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1. Introduction and Terminology

One of the prime motivations for the use of subset selection
procedures is to enable the experimenter to screen a group of
populations seiecting a subset of the best ones which will be further
studied in a more intensive fashion.. However, in practice, the
experimenter has only limited resources to use for secdndary
exploration. Hence the goal in this paper is to give mére flexibility
to the experimenter than does the usual subset selection‘procedure
by allowing him to specify an upper bound, m, on the number of
populations included in the selected subset. Should the data
clearly indicate a single population is best, this procedure still
retains that advantage of the subset éelection apprpach which would
allow selection of fewer than the maximum number of populations, m.
On the other hand, if the data make the choice of the best population
less obvious this proceduvre still selects a'subset for further study

but guarantees that no more than m populations are selected.

*This research was supported in part by the Office of Naval Research
Contract N00014-A-0226-00014 at Purdue University. Reproduction in
whole or in part is permitted for any purpose of the United States
Government.



Two special cases of this goal are the following. When m = 1
we select exactly one population and claim it is best. VSuéh rules
have been widely studied in the literature and in particulgr
Bechhofer (1954) solves the normal means problem when the common
variance is known under this formulation. When m = k we select a
subset whose size is a random variable (1 < 8§ < k) and claim the
best population is a member of the subset. Such rules have also been
widely studied in the literature and in particular Gupta (1956 65)
solves the above normal means problem using such a procedure.

Formally our method of viewing the selection problem relates
the subset selection formulation and the indifference zone formulation
by showing both are special cases of a general theory. In practice
our method allows us to blend éome‘of the advantages of each method
in the solution of the selection problem.

To fix ideas we introduce the following terminology which will
distinguish the various types of rules used.

Let S be the number of populations selected by the procedure
R. The godl is to select the "best" population. £ is the set of all

possible parameter configurations.

Definition 1.1: R is a fixed size subset rule means Tg(1<s<k)

such that
Pe[S-s] = 1 V6el

Rules for which s=1 are also known as indifference zone rules and
were introduced by Bechhofer (1954). 1In the more general case these

rules were introduced by Mahamuynulu (1966,67).



Definition 1.2: R is a restricted subset selection procedure means
1 <8 <k such that Py[1 < 5 < s) = 1 VOell and R 4s not a fixed

size subset rule.

Definition 1.3: R is a subset selection procedure means Pel:l <8< kl=1
voeQl and R is neither a restricted subset selection procedure nor a

fixed size subset selection procedure.

2. Statement of the Problem

Let 1, ~ N(ui,cz) for 1=1,..., k where the common 02 is known.

i
Also let u.[]_]_ <...< ”’[k] be the ordered means and 'rr(i) the population
with mean u.[ 1] the best population being "‘(k) . We assume there is
no a priori knowledge concerning the pairing of the {m ( 1)} and {ﬂi}.

Let 6§ 2 0 and
Qe fum(byeeesm) by € (-=2,2)v1)
Q@) = {ueﬂlu[k] 'M[k_ﬂZ 8}

P = (0O lupyg= - vy by -8

Goal G: Given IP.*, m and also possibly n and 6§ > O define a procedure
R bagsed on a cdmon sample size n from each populatiot_l which selects |
a subset of the ‘populations not exceeding m in size such that the
subset'containa the population 7 (k) and satisfies the basic probability

requirement

Pu[CS|R] > P*, vy e f2(8) | (2.1)

As we shall see later, by fixing 6, n, and m < k, the admissable

range of P* values becomes



P e Va - i
an < pe < Gem D [ O-ee B e T de

The event [CS|R] is the selection of any subset containing T.,.
We propose the following rule based on a sample of common size
n from each of the k populations. As usual let ii be the sample

mean from m and X[IJS e L X[k].

Rule R: Select ﬂil"'}-{-i > mx{i[k-mi—l]’ i[k] - dO/v/;} (2.2)

The following are special cases of the goal G and rule R.

