

(2.76)
' i=1

= @n @ D/2V . zl(Br/sr)]/pps+(px-p-1)/z’
r= .

where the coefficients Br's are as given in (2.67) with Qr's
on the right hand side of (2.67) being replaced by qr's. Now

from (2.72) and (2.76) we have the density of W as

| TON-N-1 ) exie e
(2.77) fw) = Kl(p,n)w Ty f. w s [1+ I'Br/s ]ds
: c-ix _ =]
where Kl(p,n) is as given in (2.66).

1
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The integral on the right hand side of (2.77) can be easily
computed if v is an integer and its value is by Cauchy's theorem

of Residues, the residue of w-ss-v[1+ Z Br/sr] at's = 0. This
r=1

is easily seen to be equal to

(2.78) . .2 [(-log w)‘”r'1 B /T(v+r)], B0 =1
r=0 ¥
and thus frbm'(2;77), the density of W is
) v %{N_k)-l v+r-1
(2.79)  £@) = K;(,m) | (B)w (-log w) /T (v+r) .
r=0

The probability that W is less than any value, Ssay Xy is

xo 1

| : v 0 Z(N-1)-1 v+r-1
(2.80) P(W < xj) = Kl(p,n) ) B [ w (-log w) dw/T (v+T).
: ' r=0 0
For computational purposes, we let
| x
@81 1, =] wilogwV T awren,
L] 0 .

where u = %{N—A)-l. Then integrating by parts the R.H.S. of (2.81)
it can be easily checked that the following extremely useful

recurrence relation holds:

2.8 1, .0 =[x Clog x T /r vy

1/ (u+1)

v+r-2,u

and : IO,u(XO) = xéu+l)/(u+1) .
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With this notation, (2.80) can be rewritten as

(2.83) P(W f_xo) = Kl(p,n)rZO Br Iv+r-1,u(x0)

where Iv+r-1,u(x0) satisfies the recurrence relation (2.82). It

is to be noted that (2.83) holds only if v is ah integer. However
if v is not an integer, we can appeal to Theorem 2.1, since in this

case

(2.84) o(s) = s '[1+ § Br/sr] = 0@

r=l

)

Thus according to Theorem 2.1, we can expend ¢(s) in the factorial
series as

(2.85) sV[1+ ] B/s"] = ] Ry T(s)/T(s+v+i)
r=1 i=0

where the coefficients Ri's can be determined explicitly as is dene
below.
Using the formula (2.64) to each gamma function on the right

hand side of (2.85) we have

[+ -]

(2.86) ' log {I(s)/T(s+v+i)} = [-(v+i)log s] + (Cij/sj)
j=1 -

where the first few coefficients Cij's which we need fofdour

computations are given below. Let ti =v + 1.
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C; = - %{v+i)(v+i-1) = - t, (t;-1)/2
_Ciz - (gf - 3t2/2 + 1,/2)/6
Ci3 = - (tg - Zti + ti)/lz
C,p = (€ - 5ti/2 + 5t3/3 - t,/6)/20
(2.87) C; = - ) - 3t + Stg/z - t2/2)/30
Cpe = (] - 7¢8/2 + 7t3/2 - 7t3/6 + t,/6)/42
cy = - e - 4t] + 14t3/3 - Tt1/3 + 2t2/3)/56
Cig = (t5 - otd/2 + 6tz - 21t3/5 + 23 - 3&1/10)/72
Cié = - (t;0 - Stg + 152/2 - 7tg + Stg - 3ti/2)/90

and

11 .10 9 7 01,5 11,35
Cipp = (85 -11%; /2+55t /6-11t  +11t]-11t;/2+5¢,/6)/110 .

The remaining coefficients are given in appendix A.

Thus from (2.86) we have

.88 1w =5 O ae ] e,
| =1

where the coefficients dij's can be obtained in terms of Cij from

(2.67) ﬁhere we replace Bj by dij and Qj by Cij' Using (2.88) on

the right hand side of (2.85) we have finally

-v ° | T 1 _ - (v+i) v j
(2.89) s [1+rzlcsr/s )] = R;s [1+ Zidij/s ] .

e~ 8
o

1

J
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- Equating the coefficients of s on both sides of (2.89), it is
easy to check that we have the following explicit relations to

determine the coefficients Ri's.
R. =1, R1+R0d01 = B1 R

Ry + Rydy *+Rpdyy = By s

3 * RydyytRidyp*Rodog = By s

R4 + R3d31+R2d22+R1d13+R0d04 = B4 ,

R + Ryd, +Rad +Rod) (#Rdy p+Rod s = Ry,
Re + Rgdg)+Ryd  +Rd g#Ryd,) 4R d) #Ryd ) = By,
(2.90) :
Ry + Redgy*Rodgy*Rydy5*Rad gy Rydag*Ryd16*Rod0r = P72
Rg + Rydy +Rode +Rodp #R d) #Red o +R d, 4Ry dy
*Rqdgg = B>
Ry + Rgdg) *Ryd;5Redg 3 Rody*Rydy5*R3d56+R2%27
+R1d18+ROd09 é-Bg,
and

Ryo = Rgdgy*Redgy*Rydys*Rede +Red*Rd g+ R3d 57

+R.d.,.+R,d,,+R.d B

2928 *1%19 " 0%10 T 10 °

Now using (2;85) in (2.77) and noting that term by term integration
is valid since a factorial series is uniformly convergent in a half-
plane (see Doetch [9]) we have the density of W in the case that'v

is not an integer in the form

Ct+im
1

(2.91) fw) = Kl(p,n) 2 R.1 vrsh f w-S[F(s)/F(s+v+i)] ds
, i=0 c-i= ’

and on using the well known integral (Titchmarsh [29])



cHiem .
(2.92) ¢ | SrE)/eWNs = -0Vl 0 <x <
C=-1%®

c>0

. the exact distribution of f(w) is in the form of a beta series

given by '

1

. —(N-A)"l »

(2.9%)  £() = K () | R W - ety
| i=0 -

(o]

where the coefficients Ri's are as given in (2.90).

The distribution of W is then given by

@.94) - PO <xg) = Kypam) 1 Ry Ixo(%(“"”’ v+ 1)/T(v+),

1=
*0
where Ix (p,q) is the incomplete beta function f p'l(l-x)q-ldx.
0 : 0

3. APPROXIMATIONS TO THE DISTRIBUTIONS OF W

This section is devoted to approximations. .
Approximation using the method of Wilks and Tukey.

Let (a)h = a(a+l) (a+2)...(a+h-1). Then we have

I(a+h) = (a) T (a),

r .
e [(asth) = (a) gyl (2)= P(a)rrh,nl(—-—”i’l)h
i=

H

where r is a positive integer. With these notations, (2.1) can-
be written as

n i- n i-1
G+ DN/ G* S5

=g
e

(3.1)  EMWY =
| i
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and this can be put in the form (see eq. (6) of Wilks and Tukey

[30])

(3.2  EMWH =
' i

n =9

1 1
. (; - Ai_+1)h/ (; - Bi+1)h

where x =>§a, Ai =1 - E%E-and Bi =1 - (i-1)/p. ' We can therefore
apply the method of Wilks and Tukey [30], to find a fractional
power of the test criterion which is apprbximateiy distributed

according to an incomplete beta distribution function (Pearson

Type I)
o ) -1 a-1 8-1
(3.3) dF(u) = T(a+B)[F(a)T(B)] ~u "(1-u)” "du .

According to this method, the appropriate values of o, B and the
exponent T of the criterion are given by the solutions of the

following equations:

(3.4) (@B)/r=i-D c =g amdr= 881/ (C,8)

where C = E (Aw - BW)
o LT B

Using the values of Ai and Bi from (3.2), we have

c, = (p+p-2)/4 and C, = (2p>+9p>+5p-12)/24-1/6p .

We have the following table of values of o, B and r for various

values of p (o« being calculated from rounded values of r):
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Table 2. Values of o, B and vy for various values of p .

P T r (rounded) o B

2 2 2 n-1 1
3 2.74 3 (3n-5)/2 2.5
4 3.47 3 (3n-9)/2 4.5
5 4.21 4 2n-7 7
6 4.95 5 5(n-4)/2 10
7  5.69 6 (6(n-27)/2 13.5
8 6.43 6 (6n-35)/2 v17.s
9 7.17 7 (7n-44)/2 22
10 7.92 8 4n-27 27

Approximation using Box's Series

Following the procedure of Box [2], we have (see Anderson [1],

page 263) the following asymptotic expansion for W:
2 2
(3.5) Pr{-np log W < z} = Pr(xf <z) + wz(Pr{xf+4 < z}

- Pr{xg f_z})+0(n‘3)

where p = 1-(2p2+p+2)/(6pn)

and  w, = (p*2) (p-1) (p-2) (2p>+6p°+3p+2)/ (288p°np?)
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Mauchly's Approximation

Mauchly [20] has computed approximate percehtage points of

W, only for p = 3 by fitting a Pearson curve of the type
y = K -1 (l—x)q"1

by adjusting p and q so as to obtain agreement with the first two

moments of the actual distribution.

Davis Approximation

Davis [8] has obtained percentile approximations for
-np log W, then p is the same as in (3.5), by means of a Cornish-
Fisher Invefsion of Box's series, expressing the percentage points
of the distribution in terms of chi-squared percentiles.
Compari$ons of the accuracy of these four approximations are

carried out in the next section.

4. COMPUTATIONS USING SERIES FORMS AND THE APPROXIMATIONS

Some of the cases studied are summarized in Tables 3 - 5.
Table 3 gives 5% and 1% points for the exact distribution of W,
together with the percentage points as approximated by Mauchly's,
Box's series and Wilks-Tukey's approximations for various values
of p and N. Table 4 gives the .005, .01, .025, .05, .1 and .25
significanéé points of the exact distribution of W for p = 3(1)10

and various N. Table 5 gives comparison with Davis' approximations.



Table 3 reveals that even for moderate sample size N, the
approximétions given by Mauchly for p = 3 is extremely poor.
ﬁox's series approximation is reasonably good for éméll values
of p and'eveh'moderate values of N. Davis' results are generally
correct té fhe decimal he has given but his table.is incomplete in
regard to small values of N for the values of p he has considered,

i.e. p = 3, 6 and 10.
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Table 3.

and Approximations: Mauchly, Wilks &

68

Percentage Points for W from the Exact Distribution

Tukey and Box Series

p=23 .
N=38 N = 10 N =12
5 1% 5% 5 5% 5
Mauchly 172 .083 278 .165  .366  .243
Wilks § Tukey .14780 .07355 .24194 .14434 32344 .21458
Box Series .14050  .06843  .23576 .13912 .31842 .20989
Exact .14026  .06815  .23564 .13898 .31836 .20981
p=4 | -
N =6 N = 10 N = 15
Wilks & Tukey .05274 .0246 .09040 .04563 .24680 16636
Box Series 02471 02102  .09789 .05061 .25365 .17229
Exact .0%38662 .0°69040 .097393 .050095 .25352 .17211
P=>5
N=7 N = 10 N = 14
Wilks & Tukey .05159 .ogss .03103 .01373 .11354 .06852
Box Series 02186 .0344  .03192 .01428 .11497 .06957
Exact .0%12621 .0°21839 .031104 .013613 .11460 .069151
. p=2©6
_ N=28 N =12 N = 14
Wilks & Tukey .0586  .0520  .02610 .01264 .05238 .02022
Box Series 0377 0319 .02502 .01206 .05106 .02835
Exact .0%42669 .0371870 .024325 .011478 .050510 .027821
_ o
N=09 N = 11 N = 15
Wilks § Tukey .0345  .0011  .02415 .02159 - .02972 .01620
Box Series L0333 039 .02345 02132 02765 .01491
Exact .0%14730 .0%24239 .0%29501.0°10165.027115 .014444
p=28
| N = 10 N = 12 N = 14
Wilks § Tukey .03 032 02129 L0345 02551 .05246
Box Series 0315 .03 02155 0359 © .02606 .05279
Exact .0%51489 .0°83064 .0°12329.0°41204.0%56126.0%24756
_ 2 )
N=12 N=14 . - N=16
Wilks § Tukey .0522  .0,7  .02151 .0361 .03493 .02236
Box Series  .0325  .048 02155 0365 .02496 02241
Exact -0%13071 .0%35438 .0°12945.0°49428.0%46163.0%21595
p =10 :
| N = 12 N = 14 N = 16
Wilks § Tukey .0228 037 0334 L0312 .05151 0367
Box Series 0829 079 0331 012 .02141 .0363
Exact 10°64552 .0°10036 .0°21066.066814.0°12140.0 50647