A) m=k, §=0
Q(O) e
G: Choose a subset of {ﬂl,..., ﬂk} containing the best

population such that P p‘[CS|R] > Pk vpell

H X >X -
R: Select m, © X, > X4 & //n

These are the goal and procedure studied by Gupta (1956,65) .

B) m=1, 6>0
G: Choose a single population such that Pu[Cslk] > P* Ve Q(5)
R: Select that population ™ corresponding to i[k]'

Bechhofer (1954) studied this goal and procedure. -

C) mm=pg(l <g<k), da4®

R: S'e_lect the populations corresponding to i[k-s 1] i-[k]

This procedure was studied by Mahamunulu (1966,67) and Desu and
Sobel (1968). The procedure is a fixed size subset type and must

satisfy (2.1) .




3. Probability of a Correct Selection

We 1ntrodu_ce' the following notation. For every L=1,..., k and
for every i=k-m,..., k-1 let {S;'(l,):j =1,..., (k;]')]be the collection
of all subsets of size i from {1,...,k}-{£}. Also let Egu',) - {1,...,k}

- {4} - s;‘(z)-

Theorem 3.1. For any p €8, Pu[cslnl -

(“'1) |
Z 2 j " ‘?(H‘ 2( )) ﬂ {Q(t+d+' ( )
” oBlx] " Ml 4] Wre] ” “[z]
fwk-m j=l gestx) 263 (1)

3 3

- Q(t+['-g‘(u[k]f IJ-[L]))] dd(t)

Proof:

Let Y( 1) dénote the mean from population Tgy then
plcs|R] = PXp, 2max(Xp, 095 Xpy) - ®//a}]

= p(X -d//a for £ <k and -i(k) > at leasf:- (k-m) -f'(;) with #x].

®) =¥ 2

- Now for every i=k-m,..., k-1 and j=1,..., (kil) let '

L_rx = i = = -1
A, [x(k) 2Xepy Vie Sj(k) and X <X, Vie Sj(k)]
Plcs|r] = P >X,,, - @in and U A

(k) (2) frkem 3=1 h

k-1 Cg) |
— - 1
- z z BX gy 2 Xy - dopn V4<k and A]
i=k~-m j=l



Now fix 1 and jJ

1
p[x(k) Xy - do/n Vi<k and Aj]

= = = = = =1
= MXgy 2%, vmsj () and Xy <Xy <Ky + @01/ VLES ()]

@ £ o
R o 20y - i) S P

e i
Les j (k) Les F (k)

- ’(ﬂé(u[k]" ﬂu]))} ad(t)

QED

Remark 3.1: As special cases we immediately obtain the results
of Bechhofer (1954) and Gupta (1965)
A) Bechhofer (m=1, 0 <d < ®)

= = ; k-1
p[cgln]-r[x(k) > x[k]-do//ﬁ and A7)

® k-1

- m 6(:4——( pr,y)) dé(t)
.[ o gu1 MTx] " M43
k-l -—
since A; -[x(k) ( » vi<k]c [x(k) 2 Xy - o/ /a VL < k]
B) Gupta (m;-k, 0<d<® ( )
k-1 ‘4 »
= = ‘ i .
p[csl?] PX .y, 2 Xy - 49//a and il-J'o 321 AJ] ,,
- j‘a k;l 8 (1B (e 1 - i p7) + ) dE( )l
| o Bk " ¥4] ¢
| =1 |
k1 O1)

i U U -
since o o Aj [x(k) > x[k] &/ /)



Remark 3.2: An application of the dominated convergence theorem shows

plos|R] = 1 as bpy) - Pre1) ™7

Next we determine the infimum over (1(6) of the probability of a
correct selection.

Theorem 3.2. inf Plcs|R) = inf PLCS|R]
) Q0 (6)

Z &h I Qi(t+"55){§(t+d+/’:5)-§(t+'/:)}k_l-i

dé(t)
i=k-m '

Proof:
We use the following lemma due to Alam and Rizvi (1965) and

also to D. Mahamunulu (1966) .