Table 4. Percentage Points of Sphericity Criterion W

p=2
5 :
. 005 .01 .025 .05 .1 .25
3 3 3 2
3 .0225000 .0°10000 .0762500 .0725000 .010000 .062500
4 .0°50000 .010000 .025000 .050000 .10000 .25000
5 .029240 .046416 .08550 .13572 .21544 .39685
6 .070711 . 10000 .15811 .22361 .31623 .50000
7 .12011 .15849 .22865 .30171 .39811 .57435
8 .17100 .21544 .29240 .36840 .46416 .62996
9 .22007 .26827 . 34855 .42489 .51795 .67295
10 .26591 .31623 .39764 47287 .56234 .70711
11 .30808 .35938 .44054 .51390 .59948 .73487
12 . 34657 . 39811 .47818 .54928 .63096 .75786
13 .38162 .43288 .51135 .58003 .65793 .77720
14 .41352 .46416 .54074 .60696 .68129 .79370
15 .44258 .49239 .56693 .63073 .70170 .80793
16 .46912 ° .51795 .59038 .65184 .71969  .82034
17 .49340 .54117 .61149 .67070 .73564 .83124
18 .51567 .56234 .63058 .68766 .74989 . 84090
19 .53616 .58171 .64792 .70297 .76270 .84951
20 .55505 .59945 .66373 .71687 .77526 .85724
22 .58870 .63096 .69150 .74113 .79433 .87055
24 .61775 .65793 .71509 .76160 .81113 .88159
26 .64305 .68129 .73535 .77908 - .82540 .89090
28 .66527 .70170 .75295 .79418 .83768 . 89885
30 .68492 - .71969 .76836 .80736 .84834 .90572
34 .71810 .74989 .79409 .82925 . 86596 .91700
38 .74501 .77426 .81470 .84668 .87992 .92587
42 76727 .79433 .83157 . 86089 .89125 .93303
46 . 78597 .81113 .84563 .87269 .90063 .93893
50 .80191 .82540 .85753 .88265 .90852 .94387
60 .83302 .85317 .88056 .90186 .92367 .95332
70 .85570 .87333 .89718 .91566 .93452 .96005
80 .87297 .88862 .90975 .92606 .94267 .96508
90 .88655 .90063 .91958 .93418 .94901 .96898
100 .89751 .91030 .92748 .94069 .95410 .97210
120 .91411 .92491 .93939 .95049 .96172 .97678
140 .92609 .93544 .94794 .95751 .96718 .98011
160 .93513 .94337 ©,95438 .96279 97127 .98261
180 .94221 .94957 .95940 .96690 .97446 .98454
200 .94789 . 95455 .96342 .97019 .97701 .98609
250 .95817 .96354 .97069 .97613 .98160 .98888

300 .96507 .96957 .97555 .98010 .98467 .99074



Table 4 (Continued)
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.94529

.96350

p=3
a .
\E\\\ .005 .01 .025 .05 .1 .25
5 4 4 3 2

4 :0339305  .0,15228  .0,99478  .0°40104 .0°16700 .011603

5 :0511700  .0%23667  .0761070  .012679 .026853 .076732

6 .0°88748  .014398 .027585 .045683 .076928 .16044

7 .025882 .037466 .061687 .090921 .13590 .24004
8 .050467 .068151 .10225 .14026 .19471 .31002
9 .079827 .10285 .14486 .18921 .24970 .37019
10 .11161 .13898 .18696 .23564 .29971 .42176
11 .14418 .17494 .22726 .27876 .34471 .46613
12 17647 .20981 .26516 .31836 .38503 .50453
13 .20786 .24391 .30048 .35457 .42118 .53800
14 .23799 .27457 .33321 .38762 .45365 .56738
15 .26666 30417 .36350 .41779 .48290 .59335
16 .29383  .33192 .39149 .44538 .50934 .61645
17 .31948 .35789 .41737 .47065 ".53332 .63712
18 .34366 - .38219 .44133 .49386 .55516 .65571
19 .36644 .40492 .46355 .51522 .57511 .67251
20  .38789 .42619 .48417 .53493 .59340 .68778
22 .42713 .46482 .52124 .57006 .62573 .71444
24 .46203 .49889 .55354 .60040 .65338 .73694
26 .49319 .52908 .58190 .62684 67729 .75618
28 .52111 .55598 .60696 .65006 .69816 .77281
. 30 .54624 .58007 .62926 .67060 .71651 .78732
34 .58958 .62136 .66715 .70529 .74730 .81144
38 .62556 .65540 .69811 .73343 . .77210 .83066
42 .65584 .68391 .72386 .75670 .79248 .84634
46 .68166 .70811 .74559 .77626 .80953 .85736
50 .70393 .72891 .76417 .79293 .82400 .87035
60 .74809 .76997 .80064 .82546 .85211 .89155
70 .78086 .80028 .82737 .84918 .87249 .90679
80 .80612 .82356 .84779 .86723 .88794 .91828
90 .82617 .84199 .86390 .88143 .90006 .92725
100 .84247 .85694 .87693 .89289 .90981 .93444
120 46737 .87972 .89672 .91024 .92454 .94527
140 .88548 .89624 .91103 .92276 .93513 ©  .95303
160 .89925 .90878 .92186 .93221 .94312 . .95886
180 .91006 .91861 .93034 .93961 .94936 .96340
200 .91877 .92654 .93716 .94555 .95436 .96704
250 .93462 .94092 .94952 .95629 .96340 .97361
300 .95059 .95781 .96945 .97799
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p=4
a
N .005 .01 .025 .05 .1 .25
5 ~.0%1162  .0°36645  .0%23265  .0%s5283  .0%40030  .0%29305
6 0933678 .0%9040  .0%18194  .0%38662  .0%84730  .026147
7 0230556  .0%50312  .0%99040  .016868 .029512 .066529
8 .010209 ,015033 .025485 .038664 .060019 .11410
9 .022162 .030463 .047058 .066398 .095554 .16287
10 .038208 .050095 .072584 .097393 .1396 .20994
11 .057311 .072583 . .10033 12972 .17030 .25404
12 .078477 .096785 .12902 .16211 .20651 .29477
13 .10089 112183 .15780 .19381 .24102 .33213
14 .12391 .14708 .18610 .22435 .27358 36631
15 ©.14708 17211 .21356 .25352 .30412 .39756
16 .17006 .19663 .23999 .28119 . 33269 .42615
17 .19263 .22044 .26528 .30736 .35936 .45236
18 .21462 .24343 .28938 .33205 .38425 .47643
19 .23505 .26553 .31230 .35332 .40749 .49860
20 .25655 .28673 .33406 37723 .42920 .51905
22 . 29546 .32641 .37429 .41734 .96850 .55550
24 .33132 .36261 .41046 .45301 50304 .58698
26 .36428 .39559 .44305 .48484 .53356 .61440
28 39455 .42567 .47247 .51337 .56068 .63847
30 .42235 .45313 .49912 .53903 .58492 .65977
34 .47149 .50132 .54542 .58326 .62635 .69571
38 .51337 .54207 .58415 .61995 .66039 . 72486
42 .54938 .57689 .61695 .65082 .68883 . 74894
46 .58059 .60692 .64506 167712 -71293 .76918 -
50 .60788 .63307 .66939 .69978 . 73359 . 78641
60 .66298 .68558 .71790 .74471 .77429 .82004
70 .70468 .72509 . 75409 .77801 .80425 84454
80 .73729 . 75584 .78211 .80366 .82721 86318
90 . 76346 .78045 .80441 .82401 .84536 .87784
100 .78491 .80057 .82259 .84055 .86007 .88966
120 .81798 .83149 .85042 .86580 .88244 .90756
140 .84225 .85413 .87072 .88415 .89865 -92046
160 .86083 .87141 .88617 .89809 .91094 .93021
180 .87550 .88504 .89832 .90904 92057 - .93782
200 .88737 .89606 .90814 .91787 .92832 .94394
250 -90906 .91615 .92599 .93390 .94238 195501
300 .92375 .92974 .93804 .94470 .95183 196243



Table 4 (Continued)

p=>5
[s 3 .
N .005 .01 .025 .05 1 .25
s ob2as70  .0008368  .0°72524  .0%25776 0310959 .0°83762
. o%10s63  .0%2183  .0%se374  .0°12621 0228373 .0%92522
e .0%10068  .0%18281  .0236768  .0%64001  .011530 .027554
g .0%40004  .0%1227  .010628 .016501 .026388 .053105
10 .0%07579  .013613 .021543 .031104 046080  .082916
11 .018156 -024161 [035852 -049192 .069047 11473
12 .0290262  .037303 1052770 -069704 .093963 -14705
13 .041953 .052479 .071536 .091741 111983 117893
14 .056485 -069151 .091503 111460 -14594 -20983
15 .072206 .086848 -11215 113775 117180 -23944
16 .088751 110518 .13309 -16082 .19710 -26760
17 .10582 $12385 .15402 18354 122163 .29428
18 .12317 .14261 117473 .20575 .24527 .31947
19 .14061 116129 119507 .22731 "26797 34324
20 .15799 17974 .21492 .24817 -28969 -36563
22 .19215 .21560 .25292 .28761 ©33025 1240663
24 22503 .24971 .28847 - 32400 36713 .44311
26 .25634 .28186 .32151 135746 140063 ©47566
28 . .28593 -31200 $35214 "38818 .43110 -50482
30 .31379 .34018 -38049 .31641 -45885 153106
34 36449 .39103 143108 46628 50740 157625
38 .40909 143536 -47461 .50878 .54831 161370
42 .44838 147413 .51231 54529 - .58315 -64520
46 .48312 .50821 .54519 157692 .61314 167203
50 .51397 .53834 .57407 -60456 163919 .69513
60 .57761 160010 .63275 .66033 169137 -74089
70 .62690 164760 .67745 . 70250 - 73049 "77478
80  .66607 .68517 71257 L73544 - 76088 -80086
90  .69790 .71558 - 74086 - 76186 -78514 -82155
100 .72425 .74069 .76411 -78351 -80495 .83836
120 .76529 - 77966 -80005 .81686 .83535 -86399
140 .79575 -80850 .82652 ‘84133 .85757 88262
160  .81924 .83068 .84682 -86004 87451 - .89676
180  .83790 .84827 .86287 .87481 .88786 90787
200 .85307 86255 .87588 .88677 89864 91682
250 .88095 .8875 .89969 .90860 191828 193307
300  .89995 -90656 .91584