Lemma

Let X= (X xk) have k > 1 independent components such that

i'-oo’
for every 1,x1 has cdf H(xi\ei). . Suppose {H(x|9)] form a stochastically
increasing family. If 4(X) is a monotone function of X, when all other

components of X are held fixed, then'Ee[¢(x)] is monotone in 61 in

the same direction.
1, X, > max{X ,Xr. 2 - do/Vn} -

0, otherwise

We claim ¢(X) is non increasing in 2(1) for i=1,...,k-1. Let

X'-(X

X< Xy 1 Xao), ¥ Eegyreos Xeonys Xy Xasn ¥

= mox {i[kl - wivh, i[k-n&l]} = m"{i[i:] - o/, iE['k-uﬂ-l]}



vhere the primes denoté the order statistics from X'. So if 6(X) =0

= 4(X') = 0. Hence

Pu[CS|R] - Eu[d(}l)] is nonincreasing in each of B1geeee Bre-1] when

all other uieans_are fixed. So

inf P[cslaj = inf P[CS|R] and substituting the vector of
Q(8) f0(8)

means ("'[1]""’ "'[1]’ p.[l]+5)' gives the result.

QED

Remark 3.3: As special cases we get the results obtained by Gupta

(1965), Bechhofer (1954) and Desu and Sobel (1968).
A) Bechhofer (m=1, 8>0)

inf P[cS|R] = I ﬁk'l(c+‘-/-3~6) ad(t)
Q) o

B) Gupta (m=k, 0<d<®, 8 =0)
| k-1 -
1af'p[cs|n]_- Z (“f)j 8l o) (B(era) - 2(e) Y lad(e)
1=0 - ‘

-1-i
j #" (erd) Z ¢ [@(m)]‘[ Q(t+d)]k . d¥(p)

1=0

-I 1 (evd) ab(e)

-

C) Desu and Sobel (1< m<k, d=+=, §>0)

k-1-1
fnf P[CS|R] = r ? ) ii(a@,&)h-@(wf—g—a)} aé(t)

- i-k-m



o Gem ¢ [ -teEH -0 0 T e
as we will later show.

4. Properties of R
Next we study the properties of the procedure R. To facilitate
this study we let pu(i) = PIJ-[R selects 11(1)] and recall the following

two definitionms.

Definition 4.1: R is a monotone procedure means Vpe{ and 1<j

1) <€ 1.

P, ) <p,(3)

Definition 4.2: R is an unbiased procedure means V€ 1 and j<k
Pu[R does_ not select "(j)] > PH-[R dogs not select "(k)]'

Of course R monotone = R unbiased. Other optimal properties

are

Definition 4.3: R is consistent wrt {)' means lim inf P[CS|R] =1
e .

Definition 4.4: R is strongly monotone inmw (1) means

t in u.[i] when all other components of p are fixed

p, (1)
» 4 in M43 when all other components of i are fixed (j#1)

Remard 4.1: If R is non decreasing for m (k) then

inf Plcs|R] = inf P[cCS|R]
Q) 00 (8)

Theorem 4.1. For every i=1,..., k and for all procedures R of the

form (2.2), R is strongly monotone in m W
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" Proof:
1) We have already shown this result for i = k. Since for 1 < k we
1, X,,, >max{Xr, .4, X, q-do//n}
have pu(i) - Eu['n(x)] where N(x) = { (1) Ce-me1 1> Pk
. o, otherwise,

the same argument applies to give the desired conclusion.

QED

Corollary 4.1. All rules of the form (2.2) are monotone and unbiased.
The proof follows from the definition of monotonicity and the

property of being strongly monotone in ﬂ( i)v i.

orem 4.2. For every rule R of form (2.2) and every 6 >0,R is

consistent wrt ((5).

Proof:

We must show

k-1
Deaco Yoo 1

i=k-m ’ O
We note each integrand 1s bounded wrt 2 measure and so dominated r
convergence applies.