.92337 .93155 .94401
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Table 4 (Continued)

p=6
" .005 .01 .025 .05 1 .25
0770857  .0%29697  .0°18030  .0°74790  .0%31547  .0°24844
0%3a541  .0%71870  .0%19456  .0%42669  .0%97879  .0%33335
0340126  .0%67578  .0%13837  .0%25527  .0°45255  .011336
10 0216522 .0%24979  .0%4243  .0%70038  .011482 . .024216
11 .0%42686  .0%60326°  .0%97479  .014353 021791 .041033
12 .0%85127  .011478 .017390 .024325 .034966 .060679
13 .014444 .018800 .027141 .036529 .050383 .082172
14 .021960 .027821 .038682 .050510 .067439 .10473
15 .030903 .038302 .051661 .065830  .085610 12776
16 .041061 .049980 .065743 .082100 .104468 .15085
17 .052219 .062606 .080634 .098998 .12368 .17368
18 .064174 .075950 .096078 11626 .14298 .19605
19 .076743 -089816 .11187 13367 .16217 .21782
20 .089763 .10403 .12783 15107 18112 .23890
22 111662 .13299 -15975 .18538 .21788 . 27885
24 .14388 .16196 .19107 .21850 .25277 .31577
26 .17096 .19041 .22132 -25008 .28556 © .34973
28 119745 .21798 .25027 .27997 31624 .38093
30 .22313 .24449 .27778 .30812 .34485 40960
34 .27153 .29397 .32844 .35939 -39633 .46025
38 .31571 .33866 .37355 -40450 .44105 .50339
42 .35576 .37885 .41364 .44424 .48005 .54044
46 .39199 .41497 .44935 147936 .51425 .57254
50 42477 .44748 .48125 .51055 . .54441 .60056
60 .49406 .51571 .54754 .57485 .60606 .65708
70 .54917 .56955 .59930 .62460 65331 .69978
80 .59381 .61292 .64067 .66413 .69059 .73311
90 .63060 .64852 .67442 .69622 .72071 .75983
100 .66139 .67822 . 70246 .72278 .74553 .78171
120 . 70994 .72488 .74628 76412 . 78400 .81540 .
140 74642 75981 .77891 .79479 81241 .84011
160 . 77480 -78691 .80415 .81843 .83423 - .85899
180 79750 .80854 .82423 .83720 .85152 .87389
200 .81605  .82620 .84058 .85246 .86555 .88595
250 .85037 .85879 187069 .88048  .89124 .90796
300 .87391 .88110 .89124 .89957 .90870 .92285
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p=17
a
" 005 .01 .025 .05 1 .25
0721289 .0'86044  .0°55120  .0°22835 0°95042  .0%72580
0115800 .0%24239  .0%6388-  .0°14730 0334311 .0%12149
10 0314825 0525197  .0%52402  .0°94336 0%17761  .0%46290
11 %6517 .0%10165  .0%18324  .0%29501 -.0%49404  .010845
12 0%18s10  .0°26462 0243552 .0%65237 010119 .019815
13 0%39356  .0%53692  .0°82864  .011790 .017307 .031195
14 0270567  .0%02055  .013667 ,018704 .026327 .044531
15 1011263 -014435 -020431 .027115 1036919 1059370
16 1016537 1020729 1028448 -036821 * 048798 .075298
17 ©.022812 .028074 .037553 1047610 1061690 1091967
18 © 029994 .036345 .047578 1059270 .075347 -10909
19 .037977 1045412 .058355 .071609 -089554 112644
20 046648 1055143 .069730 '084457 - .10413 ©14384
.22 -065631 1076124 -093740 ‘11111 .13380 117825
24 . .0B6164 1098448 111870 .13831 .16346 .21158
26 110761 112146 .14396 116541 - 19254 .24343
28 .12949 .14467 -16905 219200 .22067 -27360
30 115142 116774 119367 .21781 124767 -30205
34 119449 -21253 -24073 -26653 .29794 .35389
38 ©23555 125472 .28433 .31106 234320 .39952
a2 -27402 -29390 .32429 135146 .38380 143972
46 - 30974 33002 .36076 .38801 142019 .47524
50 .34277 .36321 .39399 .42108 .45287 150678
60 141458 143479 146486 -49099 152126 57177
70 47344 49296 152177 54656 -57505 162203
80 .52215 .54082 .56817 .59156 61826 166192
90 .56296 -58071 .60661 162863 65366  .69431
100 159755 -61441 -63890 165965 .68314 .72109
120 165283 -66805 .69003 .70854 172937 .76277
140 169496 ~70876 .72861 . 74526 -76391 .79366
160 . 72806 . 74066 .75872 .77381 -79067 .81747
180 75474 .76630 .78284 . 79664 181201 .83636
200 . 77668 .78735 -80260 .81529 .82941 .85172
250 -81754 .82649 .83923 .84979 86149 .87991
300 84580 .85349 .86441 .87344

.88343 . 89910
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p=38
Qa
N .005 .01 .025 .05 A .25
s 071788  .0l27508  .0017155  .0%72189  .0°31412  .0%20202
10 0539473 .0%83064  .0%22061  .0%1489  .0°12180  .044134
11 .0%55082 0494377 0319900 0336314 .0%9598  .0%18771
12 .0%26703  .0%41204  .0°75447  .0%12329 0221036 .0%47822
13 0370550 .0%11401  .0%19226  .0%20243  .0%a6224 0293706
14 .0217954 0224756  .0°38847 0256126 0283044  .015649
15 .0%33920  .0%45162  .0%67510  .0%93791  .013445 .023497
16 .0%56696  .0%73433  .010564 ,014227 .019719 .032724
17 .0%86711  .010982 .015313 .020106 .027108 .043115
18 012404 .015421 -020950 .026931 1035479 .054455
19 .016850 .020620 -027401 .034597 1044691 -066544
20 - .021969 .026523 .034584 .042993 .054605 .079202
22 .034018 .040171 .050778 .061544 -076025 110563
24 .048080 -055801 .068835 081781  -.098838 .13274
26 - .063675 .072873 .088141 .10304 -12235 -15986
28 080369 .090921 .10820 -12482 -14605 .18654
30 .097792 -10956 .12861 114671 -16957 .21248
34 . .13368 .14749 116941 .18984 .21517 .26153
38 .16963 118497 -20900 .23105 -25801 30642
42 .20463 .22109 .24659 .26972 .29769 .34717
46 23812 .25537 28186 .30567 .33419 .38404
50 .26985 28764 .31474 .33892 -36766 .41741
60 34107 35942 .38699 .41123 .43966 .48794
70 .40149 141973 .44689 .47052 -49797 .54398
80  .45272 .47053 .49686 .51959 .54581 .58935
90 49642 .51364 -53895 -56068 .58561 162671
100 .53399 .55054 .57479 .59551 161017 .65795
120 .59497 -61020 .63235 .65116 .67250 .70718
140 .64217 .65616 .67642 169354 . 71289 -74412
160 .67967 .79256 71117 .72684 74448 - 77285
180  .71015 .72207 .73925 .75367 . 76986 . 79580
200 73538 . 74646 .76238 .77572 . 79067 .81456
250 . .78277 .79216 .80559 81680 .82932 84922
300  .81582 .82394 .83554 .84520 85595 .87299
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p=9
a
y .005 .01 .025 .05 1 .25
10 0825350 .0%92163  .0756095  .0°23259 0°10164  .0°61014
11 oS13612  .0528789  .0°80284  .0%18169 0442570 0316718
12 .0420532 0435438 0475647 0313971 .od27192  .0%75487
13 0310683 .0%16629  .0%30880 0351137 0388727  .0%20826
14 .0333897 0349428 0383040  .0%12945 0220813 .0%a3517
15 0380903 .0%11264  .0%17946 0226291 2399930 .0276857
16 0216061  .0%21595 0232774  .0%46163  .0%67287  .012112
17 .0%28055  .0%36693 .0253582 0273143 .010304 .017596
18 0244630 0257070 0280753 .010744 ,014715 ,024063
19 ;0266139 .0%8300 ,011439 .014894 ,019925 .031413
20 0292748 .011455 ,015437 .019734 .025874 ,039535
22 .016116 .019398 .025210 .031285 .039702 .057658
24 -024859 .029330 .037060 1044940 .055599 .077608
26 .035265 .040948 .050587 1060218 .072995 .098694
28 -047052 .053924 -065397 -076672 .091395 112038
30 .059939 .067945 .081137 ,003923 -11040 .14225
34 .088001 .098046 .11426 112963 -14902 .18545
38 -11775 .12949 114914 16553 .18713 122683
a2 .14799 .16109 .18165 -20057 .22377 .26572
46 . .17794 .19211 L21411° .23416 .25850 .30189
50 .20710 .22208 ©24517 26601 .29111 .33536
60 "27498  .20117 .31575 .33759 - 36349 .40820
70 "33480 . 35143 .37641 -39836 .42410 .46791
80 .38693 -40335 .42832 144991 -47503 151732
90 .43229 .44866 .47289 .49388 '51815 155869
100 .47190 48787 .51140 153167 -55501 159374
120 .53733 .55232 157426 .59302 161448 164973
140 .58885 .60282 162318 64050 66020 169235
160 163029 .64331 .66220 .67821 .69636 .72583
180 166429 167643 .69401 - 70886 72564 .75279
200 69264 . 70400 . 72040 .73422 . 74981 .77495
250 74638 .75611 .77011 -78186 -79505 .81621
300 .78422 179271 .80488 .81507 82648 .84472



Table 4 (Continued)
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,p=10
@ .005 .010 .025 .05 .1 .25
N
11 oB11246  .0%35733  .0719324 .0 77218 0633526 .0°21386
12 047154 .0°10036  .0°28256 0564552 © Lo"1s891 .0%09s52
13 576660 .0%13324  .0%28760  .0%s3699 0310610 .0330376
14 .0%42583 0466814 0312568 .0521066-  .0%37102  .0°89399
15 0314331 0321078 .0%36286  .0°56666 0392523 0%19892
16 0336052 .0°50647 0381824 0212140 .0%18755 .0237055
17 0375024 0210170 .0%15665  .0°22346  .0°33072 .0%61162
18 .0%13670 0213040 .0%26712 0236920 0252683 .0°92661
19 222587 0220142  .0%a1802  .0%56300  .0%78244  .013126
20 .0234640 0243855  .0%1253  .0°80714  .010952 .017701
22 029174  .0%84980  .011376 .014478 .018907 .028781
24 .011834 .014208 .018414 [022817 -028932 .042056
26 -018193 .021449 .027092 -032865 .040709 -057042
28 .025886 -030071 .037194 .044348 -053894 .073283
30 .034761 .039886 -048484 .056983 -068156 -090387
34 .055364 .062312 .073700 -084683 -098783 ©12595
38 .078662 ~087261 .10111 111422 113076 16184
42 .10353 .11356 .12949 -14436 116285 -19695
46 112913 .14036 ~15800 17428 119429 -23066
50 .15483 .16705 .18607 .20346 .22464 .26265
60 .21714 -23106 125238 .27151 129443 -33462
70 27444 . .28925 .31169 .33157 .35512 -39574
80 "32589  .34109 -36390 38395 .40748 .44759
90 .37168 .38694 .40970 .42955 -45270 149182
100 41235 .42747 .44991 146937 .49195 .52983
120 .48083 .49536 .51674 .53515 155634 .50151
140 .53578 .54954 .56969 .58695 -60669 163923
160 .58059 .59356 .61249 .62861 .64700 67713
180 61773 162994 .64770 .66279 167994 .70791
200 -64895. .66046 .67715 169129 . 70732 .73339
250 -70872 .71871 .73313 .74529 .75903 . 78122
300 ~75125 .76003 .77268 .78332 -79529 -81455
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CHAPTER 1V

DISTRIBUTION OF THE LIKELIHOOD
RATIO CRITERION FOR TESTING f = EO

1. INTRODUCTION

Let p x 1 vectors X1s §2""’§N be a random sémple from
a p-variate normal distribution with unknownvmean vector y and
positive definite covariance matrix I. The likelihood ratio
criterion for testing the hypothesis HO: %= éo.against the
alternatiyes le E # %0, for some given positive definite
matrix EO’ is given by (Anderson [1]),
> p .