For every 1 < k -1 we have

3z 'Fi(t+‘/-§6) [ﬁ(ﬂ@w) - Q(t:+’/§!s)}“'1"L =0

and for i = k-1

n_ig Qk-l(t+‘/é6) = 1. Hence the result follows.
' QED :
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This theorem says that no matter what probability requirement
(6 >0, P*) is made and which rule is used, (2.1) can be mnde‘to hold by

choosing a sufficiently large sample.

Theorem 4.3. For every n and rule R of form (2.2), 1im inf P[CS\R]==1.
e €1(8)

For every n, m<k, and 6>0, 1im inf P[CS|R] =

(-]
kw Y [ (-ee’B0] & (180 st
-m" J o _
Proof:
The first result follows from dominated convergence. The second

result follows from the same theorem and

~  k-1-1
lin inf P{cs|R] = Z (k -1 I Qi(w/-b) {1-8(e+ 5)} di(t)
e £3(8) i=k-m
I Gewm) () [* 1<1-y)“"‘“dy ad(e)
1- 0(t+ :

Letting w = Q-l(l-y) and changing the order of integration yields

ke &L [ I o e ™ @) ™1 agw)

-
QED
Remark 4.2: The first part states that by taking & sufficiently large
we can attain»any P* probability requirement for any rule d based
on any number of observations. The second result says that given an

indifferent zone 8§ > 0 and common sample size n we can not achieve all

P* values. We can only attain
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P* < (k-m)( kl ) J (1-8(t /:;)][Q(t)]k-m-l[l () 1™ tae(e) <1

This interpretation follows since ‘%nf P[CS‘R] i{s a monotone non decreasing
- (8) :

function of d.
Remark 4.3: Using the monotonicity of inf P{cS|R] we can obtain the
Q(s8)

 following bounds: For m < k and d>0

I ék',l(t+/§6) aé(t) < inf PlcS|R] -
-0 - 0(6)
< Geem) () j [1-8e-28 10800 ™ M1-00 ™ 8o,

For the purpose of implemeﬁting the procedure R we have prepared
Table I found at the end of the paper. The body of the table comntains
the values of '%;6 necessary to obtain P* = .75, .90, .975 using
rules d = .4, .7, 1;3 and 1.6 for k = 3(1)5 with m = 2(1)k-1 and also
for k = 6(1)10, 15, 20 with m = 2(1)5. In general given P*, d, k

and m the corresponding /Eg is the solution of the following equation:

g
k-1
-y &h j t (e+/2%) {Q(t+d+'/:6) B+ a5y 111 ga o).
i=k-m

To compare this rule to the fixed size subset rule, we have

calculated

e(P*,k,m,d) = ﬁ%%%

where n(d') is the sample size necessary to achieve probability
requirement (2.1) using rule R with k,m and d'. The ratio shows the

relative samples sizes of the restricted subset selection rule to the
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fixed size subset rule when both attain the same probability
requirements. For larger d values this ratio is close to ome indicating
that in many cases a slight additional cost will allow usé of a
restricted subset selection procedure and still meet the same probability
requirement. The éxact savings in terms of (m-Eu[S|R]) depends of
course on the underlying 4. Some exact comparisons forbthe equispaced

means and slippage configurations will be described in the next section.

5. Expected Number of Selected Populations
As usual define

L Xy 2 max{Rpy _n417e X[y] - 40//n]

0, otherwise
k
which gives S = E;Yi = number of populations selected.

i=1

k
Then E“[S] - Z 'pu(:l)
1

Theorem 5.1. For every pefl, Eu[SlR] =
(k" 1

k k-1 Cp) /_
) ) ) [ omoce ACTNRATIR
i=1 pek-m jol zes;’

(1) Le§§(1)

- Q(t"’/g'-(ﬂ[i] - IJ-['L]))} dé(t)

Proof:
From the above discussion we see that it suffices to calculate pu(i)

for 1 = 1,...,k. Using arguments similar to those above we get
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: k-1
k-1 ( P ) o
P, (1) = Y Y LK ) >K yy V48] (D) and Xy + dola >X 4> K gy Ve8] (D]
p%k-m j=1

k-l

z ZJ ﬂﬁ(t+o(u[ﬂ u-u])) _:{Q(t+'/§(u[1]-uu])+d)

p=k-m j=1 Lesj (1) l,sSj (i)

v
- ¥t g (ll'[i] - l‘l-[z]))} d®(t)
QED

Remark 5.1: Eutis] <m Vpel
Remark 5.2: Ifm=1k = sup E“[SlR] = sup E [slnl
0(8) e (8)

This was proved by Gupta (1965).

Since Eu[S‘R] is increasing in d the experimenter should seek
to use rules with small d. On the other hand for fixed 8 and P* the
smaller d is the larger n must be to achieve (2.1). Hence, the
experimenter must decide what trade off between n, d, and 6 he is
willing to accept;

To investigate his interdependencé in more detail we have

tabulated E[8|R] under the following configurations.
A) Equispaced Means p = (@, o+d, a+28,..., a+(k-1)8)

Given P¥, d,@b, k and m, Table III displays Ep[shﬂ =

(o
(k-l
2 z z n&(a‘f-g:(i-i)é) n{Q(t+d+'/§'(i-£)6)-§(t+@(1-2)6)} dé(t)
1=1 pkm =1 zesg’(i) £685(D)
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B) Slippage p = (o,...,a,a+8)

Again given P*, d, JES, k and m, Table IV gives

k-1 . . -
glslRl= ) &h -QQP(&@&){Q(t‘.+d+'/§-6)-§(t+'/§-6)]k-l-pdi(t)

p=k-m

k-1 .
s aen ) [ED [ aeB8 o b -20 1 Pasco)

p=k-m

+ & [P (000020 -2e 30 o (408 () 2Pt ).

The same two tables also list

k
A) }:(k-1+1)pu(i), the expected sum of ranks of the selected

i=1
populations ("(k) is assigned rank 1 etc.) and

B) Eu[slkllm, the expected proportion of selected populations.

As an application of the theory we give the following example.
An experimenter is sampling from nine normal populations with
ﬂi..N(ui,l). He wishes to select a subset of size at most four which
contains the population with largest mean. For his screening process
he wishes to hﬁve a probability of correct selection at }east .975
whenever Wrgy-irgy 2 8. As E“[S|R] 1s increasing in d and n, he

wishes both to be small.



16

Examining the four rules specified in Table I he finds his choices

4 .7 1.3 1.6

d B Y B 3]

are ., ~ 18 15 11 10 °

He decides to base his preliminary research on a sample of size
10 from each population and uses the rule:
@X

R: Select T

i

i 2 max{-iEG], §[9] - 1.6/\/.]3} .

6. Extension to Location and Scale Parameter Family

We assume we are given independent random variables xl, casy xk

from k populations T,,...,T with cdf's Fy (x) where .
i

A) Fa(x) m F(x-0) (0e(-®,»)) in the location paraxheter case and
B) Fe(x)- - F(x/S) (F(0)=0 and ©>0) in the scale parameter case.

‘Here the eis are unknown but F is known. Our goal is to select a

subset of the populations not exceeding m in size such that

Polcs] > P vOel(5) 6.1)

The event [CS] is the selection of any subset containing population

m (k) and

A) (6) = {O‘G[k) - °[k-1]35} in the location paraﬁeter case and -

B) Q(8) = [9|9[k]/6 >8]} in the scale parameter case.
(k-1]

As usual there is no knowledge of the correct pairing of the {nj} and

{ﬂ(j)]. Our rules are the following:

A) R: SélecF ﬂi ad Xi > max{x[k] -d, x[k-m-!—l]}

where d>04in the location parameter case and (6.2)
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', ) < <
B) R': Select ™ ©X, 2 max {c x[k], x[k-m+1]} where 0 < ¢ <1

in the scale parameter case (6.3)

As the results for the present cases are completely analogous to
those in the normal case we present them only for the location

parameter family and then without proofs.