-1
' -5 tr S
(1.1) = e/ 2 s V22 ko R

LYY )]

where S =
Ny

ne-12 .
He~—2Z2

(3% R and & =

x./N.
1 i=1 "

1

i 1
This likelihood ratio is not unbiased. However, if the criterion
is modified by reducing the saﬁple size N to the degrees of free&om
n = N-1, then Sugiura and Nagao [27] have shown that the fest is
unbiaséd, The monotonicity of the power function with reSpect to
each of the p characteristic roots of z %61 is established by

Nagao [22].ahd Das Gupta [7]. |

Let
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N =
-t
L]

np n -
2 -
(1.2) Ay = (o/m) B gollz e

o™
o
en

be the modified likelihood ratio statiétic. Kdrin [i7] expressed
the null distribution of -2 log Al in the form of‘an asymptotic
series of‘cehtral chi-square distributions and'compﬁted its per-
centage'points but his tables are incomplete in regard to small
values of n for the values of p = 3(1)10. Recehtly Davis-[8]
expressed fhe percentagé'points of -2 log Al in_terms of
chisquared percentiles using a Cornish-Fisher inversion of Box's
series but his tables are also incomplete in regard to small values
of n for:the.values of p he has considered i.e. p = 6 and 10.
The_objéct of the present chapter is to develop a method similar
to the onevused in Chapter III, in order to obtain the exact distri-
bution of L = Af/n in a series form and to compute percentage points
of L to aﬁy degree of accuracy even for small sampié-sizes. Tables
of percentage points for p = 2(1)10 for various significance levels
are given and comparisons made with the results of Korin [17] and

Davis [8];

2/n

2. DERIVATION OF THE DISTRIBUTION OF L = Al

The h-th moment of Al under the null hypothesis is given by

| nhp
(2.1) E(X?) = (2¢/n) 2 [T, (n(1+h)/2}/T (n/2)]

(1+h)"nP (1+h)/2 ,
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p .
where Fp(x) = wp(p-l)/4 n r{x - (i-1)/2} .

i=1
Let
_42/n
L = Al
Then
(2.2) E(LY) = E¢ Zh/“

P -
T r{s +h+—1—a}

_ (2e/n)ph a=1 2 2

TP np (1+2h/n)/2
IIII,(n'«; a) (1+2h/n) " e
a_

Using inverse Mellins' transform, the density of L is given by

oL L ge/mP 1 1l hels®)

P ns 1 —a,q-1 1 a=1
2.3) f£(L I e dh .
(2.3) £() = [a—lr( o) By . (1+2h/n)np(1+2h/n)/2
Putting %—+h=t in (2.3), we have
% -1y ere
(2.4) f£(L) = K(p,n)-L T f L™ Cc(t)dt
' c-iw

where ¢ = %-,

- Pt P 1l-a
(2.5) C(t) = (e/t) nr{t+ 5 1,

: a=1
and

(2.6)  K(pn) = (2e/m) /2 [ q r@eyyt
i o=1

Using the expansion (2.64) of Chapter III to each gamma function in

(2.5), we have



(2.7) 1log C(t) = B 10g (2m) - Riﬂﬁll log t + [A/tsAy/t2s...
Y :
+ A Jt'+...
AN
where the chfficients Ay}s are given by

' _ v-1 l-a
(2.8) AY = (-1) [angY+1 () 1/v (v+1)

where BY(X) is the Bernoulli polynomial of degree y and order unity

Thus

2.9) o) = @oP? PO/ g seen el

where the coefficients B,'s can be obtained from (2.67) of
Chapter III.

Using (2.9) in (2.4), we have the density of L as
| %-- 1 /2 1 C+im £ - ©
(2.10) £(L) = K(p,n)-L - 2mP = [ LT t7V[1+ § BY/tY]dt
LT c-ie v=1

where K(p,n) is as given in (2.6) and v = p(p+1)/4.
The integral on the right hand side of (2.10) can be easily

computed if v is an integer and its value is by Cauchy's theorem

of residues, the residue of Lt eV [1s Y By/tY] at t = 0. This
. v=1

is easily seen to be equal to

: [+

(2.11) )} [(-log L)
. v=0

v+y-1 _
BY/P(v+y)], B0 =1

and thus from (2.10), the density of L is

-]

)

v=0

n .
(2.12)  £1) = K(p,m) (2mP/? 12 (8,3 (- 10g VT (v

82
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The probability that L is less than any value, say xb, is

: p/2 v "0 g';l I v+§-1
(2.13)  P(L < x3) = K(p,n)(2m) () L° (-"log L) dL/
: v=0 Y 0
r(v+y)
For computational purposes, we let
X » ’ _
(2.14) 1 (- log L)Y 1 dL/r(vey)

u
v+y-1,u = IO L

where_u ='%-— 1. Then integrating by parts the right hand side of

(2.14), we have the following recurrence relation:

_r.u+tl v+y-1
(2.15) 1 _l’u (xo)-[x0 (- log xo)

vey /T (v+y)+1

v+y-2,u

1/ (u+1)
and

(2.16) I (x) = xé“fl)/(u+1).

With this notation (2.14) can be written as

(2.17) P < x) = KE.m@0P? ] @)1 (x

)
y=0 0

V+Y-1,u

where Iv (xo) satisfies the recurrence relations (2.15)

fY‘l,u
and (2.16). It is to be noted that (2.17) holds only if
v = p(p+l}/4 is an integer. Otherwise we can appeal to Theorem 2.1
of Chapter III, since in this case
2.18)  ¢(t) = t7V[1+ T B /tY] = 0(¢t™")

=17

¥
Thus accdrding to the theorem, we can expand ¢(t) in the factorial

series as
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(2.19) 6 (t)

il

t™V [1+ ] B /t"]
y=1 ¥

I R.T(t+2)/T(t+v+isd)
i=0

where A is an arbitrary positive constant. and can be chosen to

govern the rate of convergence of the resulting series. The

coefficiénts Ri's can be determined explicitly as is done below.
Using the formula (2.6) of Chapter III to each gamma function

on the right hand side of (2.19), we have

(2.20) log {T(t+A)/T(t+v+i+A)} = [-(v+i)log t.+ 2 Aij/tj]
: i=1

where the first few coefficients Aij's which are needed in our

computations are listed below.

Aj =‘—[t§-kz-v]/2

A, = (62330202 /24 (8,-0)/2)/6

A = —[tg-k4-2(tgfks)+(ti—kz)]/12

A, - [ti-xs-S(t§-$4)/2+s(tf-xS)/z-(ti-x)/ej/zo

(2.21) Ai5,= —[t?-k6-3(ti-ks)/2+5(tg—x4)/2—(tz—kz)/Z]/SO

Ag = [tz-k7-7(tg—k6)/2+7(t§-xs)/2

| -7 (£3-3%) /64 (t;-1)/61/42 -

A, = -[tf-x8-4(tZ-x7)+14(t?-x6)/3

i7

-7(t§-x4)/3+2(tf-xz)/s]/se



_..9.9 .8 .8 7 .7 5 .5
Apg = [t5-17-9(t7-2%)/2+6(t;-1")-21(£7-27)/5

s2(e3-2%)-3(¢,-0)/10)/72

10,10 (9 .9 8 .8
Ay = -[6302105 ()05 (e50%) /2
7585 (i -3e20%) /21790
11 .11 .., 10 .10 9 .9
AilO = [ti -A -11(ti - )/2+55(ti—x )/6

-ll(tz-k7)+ll(ti—ks)-ll(ti-ls)/Z]/llo

where ti = A+v+i. The remaining coefficients are listed in

Appendix B. Thus from (2.20) we have

(2.22)  r@e/renwei) = 0 T e,
j=1 S

where the coefficients Qij's can be obtained in terms of Aij\as

in Chapter III. Using (2.22) on the right hand side of (2.19) we

have
[+ <]

2.23) tV[+] @B/tH1 = }) Rt~ Vi),
8 y=1 7 i=0 '

Z

(/¢
=1

1
Equating the coefficients of t on both sides of (2.23), it can
be seen that Ri's can be determined using (2.90) of Chapter III.
Now using (2.19) in (2.10) and noting that the term by term
integratioﬁ is valid since a factorial series is uniforﬁ;y
convergent in a half-plane (see Doetch [9]) we have the density

of L in the case that v is not an integer in the form

85



n
. = -1 ®
(2.24)  £(L) = K(p,m) L2 (Zn)P/ziZORi =
Ct+iw t .
f L™ [T(t+A)/T(t+r+v+i)] dt
c-ie
/2 w %'+A'I +i i

= K(p,m) @mP’“ [ R, L (1-L)V 7 /e (vei)

i=0

The distribution of L is then given by

- kp,n) 2P TR, I @ +2,v+i)/T(v+i)
. i "x,2 :
i=0 0

X

(2.25)  P(L < x,)

where Ix (p,q) is the incomplete beta function f xp_l(l-x)q_ldx.
0 0

- 3. COMPUTATIONS OF PERCENTAGE POINTS

.005, .01, .025, .05, .1 and .25 significance points of
L= Ai/n were computed. for p = 2(1)10 and Varioué‘n using (2.17)
and (2.25) and these are presented in table 6 .. Thé computation
was carried out on CDC 6500 using double precision arithmetic.

Table 7 compares the exact values with those obtained by Korin

v[17] and Davis [8].
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Table 6. Pe_réentage Points of L = )\f/n for Testing z = %0

p=2
\\\a _ —
n .005 .01 .025 .05 .1 .25
2 .0211569 .0246327 ,0329074 .0%11716 .02047596 .031333
3 .0°27788 .0°55954 .014187  .028861  .059260 .15763
4 .018257  .029250 .054811  .088639  .14444 .28133
5 .047798  .068263  .10982 .15809 .22903 ~ .38018
6 .085961  .11453 16797 .22533  .30386 .45748
7 12773 16242 .22387 .28636  .36795 .51863
8 .16994  .20897 .27544  .34047 .42251 .56786
9 .21086  .25281 .32217 .38807 .46909 .60820
10 .24963  .29344  .36422 .42995 .50913 .64180
11 .28591 .33080  .40199 . 46689 .54380 .67017
12 .31962  .36503  .43594 .49961 .57407 .69443
13 .35085  .39636  .46653 .52874  .60067 .71541
14 .37974  .42505  .49417 .55479 62422 .73371
15 .40645  .45136  .51923  .57821 .64521 .74982
16 .43118  .47554  .54203  .59935 .66401 .76410
17 .45410  .49779 .56285 .61852  .68094 .77685
18 .47536  .51834  .58191 .63599 .69627 .78829
19 .49513  .53734  .59943  .65195 .71022 .79863
20 .51355  .55496 .61557 .66659 .72295 .80800
22 .54678  .58658  .64433  .69252 .74535 .82437
24 .57592  .61411 .66914  .71474  .76442 .83817
26 .60165  .63828  .69077 .73400 . 78085 .84996
28 .62450  .65966  .70978 .75084 .79515 .86016
30 .64492 67869 . 72660 .76569 .80770 .86906
32 .66328  .69573  .74160 .77888 .81881 .87690
34 .67985 .71107  .75505 .79067 .82871 .88385
36 .69490  .72495 .76718 .80127  .83759 .89006
38 .70861  .73758  .77817  .81086 .84559 .89564
40 .72115  .74910  .78817 .81956 .85285 .90068
45 .74828  .77395 .80965 .83819 .86832 .91138
50 .77062  .79434  .82719 .85334 .88085 .92001
55 .78935  .81137 .84177 .86590 .89121 _ .92710
60 .80526  .82580  .85409 .87648 .89991  .93304
65 .81894  .83819  .86464  .88552 .90732  .93808
70 .83083  .84894  .87376 .89332 .913712 .94242
75  .84127  .84835 .88174  .90013  .91928 1.94619
80 .85049  .86666  .88876 .90613 .92417 -.94950
85 .85870  .87405 .89500  .91144  .92851 .95242
90 .86606  .88067  .90058  .91619 .93237 .95502
95 .87269  .88662 .90560 .92045  .93584 .95736

100 .87869 .89201 .91013 .92430 .93897 .95946



Table 6 (continued)

p=3
Y - |
n .005 .01 .025 .05 .1 .25
5 4 4 3 2., 2

-3 .032506 .0310160 .0264805 .0226498 .0711027 .0778035

4 .0281873 .0716678 .0743296 .0790548 .019385 .056755

5 .0765792 .010719 .020707 .034585 .058931 .12591

6 .019979 .029067  .048280 .071783 .10854 .19607

7 .040201 .054573 .082592 .11426 .16034 . .26062

8 .065194 .084426 .11991 .15788 .21047 .31801

9 .093006 .11638 .15782 .20042 .25732 . 36846
10 .12215 .14891 .19492 .24079 .30037 .41275
11 .15160 .18105 .23046 .27854 .33964 .45172
12 .18067 .21220 .26407 .31356 .37534 .48614
13 .2089%4 .24205 .29564 .34594 .40781 .51671
14 .23617 .27044 .32517 .37583 .43736 .54398
15 .26223 .29732 .35272 .40341 .46431 .56844
16. .28705 .32270 .37842 .42888 .48896 .59048
17 .31063 .34663 .40239 .45243 .51155 .61044
18 .33300 .36916 .42475 .47426 .53231 .62858
19 . 35419 . 39039 .44564 .49450 .55145 .64513
20 .37427 .41038 .46517 .51333 .56914 .66030
22 .41130 .44701 .50062 .54724 .60075 .68710
24 .44458 .47965 .53187 .57688 .62813 .71002
26 .47455 .50887 .55958 .60298 .65207 .72984
28 .50164 .53512 .58430 .62612 .67315 .74714
30 .52661 .55882 .60647 .64676 .69186 .76238
32 .54857 .58029 .62644 .66528 .70857 .77589
34 .56899 .59983 .64452 .68198 .72357 .78796
36 .58769 .61768 .66096 .69711 .73712 .79880
38 60488 .63403 .67597 .71089 .74941 .80859
40 .62073 .64907 .68973 .72348 .76061 .81747
45 .65540 .68184 .71954 .75065 .78470 .83645
50 .68434 .70907 .74418 .77300 .80440 .85187
55 .70886 .73206 .76486 .79169 .82081 .86464
60 . 72987 .75170 . 78247 .80754 .83468 .87538.
65 .74808 .76868 .79763 .82117 . 84657 .88454
70 .76401 . 78350 .81083 .83299 .85685 . 89245
75 . 77805 .79654 .82242 .84335 .86587 .89935
80 .79052 .80811 .83267 .85251 .87381 .90541
85 80168 .81843 .84181 .86065 .88086 .91079
90 . 81171 .82771 .85000 .86795 .88717 .91559
95 . 82077 . 83609 .85739 .87452 .89284 .91990
100 . 84369 .86408 .88047 .89797 .92379

.82901
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Table 6 (Continued)

p=4
Y
n . 005 .01 .025 .05 .1 .25
6 5.,. 4 4 3 2
4 .0368258 .0327562 .0217377 .0271482 .0230192 .0722422
5 .0226081 .0253590 .0214157 .0730195 .0766607 .020829
6 .0224414 .0740310 ,0%79751 .013653 .024052 .054981
7 .0°83707 .012366 .021080 .032154 .050263 .096845
8 .018557 .025595 .039760 .056400 .081716 - .14106
9 .032548 .042820 .062385 .084139 .11560 .18472
10 .049524 . 062930 .087449 .11362 .15008 .22637
11 .068633 .084918 .11378 .14363 .18402 .26541
12 .089139 .10798 .14054 .17338 .21678 .30166
13 .11045 .13149 .16715 .20236 .24803 .33516
14 .13210 .15503 .19322 .23030 27762 . 36606
15 .15377 .17829 .21852 .25702 . 30550 .39454
16 .17521 .20104 .24291 .28248 .33172 .42082
17 .19625 .22315 .26631 . 30664 .35634 .44510
18 21677 . 24455 .28869 . 32955 . 37945 .46756
19 .23670 .26517 .31004 .35123 .40114 .48838
20 .25599 .28500 .33040 .37175 .42151 .50772
22 . 29256 .32229 .36823 .40954 .45867 .54249
24 . 32645 .35652 .40252 .44344 .49164 ..57283
26 .35777 .38791 .43362 .47392 .52101 .59951
28 . 38669 .41670 .46188 .50143 .54731 .62312
30 .41339 .44314 .48764 .52634 .57097 .64416
32 .43808 .46746 51117 .54898 .59235 .66301
34 .46092 .48987 .53273 .56962 .61175 .67998
36 .48210 .51057 .55255 .58851 .62943 .69536
38 .50178 .52973 .57081 .60586 .64560 .70933
40 .52009 .54751 .58768 .62184 .66044 .72210
45 .56068 .58677 .62470 .65673 .69269 .74962
50 .59514 .61992 .65574 .68582 .71940 .77222
55 .62471 .64824 .68211 .71042 .74188 .79109
60 .65034 .67270 .70478 .73147 .76105 .80708
65 .67274 .69403 .72446 .74970 77758 .82081.
70 .69249 71277 .74170 .76562 .79198 .83272
75 .71001 .72937 .75692 .77965 .80464 .84315
80 .72566 .74418 .77046 .79211 .81585 ~.85236
85 .73972 .75746 .78258 .80323 .82585 . 86055
- 90 .75243 .76943 .79349 .81324 .83482 .86788
95 . 76396 .78029 .80336 .82227 .84292 .87447
100 .77446 .79017 .81234 .83048 .85026 . 88045
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Table 6 (Continued)

p =35

\“

n .005 .01 .025 .05 2% .25

5 .02209 .02813_ .02571 .0;211 .0;883 .0;678

6 .038631 .021787 .024787 .021038 .022341 .077707

7 .0291558 .0215289 .0230854 .0753894 .0797536 .023522

8 .0234846 .0°52164 .0790895 .014165 .022760 .046217

9 .07894223 .011779 .018714 .027119 .040364 .073262
10 .015873 .021176 .031545 .043440 .061249 .10262
11 .025655 .033050 .046932 .062212 .084226 .13284
12 .037426 .04693 .064206 .082619 .10836 .16301
13 .050797 .062331 .082772 . 10400 .13296 .19252
14 .065391 .078826 .10214 .12584 .15754 .22102
15 .080870 = .096049 .12193 .14777 .18176 .24833
16 .096950 .11370 .14185 .16952 .20539 .27435
17 .11340- .13155 .16167 .19088 .22830 .29907
18 .13001- .14942 .18124 .21175 .25040 .32249
19 .14666 .16715 .20043 .23201 .27165 .34465
20 .16321 .18465 .21916 .25163 .29203 .36562
22 .19568 .21865 .25508 .28883 .33022 .40422
24 .22696 .25104 .28877 .32329 .36513 .43880
26 .25679 .28165 .32020 .35511 .39702 .46987
28 .28506 .31043 .34945 .38447 .42617 .49787
30 31174 .33742 .37663 .41156 .45285 .52321
32 .33687 .36270 .40190 .43654 .47733 .54621
34 . 36052 .38637 .42539 .45971 .49983 .56717
36 .38276 .40854 .44726 .48115 .52057 .58634
38 .40369 .42932 .46764 .50104 .53974 .60392
40 .42337 .44880 .48667 .51954 .55748 .62011
45 .46775 .49249 .52906 .56052 .59655 .65542
50 .50618 .53010 .56523 .59525 .62943 .68481
55 .53967 .56272 .59640 .62503 .65745 .70964
60 .56907 .59125 .62350 .65080 .68158 .73087
65 .59505 .61636 .64727 .67331 .70258 .74924
70 .61815 .63864 .66825 .69313 .72101 .76527
75 .63881 .65851 .68691 .71071 .73731 - .77939
80 .65738 .67635 .70361 72641 .75182 »79191
85 .67417 .69244 .71864 .74050 .76482 .80309
90 .68942 .70702 .73223 .75322 .77654 .81314
95 .70331 .72030 .74458 .76476 .78715 .82222
100 .71603 .73243 .75585 .77528 .79680 .83045
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Table 6 (Continued) -

p=6
\cx , .
' .005 .01 .025 .05 .1 .25
6 .02679 .03256 .02156 .0?637 .o§272 .02212
7 .032922  .076086  .051650  .033626  .038340  .022857
8 .0534475 0358147 0211936 .0221210 .0°39263  .0°98987
9 .0214392 0521796 .0238712 .0%1448 .010108  .021457
10 0237618 .0°53261 .0%86316 .012744 .019416  .036790
11 .0275778 .010237  .015555 .021817 .031466  .054938
12 012966  .016912  .024487  .033043  .045723  .075008
13 .019867 .025215 .035157 .04026  .061643  .096263
14 .028141  .034941  .047256  .060366  .078740  .11814
15 .037607 .045856  .060477  .07570  .096606  .14020
16 .048072  .057730  .074544  .091731  .11491 .16215
17 .059348  .070352  .089215  .10819  .13341 = .18377
18 071262  .083532 .10420  .12488  .15189 .20491
19 .083659  .097107  .11959  .14163  .17021 .22546
20 .096406  .11094  .13499  .15831  .18826 .24538
22 .12250  .13894  .16566  .19111  .22232 .28315
24 .14884  .16682  .19567  .22274  .25644 .31816
26 17492 .19416  .22465  .25202  .28772 35048
28 .20043  ,22065  .25239  .28153  .31705 38029
30 .22515  .24614  .27881  .30854  .34448 .40778
32 .24896  .27053  .30387  .33397 37011 .43316
34 27181 .29381  .32759  .35790  .39405 .45661
36 .29366  .31597  .35062  .38039  .41643 .47833
38 .31453  .33703  .37121  .40154  .43736 .49848
40 .33443  .35704  .39124  .42144  .45695 51721
45 (38017  .40277  .43664 46626  .50078 155866
50 .42070  .44301  .47621  .50503  .53838 .59375
55 .45668  .47854  .51089  .53880  .57090 62381
60 .48873  .51006  .54146  .56842  .59927 64980
65 51741  .53816  .56857  .59457  .62421 -67249
70 54318 .56332  .59275  .61781  .64628 .69245
75 .56643  .58597  .61443 . .63859  .66595 .71015
80 58751  .60645  .63396  .65726  .68358 72594 °
8 . .60668  .62504  .65165  .67413  .69946 - .74011
90 62420 .64199  .66774  .68943  .71384 75290
95  .64025  .65750  .68242  .70338  .72692 76450