Theorem 6.1. polcs|r] =
&h

k-1 i ® .
: z Z J. TTF(t‘l’e[kj - e[f:]) -,T;{F(t'!'d'i'e[k] - 9[21)'1"(':4'9[1‘]' 9[ f:])} dF(t)

jekom j=l zesi(k) £65 ()

and further

inf Plcs|R] = inf P[CS|R]
()

Q(s)
k-1 -
nz (kll)j Pl (ed) (F(eratd) -F(e+8) 7171 ar(e)
i=k-m -

The optimality properties of R and R' parallel those in the

normal case.

Theorem 6.2. For every i = 1,...,k and every R of the form (6.2),

R is non decreasing in ﬂ(i)' Hence R is monotone and unbiased:
Theorem 6.3. For every indifference zone § >0 and m < k.

1im inf P[cS|R] = sup inf P{CS|R]
d~o £(5) a0 Q)

- km [ [1-7(w0) WP 1@ 7 a0 (6.4)
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As before we are not able to attain all P* values for a given
§ merely by choosing sufficiently large d. The right hand side of

(6.4) is the upper bound on the attainable P* values

Theorem 6.4. For every rule of form (6.2),

lim inf PlcS|R] = 1.
6= £(8)
Again analogous to the previous results, for any rule R and
P* we can always choose an indifference zomne large enough so that

(6.2) holds. Finally we obtain the general expression for the

expected number of populations selectéd.

Theorem 6.4. Eetsm -

. (k -1
z z z j‘ ﬂF(t+9£i] - e[ﬂ]) i {F(t+d+9[i] - e[l])-F( ti-e[il "9[ L]) laF(e) .
t=1 pekem j=1 ~* gest (1) 2est (1)

A 3

Here as before the expected savings using a restricted subset
procedure over the fixed size subset procedure depends upon the

underlying F(x) and parameter point in question.



Table 1
CREER

C

Tables @6 needed to attain P* levels .75, .90, .975 for the
rules given by d = .4, .7, 1.3 and 1.6 ‘

N

—k .4 .7
¥ p*
75 .90 .975 .75 .90  .975
3 2 1.078 1.891 2.766  0.863  1.645  2.520
4 2 1.3%2 2.123 2,998 1.156  1.906  2.781
3 1.286 2.067  2.942 1.017  1.767  2.642
5 2 1.516 2.266  3.141 1.348  2.098  2.973
3 1.456  2.225  3.125 1.192  1.942  2.817
4 1.448 2,216  3.104 1.151  1.932  2.807
6 2 1.647  2.397  3.272 1.490  2.209  3.084
3 1.591 - 2.341  3.216 1.335  2.054  2.929
4 1.570 2.321  3.196 1.283  2.033  2.908
5  1.569 2.320 3.19% 1.281  2.030  2.907
7 2 1.747 2,465  3.340 1.601  2.319  3.19
3 1.690 2.440  3.315 1.438  2.157  3.032
4  1.680. 2,430 3,305 1.389  2.139  3.014
5  1.667  2.417 3,292 1.370  2.120  2.995
8 2 1.830 2.549  3.424 1.684  2.403  3.278
3 1.772  2.491  3.366 1.529  2.248  3.123
4 1.758  2.475  3.350 1.468  2.212 3,087
5  1.755 2,474 3.347 1.462  2.181  3.056
9 2 1,906  2.625  3.500 1.766  2.453  3.328
3 1.841  2.560  3.435 1.609  2.296  3.171
4 1,829  2.549  3.423 1.541 2,260  3.135
5  1.822 2.51  3.416 1.526  2.245  3.120
10 2 1.955 2.675  3.550 1.837  2.525  3.337
3 1.88 2.603  3.478 1.666  2.385  3.198
4 1.871  2.590  3.470 1.601  2.319  3.19%
15 2 2,175  2.862  3.737 2.056  2.744  3.49
3 2,101 2.820  3.695 1.894  2.582  3.3%
4 2.086 - 2.798 3,673 1.825  2.542  3.391
5 2.080 2,791  3.660 1.794  2.513  3.388
20 2 2,321 3,008 3.821 2.207  2.895  3.645
3 2.245 2.933  3.808 2.065  2.732  3.482
4  2.218 2.905 3,780 1.968  2.656  3.468
S 2213 2.900  3.775 1.935 3.449