100 .65501 .67175 .69588 .71615 .73886 .77507



Table 6 (Continued)

p=7

Y |

n -~ .005 .01 .025 .05 1 .25

7 .02330 . 2105 3555 2214 .03891‘ 3696

8 . 3101 03210 3576 03128 2299 2106

9 ) 31301 032213 24611 103832 21570 024110
10 . 25897 .029025 021630  .022630 074416  .0°9742
11 0216566 . 223716 (0239120 .0%s8722 .0%91321  .017970
12 10235507 0248512 .0%75041 010700  .015747 ~ .028516
13 "0%64117 .0%84584 .012465 .017094  .02412 040984
14 1010298  .013217  .018749  .024932  .034030  .054961
15 "015203  .019083  .026246  .034038  .045216  .07006
16 ‘021073 025970  .034812  .04422  .057427  .08595
17 "027829 033766  .044203  .055279  .070428  .10236
18 ‘035373 042352  .054532  .067037  .084013  .11906
19 "043603 051608  .065385  .079330  .098006  .13586
20 ‘05242 . .061417  .076720  .092015  .11226 .15264
22 ‘071424  .082284  .10038  .11809  .14107 -18569
24 ‘091711  .10423  .12476  .14450  .16972 21763
26 11273 .12670  .14929  .17072  .19773 24813
28 '13406 14927 17359  .19640 22482 27707
30 '15540 17165  .19740  .22131  .25082 30440
32 17650  .19363  .22055  .24533  .27566 33013
34 19721 .21506  .24292  .26837  .29931 35433
36 ‘51742 .23587  .26447  .29043  .32178 37708
38 "53705  .25598  .28516  .31148  .34310 39847
40 5607 .27537  .30498  .33156  .36333 .41859
45 %0077 .32067  .35089  .37771  .40944 46388
50 ‘34145  .36158  .30190  .41858  .44990 .50303
55 ‘37834  .30845  .42855  .45486  .48552 53711
60 ‘21177 . .43170  .46137  .48716  .51705 56698
65 ‘44211  .46176  .49087  .51605  .54510 159333
70 "16970 48900  .51747  .54199  .57019 61674
75 "48155  .51375  .54154  .56540  .59273 63766
80 149912 .53632  .56342  .58660  .61309 65645
85 ‘51231  .55698  .58337  .60588  .63155 67342
90 '52010  .57593  .60162  .62349  .64836 68882
95 54119  .59337  .61838  .63963  .66373 70284
100 55222 .60948  .63382  .65446  .67783 71567
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Table 6 (Continued)

p=28
\a
> .005 .01 025 .05 .1 .25
9 .03294 . 2674 §196 . §448 .02107 .02393
10 03490 L0384l 03177  .03325  .07624 .02169
11 .032400 .023707 076799 021113 .031903  .034342
12 . 272041 ) 210418 10217462 0526605 0542133  .0°8576S
13 . 216368 . 222596 .0235523 0251410 .0%77049 014418
14 0231108 .0%41466 .0762100 .0%86418 .012414  .021771
15 0252269 .0%67778 .0%97682 .013177 .018299  .030474
16 "0%80314 .010184  .014225 .018707  .025270  .040327
17 ‘011537  .014359  .019541  .025159  .033206  .051132
18 ‘015731  .019272  .025653  .032438  .041978  .062700
19 "020580  .024873  .032485  .040443  .051455  .074859
20 (026030  .031101  .039952  .049070  .061512  .087458
22 '038571 045177  .056459  .067802  .082923  .11347
24 '052873  .060971  .074544  .087927  .10544 .13993
26 '068506  .077999  .093668  .10887  .12846 116627
28 .085081 .095847 .11339  .13019 - .15157 119210
30 10227 .11418  .13338  .15156  .17444 121719
32 ‘11980  .13273  .15338  .17273  .19686 24140
34 '13748  .15129  .17319  .19353 . .21870 26464
36 15512 .16971  .19267  .21385  .23986 .28689
38 17261 .18787  .21173  .23360  .26029 -30813
40 18085  .20568  .23030  .25273  .27996 32840
45 '23144 24835  .27434  .29774  .32580 37496
50 "57046  .28804  .31482  .33870  .36708 141618
55 '30670  .32466  .35182  .37585  .40420 .45276
60 '34020  .35832  .38557  .40952  .43760 48532
65 '37100  .38923  .416350  .44006  .46773 51442
70 '39956  .41760  .44446  .46784  .49500 54055
75 "42583  .44369  .47018  .49315  .51974 56412
80 "45008 . .46771  .49377  .51629  .54228 58546
85 47251  .48987  .51546  .53751  .56287 -60486
90 "49329  .51035  .53545  .55701  .58175 162257
95 '€1250 52934  .55392  .57499  .59911 163879
100 24696  .57103  .59161  .61513 ~

.53053

.65370
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Table 6 (Cohtinued)

p=29
\\Q\\ .
n ~.005 .01 .025 .05 .1 .25
5 .- 5 5 4 4

10 04124. .04260 .04722 . 3163 .03392 .03147
11 04185 .03320 3684 . 3126 .03246 .02687
12 03970. . 3151 3281 .02466 .02810 .02191
13 033099 . 24523 .027692 .021188 21913 .024012
14 0274384 . 210366 .0216541 . 224265 236974 .O 71266
15 214841 . 219973 . 230359 .0242820 .0262518 .011287
16 226040 234091 .0249857 .0768150 .0°61569 .016469
17 0241592 . 253236 .0%75439 .010050 .013787 .022608
18 0261860 0777705 .010724 .013982 .018734 .029614
19 .0787034 .010759 .014529 .018585 .024404 .037386
20 .011714  .014283 .018905 .023817 .030732 .045819
22 .019172 .022853 .029299 .035959 .045084 .064268
24 .028386° .033239 .041555 .049957 .061224 .084226
26 .039112 .045140 .055293 .065365 .078637 .10509
28 .051078 .058248 .070152 .081782 .096887 .12641
30 .064022 .072275 .085811 .098868 .11562 .14781
32 .077706 .086969 .10200 .11635 .13456 .16905
34 .091921 .10211 .11851 .13400 .15348 .18995
36 .10649 .11753 .13514 .15165 17224 .21037
38 12127 .13307 .15177 .16916 .19072 .23024
40 .13613 .14861 .16827 .18644 .20882 .24950
45 .17307 .18694 .20852 .22819 .25210 .29481
50 .20894 .22382 .24672 .26739 .29226 .336006
55 .24316. .25875 .28254 .30383 .32923 .37348
60 .27550 .29155 .31589 .33751 .36314 .407381
65 . 30587 .32219 .34683 .36858 .39422 .43814
70 .33428 . 35076 .37549 .39722 .42271 . 46609
75 .36084 .37735 .40204 .42364 .44887 .49157
80 .38563 .40210 .42664 .44803 .47293 .51486
85 .40878 .42515 .44947 .47059 .49510 .53619
90 .43042 .44664 .47068 .49149 .51557 .55581
95 .45066 .46671 .49041 .51089 .53453 .57389
100 .48545 .50881 .52893 .55211 .59059

.46962

94



Table 6 (Continued)

p =10
o L .

\ﬁ}\‘ .005 .01 .025 .05 .1, .25

11 02463 02962 .02262 02592 1143 .o§547
12 .0,6996 041215 . 32625 .074906  .0.9696 .052773
13 .0,3902 36127 . 31154 031936 .033415 .028253
14 0313203 319434 . 333497 .0552370 . 285630 . 218458
15 333375 .0546925 . 275906 .0511275 . 217443- .0534545
16 0569756 .0394719 . 0514596 0220844 . 230892 .0557271
17 0212760 10516854 .0224986 234574 .0549504 .0°87007
18 0521158 .0,527320 239237 0552903 .0°73624  .012380
19 0232552 -0241244 . 257677 .0 76085 .010338 .016745
20 0547226 .0°58879 .0°80485 .010421 .013870 .021758
22 .0 87070 .010575  .013931  .017497  .022523 .033526
24 .014116 .016798  .021501 .026372 .033067 .047238
26 .020893 .024459 030588 .036806 .045184 .062439
28 .028915  .033395  .040974  .048531  .058548 .078717
30 .038025 .043423 052430 .061282 .072856 .095719
32 .048057 .054353  .064736 .07482 .087841 .11316
34 .058846  .066004 077692  .088920 .10328 .13080
36 .070239 .078215  .091124 .10341 .11898 .14847
38 .082098 .090840  .10488 .11813 .13480 .16603
40 .094302  .10376 .11883 .13297 .15061 .18336
45 .12567 .13666 .15394 .16990 18955 .22529
50 .15732 .16952 .18850 .20583 .22691 .26469
55 .18845 .20159 .22185 .24016 .26224 .30133
60 .21860 .23243 .25361 .27261 .29536 .33521
65 .24748 .26183 .28365 .30311 .32625 . 36646
70 .27497 .28967 .31193 .33165 .35500 .39526
75 .30102 .31596 .33847 .35833 .38173 .42183
80 . 32565 .34073 .36336 .38325 .40658 .44636
85 .34891 . 36405 .38669 .40652  .42970 .46904
90 .37084 .38598 .40856 .42826 .45124 .49005
95 .39153 .40662 .42907 .44860 .47132 .50955
100 . 42606 .44833 .46765 .49007 .52769 .

.41105

95
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CHAPTER V

DISTRIBUTION OF THE LIKELIHOOD RATIO CRITERION
FOR TESTING % = EO’ X =R

1. INTRODUCTION

Let a p-variate random sample of size N from the normal
distribution with mean y and covariance matrix % be denoted by
X10 Xpoee 0%y The likelihood ratio criterion for:testing the
hypothesis-HO: L= EO and p = Xo against alternatives
Hl: ) # EO or y # Ko where EO is a given positive definite
matrix and Ko 2@ given vector, is expressed as (Anderson [1])

Np N

1 -1 - _ '
-=tT {S+N(x-u.) (x-uq) )
(1.1 L = (e/N) 2 |§ §61|2 o 2 %o WNQE-Ko) K-Ro

N N
where § = Y (%a-%)(§a—%)'and X = Y x /N. Although the exact

a=1 a=1 ¥ '
distribution of L is unknown, it has been shown that the asymptotic

distribution of -2 log L is a chisquare with %—p(p+1)+p degrees of

freedom. No. further information on the distribution of L appears
to be available.
In this chapter, the null distribution of L is obtained first

using the derivations for the chisquare distribution and then using
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the derivations for the beta distribution by methods similar to
those used in Chapter III. From these percentage.points of L

can be compuféd to any degree of accuracy even fof,small sample
sizes. Tapulations of percentage points for p = 2(1)6 for various

significance levels are given.

2. DISTRIBUTION OF L AS A CHISQUARE SERIES .

The h-th moment of L under the null hypotheéis is known to

be (AnderSon‘[l])

2.1) E@M = (2e/N)NhP/2[rp{(n+Nh)/z}/rpcn/2)]
- 5%-(1+h)
(1+h)
where n = N-1. Let
(2.2) ‘ A= -2 log L.

If ¢(t) is the characteristic function of A, then

p
I P{g-(l—Zit)-%}
. a=1 .
p(1-2i0)/2 b - ,
T L
a=1

(Ze/N)-Npit

(1-2it)

(2.3)  ¢(r) =

¢

and therefore

(2.4) .log ¢(t) = -Npit log(2e/N)+ E logf{g-(l—Zit)—%J
o=1

5 logr (5% - X (1-2it)log(1-2it).
a=1 :
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Using the expénsion (2.64) of Chapter III to each gamma function
in (2.4) we have
(2.5) log ¢(t) = R-log(21r)+ g log F(———J+B—-log(N/2e)

o=1

3

‘ om |
_(P—;. 3P_) log I‘{gcl-Zit.)}J,YZl(Qy/NY) (1 21t) Y

+RTO(N,E),

where the coefficients Qr's are given by

(2.6) Qr = (rl)r'l agl Br+1(-a/2)/r(r+1).