2.622



Table I (cont.)

k_m 1.3 _1.6
P* P*
.75 .90 .975 .75 .90 .975
3 2 0.559 1.340 2.215 0.464 1.246 2.121
4 2 0.943 1.662 2.537 0.884 1.634 2,509
3 0.547 1.297 2.172 0.365 1.115 1.990
5 2 1.178 1.897 2.772 1.130 1.849 2.724
3 0.805 1.524 2.399 0.678 1.397 2.272
4 0.609 1.359 2.234 0.389 1.107 1.982
6 2 1.326 2.044 2.906 1.308 1.995 2.870
3 0.992 1.679 2.554 0.889 1.576.  2.451
4 0,783 1.502 2.377 0.610 1.329 2.204
5 0.697 1.447 2.322 0.431 1.181 2.056
7 2 1.457 2.145 3.020 1.442 2.130 2.942
3 1.127 1.814 2.627 1.047 1.735 2.485
4 0.930 1.649 2.524 0.772 1.459 2.334
‘5 0.828 1.547 2.422 0.600 1.318 2.193
8 2 1.556  2.244 3.056 1.544 2.231 2.981
3 1.234 1.922 2.734 1.168 1.855 2.605
4 1.048 1.736 2.611 0.918 1.606 2.356
5 0.925 1.644 2.519 0.724 1.442 2.255
9 2 1.645 2.332 3.082 1.619 2.307 3.059
3 1.327 2.015 2.765 1.269 1.957 2.707
4 1.141 1.829 2.641 1.020 1.707 - 2.457
5 1.023 1.711 2.586 0.850 1.537 2.350
10 2 1.725 2.412 3.162 1.706 2.39 3.144
3 1.407 2.049 2.844 1.367 2.024 2.774
4 1.219 1.907 2.657 1.117 1.805 2.555
5 1.101 1,789 2.603 0.947 1.635 2.385.
15 2 - 1.967 2.655 3.405 1.952 2.640 3.390
3 1.692 2.349 3.099 1.659 2.315 3.065
4 1.516 2.173 2.923 1.449 2.106 2.856
5 1.388  2.075 2.825 1.284 1.941 2.691
20 2 2.138 2,79 3.544 2.116 2.772 3.522
3 1.871 2.527 3.277 1.842 2.498 3.248
4 1.695 2.351 3.101 1.644 2.301 3.051
5 1,578 2.234 2.984 1.492. 2.149 2.898
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Zsble 111

Using the rule R and under the configuration (a, o6, ... ,04(k=-1)8)
this table gives in order the triple a) the expected number of selected
populations, b) the expected sum of ranks of the selected populations
and c) the expected proportion of selected populations ((a) divided by m)

Number of Populations Studied

X =3
N—g‘--s .10 .50 .90 1.30 1.70
2 4 1.3111 1.2800 1.2237 1.1649 1.1156
2.5300 2.1262 1.7606 1.4906 3.3121
0.6555 0.6400 0.6118 0.5825 0.5578
.7 1.5039 1.4588 1.3751 1.2839 1.2038
2.9134 2.4731 2.0451 1.7073 1.4698
0.7520 0.7294 0.6875 0.6420 0.6019
k=4
2 A .1.3619 1.3090 1.2316 1.1660 1.1157
3.2056 2.3924 1.8184 1.4971 1.3124
'0.6810 0.6545 0.6158 0.5830 0.5578
.7 1.5691 1.4972 1.3862 1.2855 1.2039
3.7113 2.8056 2.1237 1.7172  1.4704
0.7845 0.7486 0.6931 0.6427 0.6020
3 4 1.4391 1.3629 1.2568 1.1750 1.1183
3.3970 2.5213 1.8765 1.5173 1.3183
0.4797 0.4543 0.4189 0.3917 0.3728
.7 1.7789 1.6483 1.4611 1.3139 1.2126
4.2343 3.1766 2.3037 1.7845 1.4910