The characteristic function of L can then be Obtainéd from (2.5) as

@.7)  (t) = KN NQ-2it)/217( ] (Bj/NJ)(1 12217,
3=0

¥ R;1;+1 (N’t)?

where
. | pN >
2.8) k@) = @0P? ovze) ? “lr(gégal'l
B a=~
and
2.9 v=(p°+3p)/4 . | )

The coefficients Bj's can be expressed in terms df_Qj's using

(2.67) of Chapter III.
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'n

Since (1-2it) 2 is the characteristic function of a chisquare
density with n degrees of freedom, say gn(xz), the density of

X can be derived from (2.7) in the form

' _ bt j+v 2 1y
(2.10) f(}) = K(P,N)jzo (Bj)(Z/N) g2(j+v)(* ) +Rm+1 mN.

The probability that X is larger than any value, say AO’ is

(2.11) PO 22 = K(p,N)JZO(Bj)(2/N)j*vez(j+v)(x2)+Rm+1cN),

. 2 2 2 2
where G2(j+v)(x ) = {0 gz(j+v)(x ) dx

kN [ ] ) (Bj)(z/N)j+V(1-zit)‘(j*V)

AO o j=0

e Ny = L
and Rm+1(N) = 5

+ [exp{R_,  (N,t)}-1] dt dx .

Thus from (2.11) we have that the distribution of A may be obtained

from a series of chisquare distributions.

3. DISTRIBUTION OF L AS A BETA SERIES

Let

3.1 A =L

Then from-(2.1), we have

P
(2e/MPP =1 2
ﬁ r ey (1+2h/N)
7)
a=1

a
+h-§-}

. h
(3.2) E(A) = Np (1+2h/N)/2 °
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Using,inverse'Mellin's transform, the density of A is given by

h- P
AL 2e/M)PP 1 r{§-+h-%&

| 1 1 o=1 .
(3.3) f(A) = . - ’ dh.
. ﬁ P(ngg 271 Jie (1+2h/N)Np(1+2h/N)/2
} 2
o=1
. N .
Putting 5 * h =1t in (3.3), we have
' 'l;_'l 1 St
(3.4) £ = K (M) A 7 f_ A"t C(t)dt
c-im
where ¢ = N/2,
s pt P o
(3.5) C(t) = (e/t) I It - 59
' a=1
and
oN/2 . P N-g..-
(3.6) Ky (p,N) = (2¢/N) PN/2 | nlr(—§991 .
a:

Using the expansion (2.64) of Chapter III to each gamma function

in (3.6), we have

- 2 |
(3.7) log C(t) = g-log(ZW) - LB_iéEl log t

2 T
+ [Al/t + A/t +o.uHA L/t +...]

where the coefficients Ar's are given by

(3.8) AL (-1)1”'1[0213r+1 (-a/2)]/r(r+1).
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Thus from (3.7), we have
2
(3.9)  c(t) = @mP/% @ +3p)/4[1+B1/t+Bz/t2+...+Br/tr+...]

where the coefficients Br's can be computed using (2.10) of
Chapter IV.

Proceeding as in Chapter IV, it can be seen that when

vV = (p2+3p)/4 is an integer, the proﬁability that A is less
than any given value, say Ao is

(A)

v+r-1,u

(3.10) P(X 5_A0) = Kl(p,N)(zﬂ)P/z rZo(Br)I

where u = E'--'1 and Iv (AO) satisfies the recurrencé relation

2
(2.15) of Chapter IV. If v = (p2+3p)/4 is not an integer. The

+r-1,u

distribution of A is given by

(3.11) P(x <Ay) =K (p,N)(Zﬂ)p/2 R.I (E-+A, v+i) /T (v+i)
. =0 1 . ita, "2 .
. i=0 0
2o
where IA (p,q) is the incomplete beta function f“xp_l(l-x)q'ldx .

0 _ 0

4. COMPUTATIONS OF PERCENTAGE POINTS

.005, .01, .025, .05, .1 and .25 significance points of

X = L2/N

Were computed for p = 2(1)8 and various n using (2.11), -
(3.10) and (3.11) and these are presented in table 7. Tﬂg computa-

tion was carried out on CDC 6500 using double precision arithmetic.
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' . _ +2/N . _
Table 8. Percentage Points of A = L for testing 7 = EO’ B = Mo
p =2 |
\\\QL\ _
N .005 .01 .025 .05 1 .25
4 .0311950 .0224255 .0262516 .012967  .027422 .078104
5 .0°90438 .014658  .028055 .046404  .078032 .16230
6 .026253  .037975  .062461  .091968  .13730 .24199
7 .051029 .068870  .10323 .14149 .19621 .31188
- 8. .080540  .10371 .14595 .19050 .25119 .37189
9 .11243 .13993 .18810 .23694 .30114 ° .42330
10 . 14505 .17593 .22840 .28001 . 34605 .46750
11 .17738 .21080 .26628 .31956 .38628 .50575
12 .20877 .24408 .30155 .35570 .42233 .53910
13 .23889 . .27553 .33424 . 38867 .45471 .56837
14 .26754 .30509 .36447 .41878 .48387 .59425
15 .29468 .33281 .39240 .44630 .51024 .61726
16 .32031 .35874 .41824 .47151 .53415 .63785
17 .34446 . 38299 .44215 .49466 .55593 .65638
‘18 .36720. .40568 .46431 .51597 .57582 .67313
19 .38862 .42692 .48489 .53563 .59406 .68834
20 .40879 . .44682 .50404 .55381 .61083 .70221
22 .44572 .48300 .53853 .58634 .64061 . 72659
24 .47862  .51499 .56871 .61457 .66622 .74730
26 .50804 .54341 .59529 .63926 .68848 .76512
28 .53448 .56881 .61886 .66104 .70798 .78060
30 .55832 .59161 .63989 .68037 .72521 .79417
32 .57992 .61218 .65876 .69764 .74054 .80617
34 .59956 .63082 .67579 .71316 .75425 .81685
36 .61749 .64778 .69121 .72718 .76660 .82642
38 .63392 .66328 .70525 .73990 77777 .83504
40 .64902 .67750 .71808 .75150 .78793 .84285
45 .68191 .70834 .74579 .77645 .80970 .85948
50 .70923 .73385 .76858 .79687 .82742 .87294
55 .73227 .75528 .78763 .81388 .84213 .88404
60 .75195 .77355 .80380 . 82827 .85454 .89336
65 .76896 .78928 .81769 . 84060 .86514 .90130
70 .78379 .80299 .82975 .85129 .87430 .90814
75 .79684 .81502 .84031 .86063. .88230 - .91409
80 . 80842 .82567 . 84965 .86887 .88934 .91932
85 .81875 .83517 .85795 .87619 .89559 .92395
90 .82803 .84369 .86539 .88274  .90117 .92807
95 .83640 .85137 .87209 . 88863 .90619 .93177

100 . 84400 .85834 .87815 .89396 .91072 .93511
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p=3
o

‘\?F\\ .005 .01 .025 .05 .1 .25

5 .0234244 .0370203 0218466 .0239217 .0%85876  .026462

6 .0°30928 .0°50905 .010015 .017047  .029804 .067094

7 .010307 .015172  .025706  .038979  .060467 .11482

8 .02233 .030688  .047382  .066822  .096110 .16366

9 .038451  .050397  .072989  .097894  .13358 .21074
10 .057614  .072947  .10079 .13027 .17095 .25483
11 .078828  .097194  .12952 .16269 .20716 .29553
12 .10127 .12227 .15832 .19439 .24166 .33285
13 .12432 .14754 .18662 .22493 27421 . 36699
14 .14750 .17258 .21408 .25408 .30473 .39819
15 .17049 .19710 .24051 .28174 .33327 .42675
16 .19306 .22090 .26578 .30789 .35991 .45292
17 .21506 .24389 .28987 .33256 .38478 .47695
18 .23638 .26598 .31278 .35580 .40798 .49908
19 .25697 .28717 .33452 .37770 .42967 .51950
20 .27680 .30745 .35515 .39833 .44994 .53839
22 .31415 .34533 .39326 .43609 .48671 .57217
24 . 34852 .37986 .42755 .46974 .51912 .60148
26 .38008 .41132 .45847 .49982 .54783 .62711
28 .40906 .44003 .48644 .52684 .57343 .64970
30 .43570 .46627 .51180 .55119 .59636 .66975
32 .46022 .49031 .53489 .57325 .61701 .68766
34 .48284 .51240 .55598 .59330 .63569 .70375
36 .50374 .53273 .57530 .61160 .65267 .71828
38 .52310 .55150 .59306 .62836 .66816 .73146
40 .54107 .56888 .60943 .64375 .68234 .74347
45 .58077 .60710 .64523 .67727 .71307 .76930
50 .61432 .63923 .67511 .70510 .73842 .79043
55 .64300 .66659 .70041 .72855 .75969 .80802
60 .66778 .69014 .72209 .74857 77777 .82290
65 .68939 .71062 .74087 .76586 .79334 .83565
70 .70839  .72859 .75729 .78094 .80688 .84668
75 .72523 .74448 .77177 .79420 .81876 .85634 -
80 .74024 .75862 .78463 .80596 .82926 - .86485
85 .75371 .77129 .79612 .81645 .83862 ,87241
90 .76585 .78270 .80645 .82487 .84701 .87917
95 .77687 .79303 .81579 .83437 .85457 .88525
100 .80243 .82427 .84208 .86142 .89074

. 78690
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Table 8 (Continued)

p=4

\\\<i

N _.005 .01 .025 .05 .1 .25

3 3 3 2 I 2 |

6  .0,10678 .0,220703 .0358981 .0312748 .0°28695  .0"93374

7 .011061 .018433 0737061 .0764488 .011612  .027730

8 .0541278 .0°61637 .010696  .016600  .026537  .053367

9 .0°98136 .013688  .021655  .031256  .046289  .083241
10 .018242  .024272  .036006  .049390  .069303  .11510
11 .029144  .037447  .052960  .069939  .094254  .14743
12 .042098  .052653  .071755  .092003  .12014 .17933
13 .056655  .069348  .091745  .11488  .14626 .21023
14 .072395  .087064  .11241  .13804  .17213 .23983
15 .088956  .10541  .13336  .16112  .19743 .26798
16 .10604  .12409  .15430  .18385  .22196 .29465
17 .12340  .14286  .17501  .20605  .24560 .31983
18 .14084  .16154  .19534  .22761  .26829 .34358
19 .15823  .17999  .21519  .24846  .29004 .36596
20 17544  .19812  .23449  .26856  .31075 .38705
22 .20901  .23314  .27127  .30645  .34941 .42568
24 .24112  .26627  .30555  .34134  .38454 .46010
26 .27157  .29741  .33736  .37339  .41647 .49087
28 .30029  .32655  .36682  .40282  .44552 .51849
30 .32728  .35376  .39409  .42987  .47201 .54339
32 .35261  .37916  .41934  .45476  .49624 .56594
34 .37637  .40287  .44275  .47772  .51845 .58642
36 .39864  .42501  .46449  .49893 53887 .60511
38 .41955  .44570  .48470  .51858  .55769 .62222
40 .43917  .46506  .50353  .53680  .57508 .63794
45 .48326  .50835  .54532  .57705  .61326 .67213
50 .52127  .54544  .58085  .61103  .64528 .70050
55 .55429  .57752  .61137  .64007  .67248 .72440
60 .58320  .60549  .63784  .66515  .69585 .74479
65 .60868  .63007  .66100  .68701  .71615 .76240
70 .63129  .65182  .68141  .70622  .73393 77774
75 .65148  .67119  .69953  .72323  .74963 .79123
80 .66961  .68855  .71573  .73839  .76360 .80319 -
85 .68597  .70419  .73028  .75200  .77609 . .81385
90 .70080  .71835  .74343  .76426  .78734  .82342
95 .71432  .73123  .75537  .77538  .79752 .83206

100 . .72668 .74300 .76625 .78550 .80677 .83990
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p=>5
DN
N .005 .01 .025 .05 .1 .25
7 .0;3483 .0;7246 .021959 .034301 .029868 .023360
8 .0540379 .0267996 .0213921 .0524668 .0 45511  .011394
9 .0516608 .0525107 .0544458 .0°70365 .011532 .024312
10 .0542873 .0 60583 .0°97873 .014408 .021870 .041164
11 .0°85445 .011519 .017449  .024403 .035072 .060841
12 .014486  .018858  .027220 .036629  .050512 .082357
13 .022021 .027896  .038779  .050629 .067587 .10493
14 .030978 .038392 .051773  .065965  .085773 . 12798
15 .041149  .050083 .065870  .082248  .10464 .15107
16 .052319 .062720 .080771  .099155  .12386 .17390
17 .064284  .076075  .096224  .11642 .14316 .19627
18 .076861  .089948  .11202 .13384 .16236 .21804
19 .089887  .10417 .12798 .15125 .18131 .23912
20 .10322 .11861 .14398 .16852 .19991 .25947
22 .13098 .14766 .17568 .20229 .23577 . .29789
24 .15761 .17642 .20651 .23467 .26961 %,33329
26 .18444 .20446 .23613 .26541 .30133 .36584
28 .21055 .23152 .26436 .29442 .33096 .39573
30 .23575 .25745 .29114 .32171 . 35856 .42321
32 .25996 .28218 .31646 .34732 .38428 .44849
34 .28310 ,30571 .34035 .37135 .40824 .47181
36 .30519 . 32805 .36289 .39389 .43057 .49335
38 .32622 .34924 .38414 .41503 .45142 .51329
. 40 .34624 .36932 .40417 .43488 .47090 .53179
45 .39209 .41507 .44945 .47946 .51435 .57263
50 .43257 .45519 .48878 .51789 .55148 .60710
55 .46839 .49049 .52315 .55126 .58353 .63653
60 .50021 .52173 .55336 .58046 .61141 .66194
65 .52863 .54952 .58010 .60619 .63587 .68408
70 .55411 .57436 .60390 .62901 .65749 .70352
75 .57707 .59669 .62522 .64939 .67672 .72074
80 .59785 .61684 .64439 .66768 .69393 .73608
85 .61674 .63512 .66174 .68418 .70943 .74984
90 .63396 .65177 .67750 .69914 .72344 .76224
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p=6
a .
\R\\ .005 .01 .025 .05 .1 .25
8 .o§1175 .o§2449 .0§6667 .o§1493 .033467 .031228
9 .0314809 0525325 0352651 .0594699 .0317839  .0°46618
10 .0366790 .0210206 .0218395 .0220611 .0°49579 010881
11 .0218575 .0226552 .0243693 .0°65440 .010148  .019869
12 .0239475 0253849 .0°83094 .011822  .017350  .031265
13 .0270751 .0%93190 .013700 .018747  .026384  .044617
14 . .011289 .014467  .020474  .027168  .036988  .059468
15 016571  .020769  .028500 .036886  .048878  .075407
16 .022853  .028122  .037615  .047684  .061779  .092085
17 .030043  .036401  .047647  .059352  .075444  .10922
18 .038032  .045474  .058431  .071697  .089657  .12657
19 .046710  .055212  .069812  .084550  .10424 14397
20 .055967  .065492  .081652  .097763  .11903 .16128
22 .075822  .087246  .10624  .12479  .14879 .19522
24 .096888  .10999  .13143  .15201  .17821 22783
26 .11861  .13315  .15665  .17889  .20685 25885
28 .14055  .15633  .18154  .205110  .23443 .28816
30 16241 .17923  .20583  .23047  .26082 .31575
32 .18397  .20164  .22937  .25484 28595 .34165
34 120507  .22344  .25206  .27816  .30982 .36596
36 122560  .24454  .27386  .30042 33244 .38875
38 124550  .26489  .29475  .32163 35387 .41014
40 126474  .28448  .31473  .34182 37415 .43022
45 "30082  .33010  .36084  .38809  .42027 47532
50 '35069  .37114  .40190  .42892  .46059  .51418
55 38764  .40803  .43848  .46506  .49600 54791
60 42105  .44121 47117  .49717  .52727 57742
65 45131  .47114  .50049  .52583  .55504 60341
70 47877  .49822  .52688  .55153 57983 62647
75 ‘50377  .52279  .55073  .57468 .60209 .64704
80 52660  .54517  .57238  .59563  .62215 166550
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CHAPTER VI
SUMMARY AND CONCLUSION

The Study of the exact and asymptotic distributions of
some statistics including some well-known likelihood ratio
test criteria in multivariate analysis has been carried out
in this dissertation. The main objective has been to present
in convenient forms the distributions of these statistics in
order to facilitate further work including numerical computations.
This research was carried out for the reason that earlier authors
who attempted to study these distributions either gave expressions
which were practically not suitable for further uée or merely
restricted themselves to asymptotic derivations.

In the first chapter, the non-central distributions of

: P
statistics of the formY = 1 Oi(l-gi)b, where a and b are real
i=1

numbers have been obtained in the form of H-functions as a result
of employing inverse Mellin transform and then asymptotic-expansions
of the distribution of Y have been obtained for suitable values of
(a, b). It may be possible to express the H-functions in a simple
computational form by using the methods of contour integration as

done in Chapter III at least in some cases and thus the power study

of Y for some sets of values (a, b) may be made.
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In Chapter II the moments of the sphericity criteria W
were obtained in the null case and then use was ﬁadg of the
Mellin tfanéform and Meijer's G-functions to find it§ non-central
distribution in a closed form. Here the methods of contour inte-
gration may.be eﬁployed to obtain the non-central distribution of
W in a more suitable form for further work including numerical
computations and thus power study of W can be faciiitated;

In Chapter III the exact distributi&n of the sphericity cri-
terion. W was 6btained in a form from which the percentage points
of W were computed for p = 2(1)10 and various degrees of freedom n.
The methods émployed are quite gerteral and could be used to obtain
the exact distribution of other likelihood ratio criteria. In
particular the methods can be applied to obtain the exact distri-
bution of the likelihood ratio test criterion fof'testing the
hypothesis that all off diagonal elements of P are'zero, while
the diagonél elements are equal in sets. Obviously the sphericity
test considered in Chapter III is a special case of this hypothesis.

In Chapter IV, the density of the likelihood ratio criterion

2/n
1 0

used to compute percentage points to any degree of'accuracy even

L =2 for testing % = L, was obtained in a form which could be
for small sized samples. The methods employed in this chapter
along with the methods in Chapter I may yield an. expression for

the asymptotic non-central distribution ofk1 in terms of central

or non-central chisquare distributions.
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In Chapter V, the methods of Chapter III and IV were further

L2/N for testing } = EO’

used to obtain the distribution of A =
R =Ky as.a chisquare as well as a Beta series fioﬁ which per-
‘centage points for p = 2(1)6 were computed. It may be possible
that the methods used in this chapter together with the methods
of Chapter I'may yield a suitable form for the asymptotic disfri-
bution of A.

In conclusisn, the dissertation embodies the theoretical
work solving once for all the distribution problems at least in
the null case of some well-known likelihood ratio test criteria
and makes aﬁailable much needed tabulations which are fairly

complete. The methods obtained to solve these distribution

problems (Sée Chapter III) are of wide application.
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Appendix A

Coeffiéients Bi's (i=11,...,14) are:

By = Q+8QQ,Qy/11+2Q;Bo/11+805Q¢/11
;f;gqgsz/l1+4Q8Q§/33+Q1510/11+7Q2QfQ7/22
100, Q) /11+7Q)Q,/ 2643058/ 1147Q,Q,/ 11

-f6Q6BS/11+7Q3QlQ7/11+5Q53611+7Q§Q7/22

13 = Qp*QyBy1/12+Q,B) (/6+Q3Bo/4+Q B/ 3+5Q5B,/12+Q¢Be/2

+7Q735/1z+2Q834/3+3Q933/4+5Q10Q§/12+5Q10Q2/6+11Q1151/12
B = Ql3+Q1Blé/13+2Q2B11/13+3Q3310/13+4Q4B9/13+5Q5B8/13+6Q6B7/13
+7Q7B6/13+8Q855/13+9QgB4/13+10Q1083/13+11Q1iQi/26
+11Q1iQ2/13+12Q12B1/13
Bia = Q14+Q1313/14+3Q3311/14+Q2312/7+2Q4Blo/7*5Q539/14+3Q638/7
+3Q638/7+Q7B7/2+4Q886/7+9Q935/14+5Q1034/7+i1Q1153/14

+3Q12Qi/7+6Q12Q2/7+13Q13B1/14

Coefficients Cij's (G = 11,...,14) are:

12 .11 ,..10 ,..8 6 L..4 2

Cypq = -(t) 2-6t) +11e; -33t;/2+22¢7-33¢;/2+5¢))
13 .12 11 9 7 5, .3

C;pp =ty -13t; /2¢13t; -145t]/6+288t ] /7-429t;/10+65t/3-691¢; /210
14 .13 0 12 10 8 6 4

C;q5 = -(t; =7t 01t %/6-1001t; /30+143t/2-1001¢/10+455t;/6

-691t2/30)
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Coefficients R, (i = 11,...,14) are:

R aR. d. 4R #Rod, o #Rod #R o +Rec 4R, d d

11*R10%10,1 Ro%02*Red83"R7974" 6 %65 5756 4 47*R3938

'+R d

#Rydpg*Ryd Ryd B

1,10"%0%,11 ~ 11

d d R.d..+R.d,,+R.d .+R_d__+R d..+R.d

Riz*R11911,1"R10%10,2"R9 93 8 8477756 66 57"R4%48

 +R d

3939*Ryd510" R4 d

B

1,11"R0%,12 * "12

d

R13+R12d12,1+R11d11,2+R10d10,3+R9d94+R8d85+R7d76+R6 67

+R.d.+R,d d

- +RgdggtRyd,g*Ry Ryd

3,10"R2 2,11"R191,12*Rod

0,13 = Bi3

R14fR13d13_,1*R12d12,2*R11d11,3*R10d10‘,4+R9d95+de86"R7d77

% +Redes*desg*R4d4,10*R3d3,11"R2d2,12*R1‘.11,13

*Rodo,14 = P14’
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Appendix B
Coefficiehts A..'s (§ = 11,...,15) are:

1)

_ | 11 .11 10 .10, ., .8 ,8
Ajqg = —[(t 2,12y, ~6(t3 =X )11 (g Ay )33 (e )/2

+zz(tg;x6)-33(tg-x )/z+5(t§-x2)]/132

A, = [(t:°- 13) 13(t12 W12y 013 Aty 1032327076
i12 i _ i
286(t7 A )/7-429(ti—k5)/10+65(ti-ks)/S

-691(t.—x)/210]/156

Ajps = -[(t14 A4y 7(t13 13)+91(t12 xlz)/e 1001(t 'xlo)/so
+143(t -A )/2 1001(t -X )/10+455(t k )/6

-691(t§—k }/301/182

A, = [(t15 A5y 15 (a1 A4y 72435 (£ 13213y /2
114 i
-91(til¥kll)/2+715(t?-kg)/6-429(tz-k7)/2

+455(ti—ls)/2-691(ti-ks)/6+35(ti—k)/Z]/ZIO

o 16 .16 15 .15 14 .14 12 12,
Ajs = -[(t5 -2 )-8(t; -2 )+20(t; f“ )-182(t;"-A"7)/3

4004(t10 210y/21- 1287(t 28y /3+

+20020(t2-k6)/33—1382(tg—l4)/3+140(t§—kz)]/240'