0 0 0.549 0.4870 0.438 0.4042

) i-s
2 4 1.3956 1.3208 1.2326 1.1660 1.1157
- 3.8362 2.5299 1.8277 1.4973 1.3124
0.6978 0.6604 0.6163 0.5830 0.5578
.7 1.6097 1.5119 1.3875 1.2855 1.2039
4.4502 2.979% 2.3170 1.7175 1.4704
0.8048 0.7560 0.6938 0.6428 . 0.6020

3 N 1.4995 1.3845 1.2588 1.1751 1.1183 -
4.1402 2.6964 1.8893 1.5176 1.3183
0.4998 0.4615 0.4196 0.3917 0.3728
.7 1.8785 1.6862 1.4650 1.3140 1.2125
5.2408 3.4475 2.3276 1.7851 1.4910
0.6262 0.5621 0.4884 0.4380 0.4042

4 .4 1.5165 1.3920 1.2601  1.1752  1.1183
4.1910  2.7184  1.8932  1.5180  1.3183
0.3791  0.3480  0.3150  0.2938  0.2796
7 1.9571  1.7230  1.4724  1.3148  1.2126
5.4776  3.5593  2.3499  1.7875  1.4912

0,4893 _ 0.4308  0.3681 _ 0.3287  0.3031
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Iable IV

Using the rule R and under the configuration (s 0y ..., 0+ 8) the table
gives in order the triple a) the expected number of selected populations,
b) the expected sum of ranks of the selected populations and c) the expected
proportion of selected populations ((a) divided by m)

Number of Populations Studied

k=3
m }Qgga .10 .50 .90 1.30 1.70
> 1.3120  1.2996  1.2702  1.2270  1.1766
9.5773  2.3611  2.1156  1.8627  1.6259
0.6560 0.6498  0.6351  0.6135  0.5883
7 1.5052  1.4872  1.4437  1.3783 . 1.3003
2.9629  2.7352  2.4657  2.1740  1.8861
0.7526 __0.7436 __0.7219 0.6892 _ 0.6502
k =4 |
5.4 1.3641  1.3529  1.3243  1.2792  1.2233
3.3491  3.0598  2.7192  2.3554  2.0028
0.6821 0.6765 0.6622  0.6396  0.6116
7 1.5720  1.5568  1.5169  1.4523  1.3696

3,8654 3.5571 3.1877 2.7804 2.3685
0.7860 0.7784  0.7585 0.7261 0.6848

3 4 1.4423  1.4266 1.3877 1.3288 1.2583
3.5441 3.2426 2.8768 2.4792 2.0908

0.4808 0.4755 0.4626 0.4429 0.4194

7 1.7844 1.7578 1.6920 1.5915 1.4701
4.3959 4.0606 4.6299 3.1363 2.6292

0.5948 0.5859 0.5640 0.5305 0.4900

k=5
2 4 1.3993 1,3893 1.3622 1.3172 1.2587
4.1254 4.7752 3.3491 2.8800 2.4125
0.6997 0.6947 0.6811 0.6586 0.6294
.7 1.6145 1.6015 1.5653 1.5033 1.4198
4.7653 4.389 3.9297 3.4130 2.8799 -
0.8072 0.8007 0.7827 0.7516 0.7099

3 4 1.5055 1.4904 1.4512 1.3887 1.3108
4.4422 4.0725 3.6089 3.0886 2.5649

.5018 4968 4837 4629 .4369

7 1.8882 1.8635 1.7988 1.6946 1.5627
5.5835 5.1660 4.6218 3.9837 3.3107

0.6294 0.6212 0.5996 0.5649 0.5209

4 .4  1.5230 1.5067  1.4649  1.3990  1.3177
44949  4.1216  3.6502  3.1198  2.5859

0.3808  0.3767  0.3662  0.3498 = 0.329%

7 1.9692  1.9392  1.8631  1.7437  1.5964
5.8267  5.3950  4.8181  4.1356  3.4161

0.4923  0.4848  0.4658 _ 0.4359  0.3991
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